WO2014129545A1 - 多孔質部材および触媒部材 - Google Patents

多孔質部材および触媒部材 Download PDF

Info

Publication number
WO2014129545A1
WO2014129545A1 PCT/JP2014/054038 JP2014054038W WO2014129545A1 WO 2014129545 A1 WO2014129545 A1 WO 2014129545A1 JP 2014054038 W JP2014054038 W JP 2014054038W WO 2014129545 A1 WO2014129545 A1 WO 2014129545A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
base member
porous
carbon nanostructure
carbon
Prior art date
Application number
PCT/JP2014/054038
Other languages
English (en)
French (fr)
Inventor
大久保 総一郎
日方 威
里佐 宇都宮
晃明 松葉
松本 均
勇吾 東
Original Assignee
住友電気工業株式会社
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 日新電機株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480009989.0A priority Critical patent/CN105073252B/zh
Priority to DE112014000964.4T priority patent/DE112014000964T5/de
Priority to US14/767,077 priority patent/US10105683B2/en
Priority to JP2015501499A priority patent/JP6179587B2/ja
Publication of WO2014129545A1 publication Critical patent/WO2014129545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers

Definitions

  • the present invention relates to a porous member and a catalyst member, and more particularly to a porous member having an increased surface area per unit volume and a catalyst member using a carbon nanostructure.
  • a metal porous body made of a metal such as nickel or aluminum is known (see JP-A-8-170126 and JP-A-2013-60609).
  • a plasma generating electrode in which a carbon nanostructure is formed on the surface of the metal porous body has been proposed (see Japanese Patent Application Laid-Open No. 2008-198469).
  • Japanese Patent Application Laid-Open No. 2008-198469 discloses that an electrode capable of emitting electrons in multiple directions to generate plasma almost uniformly on an electrode substrate is arranged irregularly on the surface of a porous metal body. Carbon nanostructures are described.
  • a catalyst member in which a catalyst metal such as platinum is disposed on the surface of a carbon nanostructure such as a carbon nanotube (see, for example, JP-A-2007-126338).
  • a catalyst metal such as platinum
  • Japanese Patent Application Laid-Open No. 2007-126338 discloses disposing metal fine particles that act as a catalyst on the surface of a carbon nanostructure.
  • JP-A-8-170126 and JP-A-2013-60609 a method for further increasing the surface area of the metal porous body is not particularly described.
  • Japanese Patent Application Laid-Open No. 2008-198469 does not specifically describe the application of the metal porous body to other uses requiring a large surface area such as a filter or a secondary battery electrode. There is no disclosure or suggestion of an optimal configuration of the porous metal body for use in applications.
  • Japanese Patent Application Laid-Open No. 2007-126338 discloses that the performance of the catalyst member is improved by improving the surface condition of the carbon nanostructure and increasing the supporting ability of the metal fine particles. However, further improvement in performance is desired for the catalyst member.
  • One object of the present invention is to provide a porous member having an increased surface area that can be applied to various applications such as filters and electrodes of secondary batteries.
  • Another object of the present invention is to provide a catalyst member capable of improving performance as compared with the prior art.
  • the porous member of the present invention includes a base member and a carbon nanostructure.
  • the base member includes a porous body having a porosity of 80% or more.
  • the carbon nanostructure is formed on the surface of the base member and has a width of 100 nm or less.
  • the catalyst member according to the present invention includes a base member made of a porous body, a carbon nanostructure formed on the surface of the base member, and a catalyst disposed on the surface of the carbon nanostructure.
  • the surface area per unit volume of the base member is much larger than that of a normal bulk body. ing. Therefore, the number of carbon nanostructures formed per unit volume of the base member can be increased more than when carbon nanostructures are formed on the surface of a simple bulk body. Therefore, when the density of the catalyst arranged on the surface of the carbon nanostructure is constant, the density of the catalyst per unit volume of the catalyst member can be increased. As a result, a high-performance catalyst member capable of causing a catalytic reaction at a high density can be realized.
  • the present invention it is possible to provide a porous member having an increased surface area that can be applied to various uses. Moreover, the catalyst member which shows high performance can be obtained.
  • FIG. 1 It is a schematic diagram which shows the porous member according to this embodiment. It is an expansion schematic diagram which shows the area
  • FIG. 14 is an enlarged schematic diagram showing a region II. It is an expansion schematic diagram which shows the area
  • FIG. 17 is an enlarged schematic view showing a modification of the carbon nanostructure shown in FIG. 16.
  • 2 is a scanning electron micrograph of a catalyst member according to the present invention. It is an enlarged photograph which shows a part of catalyst member shown in FIG. It is an enlarged photograph which shows a part of catalyst member shown in FIG. It is an enlarged photograph which shows a part of catalyst member shown in FIG. It is an enlarged photograph which shows a part of catalyst member shown in FIG.
  • the porous member 1 includes a base member 5 and carbon nanostructures (10, 20).
  • the base member 5 includes a porous body having a porosity of 80% or more.
  • the carbon nanostructures (10, 20) are formed on the surface of the base member 5 and have a width of 100 nm or less.
  • the porous member having a porosity of 80% or more is used as the base member 5, and the carbon nanostructure having a width of 100 nm or less is formed on the surface of the base member 5, thereby forming the porous member.
  • the surface area of can be made extremely large. For this reason, the outstanding characteristic can be acquired by applying to uses, such as a filter, a catalyst, or a battery electrode.
  • the ventilation resistance in the porous member 1 can be sufficiently lowered, and a filter or a catalyst (for example, a catalyst in which a catalyst is disposed on the surface of a carbon nanostructure)
  • a filter or a catalyst for example, a catalyst in which a catalyst is disposed on the surface of a carbon nanostructure
  • the porosity (%) is defined as (1 ⁇ (apparent specific gravity of the porous body) / (true specific gravity of the material constituting the porous body)) ⁇ 100, and the porosity of the base body The higher the ratio, the greater the porosity value.
  • a plurality of pores may be formed on the surface of the base member 5.
  • carbon nanostructures (10, 20) may be formed from the surface to the side walls of the pores located inside the surface. In this case, since the area of the region for forming the carbon nanostructure (10, 20) is increased, the surface area of the porous member 1 can be further increased as a result.
  • the material constituting the base member 5 may include a metal.
  • the porous member 1 can have a sufficiently high strength.
  • a metal that is a conductor as the material of the base member 5, it is possible to pass a current through the porous member 1, and the porous member 1 can be easily applied to an application such as an electrode of a secondary battery.
  • the material constituting the base member 5 may include ceramics.
  • the heat resistant temperature of the porous member 1 can be increased as compared with the case where a general metal is used as the base member 5. Therefore, for example, when the porous member 1 is applied to a catalyst or the like, the use temperature of the catalyst can be set to a sufficiently high temperature range.
  • the pressure loss when the thickness of the porous member 1 is 10 mm and the measured wind pressure is 2 m / s may be 1000 Pa or less.
  • the pressure loss (airflow resistance) of the porous member 1 is sufficiently low, the pressure loss when a fluid such as a gas is allowed to flow through the porous member 1 can be maintained sufficiently low.
  • porous member structure A porous member 1 according to an embodiment of the present invention will be described with reference to FIGS.
  • the porous member 1 can employ any shape such as a flat plate shape, a column shape, or a cylindrical shape.
  • the porous member 1 includes a base member 5 including a porous body and a carbon nanotube 10 which is an example of a carbon nanostructure formed on the surface of the base member 5.
  • the base member 5 has a three-dimensional network structure as shown in FIG. If it says from a different point, the network structure part 3 containing the base member 5 and the carbon nanotube 10 formed in the surface of the said base member 5 has a three-dimensional network structure, as shown in FIG.
  • the carbon nanotube 10 is formed to the inside of the pore extending inward from the outermost surface of the porous member 1. Instead of the carbon nanotubes 10 formed on the surface of the base member 5, carbon nanowalls 20 (see FIGS. 4 and 5) as other carbon nanostructures may be formed.
  • both the carbon nanotubes 10 and the carbon nanowalls 20 may be formed on the surface of the base member 5.
  • a fine structure having a width of 100 nm or less and made of carbon, such as a graphite table, may be formed.
  • the carbon nanotube 10 refers to a structure in which a graphene sheet made of carbon has a single-layer or multilayer coaxial tube.
  • the carbon nanowall 20 refers to a band-shaped structure that protrudes from the surface of the base material (base member 5) and is composed of a single layer or multiple layers of graphene sheets. From a different point of view, the carbon nanowall 20 refers to a wall-like structure having a thickness T of 50 nm or less, a height H of 50 nm or more, and a length in the direction along the surface of the base member 5 of 100 nm or more. .
  • a porous metal member can be used as the base member 5, for example, a porous metal member can be used.
  • the metal member for example, nickel (Ni), iron (Fe), nickel chromium (Ni—Cr) alloy, copper (Cu), silver (Ag), gold (Au), aluminum (Al), etc. Any metal that can form the base material 5 can be used as a material constituting the base member 5. Further, as the metal material constituting the base member 5, it is possible to make stainless steel or the metal into powder form, and then add it to a slurry, and apply this slurry to a porous material such as sponge or nonwoven fabric. Such metals can be used.
  • an inorganic material can also be used, for example.
  • quartz glass SiO 2
  • the base member 5 containing quartz glass can be formed by a sol-gel method.
  • other multicomponent glass for example, SiO 2 —Al 2 O 3 —B 2 O 5
  • the base member 5 containing the multicomponent glass can be formed by applying a slurry containing the raw material of the multicomponent glass to a sponge, a nonwoven fabric, or the like and baking it.
  • ceramics can be used as a material constituting the base member 5.
  • ceramics include single-component ceramics such as Al 2 O 3 , AlN, and SiC, or many such as mullite (Al 2 O 3 —SiO 2 ) and cordierite (MgO—Al 2 O 3 —SiO 2 ).
  • Component ceramics can be used.
  • the base member 5 can be produced by using a sol-gel method or a slurry containing a raw material in the same manner as the glass material described above.
  • the carbon nanotube 10 which is an example of the carbon nanostructure formed on the surface of the base member 5 can have a diameter of 0.34 nm to 100 nm, for example.
  • the length of the carbon nanotube 10 can be set to 10 ⁇ m or less, for example.
  • the thickness T of the carbon nanowall 20 shown in FIGS. 4 and 5 can be set to be 0.34 nm or more and 15 nm or less, for example.
  • the height H of the carbon nanowall 20 can be set to 60 nm or more and 7 ⁇ m or less.
  • the distance between adjacent carbon nanowalls 20 can be, for example, 50 nm or more and 1000 nm or less.
  • the carbon nanostructure is further formed on the surface of the base member 5 including the porous body, the surface area of the simple porous body can be increased. As a result, a member having a very large surface area per unit volume can be obtained. Therefore, for example, when the porous member 1 according to the present invention is used as a catalyst support (for example, when a job plate is arranged on the surface of a carbon nanostructure), the amount of the catalyst per unit volume can be increased. A catalyst having high performance can be realized.
  • the efficiency of heat exchange with the refrigerant (heat medium) can be improved by applying the porous member 1 to a portion that contacts the refrigerant of the heat exchanger.
  • the porous member 1 when the above-described porous member 1 is applied to, for example, a filter, finer irregularities are formed by the carbon nanostructure formed on the surface of the base member 5 than when a conventional porous body is used. Therefore, fine particles having a small diameter that could not be collected by a conventional filter can be captured. As a result, dust can be collected more efficiently.
  • the porous member 1 can be applied to battery electrode materials that require a large surface area.
  • a material preparation step (S10) is performed. Specifically, a base member 5 that is a porous body is prepared. For example, a porous body containing nickel may be prepared as the base member 5.
  • a material which comprises the base member 5 other arbitrary metals (for example, copper, gold
  • a metal layer is formed on the surface of a porous body (foamed resin molded body) having continuous air holes.
  • a liquid phase method such as electroplating or electroless plating, a vapor deposition method, a sputtering method, a CVD method, or the like can be used.
  • a method may be used in which the porous body is decomposed by heat treatment, and when the metal layer after the heat treatment is oxidized, a reduction treatment is performed on the metal layer.
  • a slurry containing a material (for example, metal) that constitutes the base member 5 is applied to the surface of the above-described foamed resin molded body, and the molded body is disassembled by performing a heat treatment.
  • a method of forming a film from the material in the slurry can also be used.
  • nanoparticles serving as a catalyst for forming a carbon nanostructure are arranged on the surface of the base member 5.
  • the material of the nanoparticles for example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be used.
  • These nanoparticles can be formed on the surface of the base member 5 by any conventionally known method.
  • the nanoparticles can be formed using a method in which the base member 5 is immersed in a solution in which metal nanoparticles serving as a catalyst are dispersed and then the base member 5 is dried.
  • the material of the base member 5 acts as a catalyst for forming the carbon nanostructure, the nanoparticles need not be arranged.
  • the metal nanoparticles need not be dispersedly arranged on the surface of the base member 5 as described above.
  • a step (S20) of growing the carbon nanostructure is performed.
  • the carbon nanostructures (10, 20) can be formed by any method, but a chemical vapor deposition method (CVD method) can be preferably used. In this way, the porous member 1 shown in FIGS. 1 to 5 can be obtained.
  • CVD method chemical vapor deposition method
  • the porosity of the porous member 1 can be, for example, 50% or more and 98% or less.
  • the porosity is preferably 80% or more and 98% or less, more preferably 90% or more and 98% or less.
  • the number of the holes per unit length (1 cm) can adjust the structure of the foamed resin molding used when forming the base member 5, for example, 2 or more and 60 holes. It can be arbitrarily adjusted within the following range.
  • the number of holes per unit length is determined by setting a unit length straight line at any five locations on the sample surface of the porous member 1 and measuring the number of holes crossed by the straight line. It can be specified by calculating an average value of the measured values.
  • the pressure loss of the porous member 1 can be set to 1000 Pa or less when the measured wind speed is 2 m / s and the thickness of the porous member as a sample is 10 mm, for example.
  • the pressure loss is preferably 500 Pa or less, more preferably 150 Pa or less.
  • the pressure loss can be measured by any conventionally known method. For example, the following method can be used. First, a porous member, which is a sample, is arranged in the measurement duct, and a U-shaped manometer is arranged so as to be connected to the inside of each measurement duct on the upstream side and the downstream side of the porous member.
  • a battery 30 using the porous member according to the present embodiment includes a positive electrode 31, a negative electrode 32, a separator 33, an electrolyte solution 34, and the porous member 1 according to the present invention.
  • the container 35 is mainly provided. Inside the container 35, the positive electrode 31 comprised by the porous member 1 by this embodiment mentioned above is arrange
  • a negative electrode 32 is disposed so as to face the positive electrode 31.
  • a separator 33 is disposed between the positive electrode 31 and the negative electrode 32.
  • the container 35 is filled with an electrolytic solution 34. Terminals are connected from the positive electrode 31 and the negative electrode 32 so as to extend to the outside of the container 35.
  • the positive electrode 31 a metal can be used as the base member 5.
  • the metal constituting the base member 5 for example, aluminum may be used.
  • the porous member 1 according to the present embodiment to the positive electrode 31, the surface area per unit volume of the positive electrode 31 can be increased. As a result, the performance of the battery can be improved.
  • the structure of the battery 30 is not limited to the structure shown in FIG. For example, after winding the laminated body of the positive electrode 31, the separator 33, and the negative electrode 32 in a coil shape, it arrange
  • the filtering device 40 is, for example, an oil mist collector.
  • a filter 41 to which the porous member 1 according to the present embodiment is applied is disposed inside the housing 43, and a fan 42 is installed in the housing 43.
  • An opening 44 for introducing a gas to be filtered is formed in a portion of the housing 43 facing the filter 41.
  • a metal such as stainless steel, a nickel chromium alloy, or nickel can be used.
  • the manufacturing cost of the filter 41 can be relatively reduced, and the heat resistance and oxidation resistance of the filter 41 can be improved. Further, when a nickel chromium alloy is used as the material of the base member 5, the manufacturing cost is higher than when stainless steel is used, but the heat resistance of the filter 41 can be improved.
  • the gas to be filtered is sucked into the housing 43 from the opening 44 as shown by the arrow.
  • the gas passes through the filter 41, the gas is brought into contact with the surface of the porous member 1 constituting the filter 41 (the surface on which the carbon nanostructure is formed), so that the filtering target contained in the gas Objects (for example, oil and fine particles) can be captured by the filter 41.
  • the filtering target contained in the gas Objects for example, oil and fine particles
  • the gas flows through the housing 43 as indicated by the arrow, and is discharged to the outside of the housing 43 by the fan 42.
  • the filter 41 may be constituted by only the porous member 1 according to the present embodiment, but other non-woven fabrics or other members may be formed upstream of the porous member 1 (side close to the opening 44). Other configured filters may be arranged.
  • heat radiating member 50 mainly includes a base body 52 including a metal and the like, and a heat radiating body 51 connected to this base body 52.
  • the heat radiating body 51 is configured by the porous member 1 according to the above-described embodiment.
  • a plurality of protruding fins are formed on the surface of the radiator 51.
  • the shape of the radiator 51 is not limited to the structure shown in FIG. 8, and any other structure may be adopted.
  • the surface area of the heat radiator 51 can be increased by using the porous member 1 according to the present embodiment for the heat radiator 51, a cooling medium (for example, air or cooling) in contact with the heat radiator 51 can be increased.
  • the contact area between the water etc.) and the radiator 51 can be increased.
  • the thermal efficiency in the heat radiating member 50 can be further increased.
  • a heat pipe 60 to which the porous member 1 according to the present embodiment is applied will be described with reference to FIG.
  • the heat pipe 60 mainly includes a cylindrical casing 62, an evaporator 61 disposed at one end of the casing 62, and a working liquid 67 sealed in the casing 62.
  • the inside of the housing 62 is depressurized until it is substantially in a vacuum state.
  • the porous member 1 according to this embodiment described above is applied to the evaporator 61.
  • the operation of the heat pipe 60 will be briefly described.
  • one end portion where the evaporator 61 is installed is heated, and the opposite end portion is cooled.
  • the working liquid 67 evaporates and vapor of the liquid is generated.
  • the vapor flows through the inside of the housing 62 as indicated by an arrow 64, and is cooled at the other end of the housing 62, whereby the working liquid is condensed and returned to the liquid.
  • the working liquid 67 that has returned to the liquid flows in the housing 62 as indicated by the arrow 66 and flows to the evaporator 61 side.
  • a heat transfer characteristic reaching 100 times that of a case where heat conduction in a copper round bar of the same size is considered can be obtained.
  • a metal mesh (wig) is arranged inside the casing 62 from the cooling unit toward the heating unit, or from the cooling unit to the heating unit.
  • formula which has arrange
  • gravity is used to move the working liquid 67 from the cooling unit to the heating unit.
  • the contact area between the working liquid 67 and the evaporator 61 can be increased by applying the porous member 1 according to the present embodiment as the evaporator 61, the working liquid 67 can be evaporated more efficiently. Can do. As a result, the heat transfer characteristics of the heat pipe 60 can be further improved.
  • a material which comprises the base member 5 of the porous member 1 used for the heat radiating member 50 and the heat pipe 60 mentioned above for example, copper (Cu), silver (Ag), gold (Au), aluminum (Al), A material having high thermal conductivity and excellent chemical durability, such as aluminum nitride (AlN) and silicon carbide (SiC), can be used.
  • Example 1 A metal porous body having a carbon nanostructure formed on the surface, which is an example of a porous member according to the present embodiment, was manufactured as follows. As a sample, a porous body made of nickel (Celmet (registered trademark) made of nickel) was prepared.
  • Nilmet registered trademark
  • the base member is heated to a desired temperature in a container of an inductively coupled plasma CVD apparatus. Thereafter, hydrocarbons and gases such as inert gas and hydrogen gas are supplied into the container from the gas introduction part. Next, carbon nanowalls are formed on the base member by supplying a high frequency of 13.56 MHz from the high frequency power source to the electrode in the container for a desired time.
  • FIGS. 10 shows a part of the surface of the porous body having a magnification of 10 times.
  • FIG. 11 is an enlarged photograph showing the surface of the network structure portion 3 located on the outermost surface (first layer) of the porous body. The magnification in FIG. 11 is 5000 times.
  • FIGS. 12 and 13 are enlarged photographs showing the network structure part 3 located in the second and third layers from the outermost surface of the porous body, respectively. The magnification in FIGS. 12 and 13 is 5000 times.
  • the carbon nanostructures are sufficiently formed from the first layer to the third layer in the network structure portion 3 of the porous body. And in the porous body in which the carbon nanostructure is formed from the surface layer to the inside in this way, the surface area per unit volume can be sufficiently increased.
  • the catalyst member 100 according to the present invention will be described with reference to FIGS.
  • the catalyst member 100 according to the present invention can adopt any shape such as a flat plate shape, a column shape, or a cylindrical shape.
  • the catalyst member 100 includes a base member 500 made of a porous body, a carbon nanostructure 200 formed on the surface of the base member 500, and a catalyst 220 disposed on the surface of the carbon nanostructure 200.
  • the base member 500 has a mesh structure as shown in FIG. From a different point of view, the network structure 300 including the carbon nanostructure 200 having the catalyst 220 formed on the surface and the base member 500 has a three-dimensional network structure as shown in FIG. Examples of the carbon nanostructure 200 include carbon nanotubes, carbon nanowalls, and graphite tape.
  • the carbon nanostructure 200 having the catalyst 220 formed on the surface is referred to as a catalyst-attached carbon nanostructure 110.
  • a porous metal member can be used as the base member 500.
  • a porous member made of nickel can be used as the base member 500.
  • the surface area per unit volume of the base member 500 is much larger than that of a normal bulk body. Therefore, the number of carbon nanostructures 110 with catalyst formed per unit volume of the base member 500 can be increased as compared with the case where the carbon nanostructures 110 with catalyst are formed on the surface of a simple bulk body. Therefore, when the density of the catalyst 220 arranged on the surface of the catalyst-attached carbon nanostructure 110 is constant, the density of the catalyst 220 per unit volume of the catalyst member 100 can be increased. As a result, a high-performance catalyst member 100 that can cause a catalytic reaction at a high density can be realized.
  • a plurality of pores may be formed on the surface of the base member 500.
  • the base member 500 has a three-dimensional network structure, and a plurality of pores are formed in the base member 500 so as to extend from the outermost surface to the inner side.
  • the carbon nanostructure 110 with a catalyst is formed from the said surface to the side wall of the pore located inside the said surface.
  • the catalyst-attached carbon nanostructure 110 is formed even in the pores extending into the base member 500, as a result, the catalyst 220 disposed on the surface of the carbon nanostructure 200 is also included. It will be in the state arrange
  • the catalyst 220 is a granular material distributed on the surface of the carbon nanostructure 200 as shown in FIG. In this case, since the catalyst 220 is arranged as a finer granular material on the surface of the fine carbon nanostructure 200, the catalyst 220 that has an advantageous effect on the catalytic reaction when dispersed and arranged in a small size is used. In particular, the performance of the catalyst member 100 can be improved.
  • the catalyst 220 may be a film-like body that covers at least a part of the side wall of the carbon nanostructure 200 as shown in FIG.
  • the surface area of the catalyst 220 can be increased as compared with the case where the catalyst 220 is arranged as a granular body on the surface of the carbon nanostructure 200 as shown in FIG. Therefore, the performance of the catalyst member 100 can be improved particularly when the catalyst 220 is used in which increasing the surface area of the catalyst 220 has an advantageous effect on the catalytic reaction.
  • the catalyst 220 includes platinum (Pt), gold (Au), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), Copper (Cu), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), tantalum (Ta), tungsten (W), rhenium (Re), It may contain at least one metal selected from the group consisting of iridium (Ir). These metals can act as catalysts.
  • a material preparation step (S10) is performed. Specifically, a base member 500 that is a porous body made of metal is prepared. For example, a porous body made of nickel may be prepared as the base member 500. In addition, as a material which comprises the base member 500, other arbitrary metals (for example, copper, gold
  • nanoparticles serving as a catalyst for forming the carbon nanostructure 200 are disposed on the surface of the base member 500.
  • the material of the nanoparticles for example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be used.
  • These nanoparticles can be formed on the surface of the base member 500 by any conventionally known method.
  • the nanoparticles can be formed using a method in which the base member 500 is dipped in a solution in which metal nanoparticles serving as a catalyst are dispersed and then the base member 500 is dried.
  • the material of the base member 500 acts as a catalyst for forming the carbon nanostructure 200
  • the nanoparticles need not be arranged.
  • carbon nanowalls are formed as the carbon nanostructure 200, the metal nanoparticles need not be dispersed on the surface of the base member 500 as described above.
  • the carbon nanostructure 200 can be formed by any method, but a chemical vapor deposition method (CVD method) can be preferably used.
  • CVD method chemical vapor deposition method
  • a step of forming a catalyst is performed.
  • the catalyst 220 is formed on the surface of the carbon nanostructure 200 by any method.
  • the base member 500 having the carbon nanostructure 200 formed on the surface thereof is immersed in an electroless plating solution containing a metal (for example, platinum) that becomes the catalyst 220, whereby the catalyst 220 is formed on the surface of the carbon nanostructure 200.
  • a metal for example, platinum
  • the metal which becomes may be deposited.
  • a metal complex gas containing a metal serving as the catalyst 220 is brought into contact with the base member 500 on which the carbon nanostructure 200 is formed, so that the metal complex is adsorbed on the surface of the carbon nanostructure 200 and then the atmosphere.
  • the catalyst 220 made of a metal derived from a metal complex may be formed on the surface of the carbon nanostructure 200 by leaving the base member 500 having the carbon nanostructure 200 formed therein. In this way, the catalyst member 1 shown in FIGS. 14 to 18 can be obtained.
  • Example 2 A metal porous body having a carbon nanostructure formed on the surface, which constitutes the catalyst member according to the present invention, was manufactured as follows.
  • the method for forming carbon nanotubes on the surface of the porous body is as follows. First, a base member inside a quartz reaction tube is heated to a predetermined temperature in an electric furnace having a quartz reaction tube. Thereafter, carbon nanotubes are formed while flowing an inert gas containing hydrocarbon as a raw material gas into the quartz reaction tube for a desired time, and then naturally cooled.
  • the method for forming carbon nanowalls on the surface of the porous body is as follows. First, the base member is heated to a desired temperature in a container of an inductively coupled plasma CVD apparatus. Thereafter, hydrocarbons and gases such as inert gas and hydrogen gas are supplied into the container from the gas introduction part. Next, carbon nanowalls are formed on the base member by supplying a high frequency of 13.56 MHz from the high frequency power source to the electrode in the container for a desired time.
  • FIGS. 21 and 22 are enlarged photographs showing the network structure 300 located in the second and third layers from the outermost surface of the porous body, respectively.
  • the magnification in FIGS. 21 and 22 is 5000 times.
  • the carbon nanostructures are sufficiently formed from the first layer to the third layer in the network structure portion 300 of the porous body. Then, in the porous body in which the carbon nanostructure is formed from the surface layer to the inside as described above, the catalyst 220 is disposed on the surface of the carbon nanostructure as shown in FIGS. A catalyst member having a high density can be easily obtained.
  • the present invention can be advantageously applied to members that require a large specific surface area, such as filters, battery electrodes, and catalysts, and high-performance catalyst members that have increased catalyst density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 多孔質部材は、ベース部材(5)とカーボンナノ構造体(10)とを備える。ベース部材(5)は、気孔率が80%以上である多孔質体を含む。カーボンナノ構造体(10)は、ベース部材(5)の表面に形成され、幅が100nm以下である。触媒部材は、カーボンナノ構造体の表面に配置された触媒を備える。

Description

多孔質部材および触媒部材
 本発明は、多孔質部材および触媒部材に関し、より特定的には、単位体積当たりの表面積を増大させた多孔質部材およびカーボンナノ構造体を用いた触媒部材に関する。
 従来、ニッケルやアルミニウムなどの金属からなる金属多孔体が知られている(特開平8-170126号公報および特開2013-60609号公報参照)。また、このような金属多孔体の応用例として、金属多孔体の表面にカーボンナノ構造体を形成したプラズマ発生用電極が提案されている(特開2008-198469号公報参照)。特開2008-198469号公報には、電極基板に対してプラズマをほぼ均一に発生させるため多方向に電子を放出させることが可能な電極を実現するため、金属多孔体の表面に不規則に配列されたカーボンナノ構造体が記載されている。
 また、従来、カーボンナノチューブなどのカーボンナノ構造体の表面に白金などの触媒金属を配置した触媒部材が知られている(たとえば、特開2007-126338号公報参照)。特開2007-126338号公報では、カーボンナノ構造体の表面に触媒として作用する金属微粒子を配置することが開示されている。
特開平8-170126号公報 特開2013-60609号公報 特開2008-198469号公報 特開2007-126338号公報
 特開平8-170126号公報および特開2013-60609号公報には、金属多孔体の表面積をさらに増大させる方法については特に記載されていない。また、特開2008-198469号公報には、フィルタや二次電池の電極といった、大きな表面積が求められる他の用途に金属多孔体を適用することについては特に記載されておらず、またそのような用途に用いる場合の金属多孔体の最適な構成などについて開示も示唆もしていない。
 また、上述した触媒部材では、当該触媒部材の性能(たとえば触媒反応の効率)を高める観点から単位体積当たりの触媒の密度を高めることが求められている。上記特開2007-126338号公報では、カーボンナノ構造体の表面状態を改善して金属微粒子の担持能力を高めることにより、当該触媒部材の性能を高めることが開示されている。しかし、触媒部材についてはさらなる性能の向上が望まれている。
 本発明の1つの目的は、フィルタや二次電池の電極など、様々な用途に適用可能な、表面積を増大させた多孔質部材を提供することである。
 本発明の他の目的は、従来よりも性能の向上を図ることが可能な触媒部材を提供することである。
 本発明の多孔質部材は、ベース部材とカーボンナノ構造体とを備える。ベース部材は、気孔率が80%以上である多孔質体を含む。カーボンナノ構造体は、ベース部材の表面に形成され、幅が100nm以下である。
 この発明に従った触媒部材は、多孔質体からなるベース部材と、ベース部材の表面に形成されたカーボンナノ構造体と、カーボンナノ構造体の表面に配置された触媒と、を備える。
 このようにすれば、多孔質体からなるベース部材の表面には複数の孔(たとえば細孔)が存在しているため、当該ベース部材の単位体積当たりの表面積は通常のバルク体より極めて大きくなっている。そのため、ベース部材の単位体積当たりに形成されるカーボンナノ構造体の数も、単なるバルク体の表面にカーボンナノ構造体を形成した場合より多くできる。したがって、カーボンナノ構造体の表面に配置される触媒の密度が一定である場合には、触媒部材の単位体積当たりの触媒の密度を高めることができる。この結果、高い密度で触媒反応を起こすことが可能となる高性能の触媒部材を実現できる。
 本発明によれば、様々な用途に適用することが可能な、表面積を増大させた多孔質部材を提供することができる。また、高い性能を示す触媒部材を得ることができる。
本実施形態に従った多孔質部材を示す模式図である。 図1の領域IIを示す拡大模式図である。 図2の領域IIIを示す拡大模式図である。 図2の領域IIIの他の例を示す拡大模式図である。 図4に示したカーボンナノウォールを示す拡大模式図である。 本実施形態に従った多孔質部材を用いた電池を示す模式図である。 本実施形態に従った多孔質部材を用いたフィルタリング装置を示す模式図である。 本実施形態に従った多孔質部材を用いた放熱部材を示す模式図である。 本実施形態に従った多孔質部材を用いたヒートパイプを示す模式図である。 本実施形態に従った多孔質部材の一例の走査型電子顕微鏡写真である。 図10に示した多孔質部材の一部を示す拡大写真である。 図10に示した多孔質部材の一部を示す拡大写真である。 本発明に従った触媒部材の走査型電子顕微鏡写真である。 本発明に従った触媒部材を示す模式図である。 図14領域IIを示す拡大模式図である。 図15の領域IIIを示す拡大模式図である。 図16に示したカーボンナノ構造体の拡大模式図である。 図16に示したカーボンナノ構造体の変形例を示す拡大模式図である。 本発明に従った触媒部材の走査型電子顕微鏡写真である。 図19に示した触媒部材の一部を示す拡大写真である。 図19に示した触媒部材の一部を示す拡大写真である。 図19に示した触媒部材の一部を示す拡大写真である。
 [本願発明の実施形態の説明]
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (実施の形態1)
 本実施形態1に従った多孔質部材1は、ベース部材5とカーボンナノ構造体(10、20)とを備える。ベース部材5は、気孔率が80%以上である多孔質体を含む。カーボンナノ構造体(10、20)は、ベース部材5の表面に形成され、幅が100nm以下である。
 このようにすれば、気孔率が80%以上とした多孔質体をベース部材5として用い、さらに当該ベース部材5の表面に幅が100nm以下のカーボンナノ構造体を形成することで、多孔質部材の表面積を極めて大きくすることができる。このため、フィルタや触媒、または電池の電極といった用途に適用することで優れた特性を得ることができる。また、ベース体の気孔率を80%以上とすることで、多孔質部材1における通気抵抗を十分低くすることができ、フィルタや触媒(たとえばカーボンナノ構造体の表面に触媒を配置したような触媒部材)に多孔質部材1を適用することで、処理する流体(たとえば気体)の圧力損失を抑制することができる。
 なお、ここで気孔率(%)とは、(1-(多孔質体の見かけ比重)/(多孔質体を構成する材料の真比重))×100と規定され、ベース体中の細孔の割合が高いほど気孔率の値は大きくなる。
 上記多孔質部材1において、ベース部材5の表面には複数の細孔が形成されていてもよい。ベース部材5では、表面から、当該表面より内側に位置する細孔の側壁にまでカーボンナノ構造体(10、20)が形成されていてもよい。この場合、カーボンナノ構造体(10、20)を形成する領域の面積を広げることになるので、結果的に多孔質部材1の表面積をより増大させることができる。
 上記多孔質部材1において、ベース部材5を構成する材料は金属を含んでいてもよい。この場合、多孔質部材1について十分高い強度をえることができる。また、ベース部材5の材料として導電体である金属を用いることで、多孔質部材1に電流を流すことができ、当該多孔質部材1を2次電池の電極といった用途に容易に適用できる。
 上記多孔質部材1において、ベース部材5を構成する材料はセラミックスを含んでいてもよい。この場合、ベース部材5として一般的な金属を用いる場合より、多孔質部材1の耐熱温度を高めることができる。そのため、たとえば触媒などに多孔質部材1を適用する場合、当該触媒の使用温度を十分高い温度域に設定することができる。
 上記多孔質部材1において、当該多孔質部材1の厚みを10mmとし、測定風圧を2m/sとしたときの圧力損失が1000Pa以下であってもよい。この場合、多孔質部材1の圧損(通気抵抗)は十分低い状態であるため、気体などの流体を、多孔質部材1を通過するように流通させる場合の圧力損失を十分低く維持することができる。
 [本願発明の実施形態の詳細]
 (多孔質部材の構造)
 図1~図5を参照して、本発明の実施形態である多孔質部材1を説明する。多孔質部材1は、平板状、柱状、筒状など任意の形状を採用することができる。
 多孔質部材1は、多孔質体を含むベース部材5と、ベース部材5の表面に形成されたカーボンナノ構造体の一例であるカーボンナノチューブ10とを備える。ベース部材5は、図2に示すように三次元網目構造を有している。異なる点からいえば、ベース部材5と、当該ベース部材5の表面に形成されたカーボンナノチューブ10とを含む網目構造部3は、図2に示すように三次元網目構造を有している。カーボンナノチューブ10は、多孔質部材1の最表面から内側に延びる細孔の内部にまで形成されている。なお、ベース部材5の表面に形成されたカーボンナノチューブ10に代えて、他のカーボンナノ構造体としてのカーボンナノウォール20(図4および図5を参照)が形成されていてもよい。または、ベース部材5の表面には、カーボンナノチューブ10およびカーボンナノウォール20(図4および図5参照)の両方が形成されていてもよい。また、このようなベース部材5の表面に形成されるカーボンナノ構造体としては、他にもグラファイトテーブルなど、幅が100nm以下であり炭素から構成される微細構造体が形成されていてもよい。
 ここで、カーボンナノチューブ10とは、炭素によって構成されるグラフェンシートが単層または多層の同軸管状になっている構造体を言う。また、カーボンナノウォール20とは、基材(ベース部材5)の表面から突出し、グラフェンシートの単層または多層からなる帯状の構造体を言う。また、異なる観点から言えば、カーボンナノウォール20とは、厚みTを50nm以下、高さHを50nm以上、ベース部材5の表面に沿った方向における長さを100nm以上としたウォール状構造を言う。
 ベース部材5としては、たとえば多孔質の金属部材を用いることができる。金属部材としては、たとえば、ニッケル(Ni)、鉄(Fe)、ニッケルクロム(Ni-Cr)合金、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)などめっき法により薄膜を形成することが可能な金属であればベース部材5を構成する材料として適用できる。また、ベース部材5を構成する金属材料としてはステンレス鋼、または当該金属を粉末状にした上で、スラリーに含有させ、このスラリーをスポンジや不織布などの多孔質体に塗布することが可能であるような金属を用いることができる。
 また、ベース部材5の材料としては、たとえば無機材料を用いることもできる。無機材料としてはたとえば、石英ガラス(SiO)を用いることができる。石英ガラスを用いる場合には、ゾルゲル法により石英ガラスを含むベース部材5を形成することができる。また、ベース部材5を構成する材料として、その他の多成分ガラス(たとえばSiO-Al-Bなど)を用いることができる。この場合、たとえば多成分ガラスの原料を含むスラリーをスポンジや不織布などに塗布し、焼成することで多成分ガラスを含むベース部材5を形成することができる。
 また、ベース部材5を構成する材料としてセラミックスを用いることもできる。セラミックスとしては、たとえばAl23、AlN、SiCなどの単成分系のセラミックス、またはムライト(Al-SiO)やコーディエライト(MgO-Al-SiO)などの多成分系のセラミックスを用いることができる。この場合も、上述したガラス材料などと同様に、ゾルゲル法や原料を含むスラリーを利用することで、ベース部材5を作製できる。
 ベース部材5の表面に形成されるカーボンナノ構造体の一例であるカーボンナノチューブ10は、たとえばその直径を0.34nm以上100nm以下とすることができる。また、カーボンナノチューブ10の長さはたとえば10μm以下とすることができる。また、図4および図5に示すカーボンナノウォール20の厚みTはたとえば0.34nm以上15nm以下とすることができる。また、カーボンナノウォール20の高さHは、60nm以上7μm以下とすることができる。また、隣接するカーボンナノウォール20の間の距離はたとえば50nm以上1000nm以下とすることができる。
 上述した多孔質部材1では、多孔質体を含むベース部材5の表面に、さらにカーボンナノ構造体が形成されていることから、単純な多孔質体に対してその表面積を増大させることができる。この結果、単位体積当たりの表面積のきわめて大きな部材を得ることができる。したがって、たとえば本発明による多孔質部材1を触媒の担持体として用いる場合(たとえばカーボンナノ構造体の表面に職版を配置する場合)には、単位体積当たりの触媒の量を増大させることができ、高い性能を有する触媒を実現できる。
 また、多孔質部材1を熱交換器の冷媒と接触する部位に適用することにより、冷媒(熱媒体)との熱交換の効率を向上させることができる。また、上述した多孔質部材1をたとえばフィルタに適用すれば、従来の多孔質体を用いる場合よりもベース部材5の表面に形成されたカーボンナノ構造体によってより微細な凹凸が形成されていることから、従来のフィルタでは捕集することができなかった径の小さな微粒子を補足することができる。この結果、より効率的に集塵することができる。また、多孔質部材1では単位体積当たりの表面積を極めて大きくすることができることから、大きな表面積が求められる電池の電極材料などにも多孔質部材1を適用することが可能である。
 (多孔質部材の製造方法)
 図1~図5に示した多孔質部材1の製造方法を説明する。まず、材料準備工程(S10)を実施する。具体的には、多孔質体であるベース部材5を準備する。たとえばベース部材5としてニッケルを含む多孔質体を準備してもよい。なお、ベース部材5を構成する材料としては、他の任意の金属(たとえば銅や金など)、もしくはガラスなどの無機材料、またはセラミックスを用いることができる。
 また、ベース部材5の製造方法としては、以下のような方法を用いることができる。たとえば連通気孔を有する多孔体(発泡樹脂成形体)の表面に金属層を形成する。形成方法としては、電気めっき、無電解めっきなの液相法、蒸着法、スパッタ法、CVD法などの気相法を用いることができる。その後、当該多孔体を熱処理することによって、多孔体を分解し、さらに熱処理後の金属層が酸化している場合には当該金属層に対して還元処理を行なう、といった方法を用いてもよい。
 また、ベース部材5の製造方法として、ベース部材5を構成するべき材料(たとえば金属など)を含むスラリーを上述した発泡樹脂成形体の表面に塗布し、熱処理を行なうことによって成形体を分解するとともにスラリー中の上記材料から膜を形成する、といった方法を用いることもできる。
 次に、ベース部材5の表面に、カーボンナノ構造体(たとえばカーボンナノチューブ10)を形成するための触媒となるナノ粒子を配置する。当該ナノ粒子の材質としては、たとえば鉄(Fe)、ニッケル(Ni)、コバルト(Co)などを用いることができる。これらのナノ粒子は、従来周知の任意の方法によりベース部材5の表面に形成することができる。たとえば、触媒となる金属ナノ粒子を分散した溶液にベース部材5を浸漬したあと当該ベース部材5を乾燥させる、といった方法を用いてナノ粒子を形成することができる。なお、ベース部材5の材質がカーボンナノ構造体を形成するための触媒として作用する場合、上記ナノ粒子を配置しなくてもよい。また、カーボンナノ構造体としてカーボンナノウォール20を形成する場合には、上記のようにベース部材5の表面に金属ナノ粒子を分散配置しなくてもよい。
 次に、カーボンナノ構造体を成長させる工程(S20)を実施する。この工程(S20)では、任意の方法によりカーボンナノ構造体(10、20)を形成できるが、好ましくは化学気相成長法(CVD法)を用いることができる。このようにして、図1~図5に示した多孔質部材1を得ることができる。
 (多孔質部材の特性)
 多孔質部材1の気孔率は、たとえば50%以上98%以下とすることができる。当該気孔率は、好ましくは80%以上98%以下、より好ましくは90%以上98%以下である。また、多孔質部材1の孔について、単位長さ(1cm)当たりの孔の数は、ベース部材5を形成するときに用いる発泡樹脂成形体の構造を調整することにより、たとえば2個以上60個以下の範囲で任意に調整することができる。なお、単位長さ当たりの孔の数は、多孔質部材1のサンプル表面において、任意の5か所について単位長さの直線を設定し、当該直線により横切られる孔の数を計測したうえで、当該計測値の平均値を算出することにより特定できる。
 また、多孔質部材1の圧力損失は、たとえば測定風速を2m/s、サンプルである多孔質部材の厚みを10mmとしたときに1000Pa以下とすることができる。また、当該圧力損失は、好ましくは500Pa以下、より好ましくは150Pa以下である。なお、圧力損失の測定方法は、従来周知の任意の方法で測定することができるが、たとえば以下のような方法を用いることができる。まず、測定ダクト内にサンプルである多孔質部材を配置し、当該多孔質部材の上流側と下流側とのそれぞれの測定ダクト内部とつながるようにU字管マノメータを配置する。この状態で、上流側から気体を測定ダクト内に流し、多孔質部材の上流側の圧力(入口圧力)と下流側の圧力(出口圧力)とを上記U字管マノメータによって測定する。圧力損失は、入口圧力(上流側静圧)-出口圧力(下流側静圧)という式で表わされ、上記U字管マノメータにおける液体(水)の液面高さの差として測定することができる。
 (多孔質部材の適用例)
 図6を参照して、本実施形態に従った多孔質部材を用いた電池30は、本発明による多孔質部材1により構成される正極31と、負極32と、セパレータ33と、電解液34と、容器35とを主に備えている。容器35の内部には、上述した本実施形態による多孔質部材1により構成された正極31が配置されている。この正極31と対向するように負極32が配置されている。正極31と負極32との間にはセパレータ33が配置されている。そして、この容器35の内部に電解液34が充填されている。正極31および負極32からはそれぞれ端子が容器35の外部にまで延びるように接続されている。
 正極31としては、ベース部材5として金属を用いることができる。当該ベース部材5を構成する金属としては、たとえばアルミニウムなどを用いてもよい。このように正極31に本実施形態による多孔質部材1を適用することにより、正極31の単位体積当たりの表面積を大きくすることができる。この結果、電池の性能を向上させることができる。なお、電池30の構造は、図6に示した構造に限定されない。たとえば、正極31とセパレータ33と負極32との積層体をコイル状に巻き取ってから容器35の内部に配置する、あるいは正極31とセパレータ33と負極32とからなる積層体を複数準備し、その複数の積層体を容器35の内部に配置してもよい。
 図7を参照して、本実施形態に従った多孔質部材1をフィルタとして用いたフィルタリング装置40を説明する。フィルタリング装置40は、たとえばオイルミストコレクタなどであり、筺体43の内部に本実施形態に従った多孔質部材1を適用したフィルタ41が配置され、さらに筺体43にはファン42が設置されている。フィルタ41と対向する筺体43の部分にはフィルタリングを行なう対象の気体を導入するための開口部44が形成されている。フィルタ41を構成する多孔質部材1において、ベース部材5の材料としてはたとえばステンレス鋼、ニッケルクロム合金、ニッケルなどの金属を用いることができる。ベース部材5の材料としてステンレス鋼を用いる場合、比較的フィルタ41の製造コストを低減できるとともに、フィルタ41の耐熱性および耐酸化性を向上させることができる。また、ニッケルクロム合金をベース部材5の材料として用いる場合、ステンレス鋼を用いる場合より製造コストは高くなるが、フィルタ41の耐熱性を向上させることができる。
 フィルタリング装置40では、ファン42を作動させることにより、矢印に示すように開口部44からフィルタリング対象の気体が筺体43の内部に吸い込まれる。当該気体がフィルタ41を通過するときに、フィルタ41を構成する多孔質部材1の表面(カーボンナノ構造体が形成された表面)に気体が接触することにより、当該気体に含有されているフィルタリング対象物(たとえばオイルや微粒子など)をフィルタ41において捕捉することができる。このようにオイルや微粒子などのフィルタリング対象物が捕捉された後、気体は矢印に示すように筺体43中を流れ、ファン42により筺体43の外部へと排出される。
 なお、フィルタ41は、本実施形態に従った多孔質部材1のみにより構成してもよいが、当該多孔質部材1の上流側(開口部44に近い側)に他の不織布やその他の部材から構成された他のフィルタを配置してもよい。
 このようにすれば、従来よりもよりサイズの小さなフィルタリング対象物の捕捉率を向上させることができる。
 図8を参照して、本実施形態に従った多孔質部材1を適用した放熱部材50を説明する。図8を参照して、放熱部材50は、金属などを含むベース体52と、このベース体52に接続された放熱体51とを主に備える。放熱体51は、上述した本実施形態に従った多孔質部材1により構成されている。また、この放熱体51の表面には突起状のフィンが複数形成されている。なお、放熱体51の形状は図8に示したような構造に限られることなく、他の任意の構造を採用してもよい。
 このように、放熱体51に本実施形態に従った多孔質部材1を用いることで、放熱体51の表面積を増大させることができるので、この放熱体51に接触する冷却媒体(たとえば空気や冷却水など)と放熱体51との接触面積を増大させることができる。この結果、放熱部材50における法熱効率をより高めることができる。
 図9を参照して、本実施形態に従った多孔質部材1を適用したヒートパイプ60を説明する。ヒートパイプ60は、筒状の筺体62と、この筺体62の内部の一方端に配置された蒸発器61と、この筺体62内部に封入されている作動液体67とを主に備えている。なお、筺体62内部は実質的に真空状態になるまで減圧されている。蒸発器61に、上述した本実施形態に従った多孔質部材1を適用する。
 次に、ヒートパイプ60の動作を簡単に説明する。筺体62において、蒸発器61が設置された一方端部を加熱し、反対側の端部を冷却する。その結果、加熱された側の一方端部(蒸発器61が設置された端部)では、作動液体67が蒸発して当該液体の蒸気が発生する。そして、この蒸気が矢印64に示すように筺体62内部を流通し、筐体62の他方端部において冷却されることにより当該作動液体が凝縮して液体に戻る。液体に戻った作動液体67は、矢印66に示すように筺体62内を流れ、蒸発器61側へと流通する。この結果、矢印63に示すようにヒートパイプ60の一方端部が加熱されると、他方端部においては矢印65に示すように気化していた作動液体67の凝縮に伴って矢印65に示すように放熱される。すなわち、ヒートパイプ60の筺体62内における作動液体67の蒸発と凝縮に伴う潜熱移動により、この筺体62の両端部における小さな温度差で加熱部(蒸発器61)が配置された一方端部側から冷却部側(筺体62における反対側の他方端部側)に大量の熱が輸送される。
 このようなヒートパイプ60においては、たとえば同じサイズの銅の丸棒における熱伝導を考えた場合に比べて100倍にも達する熱移送特性を得ることができる。なお、冷却部から加熱部に向けた矢印66に示す作動液体67の移動においては、たとえば冷却部から加熱部に向かって筺体62の内部に金網(ウイッグ)を配置する、または冷却部から加熱部に向けて筐体62の内壁に細かい溝(グループ)を形成する、といった構成を採用することにより、作動液体67の表面張力による毛管作用により作動液体67を還流させることができる。このようなヒートパイプはいわゆるウイッグ式と呼ばれる。
 なお、ヒートパイプ60の方式としては他の任意の形式を用いることができる。たとえば、加熱部の垂直方向上側に冷却部を配置した配置、すなわち筺体62を鉛直方向に立てたような配置としたサーモサイフォン式と呼ばれる形式を採用してもよい。この場合、冷却部から加熱部への作動液体67の移動には重力を利用している。また、自励振動式のヒートパイプにおける加熱部に本実施形態による多孔質部材1を採用してもよい。
 この場合、蒸発器61として本実施形態による多孔質部材1を適用することにより作動液体67と蒸発器61との接触面積を増大させることができるので、より効率的に作動液体67を蒸発させることができる。この結果、ヒートパイプ60の熱移送特性をより向上させることができる。
 なお、上述した放熱部材50やヒートパイプ60に用いられる多孔質部材1のベース部材5を構成する材料としては、たとえば銅(Cu)、銀(Ag)、金(Au),アルミニウム(Al)、窒化アルミニウム(AlN)、炭化珪素(SiC)など、熱伝導率が高く、化学耐久性に優れた材料を用いることができる。
 (実施例1)
 以下のように、本実施形態に従った多孔質部材の一例である、カーボンナノ構造体が表面に形成された金属多孔質体を試作した。試料として、ニッケルからなる多孔質体(ニッケルからなるセルメット(登録商標))を準備した。
 <製造工程>
 石英反応管を持つ電気炉にて、石英反応管内部のベース部材を所定の温度に加熱する。その後、原料ガスの炭化水素含む不活性ガスを石英反応管内部に所望の時間流しながら、カーボンナノチューブを形成し、その後自然冷却する。
 誘導結合型プラズマCVD装置の容器内でベース部材を所望の温度に加熱する。その後、ガス導入部より炭化水素と不活性ガスや水素ガス等のガスを容器内に供給する。次に、高周波電源から13.56MHzの高周波を所望の時間だけ容器内の電極に供給することにより、ベース部材上にカーボンナノウオールを形成する。
 <結果>
 上述のようにして得られた、カーボンナノウォールが表面に形成された多孔質体の走査型電子顕微鏡写真を図10~図13に示す。図10は、倍率が10倍であり、多孔質体の表面の一部を示している。また、図11は、多孔質体の最表面(1層目)に位置する網目構造部3の表面を示す拡大写真である。図11の倍率は5000倍である。また、図12および図13は、それぞれ多孔質体の最表面から2層目、3層目に位置する網目構造部3を示す拡大写真である。図12および図13の倍率は5000倍である。
 図10~図13に示した写真から分かるように、多孔質体の網目構造部3における1層目~3層目まで、いずれも十分にカーボンナノ構造体が形成されていることがわかる。そして、このように表面層から内部にまでカーボンナノ構造体が形成された多孔質体では、十分に単位体積当たりの表面積を増大させることができる。
 (実施の形態2)
 図14~図17を参照して、本発明に従った触媒部材100を説明する。この発明に従った触媒部材100は、平板状、柱状、筒状など任意の形状を採用することができる。触媒部材100は、多孔質体からなるベース部材500と、ベース部材500の表面に形成されたカーボンナノ構造体200と、カーボンナノ構造体200の表面に配置された触媒220と、を備える。ベース部材500は図15に示すように網目構造を有している。異なる観点から言えば、表面に触媒220が形成されたカーボンナノ構造体200とベース部材500とからなる網目構造部300は、図15に示すように3次元網目構造を有している。カーボンナノ構造体200としては、たとえばカーボンナノチューブやカーボンナノウォール、グラファイトテープなどが挙げられる。以下、表面に触媒220が形成されたカーボンナノ構造体200を、触媒付きカーボンナノ構造体110と呼ぶ。また、ベース部材500としては、たとえば多孔質の金属部材を用いることができる。具体的には、ベース部材500としてはたとえばニッケルからなる多孔質部材を用いることができる。
 このようにすれば、多孔質体からなり3次元網目構造を有するベース部材500(すなわち網目構造部300)の表面には、図15に示すように複数の細孔が存在することになるので、当該ベース部材500の単位体積当たりの表面積は通常のバルク体より極めて大きくなる。そのため、ベース部材500の単位体積当たりに形成される触媒付きカーボンナノ構造体110の数も、単なるバルク体の表面に触媒付きカーボンナノ構造体110を形成した場合より多くできる。したがって、触媒付きカーボンナノ構造体110の表面に配置される触媒220の密度が一定である場合には、触媒部材100の単位体積当たりの触媒220の密度を高めることができる。この結果、高い密度で触媒反応を起こすことが可能となる高性能の触媒部材100を実現できる。
 上記触媒部材100において、ベース部材500の表面には複数の細孔が形成されていてもよい。異なる観点から言えば、ベース部材500は3次元網目構造を有し、その最表面から内部側へ延びるように複数の細孔がベース部材500には形成されている。そして、ベース部材500では、上記表面から、当該表面より内側に位置する細孔の側壁にまで触媒付きカーボンナノ構造体110が形成されている。この場合、ベース部材500の内部に延びる細孔の内部にまで触媒付きカーボンナノ構造体110が形成された状態となるので、結果的に当該カーボンナノ構造体200の表面に配置された触媒220もベース部材500の内部にまで配置された状態になる。
 上記触媒部材100において、触媒220は、図17に示すようにカーボンナノ構造体200の表面に分散配置されている粒状体である。この場合、微細なカーボンナノ構造体200の表面に、さらに微細な粒状体として触媒220を配置することになるので、小さなサイズで分散配置させることが触媒反応に有利に作用する触媒220を用いた場合に、特に触媒部材100の性能を向上させることができる。
 上記触媒部材100において、触媒220は、図18に示すようにカーボンナノ構造体200の側壁の少なくとも一部を覆う膜状体であってもよい。この場合、図18に示すようにカーボンナノ構造体200の表面に粒状体として触媒220を配置した場合より、触媒220の表面積を大きくできる。したがって、触媒220の表面積を大きくすることが触媒反応に有利に作用する触媒220を用いた場合に、特に触媒部材100の性能を向上させることができる。
 上記触媒部材100において、触媒220は、白金(Pt)、金(Au)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、タンタル(Ta)、タングステン(W)、レニウム(Re)、イリジウム(Ir)からなる群から選択される少なくとも1種の金属を含んでいてもよい。これらの金属は、触媒として作用することができる。
 次に、図14~図17に示した触媒部材の製造方法を説明する。まず、材料準備工程(S10)を実施する。具体的には、金属からなる多孔質体であるベース部材500を準備する。たとえばベース部材500としてニッケルからなる多孔質体を準備してもよい。なお、ベース部材500を構成する材料としては、他の任意の金属(たとえば銅や金など)を用いることができる。
 次に、ベース部材500の表面に、カーボンナノ構造体200を形成するための触媒となるナノ粒子を配置する。当該ナノ粒子の材質としては、たとえば鉄(Fe)、ニッケル(Ni)、コバルト(Co)などを用いることができる。これらのナノ粒子は、従来周知の任意の方法によりベース部材500の表面に形成することができる。たとえば、触媒となる金属ナノ粒子を分散した溶液にベース部材500を浸漬したあと当該ベース部材500を乾燥させる、といった方法を用いてナノ粒子を形成することができる。なお、ベース部材500の材質がカーボンナノ構造体200を形成するための触媒として作用する場合、上記ナノ粒子を配置しなくてもよい。また、カーボンナノ構造体200としてカーボンナノウォールを形成する場合には、上記のようにベース部材500の表面に金属ナノ粒子を分散配置しなくてもよい。
 次に、カーボンナノ構造体を成長させる工程(S20)を実施する。この工程(S20)では、任意の方法によりカーボンナノ構造体200を形成できるが、好ましくは化学気相成長法(CVD法)を用いることができる。
 次に、触媒を形成する工程(S30)を実施する。この工程(S30)では、任意の方法によりカーボンナノ構造体200の表面に触媒220を形成する。たとえば、触媒220となる金属(たとえば白金など)を含む無電解メッキ液に、カーボンナノ構造体200が表面に形成されたベース部材500を浸漬することにより、カーボンナノ構造体200の表面に触媒220となる金属を析出させてもよい。あるいは、触媒220となる金属を含む金属錯体の気体を、カーボンナノ構造体200が形成されたベース部材500に接触させることにより、カーボンナノ構造体200の表面に当該金属錯体を吸着させ、その後大気中にカーボンナノ構造体200が形成されたベース部材500を放置することにより、カーボンナノ構造体200の表面に金属錯体由来の金属からなる触媒220を形成してもよい。このようにして、図14~図18に示した触媒部材1を得ることができる。
 (実施例2)
 以下のように、本発明による触媒部材を構成する、カーボンナノ構造体が表面に形成された金属多孔質体を試作した。
 <試料>
 ニッケルからなる多孔質体(ニッケルからなるセルメット(登録商標))を準備した。
 <製造工程>
 上記多孔質体の表面への、カーボンナノチューブの形成方法は、以下のような工程である。まず、石英反応管を持つ電気炉にて、石英反応管内部のベース部材を所定の温度に加熱する。その後、原料ガスの炭化水素含む不活性ガスを石英反応管内部に所望の時間流しながら、カーボンナノチューブを形成し、その後自然冷却する。
 上記多孔質体の表面へのカーボンナノウォールの形成方法は、以下のような工程である。まず、誘導結合型プラズマCVD装置の容器内でベース部材を所望の温度に加熱する。その後、ガス導入部より炭化水素と不活性ガスや水素ガス等のガスを容器内に供給する。次に、高周波電源から13.56MHzの高周波を所望の時間だけ容器内の電極に供給することにより、ベース部材上にカーボンナノウオールを形成する。
 <結果>
 上述のようにして得られた、カーボンナノウォールが表面に形成された多孔質体の走査型電子顕微鏡写真を図19~図22に示す。図19は、倍率が10倍であり、多孔質体の表面の一部を示している。また、図20は、多孔質体の最表面(1層目)に位置する網目構造部300の表面を示す拡大写真である。図20の倍率は5000倍である。また、図21および図22は、それぞれ多孔質体の最表面から2層目、3層目に位置する網目構造部300を示す拡大写真である。図21および図22の倍率は5000倍である。
 図19~図22に示した写真から分かるように、多孔質体の網目構造部300における1層目~3層目まで、いずれも十分にカーボンナノ構造体が形成されていることがわかる。そして、このように表面層から内部にまでカーボンナノ構造体が形成された多孔質体において、図17や図18に示すようにカーボンナノ構造体の表面に触媒220を配置することにより、触媒220の密度が高い触媒部材を容易に得ることができる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 この発明は、フィルタや電池電極、触媒など大きな比表面積が求められる部材や、触媒の密度を高めた高性能な触媒部材に有利に適用できる。
1 多孔質部材、3,300 網目構造部、5,500 ベース部材、10 カーボンナノチューブ、20 カーボンナノウォール、30 電池、31 正極、32 負極、33 セパレータ、34 電解液、35 容器、40 フィルタリング装置、41 フィルタ、42 ファン、43,62 筺体、44 開口部、50 放熱部材、51 放熱体、52 ベース体、60 ヒートパイプ、61 蒸発器、63,64,65,66 矢印、67 作動液体、100 触媒部材、110 触媒付きカーボンナノ構造体、200 カーボンナノ構造体、220 触媒。

Claims (9)

  1.  気孔率が80%以上である多孔質体を含むベース部材と、
     前記ベース部材の表面に形成され、幅が100nm以下のカーボンナノ構造体とを備える、多孔質部材。
  2.  前記ベース部材の表面には複数の細孔が形成され、
     前記ベース部材では、前記表面から、前記表面より内側に位置する前記細孔の側壁にまで前記カーボンナノ構造体が形成されている、請求項1に記載の多孔質部材。
  3.  前記ベース部材を構成する材料は金属を含む、請求項1または請求項2に記載の多孔質部材。
  4.  前記ベース部材を構成する材料はセラミックスを含む、請求項1または請求項2に記載の多孔質部材。
  5.  厚みを10mmとし、測定風圧を2m/sとしたときの圧力損失が1000Pa以下である、請求項1~請求項4のいずれか1項に記載の多孔質部材。
  6.  請求項1に記載の多孔質部材の前記カーボンナノ構造体の表面に配置された触媒を備える触媒部材。
  7.  前記触媒は、前記カーボンナノ構造体の表面に分散配置されている粒状体である、請求項6に記載の触媒部材。
  8.  前記触媒は、前記カーボンナノ構造体の側壁の少なくとも一部を覆う膜状体である、請求項6に記載の触媒部材。
  9.  前記触媒は、白金、金、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、タンタル、タングステン、レニウム、イリジウムからなる群から選択される少なくとも1種の金属を含む、請求項6に記載の触媒部材。
PCT/JP2014/054038 2013-02-22 2014-02-20 多孔質部材および触媒部材 WO2014129545A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480009989.0A CN105073252B (zh) 2013-02-22 2014-02-20 多孔部件和催化剂部件
DE112014000964.4T DE112014000964T5 (de) 2013-02-22 2014-02-20 Poröses Teil und Katalysatorteil
US14/767,077 US10105683B2 (en) 2013-02-22 2014-02-20 Porous member and catalyst member
JP2015501499A JP6179587B2 (ja) 2013-02-22 2014-02-20 多孔質部材および触媒部材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-033306 2013-02-22
JP2013033306 2013-02-22
JP2013-267520 2013-12-25
JP2013267520 2013-12-25

Publications (1)

Publication Number Publication Date
WO2014129545A1 true WO2014129545A1 (ja) 2014-08-28

Family

ID=51391327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054038 WO2014129545A1 (ja) 2013-02-22 2014-02-20 多孔質部材および触媒部材

Country Status (5)

Country Link
US (1) US10105683B2 (ja)
JP (1) JP6179587B2 (ja)
CN (1) CN105073252B (ja)
DE (1) DE112014000964T5 (ja)
WO (1) WO2014129545A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210639A (ja) * 2015-04-30 2016-12-15 住友電気工業株式会社 カーボンナノ構造体及びカーボンナノ構造体の製造方法
JP2018190725A (ja) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ リチウムイオン電池負極及びリチウムイオン電池
WO2021006327A1 (ja) * 2019-07-10 2021-01-14 積水化学工業株式会社 炭素材料付き金属シート、蓄電デバイス用電極、及び蓄電デバイス
WO2021201199A1 (ja) * 2020-04-01 2021-10-07 国立大学法人東海国立大学機構 蓄電デバイスおよび蓄電デバイス用電極
JP2021167813A (ja) * 2020-04-09 2021-10-21 伊諾司生技股▲ふん▼有限公司 キャビティを備えるセンサ
JP2021531621A (ja) * 2018-07-10 2021-11-18 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO 3d足場

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860240A (zh) * 2018-12-18 2019-06-07 武汉华星光电半导体显示技术有限公司 基板、显示面板及其制作方法和显示装置
JP7488639B2 (ja) * 2019-10-15 2024-05-22 本田技研工業株式会社 リチウムイオン二次電池用電極、およびリチウムイオン二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305422A (ja) * 2005-04-26 2006-11-09 Sharp Corp フィルター、その製造方法、空気清浄装置
JP2007290913A (ja) * 2006-04-25 2007-11-08 Sharp Corp 導電性を有する多孔質ハニカム構造体およびその製造方法
JP2009138252A (ja) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd 多孔体並びに該多孔体を用いた触媒担持体、ろ過フィルタ、浄水装置及び船舶バラスト排水処理装置
JP2010526009A (ja) * 2007-05-02 2010-07-29 シキャット β−SiC発泡体上のナノチューブまたはナノファイバ複合材

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023490A (en) * 1955-11-25 1962-03-06 Dawson Armoring Company Armored metal articles with a thin hard film made in situ and conforming to the exact contour of the underlying surface
US3425875A (en) * 1966-09-15 1969-02-04 Engelhard Ind Inc Method of preparing fuel cell electrode containing fluorocarbon polymer and carbon black-supported platinum group metal
US5037791A (en) * 1988-07-28 1991-08-06 Hri, Inc. Porous metal oxide supported carbon-coated catalysts and method for producing same
US5488023A (en) 1994-08-12 1996-01-30 Corning Incorporated Method of making activated carbon having dispersed catalyst
JP3568052B2 (ja) 1994-12-15 2004-09-22 住友電気工業株式会社 金属多孔体、その製造方法及びそれを用いた電池用極板
WO1999017874A1 (en) * 1997-10-08 1999-04-15 Corning Incorporated Method of making activated carbon-supported catalysts
EP1569790A4 (en) * 2002-12-12 2006-09-20 Entegris Inc POROUS SINTERED COMPOSITE MATERIALS
JP4379247B2 (ja) 2004-04-23 2009-12-09 住友電気工業株式会社 カーボンナノ構造体の製造方法
JP5074662B2 (ja) 2005-02-14 2012-11-14 勝 堀 燃料電池用触媒層の製造方法及び製造装置
KR100696621B1 (ko) * 2005-05-11 2007-03-19 삼성에스디아이 주식회사 연료전지용 전극기재, 이의 제조방법 및 이를 포함하는막-전극 어셈블리
JP5161450B2 (ja) * 2005-09-30 2013-03-13 財団法人高知県産業振興センター プラズマcvd装置及びプラズマ表面処理方法
JP2007126338A (ja) 2005-11-07 2007-05-24 Ulvac Japan Ltd カーボンナノ材料及びその作製方法、並びに金属微粒子担持カーボンナノ材料及びその作製方法
US20070249493A1 (en) 2006-04-25 2007-10-25 Sharp Kabushiki Kaisha Functionalized porous honeycomb structure, manufacturing method thereof and air cleaner using the same
KR100982428B1 (ko) * 2006-10-31 2010-09-15 더 리전트 오브 더 유니버시티 오브 캘리포니아 팔라듐 촉매 유도 탄소 나노구조체를 구비하는 소자 및 그제조 방법
JP2008198469A (ja) 2007-02-13 2008-08-28 Daihatsu Motor Co Ltd プラズマ発生用電極
JP4702304B2 (ja) * 2007-02-22 2011-06-15 トヨタ自動車株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法及び燃料電池
KR100927718B1 (ko) * 2007-11-27 2009-11-18 삼성에스디아이 주식회사 다공성 탄소 구조체, 이의 제조 방법, 및 이를 포함하는 연료 전지용 전극 촉매, 전극, 및 막-전극 어셈블리
EP2298697B1 (en) 2008-05-16 2019-02-13 Sumitomo Electric Industries, Ltd. Method for producing a carbon wire assembly and a conductive film
KR20120023661A (ko) * 2009-04-13 2012-03-13 어플라이드 머티어리얼스, 인코포레이티드 전기화학적 에너지 저장을 위한 메탈라이즈드 섬유
JP2010274174A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 炭素膜複合体および分離膜モジュール
US8951931B2 (en) * 2010-03-02 2015-02-10 Nippon Sheet Glass Company, Limited Noble metal fine particle supported catalyst and method for producing the catalyst, and purifying catalyst
CN102260858B (zh) * 2010-05-26 2013-09-04 中国科学院物理研究所 一种在各种基底上直接生长石墨烯的方法
CN102392225B (zh) * 2011-07-22 2013-12-18 中国科学院上海微系统与信息技术研究所 一种在绝缘基底上制备石墨烯纳米带的方法
JP5704026B2 (ja) 2011-09-12 2015-04-22 住友電気工業株式会社 アルミニウム構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305422A (ja) * 2005-04-26 2006-11-09 Sharp Corp フィルター、その製造方法、空気清浄装置
JP2007290913A (ja) * 2006-04-25 2007-11-08 Sharp Corp 導電性を有する多孔質ハニカム構造体およびその製造方法
JP2010526009A (ja) * 2007-05-02 2010-07-29 シキャット β−SiC発泡体上のナノチューブまたはナノファイバ複合材
JP2009138252A (ja) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd 多孔体並びに該多孔体を用いた触媒担持体、ろ過フィルタ、浄水装置及び船舶バラスト排水処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210639A (ja) * 2015-04-30 2016-12-15 住友電気工業株式会社 カーボンナノ構造体及びカーボンナノ構造体の製造方法
JP2018190725A (ja) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ リチウムイオン電池負極及びリチウムイオン電池
JP2021531621A (ja) * 2018-07-10 2021-11-18 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO 3d足場
WO2021006327A1 (ja) * 2019-07-10 2021-01-14 積水化学工業株式会社 炭素材料付き金属シート、蓄電デバイス用電極、及び蓄電デバイス
WO2021201199A1 (ja) * 2020-04-01 2021-10-07 国立大学法人東海国立大学機構 蓄電デバイスおよび蓄電デバイス用電極
JP2021167813A (ja) * 2020-04-09 2021-10-21 伊諾司生技股▲ふん▼有限公司 キャビティを備えるセンサ

Also Published As

Publication number Publication date
DE112014000964T5 (de) 2015-11-05
CN105073252B (zh) 2018-07-24
JPWO2014129545A1 (ja) 2017-02-02
US20150375210A1 (en) 2015-12-31
JP6179587B2 (ja) 2017-08-16
US10105683B2 (en) 2018-10-23
CN105073252A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6179587B2 (ja) 多孔質部材および触媒部材
Zhou et al. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites
US9061909B2 (en) Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
RU2579075C2 (ru) Углеродные наноструктуры и сетки, полученные химическим осаждением из паровой фазы
US20200048776A1 (en) Boron doped diamond electrode and preparation method and applications thereof
JP5437965B2 (ja) カーボンナノチューブ複合材料体
CN106435518A (zh) 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
JP5193829B2 (ja) 濾過構造体
JP6757726B2 (ja) 基材一体型ナノ結晶金属酸化物複合体含有触媒およびその製造方法ならびに触媒部品
WO2007061143A1 (ja) 二層カーボンナノチューブおよび配向二層カーボンナノチューブ・バルク構造体ならびにそれらの製造方法
KR20160070084A (ko) 카본 나노튜브
JP2006507938A (ja) 触媒反応基質としての伝導性吸着材、活性炭顆粒および炭素繊維の応用
WO2013001390A1 (en) Adsorption heat exchanger devices
TW201424836A (zh) 反應器及生長奈米碳管的方法
US11364486B2 (en) Supported catalyst and method of producing fibrous carbon nanostructures
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
KR20130118533A (ko) 탄소나노구조체-금속 복합체 또는 탄소나노구조체-금속산화물 복합체로 구성된 나노 다공막 및 이의 제조방법
Guo et al. Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method
JP2005152725A (ja) 触媒体およびその製造方法
TW200301753A (en) Aggregation of radially-protruding sharp end multi-layer carbon nanotubes and method for producing the same
Laurent et al. Mesoporous binder-free monoliths of few-walled carbon nanotubes by spark plasma sintering
Song et al. Recyclable aligned carbon nanotube-sheet-based particulate air filter with high filtration efficiency and low pressure drop
JP2008201602A (ja) 白金架橋ナノワイヤ粒子担持カーボン及びその製造方法
JP4049097B2 (ja) ガス吸蔵材及びガス吸蔵装置
JP2003292316A (ja) 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009989.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767077

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000964

Country of ref document: DE

Ref document number: 1120140009644

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754706

Country of ref document: EP

Kind code of ref document: A1