WO2014133365A1 - 재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법 - Google Patents

재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법 Download PDF

Info

Publication number
WO2014133365A1
WO2014133365A1 PCT/KR2014/001694 KR2014001694W WO2014133365A1 WO 2014133365 A1 WO2014133365 A1 WO 2014133365A1 KR 2014001694 W KR2014001694 W KR 2014001694W WO 2014133365 A1 WO2014133365 A1 WO 2014133365A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
cell
target protein
protein
derived
Prior art date
Application number
PCT/KR2014/001694
Other languages
English (en)
French (fr)
Inventor
진영우
이은경
장미옥
박보라
이수란
양보림
김일숙
오일석
Original Assignee
주식회사 운화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 운화 filed Critical 주식회사 운화
Priority to AU2014221493A priority Critical patent/AU2014221493B2/en
Priority to CN201480019682.9A priority patent/CN105120657B/zh
Priority to EP14756381.1A priority patent/EP2962552B1/en
Priority to US14/771,483 priority patent/US10087452B2/en
Priority to RU2015140942A priority patent/RU2636462C2/ru
Priority to JP2015560106A priority patent/JP6062074B2/ja
Priority to CA2902808A priority patent/CA2902808C/en
Publication of WO2014133365A1 publication Critical patent/WO2014133365A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a plant cell expressing a target protein, a method for producing the same, and a method for producing the target protein using the same.
  • the present invention relates to a plant cell for expressing a target protein into which a vector containing a gene encoding a target protein is introduced, a method for producing the same, and a method for mass-producing a target protein through the plant cell.
  • Biopharmaceutical refers to the use of a substance present in a living body as a medicine, and in a broader sense, it can be defined as a medicine produced based on biotechnology such as advanced biotechnology, genetic recombination, cell fusion, and cell culture. have. Such biopharmaceuticals are classified into protein drugs, therapeutic antibodies, vaccines, gene therapy and cell therapy.
  • Plant cells are considered to be a safe production system because they are not infected with animal-derived viruses or pathogens, and do not contain animal-derived substances.
  • Plant cell cultures exhibit relatively low protein expression levels and slow growth rates compared to other hosts, including animal cells.
  • development of a recombinant protein production system through new plant cell cultures has been requested.
  • An object of the present invention is to provide a method for preparing a protein of interest, which has improved productivity capable of mass production.
  • the present invention is a plant cell expressing a target protein
  • the plant cell is introduced with a recombinant vector containing a gene encoding the target protein
  • the plant cell is derived from plant-forming layer stem cells (CMC) : Cambial Meristematic Cells) or callus
  • CMC plant-derived layer-derived stem cells
  • the plant-derived layer-derived stem cells (CMC) are plant-derived cell lines containing naturally undifferentiated cells isolated from the plant, wherein the cell lines are separated from the plant-derived tissue, It provides a plant cell for expressing the target protein, characterized in that it has a mitotic systemic continuity without undergoing dedifferentiation into callus.
  • the present invention also co-cultures by adding Agrobacterium containing a vector containing a gene encoding a protein of interest to a population of plant cells comprising a plant forming layer-derived stem cell (CMC) or callus, It provides a method for producing a plant cell for expressing the target protein comprising the step of transforming the plant cell with a gene encoding the target protein.
  • CMC plant forming layer-derived stem cell
  • the present invention also provides a method for preparing a target protein from plant cells for expression of the target protein, comprising the following steps:
  • the present invention further provides a method of preparing a protein of interest from a transgenic plant for expressing a protein of interest comprising the following steps:
  • 1A is a photograph of a material plant (tomato stem), and 1B is a photograph observing the formation of stem cell-derived stem cells (CMC) and starting to separate from other tissue-derived callus layers.
  • CMC stem cell-derived stem cells
  • Figure 2 is a micrograph observing the degree of cell aggregation of tomato forming layer-derived stem cells (CMC, A) and tomato callus (B) according to the present invention.
  • Figure 3 is a graph showing the growth rate of tomato forming layer-derived stem cells (CMC) and tomato callus according to the present invention.
  • Figure 4 is a GFP (Green Fluorescent Protein) expression picture showing the infection rate of more than 90% as a transient expression after 5 days by co-culturing tomato forming layer-derived stem cells (CMC) with Agrobacterium.
  • GFP Green Fluorescent Protein
  • Figure 5 is a transient expression picture of GFP after 10 days by co-culturing the ginseng forming layer-derived stem cells (CMC) with Agrobacterium.
  • CMC layer-derived stem cells
  • Figure 6 is a transient expression picture of GFP after 10 days by co-culturing carrot forming layer-derived stem cells (CMC) with Agrobacterium.
  • CMC layer-derived stem cells
  • FIG. 7 is a photograph of the GFP expressing clump and the untransformed clump expressed in stable transformation in tomato-forming layer-derived stem cells (CMC) under UV light.
  • FIG. 9 is a photograph of a cell in which GFP-expressing cells are proliferated while subcultured continuously by selecting a cluster in which fluorescent expression is confirmed.
  • Figure 10 is a photograph showing the results of the stable transformation according to the presence or absence of deposition in the stem cell (CMC) or callus derived from the tomato forming layer.
  • Figure 11 is a photograph showing the results of the stable transformation according to the presence or absence of deposition in the stem cells (CMC) or callus derived from carrot formation layer
  • CMC ginseng formation layer
  • FIG. 13 is a photograph showing the results of GFP expression by culturing GFP-transformed tomato forming layer-derived stem cells (TCMC) in a 3L bioreactor and irradiating UV light.
  • TCMC tomato forming layer-derived stem cells
  • Figure 14 is a photograph showing the result of growing in pollen by purifying the transformed Nicotiana benthamiana .
  • 15 is a photograph showing the results of observing the shape of the tobacco stem collected.
  • Figure 16 is a photograph showing the results observed by cross section the tobacco plants transformed with GFP.
  • FIG. 17 is a photograph showing the results of separating the cambium-derived stem cells (TCMC) in the cambium layer of the transformed Nicotiana benthamiana .
  • FIG. 19 is a photograph showing Western blot results using whole water-soluble proteins from GFP-transformed plants and cambium-derived stem cells (TCMC) isolated from the plants.
  • Plant cells for expression of a target protein are introduced with a recombinant vector containing a gene encoding the target protein, and the plant cells include a plant formation layer-derived stem cell (CMC) or callus.
  • CMC plant formation layer-derived stem cell
  • the plant cell may be a transforming layer-derived stem cell (TCMC) into which a recombinant vector containing a gene encoding a protein of interest is introduced.
  • TCMC transforming layer-derived stem cell
  • the inventors of the present application can introduce a gene encoding a target protein into a plant cell-derived stem cell (CMC), thereby solving the problems caused by the slow growth rate and low protein expression rate, which is a problem of conventional callus culture, and the plant formation layer.
  • CMC plant cell-derived stem cell
  • the transformation rate is dramatically improved compared to conventionally known plant cells, which enables significantly improved production and stable transformation of the recombinant protein when applying the transient expression technology of the target protein. Confirmed that this was established.
  • the plant-derived stem cell is a plant-derived cell line containing innately undifferentiated cells isolated from the plant, wherein the cell line is separated from the cambium tissue of the plant and divides without undergoing dedifferentiation into callus. Characterized in having organizational continuity.
  • callus is an amorphous cell mass in which differentiated tissue is formed through a dedifferentiation process by a wound, and loses its original characteristics after dedifferentiation and exists in an undifferentiated state.
  • Plant-derived layer-derived stem cells (CMC) used herein are different from callus in that they maintain innate undifferentiated state without undergoing dedifferentiation.
  • CMC plant cambium-derived stem cell
  • KR 10-1064519 B1 plant-derived layer-derived stem cells
  • Such plant-derived layer-derived stem cells are obtained by (a) obtaining a cambium-containing tissue from a plant; (b) culturing the obtained cambium-containing tissue in a medium; And (c) separating and acquiring only the cells derived from the cambium from the cambium, which do not include callus derived from a portion other than the cambium or from a portion other than the cambium, from the cultured cambium-containing tissue.
  • the forming layer-containing tissue of step (a) may be characterized in that the sterilization step.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of the current vector, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors.
  • Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication, including several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors. It has a structure that includes an antibiotic resistance gene that allows it to be used and a restriction enzyme cleavage site (c) into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using calcium chloride methods or electroporation (Neumann, et al., EMBO J. , 1: 841, 1982) and the like.
  • an expression vector known in the art may be used.
  • a binary vector commonly used for transformation of plants was used.
  • the gene must be linked to be operable to transcriptional and translational expression control sequences.
  • the expression control sequence and the gene of interest are included in one recombinant vector including the bacterial selection marker and the replication origin.
  • the recombinant vector preferably further comprises an expression marker useful in plant cells.
  • Plant-derived layer-derived stem cells transformed by the above-mentioned recombinant vector constitute another aspect of the present invention.
  • transformation means that DNA is introduced into a host such that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • transfection refers to the introduction of DNA into the host cell to be able to replicate in the host cell.
  • the gene encoding the target protein may be transiently expressed in a plant forming layer-derived stem cell (CMC) through a vector, or stable transformation.
  • CMC plant forming layer-derived stem cell
  • the gene encoding the protein of interest is introduced into the plant cell-derived stem cells (CMC) and transiently expressed, the gene encoding the protein of interest is introduced into the genome of the plant cell-derived stem cells (CMC) to exist as a chromosome factor Thereby stably transforming.
  • the recombinant vector is introduced into the plant formation layer-derived stem cells as described above even when the gene targeting the target protein is inserted into the genomic chromosome of the plant formation layer-derived stem cells (CMC). It would be obvious to have the same effect.
  • the present invention provides a plant-derived stem cell (TCMC) transformed Cambial Meristematic Cells (TCMC) for expressing a target protein, which is inserted into a chromosome of the plant-derived stem cell (CMC). It is about.
  • TCMC plant-derived stem cell
  • CMC plant-derived stem cell
  • the introduction of a vector containing the gene encoding the target protein or chromosomal insertion of the gene encoding the target protein may be applied to a population of plant cells including plant cell-derived stem cells (CMC) or callus.
  • CMC plant cell-derived stem cells
  • the co-culture may be characterized in that it is carried out in a dark condition.
  • the co-culture is to stir and culture a culture of Agrobacterium comprising a plant cell comprising a stem cell (CMC) or callus-derived plant cells and a vector comprising a gene encoding the protein of interest, and then culture (stationary culture) step can be included.
  • the stationary culture is a method of culturing the vessel in a state in which the culture medium is left without stirring, and may be used in combination with depositing without stirring in the present application.
  • the stationary culture may be included in a single or intermittent culture form.
  • a single stationary culture for example, the culture of the plant cells and the culture of Agrobacterium may be characterized by agitating and co-culture, stir-culture again after the stationary culture.
  • intermittent stationary culture the culture form of agitating and co-culturing the plant cells and the culture of Agrobacterium, and then stirring and co-culturing again may be repeated several to several tens of times.
  • the culture is co-cultured with agrobacterium culture containing a vector containing the gene encoding the plant cell and the target protein for 1 minute to 48 hours, followed by 1 minute to 96 hours. After the stationary culture, it may be characterized in that stirred culture for 1 to 10 days again.
  • the OD 600 of Agrobacterium added for coculture may be between 0.00001 and 2.0.
  • Agrobacterium OD 600 is too low, there is a problem that the transfection rate for transient expression is low, if too high, there is a problem that the survival rate of the host cell is sharply reduced. Therefore, it is desirable to co-culture by adding Agrobacterium having an OD 600 in the above defined range.
  • Agrobacterium can be used Agrobacterium commonly used for plant transformation, for example Agrobacterium tumefaciens or Agrobacterium rhizogenes can be used.
  • transformed plant-derived layer-derived stem cells can be produced by expressing and recovering the target protein of interest.
  • the transformed plant formation layer derived stem cells may be isolated from the plant transformed with the gene encoding the protein of interest.
  • the inventors of the present application transformed a gene encoding a target protein in tobacco and grown it in a pollen, and as a result, it was confirmed that the expression of the gene encoding the target protein is superior to other tissues in the formation layer.
  • the target protein is not limited, for example, antigens, antibodies, antibody fragments, structural proteins, regulatory proteins, toxin proteins, hormones, hormone analogs, cytokines, enzymes, enzyme inhibitors, transport proteins, receptors It may be characterized in that any one or more target proteins selected from the group consisting of a fragment of the receptor, a bioprotective inducer, a storage protein, a movement protein, an explosive protein and a reporter protein.
  • GFP Green Fluorescent Protein
  • the tomato forming layer-derived stem cells (CMC) with the Agrobacterium 1 to 9 days of co-culture, most preferably at least 90% of the agrobacter cells after 5 days Leeum infection and GFP expression could be confirmed.
  • the survival rate of stem cells derived from CMCs during the co-culture decreased by less than 10% and the rigidity of the cell wall was maintained.
  • the transformation efficiency at the cell culture level is reported to be less than 10%, but when applying the plant-derived stem cells (CMC) according to the present invention was confirmed a significant expression rate of more than 90%.
  • This high expression rate of transformation indicates that the recombinant protein can be produced at a commercial level through transient expression, and thus, the selection marker cassette can be deleted from the vector without a separate selection process.
  • the target protein since only the target protein is simultaneously expressed at a time with high transformation rate, it has superior advantages in terms of efficiency.
  • the present invention relates to a method for producing a target protein from plant cells for expressing a target protein, which comprises the following steps.
  • the plant-derived stem cell is a plant-derived cell line containing innately undifferentiated cells isolated from the plant, the cell line is separated from the cambium tissue of the plant, the mitotic structure does not undergo dedifferentiation to callus It is characterized by having continuity.
  • the present invention relates to a method for producing a target protein through a plant transformed with a gene encoding the target protein. Specifically, the following steps are included.
  • stems and twigs were immediately collected and 100 mg / L ascorbic acid (L- ascorbic acid, DUCHEFA, The Netherlands) solution was deposited and transported.
  • Example 1-1 The sterilized stem of Example 1-1 was cut to remove the phloem cortex and epidermis tissue from the neck, including the formation layer having strong cleavage ability.
  • the fragment containing the cambium prepared in Example 1-2 was cultured by denture on the cambium-derived stem cell (CMC) induction medium (media 1) of Table 1.
  • CMC cambium-derived stem cell
  • Auxin such as NAA, IAA, IBA, 2,4-D, picloram as a growth regulator can be added to the medium at a concentration of 0.5-5 mg / L, and NAA was added at a concentration of 1 mg / L. Cultivation was carried out in a dark room controlled at 25 ⁇ 1 °C.
  • amorphous callus was formed by dedifferentiation from the layer consisting of the dead part, the cortex and the epidermis. It began to be induced. After 30 days of incubation, it began to separate into the cultured formation layer and the upper layer, including the dead zone, that is, the amorphous callus layer (FIG. 1B). Wait until the two layers naturally separated, and after complete separation, only the part of the formation layer was incubated. After separation, white and soft parts with good growth rate were passaged every 14 days with the same fresh medium as the induced medium.
  • CMC cambium of tomato
  • Tomato callus (PC10623) was purchased from BRC and subcultured every 3 weeks.
  • Tomato-derived layer-derived stem cells (CMC) isolated in Examples 1-3 were placed in a flask containing the liquid medium of Table 2 and cultured in a rotary shaker at 100 rpm at 25 ⁇ 1 ° C. under dark conditions. .
  • the stem cells derived from the tomato forming layer (CMC) proliferation culture was suspended in 7 days with a cell-to-media volume ratio of 1:10.
  • Tomato callus (PC10623) was also inoculated at the same rate and the liquid medium is shown in Table 3.
  • the cambium-derived stem cells (CMC) according to the present invention contains a large number of single cells in suspension culture, some was found to exist as a very small cell aggregate. That is, as a result of culturing the cambium-derived stem cells (CMC) according to the present invention, the maximum aggregation size was only 500 ⁇ m. On the contrary, as a result of observing tomato callus (PC10623), as shown in FIG.
  • the cells of the cambium-derived stem cells (CMC) and callus (PC10623) according to the present invention were sampled to calculate cell viability (%) using the 2% Evan's blue staining (5 min) method.
  • the cambium-derived stem cells (CMC) according to the present invention were found to be 96.33% living cells, whereas callus was only 65.2% living cells.
  • CMCs cambium-derived stem cells
  • Smooth and wound-free wild ginseng was selected to remove all the roots, and then surface sterilized in 2 steps and sterilized in BIM (browning inhibition medium) of ⁇ Table 5> containing antioxidants to prevent browning of the treated tissue.
  • the root was added, shaken for 30 minutes to 1 hour, and then dried with sterile filter paper.
  • the height and width 0.5 ⁇ 0.7 cm ⁇ 0.5 ⁇ 0.7 to include a portion of the formation layer having a strong cleavage ability under the CS solution (cutting solution) containing the antioxidant of ⁇ Table 6> Cut to a size of cm ⁇ 0.2 ⁇ 0.5mm.
  • the flask was placed in a flask containing 1M sucrose (Duchefa, Netherlands) solution and treated with osmotic stress for 16 to 24 hours in a refrigerated state. Thereafter, 5 minutes in a 0.05M sucrose solution (5 minutes), 0.1M sucrose solution was treated for 5 minutes to release the stress by a high concentration of sucrose.
  • the osmosis-relaxed formation layer-containing fragments were removed by placing on filter paper-coated prepositional medium (medium 6).
  • CMC stem cell-derived stem cells
  • Table 8 Medium composition for induction of cambium-derived stem cells (CMCs) (medium 7) Composition and conditions Concentration and Conditions Salt Full strength WPM Sucrose 3% (w / v) Indole-3-acetic acid (IAA) 1mg / L pH 5.8 Gelrite 0.3% (w / v) Ascorbic acid 100mg / L Citric acid 150mg / L
  • the fragments infiltrated in the cambium-derived cell line induction medium did not induce cells in other tissues, but specifically induced the cells in the cambium.
  • KCTC 10224 ginseng cotyledon-derived callus
  • CMC Carcinoma-Derived Stem Cells
  • Carrots ( Daucus carota L. ) were prepared and prepared by surface sterilization in the same manner as in Example 2-1. Thereafter, the prepared sample was also subjected to osmotic stress treatment in the same manner as in Example 2-1, and then a cambium cell line was induced.
  • Example 2-1 As a result, in the same manner as in Example 2-1, other tissues other than the cambium were necrotic and it was confirmed that the cambium-derived stem cell (CMC) having dividing ability was induced.
  • the slice including the cambium forming layer was also grown in the same manner as in Example 2-1.
  • the ginseng forming layer-derived stem cells (CMC) isolated in Example 1 were put in a flask containing a liquid medium of ⁇ Table 2> and cultured in a rotary shaker (shaker) at 21 ⁇ 1 °C at dark conditions.
  • stem cells derived from wild ginseng forming layer (CMC) which had been grown in proliferation culture, were suspended in culture for 14 days at a cell-to-media volume ratio of 1:10.
  • the callus of wild ginseng isolated in Example 2-1 was also cultured under the same conditions, and the liquid medium was the same as the liquid medium used for cultured stem cell-derived stem cells (CMC).
  • the cambium-derived stem cells (CMC) according to the present invention contains a large number of single cells in suspension culture, some very It was confirmed that the cells exist as small cell aggregates. That is, as a result of culturing the cambium-derived stem cells (CMC) according to the present invention, the maximum aggregation size was only 200 ⁇ m. On the contrary, as a result of observing the control group, it was observed that the aggregates were very aggregated as shown in FIG.
  • the cambium-derived stem cells (CMC) and the cells of the callus were sampled to calculate the cell survival rate (%) using 2% Evan's blue staining method, according to the present invention
  • the cambium-derived stem cells (CMC) were 94.3% living cells, whereas callus was only 61% living cells.
  • the carrot forming layer-derived stem cells (CMC) isolated in Example 2-2 were placed in a flask containing the following liquid medium (medium 3-1), a rotary shaker of 100 rpm at 25 ⁇ 1 ° C. under dark conditions. Incubated at. For continuous culture, the carrot forming layer-derived stem cells (CMC), which had been grown in proliferation, were suspended in culture for 14 days at a cell-to-media volume ratio of 1:10. In addition, the callus of the carrot isolated in Example 2-2 was also cultured under the same conditions, and the liquid medium was the same as the liquid medium used for the culture of carrot-derived stem cells (CMC).
  • the liquid medium was the same as the liquid medium used for the culture of carrot-derived stem cells (CMC).
  • the plant-expression binary vector (pBINmGFP5ER) containing the GFP gene was used, and the following experiment was performed using Agrobacterium tumefaciens LBA4404 purchased from Takara Korea Biomedical. (LBA4404 Electro cells, cat no. 9115, Korea).
  • the pBINmGFP5ER / LBA4404 prepared as described above was streaking in a YEP solid medium (medium 9) containing 100 mg / L of rifampicin (TCI, Japan) and kanamycin 100 mg / L from a 15% glycerol stock, followed by platinum pool. Cancer culture at 28 °C (shaking incubator, Sejong, Korea).
  • Agrobacterium (pBINmGFP5ER / LBA4404) was used by passage in a 28 °C cancer culture by streaking in fresh medium every three days.
  • the Agrobacterium was suspended and cultured for transforming through Agrobacterium in the stem cells derived from the cambium (CMC).
  • the Agrobacterium suspension having an OD 600 value of 0.4 to 2.0 was divided into conical tubes (BD FALCON, USA) and centrifuged for 3 to 10 minutes at 6000 g-force at 4 ° C. Industry, Korea). Collect the Agrobacterium pellets collected on the tube wall separately and resuspension in 10 mL suspension medium (Medium 2), and add 10 ⁇ 200uM of Acetosyringone (Aldrich, USA) to make the Agrobacterium OD 600 value 0.00001 ⁇ 2.0. 200 rpm shaking incubation for 1 minute to 24 hours at °C.
  • Acetosyringone may be treated with Agrobacterium or directly with plant-derived stem cells (CMC) as in the present invention, or may be simultaneously treated with Agrobacterium and plant-derived layer-derived stem cells (CMC).
  • CMC plant-derived stem cells
  • Agrobacterium was prepared as in Example 3 for transforming plant cambium-derived stem cells (CMC), and the cambium-derived stem cells (CMC) were prepared from the cells of the algebraic phase of Examples 1 and 2, and then the cell mass medium volume. The ratio was 1:10.
  • Example 2 In a 250 ml flask containing tomato forming layer-derived stem cells (CMC) isolated in Example 1 was added 10mL of the Agrobacterium suspension was completed virulence induction was co-cultured at 25 °C, 100rpm. In this process, in order to maximize the transformation efficiency of tomato CMC, the culture was deposited without stirring for 1 minute to 48 hours after cancer culture at 100 rpm in a rotary stirrer (shaker, Sejong, Korea) for 1 minute to 48 hours. After that, the culture was again incubated for 1 to 9 days at 100 rpm in a stirrer.
  • CMC tomato forming layer-derived stem cells
  • Pipette the cultures in which the co-culture was completed for 1 to 9 days with a pipette and place them in a 1.5 ml microtube.10 ⁇ L of the 1 mL sample was sampled again on Marienfeld's hemacytometer using a IX71 Inverted microscope (fluorescence light source: U-RFL-T). Expression was observed. The light and filter wavelengths used for observation were green, 460-490 / 520 nm (excitation / barrier). The same slide was counted in% of GFP expressed cells relative to the number of viable cells through an optical microscope.
  • CMC tomato-derived stem cells
  • the tomato callus of Example 1 unlike the tomato forming layer-derived stem cells (CMC) of the present invention, showed a low expression rate of 26.4%. However, this value showed a remarkable effect more than two times compared to the previously reported callus transformation rate of 10%.
  • Example 2 The wild ginseng and carrot forming layer-derived stem cells (CMC) of Example 2 were tested in the same manner as described above, and the results are shown in FIGS. 7 and 8, respectively.
  • CMC layer-derived stem cells
  • Example 4 tomato formation layer-derived stem cells (CMC) and Agrobacterium were co-cultured (25 ° C., 100 rpm) in a 250 ml flask for 3 to 21 days, and Agrobacterium was observed at the highest GFP expression. To remove, wash twice with 5-20 minutes suspension medium (medium 3) of Table 2. In the third treatment, 300mg / l of kanamycin (TCI, Japan) and 500mg / l of cefotaxime (TCI, Japan) were treated for 1 week suspension culture (25 °C, 100rpm shaking).
  • CMC tomato formation layer-derived stem cells
  • Agrobacterium was observed at the highest GFP expression.
  • To remove wash twice with 5-20 minutes suspension medium (medium 3) of Table 2.
  • 300mg / l of kanamycin (TCI, Japan) and 500mg / l of cefotaxime (TCI, Japan) were treated for 1 week suspension culture (25 °C, 100rpm shaking).
  • CMC cambium-derived stem cells
  • the obtained cell lines were observed under UV light, and stably transformed cell lines such as the left clump of FIG. 7 emitted GFP, while untransformed cell lines did not emit like the right clump.
  • the degree of fluorescence expression was checked by using a fluorescence microscope (olympus IX71 inverted microscope, fluorescence light source: U-RFL-T).
  • TCMC subcultured stem cell
  • the tomato forming layer-derived stem cells (TCMC, B) or tomato callus (D) not subjected to the deposition process compared with the tomato forming layer-derived stem cells (TCMC, B) or tomato callus (D) not subjected to the deposition process, the tomato forming layer-derived stem cells (TCMC, A) or tomato callus undergoing the deposition process In (C), it can be seen that a plurality of clusters are formed.
  • stem cells derived from the tomato forming layer (TCMC, A, B) are formed in a plurality of clusters compared to the tomato callus (C, D).
  • clusters means that the agrobacteria T-DNA has been inserted into the plant cell genome, and the results of FIGS. 10 to 12 confirm that including the process of depositing is an important factor in enhancing transformation efficiency. Can be.
  • TCMC cluster-derived stem cells
  • Example 4 70 ml of a settled cell volume deposited in a 250 mL flask, which showed a GFP expression rate of 90% or more, was transferred to a 3L air-lift bioreactor in a cell: media (cell: media). Inoculated so that the volume ratio of 1:30.
  • the dry cell weight is 0.6 g / L.
  • the working volume of the 3L bioreactor was 2,100 ml and the volumetric utilization of the bioreactor was 70% of the total volume.
  • the medium used was the same as that used in a 250 mL flask, and the aeration rate was 0.1 to 0.15 vvm (volume / volume / minute) after adding 5 to 25 mg / L of G418 as an antibiotic.
  • Subculture in a 3L bioreactor was carried out at 7-10 day intervals, preferably every 7 days.
  • Tomato transgenic cambium-derived stem cell (TCMC) proliferation rate showed a stable cell proliferation rate of 10fold (folds) or more after completion of proliferation culture compared to the initial cell inoculation amount. After completion of the proliferation culture period, the survival rate of the stem cell derived from the tomato transformed layer (TCMC) was reduced by less than 10%, and the results of the observation under the light microscope showed that the rigidity of the cell wall was maintained without change. It was.
  • agrobacterium of pBINmGFP5ER / LBA4404 single colony was added to 5ml YEP medium and incubated for 6h at 28 ° C, it was added to 50ml of YEP medium at 1: 50 ⁇ 1: 100 and cultured within 18h, 24hr, and then OD of Agrobacterium culture Was measured.
  • Agrobacterium culture was added to the conical tube and the cells were spin down at 4 ° C. using a centrifuge.
  • Tobacco culture medium (MS + 2mg / L BA + 0.1mg / L NAA + pH5.8) was added to the collected Agrobacterium pellets and released, and then the tobacco culture medium and Agrobacterium were measured using the measured Agrobacterium OD.
  • the cultures were mixed and incubated at 250 rpm for 2hr at 28 ° C by adding 10-200uM of acetosyringone.
  • the tweezers were used to grab the vignettes on the plants and remove the leaves and place them in a petri dish prepared beforehand.
  • PC Positive control
  • NC negative control
  • GFP-transformed tobacco plants were cross-sectioned and observed under conditions of GFP filter (excitation / barrier): 460-490 / 520 nm. As shown in FIG. 16, brighter fluorescence was observed in the formation zone than other tissues. .
  • Nicotiana tabacum cv Xanthi was also isolated from cambium-derived stem cells by the same method as N. benthamiana , as shown in Figure 18 Nicotiana tabacum cv. The same result was obtained in Xanthi .
  • Total soluble proteins were isolated from tobacco forming layer-derived stem cells (TCMC) transformed with GFP gene, tobacco plants and untransformed tobacco plants.
  • the total soluble proteins isolated were subjected to SDS-PAGE on two polyacrylamide gels and transferred to nitrocellulose paper using a semi-dry transfer cell (BIO-RAD).
  • the target protein expression system using a recombinant plant cell solves the problems of conventional plant cell culture, and by producing a target protein containing a biopharmaceutical protein due to a breakthrough transformation rate, biopharmaceuticals such as plant-derived protein products It is useful to enable the commercialization of.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 목적 단백질을 발현하는 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법에 대한 것이다. 상기 식물세포에는 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있고, 상기 식물세포는 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함한다. 이때, 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 한다. 본 발명에 따른 목적 단백질 발현 시스템은 종래 식물세포 배양의 문제점을 해소하며, 획기적인 형질전환율로 인하여 바이오의약 단백질을 포함하는 목적 단백질을 대량생산 할 수 있게 하여 식물 유래 단백질 제품 등의 바이오의약품의 상업화를 가능하게 하는 바, 유용하다.

Description

재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법
본 발명은 목적 단백질을 발현하는 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법에 대한 것이다. 또한, 목적 단백질을 코딩하는 유전자를 함유하는 벡터가 도입된 목적 단백질 발현용 식물세포 및 이의 제조방법과, 상기 식물세포를 통해 목적 단백질을 대량 생산하는 방법에 대한 것이다.
바이오의약품(biopharmaceutical)이란 생체 내에 존재하는 물질을 의약품으로 사용하는 것을 말하며, 보다 넓은 의미로는 첨단 바이오 기술인 유전자재조합, 세포융합, 세포배양 등 생물공학기술을 기반으로 하여 생산된 의약품으로 정의할 수 있다. 이러한 바이오의약품은 단백질의약품, 치료용항체, 백신, 유전자치료제 및 세포치료제로 분류된다.
현재 대부분의 재조합 단백질은 동물세포와 곤충세포 등의 고등세포를 숙주로 이용하거나 효모나 박테리아와 같은 미생물을 통해 생산되어 왔다. 그러나 이러한 동물세포배양은 배지가격이 비싸며, 인간에게 감염될 수 있는 바이러스의 오염 가능성이 높고, 소 혈청유래 단백질의 유입 가능성으로 인해 이들을 제거하기 위한 별도의 정제공정이 필요한 단점이 있다(Huang and McDonald 2009).
이에 최근에 식물세포배양이 재조합 단백질의 대체생산 시스템으로 부각되고 있다. 식물세포의 경우 동물 유래 바이러스나 병원균에 감염되지 않을 뿐만 아니라 동물유래 물질 혼입의 우려가 없어 안전한 생산 시스템으로 여겨지고 있다.
하지만, 식물세포 배양은 동물세포를 포함하는 다른 숙주들에 비해 상대적으로 낮은 단백질 발현 수준과 느린 생장속도를 나타낸다. 이에 식물 유래 바이오의약품의 상업화를 위해서는 새로운 식물세포 배양을 통한 재조합 단백질의 생산시스템의 개발이 요청되어 왔다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 포함하지 않을 수 있다.
발명의 요약
본 발명의 목적은 대량 생산이 가능한 향상된 생산성을 가지는, 목적 단백질의 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 목적 단백질을 발현하는 식물세포로, 상기 식물세포에는 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있고, 상기 식물세포는 식물 형성층 유래 줄기세포(CMC: Cambial Meristematic Cells) 또는 캘러스를 포함하며, 이때 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 하는 목적 단백질 발현용 식물세포를 제공한다.
본 발명은 또한, 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단(population)에, 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써, 식물 세포를 목적 단백질을 코딩하는 유전자로 형질전환하는 단계를 포함하는 목적 단백질 발현용 식물세포의 제조방법을 제공한다.
본 발명은 또한 다음 단계를 포함하는, 목적 단백질 발현용 식물세포로부터 목적 단백질을 제조하는 방법을 제공한다:
(a) 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단(population)에 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써 목적 단백질을 코딩하는 유전자로 안정적 형질전환 또는 일시적 발현시키는 단계; 및
(b) 상기 아그로박테리움으로 감염시킨 식물 세포 배양물에서 발현된 목적 단백질을 회수하는 단계.
본 발명은 더욱이, 다음 단계를 포함하는, 목적 단백질 발현용 형질전환 식물체로부터 목적 단백질을 제조하는 방법을 제공한다:
(a) 목적 단백질을 코딩하는 유전자로 형질전환된 식물체를 생장시키는 단계;
(b) 상기 형질전환된 식물체로부터 형질전환된 형성층 유래 줄기세포(TCMC)를 수득하는 단계;
(c) 상기 수득된 형질전환된 형성층 유래 줄기세포(TCMC)를 배지에서 배양하는 단계; 및
(d) 상기 형질전환된 형성층 유래 줄기세포(TCMC)배양물에서 발현된 목적 단백질을 회수하는 단계.
도 1A는 재료식물(토마토줄기)의 사진이고, 1B는 형성층 유래 줄기세포 (CMC)를 유도하여 기타 조직 유래 캘러스 층과 분리되기 시작한 모습을 관찰한 사진이다.
도 2는 본 발명에 따른 토마토 형성층 유래 줄기세포(CMC, A) 및 토마토 캘러스(B)의 세포응집정도를 관찰한 현미경 사진이다.
도 3은 본 발명에 따른 토마토 형성층 유래 줄기세포(CMC)와 토마토 캘러스의 생장속도를 나타내는 그래프이다.
도 4는 토마토 형성층 유래 줄기세포(CMC)를 아그로박테리움과 공동배양하여 5일이 지난 후 일시적 발현으로 90% 이상의 감염율을 보이는 GFP(Green Fluorescent Protein) 발현 사진이다.
도 5은 산삼 형성층 유래 줄기세포(CMC)를 아그로박테리움과 공동배양하여 10일이 지난 후 GFP의 일시적 발현 사진이다.
도 6은 당근 형성층 유래 줄기세포(CMC)를 아그로박테리움과 공동배양하여 10일이 지난 후 GFP의 일시적 발현 사진이다.
도 7는 토마토 형성층 유래 줄기세포(CMC)에 안정적 형질전환으로 발현하는 GFP 발현 clump와 형질전환되지 않은 clump를 UV light 하에서 관찰한 사진이다.
도 8은 GFP가 안정적 형질전환된 각각의 토마토 형성층 유래 줄기세포 (TCMC)에 대한 형광현미경 사진이다.
도 9는 형광 발현이 확인된 클러스터를 선택하여 계속적으로 계대배양하며 GFP를 발현하는 cell을 증식시킨 사진이다.
도 10는 토마토 형성층 유래 줄기세포(CMC) 또는 캘러스에서 침적 유·무에 따른 안정적 형질전환 비교 결과를 나타낸 사진이다.
도 11는 당근 형성층 유래 줄기세포(CMC) 또는 캘러스에서 침적 유·무에 따른 안정적 형질전환 비교 결과를 나타낸 사진이다
도 12는 산삼 형성층 유래 줄기세포(CMC)에서 침적 유·무에 따른 안정적 형질전환 비교 결과를 나타낸 사진이다
도 13은 GFP가 형질전환된 토마토 형성층 유래 줄기세포(TCMC)를 3L 생물반응기에서 배양하여 UV light를 조사하여 GFP 발현 결과를 나타낸 사진이다.
도 14는 형질전환된 Nicotiana benthamiana를 순화하여 화분에 생육시킨 결과를 나타낸 사진이다.
도 15는 담배 줄기를 채취하여 형태를 관찰한 결과를 나타낸 사진이다.
도 16은 GFP가 형질전환된 담배 식물체를 cross section하여 관찰한 결과를 나타낸 사진이다.
도 17은 형질전환된 Nicotiana benthamiana의 형성층 부위에서 형성층 유래줄기세포(TCMC)를 분리한 결과를 나타낸 사진이다.
도 18은 형질전환된 Nicotiana tabacum cv. xanthi의 형성층 부위에서 형성층 유래 줄기세포(TCMC) 분리한 결과를 나타낸 사진이다.
도 19는 GFP가 형질전환된 식물체와 그 식물체로부터 분리된 형성층 유래 줄기세포(TCMC)로부터 전체 수용성 단백질을 이용하여 웨스턴 블롯 결과를 나타낸 사진이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
목적 단백질 발현용 식물세포에는 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있고, 상기 식물세포는 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함한다.
하나의 실시예에서, 상기 식물세포는 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있는 형질전환 형성층 유래 줄기세포(TCMC)일 수 있다.
본 출원의 발명자들은 식물 형성층 유래 줄기세포(CMC)에 목적 단백질을 코딩하는 유전자를 도입한 결과, 종래 캘러스 배양 시 문제되던 느린 생장속도 및 낮은 단백질 발현율로 인한 문제를 해소할 수 있으며, 식물의 형성층 유래 줄기세포(CMC)를 형질전환하여 재조합 단백질을 생산하는 경우 종래 알려진 식물세포들에 비하여 획기적으로 형질전환율이 향상되어 목적 단백질의 일시적 발현 기술 적용 시 재조합 단백질의 현저히 향상된 생산이 가능함과 안정적 형질전환이 확립됨을 확인하였다.
본원에서, 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 한다.
본원에서, 캘러스는 분화된 조직이 상처에 의해 탈분화 과정을 거쳐 형성되는 무정형의 세포괴로, 탈분화 이후 본연의 특성을 잃고 미분화 상태로 존재한다. 본원에서 사용된 식물 형성층 유래 줄기세포(CMC)는 탈분화 과정을 거치지 않은 선천적 미분화 상태를 유지한다는 점에서 캘러스와 차이가 있다.
본 발명의 일부 발명자들은, 최초로 식물의 형성층으로부터, 탈분화된 캘러스와 달리 선천적으로 미분화된 세포인 식물 형성층 유래 줄기세포(CMC)를 분리하였다 (KR 10-1064519 B1). 이러한 식물 형성층 유래 줄기세포는 (a) 식물로부터 형성층 함유 조직을 수득하는 단계; (b) 상기 수득된 형성층 함유 조직을 배지에서 배양하는 단계; 및 (c) 상기 배양된 형성층 함유 조직으로부터, 형성층 이외 부분 또는 형성층 이외 부분으로부터 유래된 캘러스를 포함하지 않는, 형성층으로부터 배양된 형성층 유래 세포만을 분리·수득하는 단계를 포함하는 방법에 의하여 분리될 수 있다. 이때, (a) 단계의 형성층 함유 조직은 살균단계를 거친 것임을 특징으로 할 수 있다.
본원에서, “벡터(vector)”는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동 가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드(plasmid)” 및 “벡터(vector)”는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 것이 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환 되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.
본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있다. 본 발명에서는 통상적으로 식물체의 형질전환에 사용되는 binary vector가 사용되었다.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 전사 및 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합 벡터 내에 포함되게 된다. 재조합 벡터는 식물세포 내에서 유용한 발현 마커를 더 포함하는 것이 바람직하다.
상술한 재조합 벡터에 의해 형질전환된 식물 형성층 유래 줄기세포(TCMC)는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 “형질전환(transformation)”은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. 한편, “형질감염(transfection)”은 DNA를 숙주 세포에 도입하여 숙주 세포 내에서 복제 가능하게 되는 것을 의미한다.
물론 모든 벡터가 본 발명의 식물 형성층 유래 줄기세포(CMC) 시스템 내에서 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터 및 발현 조절 서열 중에서 적절한 선택을 할 수 있다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현 또한 고려되어야만 한다.
이와 같이, 목적 단백질을 코딩하는 유전자는 벡터를 통해 식물 형성층 유래 줄기세포(CMC) 중에서 일시적으로 발현(Transient Expression)되거나, 안정적 형질전환(stable transformation)될 수 있다.
목적 단백질을 코딩하는 유전자가 식물 형성층 유래 줄기세포(CMC) 중에 도입되어 일시적 발현되는 것 이외에도, 목적 단백질을 코딩하는 유전자는 상기 식물 형성층 유래 줄기세포(CMC)의 게놈에 도입되어 염색체 상 인자로서 존재함으로써 안정적으로 형질전환될 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 목적 단백질을 타겟으로 하는 유전자를 식물 형성층 유래 줄기세포(CMC)의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 식물 형성층 유래 줄기세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.
따라서, 본 발명은 다른 관점에서, 식물 형성층 유래 줄기세포(CMC)의 염색체에, 목적 단백질을 코딩하는 유전자가 삽입되어 있는, 목적 단백질 발현용 식물 형성층 유래 줄기세포(TCMC: Transformed Cambial Meristematic Cells)에 관한 것이다.
본 발명에 있어서, 목적 단백질을 코딩하는 유전자를 함유하는 벡터의 도입 또는 목적 단백질을 코딩하는 유전자의 염색체 삽입은, 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단 (population)에, 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양시킴으로써 수행될 수 있다.
하나의 실시예에서, 상기 공동배양은 암조건에서 수행되는 것을 특징으로 할 수 있다. 상기 공동배양은 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포와 상기 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 포함하는 아그로박테리움의 배양물을 교반하며 배양하는 것으로, 이후 정치배양(stationary culture) 단계를 추가로 포함할 수 있다.
상기 정치배양은 배양 배지를 교반하지 않고 용기를 정치한 상태에서 배양하는 방법으로, 본원에서는 교반없이 침적하는 것과 혼용하여 사용될 수 있다.
상기 정치배양은 단 회 또는 간헐적 배양 형태로 포함될 수 있다. 단회의 정치배양이 포함되는 경우, 예를 들어 식물 세포와 아그로박테리움의 배양물을 교반하며 공동배양하고, 정치배양한 후 다시 교반배양하는 것을 특징으로 할 수 있다. 간헐적 정치 배양이 포함되는 경우, 식물 세포와 아그로박테리움의 배양물을 교반하며 공동배양하고, 정치배양한 후 다시 교반하며 공동배양하는 배양 형태가 수 내지 수십 회 반복될 수 있다.
이때, 상세하게는 상기 배양은 상기 식물세포와 상기 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움의 배양물을 1분 내지 48시간 교반하며 공동배양한 다음, 1분 내지 96시간 정치배양한 후 다시 1 내지 10일간 교반배양하는 것을 특징으로 할 수 있다. 공동배양을 위해 첨가되는 아그로박테리움의 OD600는 0.00001 내지 2.0일 수 있다.
아그로박테리움의 OD600가 너무 낮으면, 일시적 발현을 위한 형질전환 감염률이 낮아지는 문제가 있고, 너무 높으면 숙주세포의 생존률이 급격하게 감소하는 문제가 있다. 따라서, 상기 정의된 범위의 OD600를 가지는 아그로박테리움을 첨가하여 공동배양하는 것이 바람직하다.
이 때, 아그로박테리움은 통상적으로 식물체 형질전환을 위하여 사용되는 아그로박테리움을 사용할 수 있으며, 예시적으로 Agrobacterium tumefaciens 또는 Agrobacterium rhizogenes를 사용할 수 있다.
이처럼 형질전환된 식물 형성층 유래 줄기세포(TCMC)는 배양하여 목적 단백질을 발현시키고, 회수함으로써 목적 단백질을 제조할 수 있다.
또 다른 실시예에서, 상기 형질전환된 식물 형성층 유래 줄기세포(TCMC)는 목적 단백질을 코딩하는 유전자로 형질전환된 식물체로부터 분리될 수도 있다.
본 출원의 발명자들은 담배에 목적 단백질을 코딩하는 유전자를 형질전환하고 이를 화분에 생육시킨 결과, 형성층에서 다른 조직보다 목적 단백질을 코딩하는 유전자의 발현이 우수함을 확인하였다.
이때, 본원에서, 상기 목적 단백질은 제한되는 것은 아니나, 예시적으로 항원, 항체, 항체 단편, 구조 단백질, 조절단백질, 독소 단백질, 호르몬, 호르몬 유사체, 사이토카인, 효소, 효소 저해제, 수송단백질, 리셉터, 리셉터의 단편, 생체방어 유도물질, 저장단백질, 이동단백질(movement protein), 익스플로이티브 프로틴 (exploitive protein) 및 리포터단백질로 구성되는 군으로부터 선택되는 어느 하나 이상의 목적단백질인 것을 특징으로 할 수 있다.
본 발명의 일 실시예에서는 토마토, 당근 및 산삼의 형성층으로부터 각각 식물줄기세포를 분리한 다음, 이를 GFP(녹색형광단백질: Green Fluorescent Protein) 유전자를 함유하는 아그로박테리움을 이용하여 형질전환한 후, GFP 발현을 확인하였다. 즉, 일시적 발현 또는 안정적 형질전환이 성공적이었음을 확인하였고, 이를 2주마다 계속적으로 계대배양한 경우에도 안정적으로 증식되고 목적 단백질인 GFP 역시 안정적으로 발현함을 확인할 수 있었다.
본 발명의 일 실시예에서는, 토마토 형성층 유래 줄기세포 (CMC)를 상기 아그로박테리움으로 일시적 발현시킨 결과, 공동배양 1~9일째, 가장 바람직하게는 5일 이후 살아 있는 세포 대비 90% 이상의 아그로박테리움 감염 및 GFP 발현을 확인할 수 있었다. 공동배양 기간 동안의 토마토 형성층 유래 줄기세포 (CMC)의 생존율은 10% 미만의 감소를 보였고 cell wall의 rigidity가 그대로 유지됨을 확인하였다. 종래에는 세포 배양 수준에서 형질전환은 10% 이하로 효율이 낮다고 보고되어 있으나 본 발명에 따른 식물 형성층 유래 줄기세포(CMC)를 적용하는 경우 90% 이상의 현저한 발현율을 확인할 수 있었다.
이와 같이 높은 형질전환 발현율은 일시적 발현(transient expression)을 통하여 상업적 수준으로 재조합 단백질 생산이 가능함을 나타내며, 이에 별도의 선별과정 없이도 가능한 바 벡터로부터 선별 마커 카세트를 삭제할 수 있다. 아울러, 높은 형질전환율로 한번에 목적 단백질만 동시에 발현시키면 되므로, 효율 면에서도 월등한 장점을 갖는다.
한편, 토마토의 캘러스에 대해서도 상기와 동일한 조건으로 반응시킨 결과, 본 발명의 식물 줄기세포와 달리 토마토 캘러스의 경우, 26.4%의 낮은 발현율을 보였다. 다만, 이 수치는 종래 보고된 캘러스 형질전환율인 10%에 비하여는 2배 이상의 현저한 효과를 보임을 확인하였다. 이는 본 발명에 따른 재조합 단백질의 생산 방법이 식물 형성층 유래 줄기세포(CMC)뿐만 아니라, 캘러스에서도 적용 가능함을 나타낸다.
이에, 본 발명은 다른 관점에서, 다음 단계를 포함하는, 목적 단백질 발현용 식물세포로부터 목적 단백질을 제조하는 방법에 관한 것이다.
(a) 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단 (population)에 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써 목적 단백질을 코딩하는 유전자로 형질전환 또는 일시적 발현시키는 단계; 및
이때, 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치지 아니한 분열조직적 연속성을 가지는 것을 특징으로 한다.
(b) 상기 아그로박테리움으로 감염시킨 식물 세포 배양물에서 발현된 목적 단백질을 회수하는 단계.
본 발명은 또 다른 관점에서, 목적 단백질을 코딩하는 유전자로 형질전환된 식물체를 통해 목적 단백질을 제조하는 방법에 관한 것이다. 구체적으로, 다음의 단계를 포함한다.
(a) 목적 단백질을 코딩하는 유전자로 형질전환된 식물체를 생장시키는 단계;
(b) 상기 형질전환된 식물체로부터 형질전환된 형성층 유래 줄기세포(TCMC)를 수득하는 단계;
(c) 상기 수득된 형질전환된 형성층 유래 줄기세포(TCMC)를 배지에서 배양하는 단계; 및
(d) 상기 형질전환된 형성층 유래 줄기세포(TCMC)배양물에서 발현된 목적 단백질을 회수하는 단계.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1 가지과 식물의 형성층 유래 줄기세포(CMC)의 제조, 증식 및 특성관찰
1-1: 토마토 식물재료의 준비
가지과 리코페르시콘속의 토마토(Lycopericum esculentum, (주)세종종묘 )로부터 형성층 유래 줄기세포를 수득하기 위하여, 줄기와 잔가지(도 1A)를 채취한 후, 즉시 항산화제 100㎎/L 아스코르브산(L-ascorbic acid, DUCHEFA, The Netherlands) 용액에 침적하여 운송·보관하였다.
그 후, 0.1% 베노밀(benomyl, Dongbu Hannong Chemical, Korea), 0.1% 다코닐(daconil, Dongbu Hannong Chemical, Korea), 0.1% 스트렙토마이신(streptomycin sulphate, DUCHEFA, The Netherlands), 0.01% 세포탁심(cefotaxime sodium DUCHEFA, The Netherlands)의 혼합용액에 10분간 전처리 후 페놀 화합물(phenolic compound)과 잔존 화학물질을 제거하기 위하여 수돗물(tap water)로 5분간 세척하였다. 그리고, 70% 에탄올(ethanol, DC Chemical, Korea)에 1분, 1.5% 과산화수소(hydrogen peroxide, LG Chemical, Korea) 3분, 0.5% CLOROX 용액에 5분, 0.1% CLOROX용액에 5분 표면 살균 후 3~4회 세척하였다.
1-2: 토마토 식물체의 줄기로부터 형성층 포함 절편체의 제조 및 조직 분리
상기 실시예 1-1의 살균과정을 거친 줄기를 잘라 목부로부터 분열능이 왕성한 형성층을 포함한 사부(phloem)피층(cortex) 및 표피(epidermis) 조직을 벗겨내었다.
1-3: 토마토의 형성층 유래 줄기세포(CMC) 유도단계
상기 실시예 1-2에서 준비한 형성층 포함 절편체는 표 1의 형성층 유래 줄기세포(CMC) 유도배지(배지 1)에 치상하여 배양하였다.
표 1 형성층 유래 줄기세포(CMCs) 유도배지 (배지 1)
Composition Contents(㎎/L)
Inorganic salts KNO3 2500
(NH4)2SO4 134
MgSO47H2O 121.56
MnSO44H2O 10
ZnSO47H2O 2
CuSO45H2O 0.025
CaCl22H2O 113.23
KI 0.75
CoCl26H2O 0.025
NaH2PO4H2O 130.44
H3BO3 3
Na2MoO42H2O 0.25
FeNaEDTA 36.7
Vitamin Myo-inositol 200
Thiamine-HCl 20
Nicotinic acid 2
Pyridoxine-HCl 2
L-ascorbic acid 50
Citric acid 75
Amino acid L-aspartic acid 133
L-arginine 175
Glycine 75
Proline 115
Hormone α-Naphtalene acetic acid 1
Sucrose 1,000
Activated charcoal 100
Gelrite 2,000
배지에 생장 조절제로서 NAA, IAA, IBA, 2,4-D, picloram과 같은 옥신(Auxin)은 0.5~5mg/L의 농도로 첨가할 수 있으며, NAA를 1mg/L의 농도로 첨가하였다. 배양은 25±1℃로 조절된 암실에서 실시되었다.
상기와 같이, 배양한 결과, 초기 배양 7~10일째 형성층으로부터 세포 분열이 육안상으로 관찰되고, 배양 3주(21일) 이후에 사부, 피층 및 표피로 이루어진 층으로부터 탈분화에 의한 무정형의 캘러스가 유도되기 시작하였다. 배양 30일 경과 후 배양된 형성층과 사부를 포함한 윗층, 즉 무정형의 캘러스 층으로 분리되기 시작했다(도 1B). 두 층이 자연스럽게 분리될 때까지 기다려 완벽한 분리가 이루어진 후, 형성층 부분만을 분리 배양하였다. 분리 후, 생장률이 좋은 희고 무른 부분을 유도배지와 동일한 새로운 배지로 매 14일째 계대배양 하였다.
토마토의 형성층 유래 줄기세포(CMC)는 장기 배양 시 세포의 생장률, 생장 패턴, 응집 정도에 변이 없이 안정적으로 유지되어 대량 배양이 가능함을 확인하였다. 그러나, 토마토의 줄기에서 유도한 캘러스의 경우 장기 배양 시 세포의 생장율, 생장패턴에 변이를 보이며 높은 응집 정도 결과 세포의 갈변 현상 및 괴사 현상이 나타나고 안정적인 대량 배양이 불가능하였다.
1-4: 토마토 캘러스의 배양
토마토의 캘러스(PC10623)는 생물자원센터에서 구매하였으며 매 3주째 계대배양 하였다.
1-5: 가지과 식물의 형성층 유래 줄기세포(CMC)의 증식 및 특성관찰
상기 실시예 1-3에서 분리한 토마토 형성층 유래 줄기세포(CMC)를 하기 <표 2>의 액상배지가 함유된 플라스크에 넣어 암조건에서 25±1℃에서 100rpm의 회전 교반기(shaker)에서 배양하였다. 지속적인 배양을 위해, 증식배양이 완료된 토마토 형성층 유래 줄기세포(CMC)는 세포 대 배지 부피비를 1:10으로 하여 7일간 현탁배양 하였다.
표 2 Suspension medium (배지 3)
Composition Contents(㎎/L)
Inorganic salts Ca(NO3)2 471.26
NH4NO3 400
MgSO47H2O 180.54
MnSO44H2O 22.3
ZnSO47H2O 8.6
CuSO45H2O 0.25
CaCl22H2O 72.5
K2SO4 990
Na2MoO42H2O 0.25
H3BO3 6.2
KH2PO4 170
FeNaEDTA 36.7
Vitamin Myo-inositol 200
Thiamine-HCl 20
Nicotinic acid 2
Pyridoxine-HCl 2
L-ascorbic acid 50
Citric acid 75
Amino acid L-aspartic acid 133
L-arginine 175
Glycine 75
Proline 115
Hormone α-Naphtalene acetic acid 1
Sucrose 30,000
토마토의 캘러스(PC10623) 또한 동일한 비율로 접종하였으며 액상배지는 <표 3>과 같다.
표 3 Suspension medium (배지 4)
Composition Contents(/L)
Inorganic salts KNO3 2,500
(NH4)SO2 134
MgSO47H2O 250
MnSO44H2O 10
ZnSO47H2O 2
CuSO45H2O 0.025
CaCl22H2O 150
NH4H2PO4 150
NaH2PO4 150
H3BO3 3
KCl 300
KI 0.75
CoCl26H2O 0.025
Na2MoO42H2O 0.25
FeSO47H2O 27.85
Na2-EDTA 37.25
Vitamin Myo-inositol 100
Thiamine-HCl 10
Nicotinic acid 1
Pyridoxine-HCl 1
Hormone α-Naphtalene acetic acid 1
Kinetin 0.1
Sucrose 20,000
세포 응집정도를 광학 현미경(biological microscope CX31, Olympus, Japan)으로 관찰한 결과 본 발명에 따른 형성층 유래 줄기세포(CMC)는 도 2A에 나타난 바와 같이, 현탁배양 시 많은 수의 단세포를 포함하며, 일부는 매우 작은 사이즈의 세포 집합체로 존재하는 것을 확인할 수 있었다. 즉, 본 발명에 따른 형성층 유래 줄기세포(CMC)를 배양한 결과, 최대 응집 크기가 500㎛에 불과하였다. 이에 반하여 토마토의 캘러스(PC10623)를 관찰한 결과, 도 2B에 나타난 바와 같이 매우 응집되어 있으며 최대 응집 크기가 10mm까지 나타났다. 추가로 증식배양 완료 후 계대배양 되기 전에 본 발명에 따른 형성층 유래 줄기세포(CMC)와 캘러스(PC10623)의 세포를 샘플링하여 2% Evan's blue staining (5min) method를 이용하여 세포 생존율(%)을 산출한 결과, 표 4에 나타난 바와 같이, 본 발명에 따른 형성층 유래 줄기세포(CMC)는 96.33%가 살아있는 세포인 반면에 캘러스는 65.2%만 살아있는 세포로 확인되었다.
표 4 응집율 및 생존율 비교
Cell lines Aggregate size (㎛)(Maximum size) Survival rate (%)
형성층 유래 줄기세포(CMC) 500 96.33
Callus 10000 65.2
실시예 2 식물의 저장근 형성층 유래 줄기세포(CMCs)의 제조
2-1: 산삼의 형성층 유래 줄기세포(CMCs)의 제조
매끈하고 상처가 없는 산삼을 선별하여 세근을 모두 제거한 후 2 step으로 표면살균하여 준비하고 살균 처리한 조직의 갈변화 방지를 위해 항산화제가 포함된 <표 5>의 BIM(browning inhibition medium)에 살균된 주근을 넣고 30분 내지 1시간 정도 진탕배양한 후 멸균된 여과지로 물기를 제거하였다.
표 5 BIM 조성 및 사용 농도
구성성분 사용농도
McCown WPM salt 1/4 strength
Sucrose 1%(w/v)
PVP(polyvinyl pyrrolidone) 0.5%(w/v)
Ascorbic acid 100mg/L
Citric acid 150mg/L
pH 5.8로 보정
살균과정을 거친 후 상기 재료의 갈변화 방지를 위해, <표 6>의 항산화제가 포함된 CS solution (cutting solution) 하에서 분열능이 왕성한 형성층 부분이 포함되도록 가로세로높이=0.5~0.7cm×0.5~0.7cm×0.2~0.5mm의 크기로 절단 하였다.
표 6 CS (cutting solution)
구성성분 사용농도
PVP(Polyvinyl pyrrolidone) 0.5%(w/v)
Ascorbic acid 100mg/L
Citric acid 150mg/L
준비한 절편체에서 형성층만을 유도시키기 위해 1M 수크로오즈 (Duchefa, Netherlands) 용액이 담긴 플라스크에 넣고 냉장상태에 16~24시간 동안 삼투스트레스를 처리하였다. 그 후, 0.05M 수크로오즈 용액(sucrose solution)에서 5분간, 0.1M sucrose 용액에서 5분간 처리하여 고농도의 sucrose에 의한 스트레스를 해제하였다. 상기 삼투 스트레스가 해제된 형성층 포함 절편체는 여과지가 깔린 전치상 배지(배지 6)에 올려 물기를 제거하였다.
표 7 전치상 배지(배지 6) 조성
조성 mM mg/L
Macroelements Ca(NO3)2 2.35 471.26
NH4NO3 5 400
MgSO4·7H2O 1.5 180.54
K2SO4 5.68 990
CaCl2 2H2O 0.65 72.5
KH2PO4 1.25 170
조성 μM mg/L
Microelements MnSO4·4H2O 131.94 22.3
ZnSO4·7H2O 29.91 8.6
Na2MoO4·2H2O 1.03 0.25
H3BO3 100.27 6.2
CuSO45H2O 1.0 0.25
FeNa-EDTA 100 36.7
Vitamin Glycine 26.64 2.0
myo-Inositol 554.94 100
Nicotinic acid 4.06 0.5
Pyridoxine-HCl 2.43 0.5
Thiamine-HCl 2.96 1.0
산삼의 형성층 유래 줄기세포(CMC)를 유도하기 위하여, 상기 삼투 스트레스 처리한 절편체를 세포주 유도 배지(배지 7)에 치상하였다. 치상에 사용된 배지는 하기 <표 8>에 수록된 바와 같다.
표 8 형성층 유래 줄기세포(CMCs) 유도를 위한 배지 조성 (배지 7)
조성 및 조건 사용농도 및 조건
Salt Full strength WPM
Sucrose 3%(w/v)
IAA(Indole-3-acetic acid) 1mg/L
pH 5.8
Gelrite 0.3%(w/v)
Ascorbic acid 100mg/L
Citric acid 150mg/L
상기와 같이 삼투 처리를 하고 해제를 한 후 형성층 유래 세포주 유도배지 (배지 7)에 치상한 절편체는 다른 조직에서는 세포가 유도되지 않고 형성층에서만 특이적으로 세포가 유도되었다.
상기 배지 7에서 배양하여 형성층 이외의 다른 조직이 괴사된 후, 배지 3-1로 계대배양 하여 형성층 세포만을 증식시켰다.
표 9 배지 3-1
Composition Contents(mg/L)
Inorganic salts KNO3 1900
(NH4)2SO4 1650
MgSO47H2O 180.54
MnSO44H2O 22.3
ZnSO47H2O 8.6
CuSO45H2O 0.025
CaCl22H2O 332
KI 0.83
CoCl26H2O 0.025
KH2PO4 170
H3BO3 6.2
Na2MoO42H2O 0.25
FeNaEDTA 36.7
Vitamin Myo-inositol 100
Thiamine-HCl 0.1
Nicotinic acid 0.5
Pyridoxine-HCl 0.5
Amino acid Glycine 2
Hormone 2,4-D 1
Sucrose 30,000
한편, 인삼 자엽 유래 캘러스(KCTC 10224)는 생물자원센터에서 구매하였으며 매 3주째 계대배양 하였다.
2-2: 당근의 형성층 유래 줄기세포(CMC)의 제조
당근(Daucus carota L.)을 준비하여 상기 실시예 2-1과 동일한 방법으로 표면살균하여 준비하였다. 그 후, 준비된 시료에 대하여 역시 실시예 2-1과 동일한 방법으로 삼투 스트레스 처리를 한 후 형성층 세포주를 유도하였다.
그 결과, 상기 실시예 2-1과 동일하게 형성층 이외의 다른 조직은 괴사되고 분열능을 갖는 형성층 유래 줄기세포(CMC)가 유도됨을 확인하였다. 당근의 형성층 포함 절편체에 대하여도 상기 실시예 2-1과 동일한 방법으로 증식시켰다.
한편, 대조군으로서 당근 캘러스를 배양하기 위하여, 당근 뿌리를 채취한 뒤 상기 실시예 2-1의 방법으로 표면살균 후 절편체를 만들어 표 10의 캘러스 유도배지에 치상하여 21±℃ 조절된 암실에서 배양하였다. 무정형의 캘러스를 획득 후 매 14일째 계대하였다.
표 10 캘러스 유도배지(배지 8)
Composition Contents(mg/L)
Inorganic salts KNO3 1900
(NH4)2SO4 1650
MgSO47H2O 180.54
MnSO44H2O 22.3
ZnSO47H2O 8.6
CuSO45H2O 0.025
CaCl22H2O 332
KI 0.83
CoCl26H2O 0.025
KH2PO4 170
H3BO3 6.2
Na2MoO42H2O 0.25
FeNaEDTA 36.7
Vitamin Myo-inositol 100
Thiamine-HCl 0.1
Nicotinic acid 0.5
Pyridoxine-HCl 0.5
Amino acid Glycine 2
Hormone 2,4-D 2
Sucrose 30,000
Gelrite 3,000
2-3: 저장근 형성층 유래 줄기세포(CMC)의 증식 및 특성관찰
상기 실시예 1에서 분리한 산삼 형성층 유래 줄기세포(CMC)를 <표 2>의 액상배지가 함유된 플라스크에 넣어 암조건에서 21±1℃에서 100rpm의 회전 교반기(shaker)에서 배양하였다. 지속적인 배양을 위해, 증식배양이 완료된 산삼 형성층 유래 줄기세포(CMC)는 세포 대 배지 부피비를 1:10으로하여 14일간 현탁배양 하였다. 또한 상기 실시예 2-1에서 분리한 산삼의 캘러스 역시 동일한 조건으로 배양하였으며 액상배지도 산삼 형성층 유래 줄기세포(CMC) 배양에 사용한 액상배지와 동일하다.
세포 응집정도를 광학현미경(biological microscope CX31, Olympus, Japan)으로 관찰한 결과, 본 발명에 따른 형성층 유래 줄기세포(CMC)는 도 2A처럼, 현탁배양 시 많은 수의 단세포를 포함하며, 일부는 매우 작은 사이즈의 세포 집합체로 존재하는 것을 확인할 수 있었다. 즉, 본 발명에 따른 형성층 유래 줄기세포(CMC)를 배양한 결과, 최대 응집 크기가 200㎛에 불과하였다. 이에 반하여 대조군을 관찰한 결과, 도 2B처럼 매우 응집됨을 관찰할 수 있었는데 최대 응집 크기가 500㎛까지 나타났다. 추가적으로 증식배양 완료 후 계대배양 되기 전에 본 발명에 따른 형성층 유래 줄기세포(CMC)와 캘러스의 세포를 샘플링하여 2% Evan's blue staining 방법을 이용하여 세포 생존율(%)을 산출한 결과, 본 발명에 따른 형성층 유래 줄기세포(CMC)는 94.3%가 살아있는 세포인 반면에 캘러스는 61%만 살아있는 세포로 확인되었다.
한편, 상기 실시예 2-2에서 분리한 당근 형성층 유래 줄기세포(CMC)를 하기 액상배지(배지 3-1)가 함유된 플라스크에 넣어 암조건에서 25±1℃에서 100rpm의 회전 교반기(shaker)에서 배양하였다. 지속적인 배양을 위해, 증식배양이 완료된 당근 형성층 유래 줄기세포(CMC)는 세포 대 배지 부피비를 1:10으로하여 14일간 현탁배양 하였다. 또한 상기 실시예 2-2에서 분리한 당근의 캘러스 역시 동일한 조건으로 배양하였으며 액상배지도 당근 형성층 유래 줄기세포(CMC) 배양에 사용한 액상배지와 동일하다.
실시예 3 식물 형성층 유래 줄기세포(CMC)의 형질전환을 위한 발현벡터의 준비 및 아그로박테리움의 배양
GFP 유전자를 포함하는 식물발현용 binary vector(pBINmGFP5ER)를 사용하였고, Takara Korea Biomedical로부터 구입한 Agrobacterium tumefaciens LBA4404를 사용하여 하기 실험을 진행하였다. 하였다(LBA4404 Electro cells, cat no. 9115, Korea).
구입한 GFP를 포함하는 binary vector의 agrobacteria로의 도입은 Bio-Rad Cuvette 및 Gene Pulser II를 사용한 Agrobacterium tumefaciens LBA4404 제조사의 지침서에 따라 수행하였다.
이와 같이 제조한 pBINmGFP5ER/LBA4404는 15% glycerol stock에서 백금이(platinum pool)로 따서 rifampicin (TCI, Japan) 100mg/L, kanamycin 100mg/L를 첨가한 YEP 고체배지(배지 9)에 streaking 하여 3일간 28℃에서 암배양 하였다(shaking incubator, Sejong, Korea).
표 11 아그로박테리움 배양을 위한 YEP 고체 배지(배지 9)
조성 첨가량
Peptone 10g
Yeast Extract 10g
NaCl 5g
Agar 15g
Kanamycin 100mg/L
Rifampicin 100mg/L
total volume 1000.0ml
아그로박테리움(pBINmGFP5ER/LBA4404)은 3일 간격으로 새로운 배지에 streaking 하는 방식으로 28℃ 암배양으로 계대배양하여 사용하였다.
식물 형성층 유래 줄기세포(CMC)에 아그로박테리움을 통한 형질전환을 위해 상기 아그로박테리움을 현탁배양하였다.
고체배지에서 배양된 아그로박테리움의 single colony를 따서 5ml YEP 액체 배지(표 12, 배지 10)에 풀어서 6~18시간 동안 28℃, 200rpm에서 암배양한 후 배양액 1~5ml을 YEP 배지 100ml에 넣고 6~24시간동안 28℃, 200rpm에서 배양하였다.
표 12 아그로박테리움 배양을 위한 YEP 액체 배지(배지 10)
조성 첨가량
Peptone 10g
Yeast Extract 10g
NaCl 5g
Kanamycin 100mg/L
Rifampicin 100mg/L
total volume 1000.0ml
준비된 아그로박테리움 현탁액과 control로 사용할 아그로박테리움을 배양하지 않은 YEP 액체배지(rifampicin 100mg/L, kanamycin 100mg/L 첨가)를 각 1ml씩 피펫으로 샘플링하여 큐벳(cuvette)에 담고 UV/Visible spectrophotometer에 넣어 600nm 파장의 optical density(OD600)를 측정하였다. 상기 UV spectrophotometer는 Amersham Bioscience 사의 제품을 사용하였다.
아그로박테리움의 virulence induction을 위해 OD600값이 0.4~2.0인 상기 아그로박테리움 현탁액을 conical tube(BD FALCON, USA)에 나누어 담고 4℃, 6000 g-force에서 3~10분간 원심분리(한일과학산업, 한국)하였다. Tube 벽에 모인 아그로박테리움 펠렛을 따로 모아 10mL의 suspension medium(배지 2)에 resuspension한 후 아그로박테리움의 OD600값이 0.00001~2.0이 되게 하여 Acetosyringone (Aldrich, USA) 10~200uM을 첨가하고 28℃에서 1분~24시간 200rpm shaking incubation하였다.
Acetosyringone은 본 발명과 같이 아그로박테리움에 처리할 수도 있고 식물 형성층 유래 줄기세포(CMC)에 직접 처리할 수도 있으며 아그로박테리움과 식물 형성층 유래 줄기세포(CMC)에 동시에 처리할 수도 있다.
실시예 4 식물형질전환용 벡터를 이용한 식물 형성층 유래 줄기세포(CMC)에서 목적 단백질의 일시적 발현(transient expression)
식물 형성층 유래 줄기세포(CMC) 형질전환을 위해 상기 실시예 3과 같이 아그로박테리움을 준비하고, 형성층 유래 줄기세포(CMC)는 실시예 1 및 2의 대수생장기의 cell을 준비하여 세포대 배지 부피 비율이 1: 10이 되도록 하였다.
실시예 1에서 분리한 토마토 형성층 유래 줄기세포(CMC)가 들어있는 250ml flask에 virulence induction이 완료된 아그로박테리움 현탁액 10mL을 넣어 25℃, 100rpm에서 공동배양 하였다. 이 과정에서 토마토 CMC의 형질전환 효율을 극대화하기 위해 상기 배양물을 1분~48시간 동안 회전 교반기(shaker, 세종, 한국)에서 100rpm으로 암배양 후 1분~48시간 동안 교반 없이 침적하였다. 그 후 다시 배양물을 교반기에서 100rpm으로 1~9일간 암 배양 하였다.
1~9일간 공동배양이 완료된 배양물을 피펫으로 1mL 샘플링하여 1.5ml microtube에 담고, 샘플 1mL 중 10μL를 다시 Marienfeld사의 hemacytometer에 샘플링하여 IX71 Inverted microscope(fluorescence 광원: U-RFL-T)를 이용해 GFP 발현을 관찰하였다. 관찰에 사용된 빛과 필터 파장대는 green, 460-490/520 nm(excitation/Barrier)이었다. 동일한 슬라이드를 광학 현미경을 통해 살아 있는 cell 수 대비 GFP 발현된 cell의 빈도(%)를 계수하였다.
토마토 형성층 유래 줄기세포(CMC)를 상기 아그로박테리움으로 일시적 발현시킨 결과, 공동배양 1~9일째, 가장 바람직하게는 5일 이후 도 4와 같이 살아 있는 세포 대비 90% 이상의 아그로박테리움에 의한 일시적 발현을 확인할 수 있었다. 공동배양 기간 동안 토마토 형성층 유래 줄기세포(CMC)의 생존율은 10% 미만의 감소를 보였고 cell wall의 rigidity가 그대로 유지됨을 확인하였다.
즉, 세포 배양 수준에서 형질전환은 %로 계산할 수 없을만큼 어렵다고 알려져 있음에도, 본 발명에 따른 토마토 형성층 유래 줄기세포(CMC)를 적용하는 경우 90% 이상의 현저한 발현율을 확인할 수 있었다.
한편, 토마토의 캘러스에 대해서도 상기와 동일한 조건으로 반응시킨 결과, 본 발명의 토마토 형성층 유래 줄기세포(CMC)와 달리 실시예 1의 토마토 캘러스의 경우, 26.4%의 낮은 발현율을 보였다. 다만, 이 수치는 종래 보고된 캘러스 형질전환율인 10%에 비하여는 2배 이상의 현저한 효과를 보였다.
표 13
토마토 형성층 유래 줄기세포 토마토 캘러스
공동배양기간 4∼9일 6~9일
생존율 91.8% 64.7%
GFP 발현율 5일째 88.7%(생존율 대비 97%) 7일째 26.4%
추가로 실시예 2의 산삼 및 당근 형성층 유래 줄기세포(CMC)에 대하여 상기와 동일한 방법으로 실험하고, 그 결과를 도 7 및 8에 각각 나타내었다.
도 5를 참조하면, 산삼 형성층 유래 줄기세포 (CMC)를 아그로박테리움으로 일시적 발현시킨 결과, 살아 있는 세포 대비 13% 이상의 아그로박테리움 감염 및 GFP 발현을 확인할 수 있었다.
또한, 도 6을 참조하면 당근 형성층 유래 줄기세포를 아그로박테리움으로 일시적 발현시킨 결과, 살아 있는 세포 대비 17% 이상의 아그로박테리움 감염 및 GFP 발현을 확인할 수 있었다. 산삼 및 당근은 토마토에 비해 일시적 발현율이 낮았으나, 공동배양 및 정치배양 시간을 조정하면 토마토에 준하는 일시적 발현율을 나타낼 수 있을 것으로 예상된다.
실시예 5 식물형질전환용 벡터를 이용하여 식물 형성층 유래 줄기세포(CMC)에서 목적 단백질의 안정적 형질전환(stable transformation)의 확인
실시예 4와 같이 수행 후, 3~21일 동안 250ml flask에서 토마토 형성층 유래 줄기세포(CMC)와 아그로박테리움을 공동배양(25℃, 100rpm) 하였으며, GFP 발현이 가장 높은 시점에서 아그로박테리움을 제거하기 위해 표 2의 suspension medium(배지 3)으로 5~20분간 2회 세척하였다. 3회째에 kanamycin(TCI, Japan) 300mg/l과 cefotaxime(TCI, Japan) 500mg/l을 처리하여 1주일간 현탁선발배양(25℃, 100rpm shaking)하였다. 이 후, 형성층 유래 줄기세포(CMC)를 침적시켜서 배지를 최대한 따라 버린 뒤, 필터페이퍼(70mm, Toyo Roshi Kaisha, Japan)로 나머지 배지를 대부분 흡수시켜 토마토 형성층 유래 줄기세포(CMC)를 고체선발배지(표 14, 배지 11)로 옮겨주었다. 이를 25±1℃ 암배양하여 GFP를 발현하는 형질전환된 형성층 유래 줄기세포(TCMC)를 획득하였다. 당근의 형성층 유래 줄기세포(CMC)도 모두 상기와 같은 방법으로 처리하였으며, 산삼은 배지 11 중 호르몬을 뺀 배지에 플레이팅하였다.
표 14 CMCs 고체 선발 배지(배지 11)
Composition Contents(mg/L)
Inorganic salts Ca(NO3)2 471.26
NH4NO3 400
MgSO47H2O 180.54
MnSO44H2O 22.3
ZnSO47H2O 8.6
CuSO45H2O 0.25
CaCl22H2O 72.5
K2SO4 990
Na2MoO42H2O 0.25
H3BO3 6.2
KH2PO4 170
FeNaEDTA 36.7
Vitamin Myo-inositol 200
Thiamine-HCl 20
Nicotinic acid 2
Pyridoxine-HCl 2
L-ascorbic acid 50
Citric acid 75
Amino acid L-aspartic acid 133
L-arginine 175
Glycine 75
Proline 115
Hormone 2,4-D (Dichlorophenoxyacetic acid) 1
Sucrose 30,000
Kanamycin 300
Cefotaxime 300
Gelrite 3,000
획득된 세포주를 UV light 하에서 관찰한 결과, 도 7의 왼쪽 클럼프(clump)와 같이 안정적 형질전환된 세포주는 GFP를 발광하는 반면, 형질전환되지 않은 세포주는 오른쪽 클럼프(clump)와 같이 발광하지 않았다. 클럼프 내 세포주 각각의 초록 발광을 확인하기 위해, 형광현미경(olympus IX71 inverted microscope, fluorescence 광원: U-RFL-T)을 이용하여 형광 발현 정도를 확인하였다.
그 결과, 도 8에 나타난 바와 같이 샘플된 모든 세포에서 GFP가 발현됨을 확인하여 본 발명의 식물 형성층 유래 줄기세포(CMC)를 이용하여 안정적 형질전환(stable transformation)이 성공적이었음을 확인하였다.
추가로, 상기에서 형광 발현이 확인된 클러스터(cluster)를 선택하여 (도 9A) 계대배양하여 2차로 GFP 발현여부를 확인하였다(도 9B). 그 후 다시 2주마다 계대배양을 수행하여 증식시켰으며(도 9C-14일 후, 도 9D-연속적 계대배양 진행 82일 후), 안정적으로 GFP를 발현함을 확인할 수 있었다.
이는 안정적 형질전환이 확인된 식물 형성층 유래 줄기세포(TCMC)를 계대배양하여 계속적인 증식이 가능함을 제시한다. 주목할 점은 GFP가 형질전환된 식물 형성층 유래 줄기세포(TCMC)에서 초록 형광을 보이는 정도가 매우 강한 초록색으로, 식물 형성층 유래 줄기세포(CMC)에서 강한 GFP 발현이 되었음을 정성적으로 알 수 있다. 전체적인 GFP발현율뿐만 아니라, 발현된 세포 하나하나가 얼마나 고수율로 단백질을 발현했는가도 전체적인 수득률에 영향을 미치는데, 초록형광의 발현정도로 보아 형질전환 형성층 유래 줄기세포(TCMC)에서 목적단백질을 매우 높은 수준으로 발현시켜 수득할 수 있음을 제시한다.
또한, 침적에 따른 토마토, 당근 및 산삼 유래 식물세포에의 안정적 형질전환 결과를 비교하였다. 아울러, 실험 소재가 형성층 유래 줄기세포(CMC)일 때와 캘러스일 때의 결과도 비교하였다.
그 결과 도 10에 나타난 바와 같이, 침적과정을 거치지 않은 토마토 형성층 유래 줄기세포(TCMC, B) 또는 토마토 캘러스(D)에 비해, 침적 과정을 거친 토마토 형성층 유래 줄기세포(TCMC, A) 또는 토마토 캘러스(C)에서 다수의 클러스터(cluster)가 형성됨을 확인할 수 있다. 아울러, 토마토 형성층 유래 줄기세포(TCMC, A, B)가 토마토 캘러스(C,D)에 비해 다수의 클러스터가 형성됨을 확인할 수 있다.
또한, 도 11에 나타난 바와 같이, 침적과정을 거치지 않은 당근 형성층 유래 줄기세포(TCMC, B) 또는 당근 캘러스(D)에 비해, 침적 과정을 거친 당근 형성층 유래 줄기세포(TCMC, A) 또는 당근 캘러스(C)에서 다수의 클러스터(도 13 A, C 중 표시 부분)가 형성되었음을 확인할 수 있다. 아울러, 당근 형성층 유래 줄기세포(TCMC, A, B)가 당근 캘러스(C,D)에 비해 다수의 클러스터가 형성됨을 확인할 수 있다.
도 12에서도 마찬가지로, 침적과정을 거치지 않은 산삼 형성층 유래 줄기세포(TCMC, B)에 비해, 침적과정을 거친 산삼 형성층 유래 줄기세포(TCMC, A)에서 다수의 클러스터가 형성되었음이 확인되었다.
클러스터의 형성은 agrobacteria의 T-DNA가 식물세포 게놈(genome)내로 삽입되었다는 것을 의미하며, 도 10 내지 도 12의 결과를 통해, 침적하는 과정을 포함하는 것이 형질전환 효율을 높이는데 중요한 요소임을 확인할 수 있다.
아울러, 동일조건에서 형성층 유래 줄기세포(TCMC)가 캘러스에 비해, 다수의 클러스터(cluster)가 형성됨을 확인함으로써, 형성층 유래 줄기세포(TCMC)를 소재로 사용하는 것이 형질전환 효율을 높이는데 중요한 요소임을 확인할 수 있다.
실시예 6 대량 배양 가능성 확인
실시예 4에서 90% 이상의 GFP 발현율을 확인한 250mL 플라스크(flask)에 침적된 세포 볼륨(settled cell volume) 70ml을 3L 공기부양식 생물반응기(3L air-lift bioreactor)에 세포:배지(cell:media)의 부피 비율이 1:30이 되도록 접종하였다. 건조 세포 중량(dry cell weight)은 0.6g/L 이다. 3L 생물반응기의 워킹 볼률(working volume)은 2,100ml로 생물반응기의 체적 사용률은 전체 볼륨(total volume)의 70% 이다. 이 때 사용된 배지는 250mL 플라스크에서 사용된 배지와 동일하며 항생제(antibiotics)로 5~25mg/L의 G418을 첨가한 후 통기율(aeration rate)은 0.1~0.15vvm(volume/volume/minute)으로 7~10일 동안 25℃±1, 암 조건 하에서 배양하였다. 3L 생물반응기에서 계대배양(subculture)은 7~10일 간격으로 진행되었으며, 바람직하게는 7일마다 계대배양 되었다.
형질전환된 토마토 형성층 유래 줄기세포(TCMC)를 3L 생물반응기에서 배양한 결과, 도 13에 나타낸 바와 같이 증식 배양 7~10일째 UV (350nm)를 조사하였을 때, 250ml 플라스크 배양물에서와 동일한 GFP 발현율을 확인할 수 있었다. 토마토 형질전환 형성층 유래 줄기세포(TCMC) 증식률은 초기 세포 접종량에 비해 증식 배양 완료 후 10배(folds) 이상 안정적인 세포 증식률을 나타내었다. 증식 배양 기간 완료 후 토마토 형질전환 형성층 유래 줄기세포(TCMC)의 생존율은 10% 미만의 감소를 보였고, 광학현미경으로 관찰한 결과, 세포벽(cell wall)의 견고함(rigidity)은 변화 없이 유지됨을 확인하였다.
표 15 GFP를 발현하는 토마토 형성층 유래 줄기세포의 3L bioreactor에서의 배양 결과
토마토 형성층 유래 줄기세포
증식 배양기간 7~10일
생존율 85 %
증식율(folds) > 10 folds
GFP 발현율 7일째 85% (생존율 대비 100%)
실시예 7 형질전환 담배 식물체 제작
7-1. 아그로박테리움 배양
pBINmGFP5ER/LBA4404 single colony의 아그로박테리움을 따서 5ml YEP 배지에 넣고 6h 28℃ 배양 후 YEP 배지 50ml에 1:50~1:100으로 첨가하여 18h, 총 24hr 내에 배양한 다음, 아그로박테리움 배양액의 OD를 측정하였다. Conical tube에 아그로박테리움 배양액을 담고 원심분리기를 이용하여, cell을 4℃에서 spin down 시켰다. 모아진 아그로박테리움 펠렛에 담배배양배지(MS+2mg/L BA+0.1mg/L NAA+pH5.8)를 넣고 풀어준 뒤, 이미 측정된 아그로박테리움 OD를 사용하여 담배배양배지와 아그로박테리움 배양액을 섞고 acetosyringone 10-200uM을 첨가하여 250rpm으로 2hr 28℃에서 배양하였다.
7-2. 담배 잎 절편체 준비
핀셋으로 기내 식물체의 엽병을 잡고 잎을 떼어내어 미리 준비해 둔 petri dish에 놓았다. 칼로 엽병 가까운 쪽 주맥 부위를 포함한 1.0cm x 1.0cm (~ 0.5cm × 0.5 cm)의 절편체를 만들었다.
7-3. 공동배양
Positive control(PC) 절편체를 따로 분리하여 뒤집어서 공동배양 배지(MS+2mg/L BA+0.1mg/L NAA+pH5.8+0.8% agar)에 치상한 후 3일간 25℃에서 암배양 하였다. 7-2에서 제조한 절편체(positive control 제외)를 7-1에서 준비한 배양액에 넣고, 5min마다 살짝 흔들어주면서 20min간 담궈 agro-inoculation 시켰다. 절편체를 건져 filter paper 위에 놓고 filter paper를 올려 물기를 뺀 다음, 절편체를 공동배양 배지(MS+2mg/L BA+0.1mg/L NAA+pH5.8+0.8% agar+100uM AS)에 뒤집어서 치상, 3일간 25℃에서 암배양 하였다.
7-4. 선별
공동배양이 완료된 절편체를 멸균수를 이용해 3회 washing한 후 filter paper에서 물기를 빼고, PC 중 negative control(NC)로 사용할 절편체를 분리하여, PC는 재생 배지(MS+2mg/L BA+0.1mg/L NAA+pH5.8+0.8% agar)에, NC는 선발배지(MS+2mg/L BA+0.1mg/L NAA+pH5.8+0.8% agar 배지 + kan 100mg/L + cef 500mg/L) 에 뒤집어서 치상하였으며, 나머지 절편체는 선발배지에 뒤집어서 치상하였다.
3주간 암배양한 후 16h/8h 광주기로 명배양하여 신초를 형성시키고, 신초가 형성되면 1개의 신초만을 따내어 뿌리 형성배지 (MS+ kan 100mg/L + cef 500mg/L pH5.8+0.8% agar)에 옮겨 뿌리를 형성시켰다. 형질전환된 N. benthamiana를 순화하여 화분에 생육시킨 결과를 도 14에 나타내었다.
7-5. 형태 관찰
생육 3~6개월 된 줄기를 채취하여 형태를 관찰하였다. cross section, radial section을 하였고, 조직 구별을 위하여 xylem 특이염색시약인 phloroglucinol-HCl로 염색하여 관찰하였다. 도 15를 참조하면, Xylem은 붉게 염색이 되고 바로 위의 형성층이 2~4(Nicotiana tabacum cv. Xanthi의 경우 3~6)층 존재함을 확인할 수 있다.
또한, GFP가 형질전환된 담배 식물체를 cross section하여 GFP filter (excitation/barrier): 460-490 / 520 nm 조건에서 관찰한 결과, 도 16에 나타낸 바와 같이 형성층 zone에서 다른 조직보다 밝은 형광이 확인되었다.
7-6. 형질전환된 담배 형성층 유래 줄기세포(TCMC) 분리
배양 4일째 N. benthamiana의 형성층 부위에서 세포분열이 관찰되었다. 배양 2주 후 도 17(A)와 같이, 증식 형성층 이외 사부 조직을 핀셋으로 떼어내었다. 도 17(B)에 나타낸 바와 같이, 분리 이후 사부 이외 조직 관찰 시 타 조직의 세포분열 양상이나 조직 손상은 관찰되지 않았다. Nicotiana tabacum cv. Xanthi 또한 N. benthamiana와 동일한 방법으로 형성층 유래 줄기세포 분리하였으며, 도 18에 나타낸 바와 같이 Nicotiana tabacum cv. Xanthi에서도 동일한 결과를 얻었다.
7-7. 담배 형성층 유래 줄기세포(TCMC)와 담배 식물체에서 단백질 발현 확인
GFP 유전자가 형질전환된 담배 형성층 유래 줄기세포(TCMC)와 담배 식물체 그리고 형질전환되지 않은 담배 식물체로부터 각각 전체 수용성 단백질을 분리하였다.
분리된 총 수용성 단백질들은 두 장의 폴리아크릴아미드 젤에 SDS-PAGE를 하였고 semi-dry transfer cell(BIO-RAD사)을 사용하여 니트로셀룰로스(nitrocellulose) 페이퍼에 트랜스퍼(transfer) 하였다.
여기에 5% 탈지분유(skim milk)를 사용하여 밤새 블로킹하고 TBST로 워싱한 다음 GFP 1차 항체와 2차 항체를 순차적으로 반응시켰다. 그 후 TBST/TNM으로 워싱하고 발색제(BCIP/NBT sol.)를 사용하여 발색하여 단백질 밴드를 확인하였다.
그 결과, 도 19와 같이 형질전환 되지 않은 일반 담배 식물체에서는 어떤 밴드도 확인되지 않았고 형질전환된 담배 식물체와 담배 식물체로부터 분리된 형성층 유래 줄기세포(TCMC)에서는 GFP 크기와 유사한 위치에서 밴드가 검출됨을 확인할 수 있었다.
또한, 형질전환된 담배 식물체에서보다 형질전환된 담배 식물체에서 분리된 형성층 유래 줄기세포(TCMC)에서 GFP 단백질이 더 높게 발현됨을 확인할 수 있었다. 이는 도 16에서 담배 형성층 유래 줄기세포(TCMC)의 결과가 더 높게 나왔던 것과 일치되는 결과임을 알 수 있었다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 재조합 식물세포를 이용한 목적 단백질 발현 시스템은 종래 식물세포 배양의 문제점을 해소하며, 획기적인 형질전환율로 인하여 바이오의약 단백질을 포함하는 목적 단백질을 대량생산 함으로써, 식물 유래 단백질 제품 등의 바이오의약품의 상업화를 가능하게 하는 바, 유용하다.

Claims (15)

  1. 목적 단백질을 발현하는 식물세포로, 상기 식물세포에는 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있고, 상기 식물세포는 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하며,
    이때, 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  2. 제1항에 있어서, 상기 식물세포는 식물 형성층 유래 줄기세포(CMC)에, 목적 단백질을 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있는 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  3. 제2항에 있어서, 상기 목적 단백질을 코딩하는 유전자는 식물세포 에서 형질감염되어 목적단백질이 일시적으로 발현(Transient Expression)되는 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  4. 제2항에 있어서, 상기 목적 단백질을 코딩하는 유전자는 식물 형성층 유래 줄기세포(CMC)에 안정적 형질전환(stable transformation)된 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  5. 제2항에 있어서, 상기 식물 형성층 유래 줄기세포(CMC)는 목적 단백질을 코딩하는 유전자로 형질전환된 식물체로부터 분리되는 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  6. 제2항에 있어서, 상기 목적 단백질은 항원, 항체, 항체 단편, 구조 단백질, 조절단백질, 전사인자, 독소 단백질, 호르몬, 호르몬 유사체, 사이토카인, 효소, 효소 저해제, 수송단백질, 리셉터, 리셉터의 단편, 생체방어 유도물질, 저장단백질, 이동단백질(movement protein), 익스플로이티브 프로틴(exploitive protein) 및 리포터단백질로 구성되는 군으로부터 선택되는 어느 하나 이상의 목적단백질인 것을 특징으로 하는 목적 단백질 발현용 식물세포.
  7. 제2항에 있어서, 상기 식물은 토마토, 담배, 당근, 주목 및 산삼으로 구성된 군에서 선택된 것임을 특징으로 하는 목적 단백질 발현용 식물세포.
  8. 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단 (population)에, 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써, 목적 단백질을 코딩하는 유전자로 형질감염 또는 형질전환하는 단계를 포함하는 목적 단백질 발현용 식물세포의 제조방법,
    이때, 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 함.
  9. 제8항에 있어서, 상기 제조방법은 식물 형성층 유래 줄기세포(CMC)에, 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써, 목적 단백질을 코딩하는 유전자로 형질전환하는 것을 특징으로 하는 목적 단백질 발현용 식물세포의 제조방법.
  10. 제8항에 있어서, 상기 형질감염 또는 형질전환하는 단계는 정치배양(stationary culture) 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  11. 제8항에 있어서, 상기 형질감염 또는 형질전환하는 단계는 단 회 또는 간헐적 정치배양 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  12. 제8항에 있어서, 상기 공동배양은 상기 식물세포와 상기 타겟 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움의 배양물을 1분 내지 48시간 교반하며 배양한 다음, 1분 내지 96시간 정치배양한 후 다시 1일 내지 14일간 교반배양하는 것을 특징으로 하는 방법.
  13. 제8항에 있어서, 상기 첨가되는 아그로박테리움의 OD600는 0.00001 내지 2.0인 것을 특징으로 하는 방법.
  14. 다음 단계를 포함하는, 목적 단백질 발현용 식물체로부터 목적 단백질을 제조하는 방법:
    (a) 목적 단백질을 코딩하는 유전자로 형질전환된 식물체를 생장시키는 단계;
    (b) 상기 형질전환된 식물체로부터 형질전환된 형성층 유래 줄기세포(TCMC)를 수득하는 단계;
    (c) 상기 수득된 형질전환된 형성층 유래 줄기세포(TCMC)를 배지에서 배양하는 단계; 및
    (d) 상기 형질전환된 형성층 유래 줄기세포(TCMC)배양물에서 발현된 목적 단백질을 회수하는 단계.
  15. 다음 단계를 포함하는, 목적 단백질 발현용 식물세포로부터 목적 단백질을 제조하는 방법:
    (a) 식물 형성층 유래 줄기세포(CMC) 또는 캘러스를 포함하는 식물 세포들의 집단 (population)에 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 함유하는 아그로박테리움을 첨가하여 공동배양함으로써 목적 단백질을 코딩하는 유전자로 형질전환 또는 일시적 발현시키는 단계; 및
    이때, 상기 식물 형성층 유래 줄기세포(CMC)는 식물로부터 분리된 선천적으로 미분화된 세포들을 함유하는 식물 유래 세포주로써, 상기 세포주는 식물의 형성층 조직으로부터 분리되고, 캘러스로의 탈분화과정을 거치치 아니한 분열조직적 연속성을 가지는 것을 특징으로 함.
    (b) 상기 아그로박테리움으로 감염시킨 식물 세포 배양물에서 발현된 목적 단백질을 회수하는 단계.
PCT/KR2014/001694 2013-02-28 2014-02-28 재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법 WO2014133365A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2014221493A AU2014221493B2 (en) 2013-02-28 2014-02-28 Recombinant plant cell, preparation method therefor, and method for producing target protein using same
CN201480019682.9A CN105120657B (zh) 2013-02-28 2014-02-28 重组植物细胞、其制备方法以及用其生产靶蛋白质的方法
EP14756381.1A EP2962552B1 (en) 2013-02-28 2014-02-28 Recombinant plant cell, preparation method therefor, and method for producing target protein using same
US14/771,483 US10087452B2 (en) 2013-02-28 2014-02-28 Method for agrobacterium mediated transformation of cambial meristematic plant cells to produce recombinant protein
RU2015140942A RU2636462C2 (ru) 2013-02-28 2014-02-28 Рекомбинантные клетки растений, способ их получения и способ получения белка-мишени с их использованием
JP2015560106A JP6062074B2 (ja) 2013-02-28 2014-02-28 組換え植物細胞、これの製造方法及びこれを利用した目的タンパク質の生産方法
CA2902808A CA2902808C (en) 2013-02-28 2014-02-28 Recombinant plant cells, production method thereof and method of producing target protein using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0022404 2013-02-28
KR20130022404 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133365A1 true WO2014133365A1 (ko) 2014-09-04

Family

ID=51428547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001694 WO2014133365A1 (ko) 2013-02-28 2014-02-28 재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법

Country Status (9)

Country Link
US (1) US10087452B2 (ko)
EP (1) EP2962552B1 (ko)
JP (1) JP6062074B2 (ko)
KR (1) KR102168500B1 (ko)
CN (1) CN105120657B (ko)
AU (1) AU2014221493B2 (ko)
CA (1) CA2902808C (ko)
RU (1) RU2636462C2 (ko)
WO (1) WO2014133365A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025552B (zh) * 2021-04-02 2021-10-26 山东安然纳米实业发展有限公司 一种人参干细胞的分离培养方法
CN117701625A (zh) * 2023-12-12 2024-03-15 合肥润初生物科技有限公司 基于转基因植株的Her-2抗体生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050207A (ko) * 2005-11-10 2007-05-15 대한민국(관리부서:농촌진흥청) 이소플라본 생합성 형질전환 벼 및 그 제조방법
WO2010137877A2 (ko) * 2009-05-26 2010-12-02 주식회사 운화 국화과의 형성층 유래 식물줄기세포 및 이의 분리배양방법
KR101064519B1 (ko) 2005-10-31 2011-09-19 주식회사 운화 동질화된 식물세포 배양을 통한 2차대사산물의 대량생산 안정화
KR20120052841A (ko) * 2010-11-16 2012-05-24 단국대학교 산학협력단 돼지 대장균 설사증에 대한 백신 조성물
KR20120128878A (ko) * 2011-05-18 2012-11-28 대한민국(농촌진흥청장) 아그로박테리아 형질전환 기법을 이용하여 벼의 형질전환율을 향상시키는 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069298A (en) * 1993-02-05 2000-05-30 Regents Of The University Of Minnesota Methods and an acetyl CoA carboxylase gene for conferring herbicide tolerance and an alteration in oil content of plants
IL155588A0 (en) * 2003-04-27 2003-11-23 Metabogal Ltd Methods for expression of enzymatically active recombinant lysosomal enzymes in transgenic plant root cells and vectors used thereby
US7365186B2 (en) * 2002-11-22 2008-04-29 Arborgen, Llc Vascular-preferred promoter sequences and uses thereof
CN1460718A (zh) 2003-04-11 2003-12-10 浙江大学 表达传染性支气管炎病毒纤突蛋白的转基因马铃薯生产方法
AU2006237346B2 (en) * 2005-04-20 2011-04-07 Basf Plant Science Gmbh Expression cassettes for seed-preferential expression in plants
CN1940066A (zh) 2005-09-29 2007-04-04 刘德虎 表达蚓激酶转基因植物的生产方法及产品
US8053238B2 (en) * 2005-10-31 2011-11-08 Unhwa Corporation Isolated population of plant single cells and method of preparing the same
BRPI0718977A2 (pt) * 2006-11-24 2014-02-04 Cropdesign Nv Método para aumentar rendimento de sementes em plantas em relação às plantas de controle, construção, uso da mesma, planta, parte de planta ou célula de planta, método para a produção de uma planta transgênica tendo redimento aumentado de sementes em relação às plantas de controle, planta transgênica, partes colhíveis de uma planta, produtos, e, uso de um ácido nucleico
KR101064518B1 (ko) 2007-09-21 2011-09-19 주식회사 운화 저장근을 가지는 초본식물의 형성층 유래 식물줄기세포주 및 이의 분리방법
CN101195832B (zh) 2007-12-25 2011-04-06 贵州大学 农杆菌介导的花椒转基因方法
CN101319206A (zh) 2008-07-08 2008-12-10 浙江大学 在转基因水稻中高效生产木聚糖酶的方法
US20100170009A1 (en) * 2008-08-29 2010-07-01 Los Alamos National Security, Llc Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof
AR073713A1 (es) 2008-10-03 2010-11-24 Dow Agrosciences Llc Produccion de productos de interes farmaceutico en cultivos de celulas vegetales
CN102459572B (zh) 2009-05-26 2014-11-19 云火公司 银杏科的形成层来源的植物干细胞及其分离方法
EP2436759A2 (en) 2009-05-28 2012-04-04 Unhwa Corporation Plant stem cell derived from cambium of family solanaceae, and method for isolating and culturing same
WO2012052854A2 (en) * 2010-10-23 2012-04-26 Unhwa Corporation Plant cell lines and methods of isolating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064519B1 (ko) 2005-10-31 2011-09-19 주식회사 운화 동질화된 식물세포 배양을 통한 2차대사산물의 대량생산 안정화
KR20070050207A (ko) * 2005-11-10 2007-05-15 대한민국(관리부서:농촌진흥청) 이소플라본 생합성 형질전환 벼 및 그 제조방법
WO2010137877A2 (ko) * 2009-05-26 2010-12-02 주식회사 운화 국화과의 형성층 유래 식물줄기세포 및 이의 분리배양방법
KR20120052841A (ko) * 2010-11-16 2012-05-24 단국대학교 산학협력단 돼지 대장균 설사증에 대한 백신 조성물
KR20120128878A (ko) * 2011-05-18 2012-11-28 대한민국(농촌진흥청장) 아그로박테리아 형질전환 기법을 이용하여 벼의 형질전환율을 향상시키는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEUMANN ET AL., EMBO J., vol. 1, 1982, pages 841

Also Published As

Publication number Publication date
EP2962552B1 (en) 2019-07-31
CA2902808C (en) 2018-10-09
KR20140108174A (ko) 2014-09-05
EP2962552A1 (en) 2016-01-06
EP2962552A4 (en) 2016-10-19
RU2015140942A (ru) 2017-03-31
CN105120657B (zh) 2018-04-03
AU2014221493B2 (en) 2017-02-16
AU2014221493A1 (en) 2015-09-24
JP2016508380A (ja) 2016-03-22
CA2902808A1 (en) 2014-09-04
JP6062074B2 (ja) 2017-01-18
CN105120657A (zh) 2015-12-02
KR102168500B1 (ko) 2020-10-21
US20160010099A1 (en) 2016-01-14
RU2636462C2 (ru) 2017-11-23
US10087452B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
Bouchabke-Coussa et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro
US8030076B2 (en) Soybean transformation method
TWI582233B (zh) 使用農桿菌改良轉形的方法
US20040055041A1 (en) Method for genetic transformation of woody trees
AU2001279510A1 (en) Method for genetic transformation of woody trees
BRPI0720596A2 (pt) Métodos in vitro para a indução e manutenção de linhagens celulares vegetais em suspensão como células individuais com paredes celulares intactas e para a transformação das mesmas
Shinoyama et al. Genetic engineering of chrysanthemum (Chrysanthemum morifolium): current progress and perspectives
Kyo et al. Coexpression of WUSCHEL related homeobox (WOX) 2 with WOX8 or WOX9 promotes regeneration from leaf segments and free cells in Nicotiana tabacum L.
US7176352B1 (en) Transgenic Lemnaceae
WO2015099674A1 (en) Sugarcane regeneration and transformation methods
WO2014133365A1 (ko) 재조합 식물세포, 이의 제조방법 및 이를 이용한 목적 단백질의 생산방법
WO2019235907A1 (ko) Crispr/cas9 시스템을 이용하여 플라보노이드 생합성 유전체를 편집하기 위한 조성물 및 이의 이용
US20090023212A1 (en) Method for transforming soybean (Glycine max)
KR100809736B1 (ko) 안토시아닌 생합성 억제 활성을 가진 myb60 유전자와상기 유전자가 도입된 형질전환 상추 및 그 제조방법
Varghese et al. An efficient Agrobacterium-mediated transformation protocol for black pepper (Piper nigrum L.) using embryogenic mass as explant
Nakano et al. Plant regeneration and Agrobacterium-mediated genetic transformation systems in liliaceous ornamental plants
JP2001510021A (ja) バナナ植物を遺伝的に形質転換する方法
Khlifa et al. Agrobacterium rhizogenes-mediated transformation of Hypericum sinaicum L. for the development of hairy roots containing hypericin
WO2021138423A1 (en) Methods for genetically modifying cannabis plants, modified cannabis plants, and products therefrom
El-Shemy et al. Reproducible transformation in two grain legumes-soybean and azuki bean-using different systems
WO2023195781A1 (ko) 유전자 교정 단백질을 포함하는 대마 유전자 교정용 조성물 및 이를 이용한 대마 유전자 교정 방법
US20160090602A1 (en) Methods for plant transformation
Zombori et al. Different approaches for Agrobacterium-mediated genetic transformation of Brachypodium distachyon, a new model plant for temperate grasses
US20160168534A1 (en) Methods of Embryogenic Tissue Preparation for Sugar Cane Transformation
Jedličková et al. Hairy root induction and plant regeneration techniques in Brassicaceae for biotechnological applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2902808

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015560106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14771483

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014756381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014221493

Country of ref document: AU

Date of ref document: 20140228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015140942

Country of ref document: RU

Kind code of ref document: A