WO2014128951A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014128951A1
WO2014128951A1 PCT/JP2013/054658 JP2013054658W WO2014128951A1 WO 2014128951 A1 WO2014128951 A1 WO 2014128951A1 JP 2013054658 W JP2013054658 W JP 2013054658W WO 2014128951 A1 WO2014128951 A1 WO 2014128951A1
Authority
WO
WIPO (PCT)
Prior art keywords
short circuit
gate
circuit
short
detecting
Prior art date
Application number
PCT/JP2013/054658
Other languages
English (en)
French (fr)
Inventor
和俊 小川
石川 勝美
歩 畑中
景山 寛
徹 増田
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/054658 priority Critical patent/WO2014128951A1/ja
Priority to EP13875894.1A priority patent/EP2961047B1/en
Priority to JP2015501214A priority patent/JP5933107B2/ja
Priority to TW102148200A priority patent/TWI508405B/zh
Publication of WO2014128951A1 publication Critical patent/WO2014128951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit

Definitions

  • the present invention relates to a power conversion device using a semiconductor element that performs a switching operation for converting DC power into AC power or AC power into DC power.
  • the power converter is a function for converting DC power supplied from a DC power source into AC power for supplying an AC electric load such as a rotating electrical machine, or for supplying AC power generated by the rotating electrical machine to a DC power source. It has a function to convert to DC power.
  • the power conversion device includes an inverter circuit having a plurality of semiconductor elements, and the semiconductor elements repeat a conduction operation and a cut-off operation, so that DC power is changed to AC power, or AC power to DC power. Perform power conversion to power.
  • the gate circuit that drives the semiconductor element is short-circuited in order to prevent an excessive current from flowing through the semiconductor element when the circuit is abnormal and to destroy the semiconductor element due to heat generation or switching surge voltage.
  • a protection circuit is provided.
  • Patent Document 1 Conventionally, as a short-circuit protection technique, the technique described in Patent Document 1 is known.
  • the reference value is set above the minimum gate voltage value for flowing the rated current and below the power supply voltage value of the gate circuit, and this reference value is compared with the detected value of the gate voltage to detect a short circuit. .
  • a switching element using a wide gap semiconductor such as silicon carbide (SiC) has attracted attention in order to reduce the on-resistance of the semiconductor element for the purpose of energy saving.
  • the wide gap semiconductor switching element has a larger saturation current and a larger mutual conductance than the conventional semiconductor silicon (Si) switching element.
  • FIG. 14 shows a gate voltage waveform of a conventional Si switching element
  • FIG. 15 shows a gate voltage waveform of a wide gap semiconductor switching element having a large mutual conductance.
  • the gate voltage detection value is compared with the reference value in a period in which the difference between the gate voltages in the short circuit and the non-short circuit in FIG. 14 is large, and the short circuit is detected.
  • the non-short circuit occurs, a period during which the gate voltage stays constant occurs due to the Miller effect, so a short circuit is detected by setting the reference value to the minimum gate voltage at which the rated current flows and below the power supply voltage of the gate circuit. be able to.
  • the present invention has been made in consideration of the above-described problems, and provides a power conversion device capable of reliably detecting a short circuit of a switching element having a large mutual conductance such as a wide gap semiconductor switching element. For the purpose.
  • the power conversion device includes means for determining short-circuit and non-short-circuit by detecting such oscillation of the gate voltage. In order to detect a short circuit, this means compares the gate voltage with a reference value during a period in which the gate voltage oscillates, detects that the gate voltage alternately repeats a state above and below the reference value, Judge non-short circuit.
  • the gate voltage waveform in 1st Example. The circuit structure of the principal part of the power converter device which is 2nd Example of this invention.
  • the output waveform of the differentiation circuit in 2nd Example. The circuit structure of the principal part of the power converter device which is 3rd Example of this invention.
  • the output waveform of the differentiation circuit in 3rd Example. The circuit structure of the principal part of the power converter device which is 4th Example of this invention.
  • the gate current waveform in 6th Example. The circuit structure of the principal part of the power converter device which is 7th Example of this invention.
  • FIG. 1 shows a circuit configuration of a main part of a power conversion apparatus according to a first embodiment of the present invention
  • FIG. 2 shows a gate voltage waveform in this embodiment.
  • the power conversion apparatus of the present embodiment includes a semiconductor switching element 1, a gate circuit 5, a gate voltage detection circuit 6, a comparator 7, and a short circuit detection circuit 8 made of SiC.
  • the semiconductor switching element 1 has a drain terminal 2, a source terminal 3 and a gate terminal 4, and a gate circuit 5 for driving the semiconductor switching element 1 on and off is connected between the gate terminal 4 and the source terminal 3. Is done.
  • the gate voltage detection circuit 6 detects a gate voltage that is a voltage between the gate terminal 4 and the source terminal 3.
  • the gate voltage detection value output from the gate voltage detection circuit 6 is compared with a preset reference value 1 by the comparator 7.
  • the state where the gate voltage detection value exceeds the reference value 1 and the state below the reference value 1 are alternately repeated. It is determined whether the reference value 1 has been exceeded or below, or both, and a determination result is output.
  • the short circuit detection circuit 8 Based on such a determination result, the short circuit detection circuit 8 detects a state where the gate voltage exceeds or falls below the reference value 1 or both states a plurality of times within a preset time in the vibration generation period. If it is not detected, it is judged as a short circuit.
  • the determination result by the short circuit detection circuit 8 is input to the gate circuit 5, and when the short circuit occurs, the current of the semiconductor switching element 1 is interrupted by the gate circuit 5, and when the short circuit is not short, a normal switching operation is performed.
  • FIG. 3 shows the circuit configuration of the main part of the power conversion apparatus according to the second embodiment of the present invention.
  • a differentiating circuit for detecting a differential value of the gate voltage is provided, a change amount of the gate voltage is detected, and a short circuit is detected by a detection value of the change amount of the gate voltage.
  • FIG. 4 shows the output waveform of the differentiating circuit in this embodiment.
  • the gate voltage becomes a constant voltage, and the differential value is 0.
  • the comparator 7 and the short circuit detection circuit 8 are not short-circuited when the differential value of the gate voltage exceeds or falls below the reference value 2, or both states are detected a plurality of times, as in the first embodiment. If not detected, it is determined as a short circuit.
  • the determination result by the short-circuit detection circuit 8 is input to the gate circuit 5, and when the short circuit occurs, the current of the semiconductor switching element 1 is interrupted by the gate circuit 5, and when the short circuit is not short, a normal switching operation is performed. In the vibration generation period, it is determined to be non-short-circuited when a higher state and a lower state are detected a plurality of times, and short-circuited when not detected. And the detection result by the short circuit detection circuit 8 is inputted into the gate circuit 5, the current of the semiconductor switching element 1 is interrupted by the gate circuit 5 at the time of short circuit, and the normal switching operation is performed at the time of non-short circuit.
  • FIG. 5 shows the circuit configuration of the main part of the power conversion apparatus according to the third embodiment of the present invention
  • FIG. 6 shows the output waveform of the differentiating circuit in this embodiment.
  • This embodiment is different from the second embodiment in that the reference value 1 on the positive side of the gate voltage oscillation and the reference value 2 on the negative side of the gate voltage oscillation are set as the reference values.
  • FIG. 7 shows the circuit configuration of the main part of the power conversion apparatus according to the fourth embodiment of the present invention
  • FIG. 8 shows the voltage waveform between the drain and source terminals in this embodiment.
  • Drain-source terminal voltage at the time of short circuit changes more slowly than when it is not short-circuited.
  • the DC voltage of the inverter is divided by the semiconductor element of the upper and lower arms, and in a general inverter, a semiconductor element having the same characteristics is used for the upper and lower arms.
  • the voltage stays at about 1/2 the voltage. Therefore, in this embodiment, the drain-source voltage detection circuit 13 detects the voltage after a certain time of the drain-source terminal voltage, and the detected value is compared with the reference value 4 by the comparator 12.
  • the short circuit detection circuit 22 determines that the drain-source voltage detection value is less than the reference value 4 and is not short-circuited, and if it is greater, it is determined that the short circuit is short-circuited.
  • FIG. 9 shows the circuit configuration of the main part of the power conversion apparatus according to the fifth embodiment of the present invention
  • FIG. 10 shows the drain current waveform in this embodiment.
  • the drain current detection circuit 15 detects the current value of the drain current after a certain time, and the detected value is compared with the reference value 5 by the comparator 14. Based on the comparison result output from the comparator 14, the short circuit detection circuit 23 determines that the drain current detection value is smaller than the reference value 5 and is not short-circuited, and if the drain current detection value is larger, it is determined as short-circuit.
  • the semiconductor switching element When one of the detection circuits is determined to be short-circuited by the logical sum (OR) circuit 10 of the short-circuit detection circuit 8 in the first embodiment and the short-circuit detection circuit 23 in the present embodiment, the semiconductor switching element is operated by the gate circuit 5. 1 current is cut off. Thereby, short circuit detection accuracy improves.
  • FIG. 11 shows the circuit configuration of the main part of the power conversion apparatus according to the sixth embodiment of the present invention
  • FIG. 12 shows the gate current waveform in this embodiment.
  • the amount of charge supplied to the gate of the semiconductor switching element 1 at the time of short circuit is smaller than that at the time of non-short circuit. This is because the amount of electric charge supplied from the gate circuit 5 increases because the feedback capacitor is discharged when not short-circuited. Therefore, in the present embodiment, the gate current of the semiconductor switching element 1 is detected by the gate current detection circuit 18, and the detection value is integrated by the integrator 20 for a certain period to output the integration value. The output integrated value is compared with the reference value 6 by the comparator 17. Based on the comparison result output from the comparator 17, the short circuit detection circuit 24 determines that the short circuit is obtained when the integrated value of the gate current is smaller than the reference value 6, and that the short circuit is not short.
  • the semiconductor switching element When one of the detection circuits is determined to be short-circuited by the logical sum (OR) circuit 10 of the short-circuit detection circuit 8 in the first embodiment and the short-circuit detection circuit 24 in the present embodiment, the semiconductor switching element is operated by the gate circuit 5. 1 current is cut off. Thereby, short circuit detection accuracy improves.
  • FIG. 13 shows the circuit configuration of the main part of the power conversion apparatus according to the seventh embodiment of the present invention.
  • the sampling circuit 21 is provided, and the operation time of the short circuit detection circuit 8 is increased. Restrict. That is, the time for the short-circuit detection circuit 8 to perform the detection operation is set to be within a preset time from the time when the voltage between the gate terminal and the source terminal is increased.
  • the same effect can be obtained by applying the sampling circuit 21 to the short circuit detection circuit 8 in FIG. 3, the short circuit detection circuit 22 in FIG. 7, the short circuit detection circuit 23 in FIG. 9, and the short circuit detection circuit 24 in FIG. .

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

 半導体スイッチング素子のゲート電圧が振動する期間において、ゲート電圧と基準値を比較し、ゲート電圧が基準値を上回る状態と下回る状態を交互に繰り返すことを検知し、短絡および非短絡を判定する。これにより、半導体スイッチング素子の短絡を精度良く検知する。

Description

電力変換装置
 本発明は直流電力を交流電力に、または交流電力を直流電力に変換するためのスイッチング動作を行う半導体素子を用いた電力変換装置に関する。
 電力変換装置は、直流電源から供給された直流電力を回転電機などの交流電気負荷に供給するための交流電力に変換する機能、あるいは回転電機により発電された交流電力を直流電源に供給するための直流電力に変換する機能を備えている。この変換機能を果すため、電力変換装置は、複数の半導体素子を有するインバータ回路を備えており、半導体素子が導通動作や遮断動作を繰り返すことにより、直流電力から交流電力へ、あるいは交流電力から直流電力への電力変換を行う。
 上記のような電力変換装置において、半導体素子を駆動するゲート回路は、回路の異常時に半導体素子に過大な電流が流れ、半導体素子が発熱やスイッチングサージ電圧で破壊することを防止するために、短絡保護回路を備えている。
 従来、短絡保護技術としては、特許文献1に記載の技術が知られている。本技術では、基準値を定格電流を流すための最小のゲート電圧値以上、ゲート回路の電源電圧値未満に設定し、この基準値と、ゲート電圧の検出値とを比較し、短絡を検知する。
特開2005-6464号公報
 近年、省エネルギー化を目的とした半導体素子のオン抵抗低減のため、炭化珪素(SiC)などのワイドギャップ半導体を用いたスイッチング素子が注目されている。ワイドギャップ半導体スイッチング素子は、従来の半導体シリコン(Si)スイッチング素子に比べ、飽和電流が大きく、また相互コンダクタンスも大きい。
 図14は従来のSiスイッチング素子のゲート電圧波形、図15は相互コンダクタンスの大きいワイドギャップ半導体スイッチング素子のゲート電圧波形を示す。
 上記従来技術では、図14における短絡時と非短絡時のゲート電圧の差分の大きい期間において、ゲート電圧検出値と基準値とを比較し、短絡を検知する。非短絡時にはミラー効果により、ゲート電圧が一定のまま推移する期間が発生するため、基準値を定格電流が流れる最小のゲート電圧以上、ゲート回路の電源電圧未満に設定することで、短絡を検知することができる。
 他方、図15に示すように、ワイドギャップ半導体スイッチング素子は相互コンダクタンスが大きいため、ミラー効果によりゲート電圧が一定のまま推移する期間が短く、短絡時と非短絡時のゲート電圧の差分が小さい。そのため、従来技術によっては、短絡の検知が難しい。
 本発明は、上記のような問題点を考慮してなされたものであり、ワイドギャップ半導体スイッチング素子のように相互コンダクタンスが大きなスイッチング素子の短絡を確実に検知することができる電力変換装置を提供することを目的とする。
 本発明者は、上記の課題を解決するために、短絡時と非短絡時のゲート波形の振動に着目した。非短絡時のターンオン時には帰還容量が放電され、帰還容量及び、ゲート配線の寄生インダクタンスにより、振動電流が流れ、その結果、ゲート電圧が振動する。本発明による電力変換装置では、このようなゲート電圧の振動を検知することにより、短絡および非短絡を判断する手段を備える。本手段は、短絡を検知するために、ゲート電圧が振動する期間において、ゲート電圧と基準値を比較し、ゲート電圧が基準値を上回る状態と下回る状態を交互に繰り返すことを検知し、短絡および非短絡を判定する。
 本発明によれば、相互コンダクタンスが大きなスイッチング素子について、短絡を精度良く検知することができる。
本発明の第1実施例である電力変換装置の主要部の回路構成。 第1実施例におけるゲート電圧波形。 本発明の第2実施例である電力変換装置の主要部の回路構成。 第2実施例における微分回路の出力波形。 本発明の第3実施例である電力変換装置の主要部の回路構成。 第3実施例における微分回路の出力波形。 本発明の第4実施例である電力変換装置の主要部の回路構成。 第4実施例におけるドレイン-ソース端子間電圧波形。 本発明の第5実施例である電力変換装置の主要部の回路構成。 第5実施例におけるドレイン電流波形。 本発明の第6実施例である電力変換装置の主要部の回路構成。 第6実施例におけるゲート電流波形。 本発明の第7実施例である電力変換装置の主要部の回路構成。 従来のSiスイッチング素子のゲート電圧波形。 ワイドギャップ半導体スイッチング素子のゲート電圧波形。
(実施例1)
 図1は本発明の第1実施例である電力変換装置の主要部の回路構成を示し、図2は本実施例におけるゲート電圧波形を示す。
 本実施例の電力変換装置は、SiCを構成材料とする半導体スイッチング素子1、ゲート回路5、ゲート電圧検出回路6、比較器7、短絡検知回路8から構成される。半導体スイッチング素子1は、ドレイン端子2、ソース端子3およびゲート端子4を有し、ゲート端子4とソース端子3の間には、半導体スイッチング素子1をオン・オフ駆動するためのゲート回路5が接続される。
 ゲート電圧検出回路6は、ゲート端子4とソース端子3の間の電圧であるゲート電圧を検出する。ゲート電圧検出回路6が出力するゲート電圧検出値と予め設定された基準値1とが、比較器7によって比較される。
 非短絡時のゲート電圧は帰還容量とゲート配線の共振により振動するため、ゲート電圧検出値が基準値1を上回る状態と下回る状態を交互に繰り返されるが、比較器7は、ゲート電圧検出値が基準値1を上回ったこと、あるいは下回ったこと、あるいはその両方を判定して、判定結果を出力する。
 このような判定結果に基づいて、短絡検知回路8は、振動発生期間における予め設定された時間内において、ゲート電圧が基準値1を上回る状態、または下回る状態、あるいは両状態を、複数回検知した場合は非短絡、検知しなかった場合は短絡と判定する。そして、短絡検知回路8による判定結果はゲート回路5に入力され、短絡時にはゲート回路5により半導体スイッチング素子1の電流を遮断し、非短絡時には通常のスイッチング動作を行う。
 なお、半導体スイッチング素子としてはSiC半導体スイッチング素子に限らず、窒化ガリウム(GaN)半導体スイッチング素子などの他のワイドギャップ半導体スイッチング素子を用いてもよい(以下の各実施例も同様)。
(実施例2)
 図3は本発明の第2実施例である電力変換装置の主要部の回路構成を示す。本実施例においては、ゲート電圧の微分値を検出する微分回路を設け、ゲート電圧の変化量を検出して、ゲート電圧の変化量の検出値によって短絡を検知する。
 図4に本実施例における微分回路の出力波形を示す。短絡時のゲート電圧はゲート回路5の電源電圧に達すると一定の電圧となり、微分値は0のため、基準値2以下のまま推移する。一方、非短絡時の微分回路9の出力電圧は振動するため、基準値2に対して、上回る状態と下回る状態を交互に繰り返す。そして、比較器7と短絡検知回路8により、実施例1と同様に、ゲート電圧の微分値が基準値2を上回る状態、または下回る状態、あるいは両状態を、複数回検知した場合は非短絡、検知しなかった場合は短絡と判定する。
 短絡検知回路8による判定結果はゲート回路5に入力され、短絡時にはゲート回路5により半導体スイッチング素子1の電流を遮断し、非短絡時には通常のスイッチング動作を行う。振動発生期間において、上回る状態及び、下回る状態を複数回検知した場合には非短絡、検知しなかった場合は短絡と判定する。そして、短絡検知回路8による検知結果をゲート回路5に入力し、短絡時にはゲート回路5により、半導体スイッチング素子1の電流を遮断し、非短絡時には通常のスイッチング動作を行う。
(実施例3)
 図5は本発明の第3実施例である電力変換装置の主要部の回路構成を示し、図6は本実施例における微分回路の出力波形を示す。
 本実施例が、実施例2と異なる点は、基準値として、ゲート電圧振動の正側の基準値1とゲート電圧振動の負側の基準値2を設定することである。基準値を複数設けることにより、検出精度が向上し、誤検知を低減する。
 なお、実施例1において同様に基準値を複数設けても、検出精度を向上することができる。
(実施例4)
 図7は本発明の第4実施例である電力変換装置の主要部の回路構成を示し、図8は本実施例におけるドレイン-ソース端子間電圧波形を示す。
 短絡時のドレイン-ソース間端子電圧は非短絡時に比べ、緩やかに変化する。その後、インバータ等の上下アームに半導体素子を有する回路では、インバータの直流電圧が上下アームの半導体素子で分圧され、一般的なインバータでは上下アームに同じ特性の半導体素子を用いるため、インバータ電圧の約1/2の電圧のまま推移する。そこで、本実施例では、ドレイン-ソース間電圧検出回路13によって、ドレイン-ソース端子間電圧のある一定時間後の電圧を検出し、検出値を比較器12によって基準値4と比較する。比較器12が出力する比較結果に基づいて、短絡検知回路22は、ドレイン-ソース間電圧検出値が基準値4よりも小さい場合は非短絡、大きい場合は短絡と判定する。
 そして、実施例1における短絡検知回路8と本実施例における短絡検知回路22の判定結果の論理和(OR)回路10によって、どちらかの検知回路が短絡と判定した場合に、ゲート回路5により、半導体スイッチング素子1の電流を遮断する。これにより、短絡検知精度が向上する。
 なお、実施例2における短絡検知回路8と本実施例における短絡検知回路22によっても、同様に短絡検知精度が向上する。
(実施例5)
 図9は本発明の第5実施例である電力変換装置の主要部の回路構成を示し、図10は本実施例におけるドレイン電流波形を示す。
 短絡時のドレイン電流は非短絡時に比べ、大きな電流が流れ、半導体スイッチング素子の飽和電流まで上昇する。そこで、本実施例では、ドレイン電流検出回路15により、ドレイン電流のある一定時間後の電流値を検出し、検出値を比較器14によって基準値5と比較する。比較器14が出力する比較結果に基づいて、短絡検知回路23は、ドレイン電流検出値が基準値5よりも小さい場合は非短絡、大きい場合は短絡と判定する。
 そして、実施例1における短絡検知回路8と本実施例における短絡検知回路23の論理和(OR)回路10によって、どちらかの検知回路が短絡と判定した場合に、ゲート回路5により、半導体スイッチング素子1の電流を遮断する。これにより、短絡検知精度が向上する。
 なお、実施例2における短絡検知回路8と本実施例における短絡検知回路23によっても、同様に短絡検知精度が向上する。
(実施例6)
 図11は本発明の第6実施例である電力変換装置の主要部の回路構成を示し、図12は本実施例におけるゲート電流波形を示す。
 短絡時の半導体スイッチング素子1のゲートに供給される電荷量は非短絡時に比べ、小さい。これは非短絡時には帰還容量の放電を伴うため、ゲート回路5から供給される電荷量が多くなるためである。そこで、本実施例では、ゲート電流検出回路18により半導体スイッチング素子1のゲート電流を検出し、検出値を一定期間、積分器20により積分して積分値を出力する。出力された積分値を、比較器17によって基準値6と比較する。比較器17が出力する比較結果に基づいて、短絡検知回路24は、ゲート電流の積分値が基準値6よりも小さい場合は短絡、大きい場合は非短絡と判定する。
 そして、実施例1における短絡検知回路8と本実施例における短絡検知回路24の論理和(OR)回路10によって、どちらかの検知回路が短絡と判定した場合に、ゲート回路5により、半導体スイッチング素子1の電流を遮断する。これにより、短絡検知精度が向上する。
 なお、実施例2における短絡検知回路8と本実施例における短絡検知回路24によっても、同様に短絡検知精度が向上する。
(実施例7)
 図13は本発明の第7実施例である電力変換装置の主要部の回路構成を示す。
 短絡検知回路の誤動作を低減するためには、検知回路に動作期間を設けることが有効である。そこで、本実施例においては、実施例1に、さらに、短絡が発生するターンオン直後のある一定期間に短絡検知回路8を動作させるために、サンプリング回路21を設け、短絡検知回路8の動作時間を制限する。すなわち、短絡検知回路8が検知動作を行う時間を、ゲート端子とソース端子間の電圧が増加した時点から、予め設定された時間以内とする。
 なお、図3における短絡検知回路8、図7における短絡検知回路22、図9における短絡検知回路23、図11における短絡検知回路24に対して、サンプリング回路21を適用しても同様の効果が有る。
1      半導体素子
2      ドレイン端子
3      ソース端子
4      ゲート端子
5      ゲート回路
6      ゲート電圧検出回路
7      比較器
8      短絡検知回路
9      微分回路
10      論理和(OR)回路
11      比較器
12      比較器
13      ドレイン-ソース間電圧検出回路
14      比較器
15      ドレイン電流検出回路
16      電流センサ
17      比較器
18      ゲート電流検出回路
19      電流センサ
20      積分器
21      サンプリング回路
22      短絡検知回路
23      短絡検知回路
24      短絡検知回路

Claims (9)

  1.  ドレイン端子とソース端子とゲート端子を有する半導体スイッチング素子と、
     前記ゲート端子と前記ソース端子間のゲート電圧を検出するゲート電圧手段と、
     前記ゲート電圧手段によって検出された前記ゲート電圧の検出値と第1基準値とを比較する第1比較手段と、
     前記第1比較手段の比較結果に基づいて、前記ゲート電圧が前記第1基準値を上回る状態と下回る状態を複数回検知する場合に非短絡、検知しない場合に短絡と判定する第1短絡検知手段を有することを特徴とする電力変換装置。
  2.  ドレイン端子とソース端子とゲート端子を有する半導体スイッチング素子と、
     前記半導体スイッチング素子のゲート端子とソース端子間のゲート電圧を検出するゲート電圧検出手段と、
     前記ゲート電圧の微分値を出力する微分手段と、
     前記微分手段が出力する前記ゲート電圧の微分値と第1基準値とを比較する第1比較手段と、
     前記第1比較手段の比較結果に基づいて、前記微分手段が出力する前記ゲート電圧の微分値が前記第1基準値を上回る状態と下回る状態を複数回検知する場合に非短絡、検知しない場合に短絡と判定する第1短絡検知回路を有することを特徴とする電力変換装置。
  3.  請求項1または請求項2に記載の電力変換装置において、前記第1基準値を複数設定することを特徴とする電力変換装置。
  4.  請求項1または請求項2に記載の電力変換装置において、さらに、
     ドレイン端子とソース端子の電圧を検出するドレイン・ソース間電圧検出手段と、
     前記ドレイン・ソース間電圧検出手段によって検出された前記ドレイン端子とソース端子間の電圧と第2基準値を比較する第2比較手段と、
     前記第2比較手段の比較結果に基づいて短絡を検知する第2短絡検知手段を有し、
     前記第1短絡検知手段及び第2短絡検知回路手段のどちらか一方が短絡を検知した場合、前記半導体スイッチング素子の電流を遮断するゲート駆動手段を有することを特徴とする電力変換装置。
  5.  請求項1または請求項2に記載の電力変換装置において、さらに、
     前記半導体スイッチング素子に流れるドレイン電流を検出するドレイン電流検出手段と、
     ドレイン電流検出手段によって検出されたドレイン電流の検出値と第2基準値を比較する第2比較手段と、
     前記第2比較手段の比較結果に基づいて短絡を検知する第2短絡検知手段を有し、
     前記第1短絡検知手段及び第2短絡検知手段のどちらか一方が短絡を検知した場合、前記半導体スイッチング素子の電流を遮断するゲート駆動手段を有することを特徴とする電力変換装置。
  6.  請求項1または請求項2に記載の電力変換装置において、
     前記半導体スイッチング素子のゲートに流れる電流を検出するゲート電流検出手段と、
     前記ゲート電流検出手段によって検出されたゲート電流の検出値を積分して積分値を出力する積分手段と、
     前記積分手段が出力する前記積分値と第2基準値を比較する第2比較手段と、
     前記第2比較手段の比較結果に基づいて短絡を検知する第2短絡検知手段と、
     前記第1短絡検知手段及び前記第2短絡検知手段のどちらか一方が短絡を検知した場合、前記半導体スイッチング素子の電流を遮断するゲート駆動手段を有することを特徴とする電力変換装置。
  7.  請求項1ないし6のいずれか1項に記載の電力変換装置において、前記第1短絡検知回路の動作時間が、ゲート端子とソース端子間の電圧が増加してから、あらかじめ設定された時間以内とすることを特徴とする電力変換装置。
  8.  請求項4ないし7のいずれか1項に記載の電力変換装置において、前記第2短絡検知回路の動作時間が、ゲート端子とソース端子間の電圧が増加してから、あらかじめ設定された時間以内とすることを特徴とする電力変換装置。
  9.  請求項1~8のいずれか1項に記載の電力変換装置において、前記半導体スイッチング素子がワイドギャップ半導体スイッチング素子であることを特徴とする電力変換装置。
PCT/JP2013/054658 2013-02-25 2013-02-25 電力変換装置 WO2014128951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/054658 WO2014128951A1 (ja) 2013-02-25 2013-02-25 電力変換装置
EP13875894.1A EP2961047B1 (en) 2013-02-25 2013-02-25 Power conversion device
JP2015501214A JP5933107B2 (ja) 2013-02-25 2013-02-25 電力変換装置
TW102148200A TWI508405B (zh) 2013-02-25 2013-12-25 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054658 WO2014128951A1 (ja) 2013-02-25 2013-02-25 電力変換装置

Publications (1)

Publication Number Publication Date
WO2014128951A1 true WO2014128951A1 (ja) 2014-08-28

Family

ID=51390774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054658 WO2014128951A1 (ja) 2013-02-25 2013-02-25 電力変換装置

Country Status (4)

Country Link
EP (1) EP2961047B1 (ja)
JP (1) JP5933107B2 (ja)
TW (1) TWI508405B (ja)
WO (1) WO2014128951A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131328A (ja) * 2015-01-14 2016-07-21 株式会社デンソー 負荷駆動装置
JP2016167498A (ja) * 2015-03-09 2016-09-15 株式会社東芝 半導体装置
JP6301028B1 (ja) * 2017-06-13 2018-03-28 三菱電機株式会社 半導体素子の駆動回路
JP6425864B1 (ja) * 2017-07-28 2018-11-21 三菱電機株式会社 電力用半導体素子の駆動回路
WO2019021590A1 (ja) * 2017-07-28 2019-01-31 三菱電機株式会社 電力用半導体素子の駆動回路
JP2020054088A (ja) * 2018-09-26 2020-04-02 株式会社デンソー スイッチの駆動回路
US11018661B2 (en) 2017-05-11 2021-05-25 Fuji Electric Co., Ltd. Short circuit detector including a voltage detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130520A (zh) * 2016-06-17 2016-11-16 珠海格力电器股份有限公司 Igbt短路保护电路及方法、igbt驱动器以及igbt电路
JP6910115B2 (ja) * 2016-07-28 2021-07-28 Fdk株式会社 アクティブスナバ回路
DE102018207491A1 (de) * 2018-05-15 2019-11-21 Robert Bosch Gmbh Elektrische Schaltung, Verfahren zum Betreiben einer elektrischen Schaltung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064930A (ja) * 2002-07-30 2004-02-26 Mitsubishi Electric Corp 電力用半導体素子の駆動回路
JP2005006464A (ja) 2003-06-13 2005-01-06 Hitachi Ltd 電力制御用半導体素子の保護装置及びそれを備えた電力変換装置
JP2006253568A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 電力用半導体モジュールおよびその駆動回路
WO2007116900A1 (ja) * 2006-04-06 2007-10-18 Mitsubishi Electric Corporation 半導体素子の駆動回路
US20080212247A1 (en) * 2006-11-21 2008-09-04 Lee Jun-Bae Insulated gate bipolar transistor fault protection system
JP2009225506A (ja) * 2008-03-13 2009-10-01 Toshiba Corp 電力変換器
JP2009261112A (ja) * 2008-04-15 2009-11-05 Nissan Motor Co Ltd 電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006381A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd スイッチング素子の駆動回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064930A (ja) * 2002-07-30 2004-02-26 Mitsubishi Electric Corp 電力用半導体素子の駆動回路
JP2005006464A (ja) 2003-06-13 2005-01-06 Hitachi Ltd 電力制御用半導体素子の保護装置及びそれを備えた電力変換装置
JP2006253568A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 電力用半導体モジュールおよびその駆動回路
WO2007116900A1 (ja) * 2006-04-06 2007-10-18 Mitsubishi Electric Corporation 半導体素子の駆動回路
US20080212247A1 (en) * 2006-11-21 2008-09-04 Lee Jun-Bae Insulated gate bipolar transistor fault protection system
JP2009225506A (ja) * 2008-03-13 2009-10-01 Toshiba Corp 電力変換器
JP2009261112A (ja) * 2008-04-15 2009-11-05 Nissan Motor Co Ltd 電力変換装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131328A (ja) * 2015-01-14 2016-07-21 株式会社デンソー 負荷駆動装置
JP2016167498A (ja) * 2015-03-09 2016-09-15 株式会社東芝 半導体装置
US11018661B2 (en) 2017-05-11 2021-05-25 Fuji Electric Co., Ltd. Short circuit detector including a voltage detector
JP6301028B1 (ja) * 2017-06-13 2018-03-28 三菱電機株式会社 半導体素子の駆動回路
WO2018229856A1 (ja) * 2017-06-13 2018-12-20 三菱電機株式会社 半導体素子の駆動回路
CN110741542A (zh) * 2017-06-13 2020-01-31 三菱电机株式会社 半导体元件的驱动电路
US10917083B2 (en) 2017-06-13 2021-02-09 Mitsubishi Electric Corporation Drive circuit for semiconductor element
CN110741542B (zh) * 2017-06-13 2021-12-14 三菱电机株式会社 半导体元件的驱动电路
JP6425864B1 (ja) * 2017-07-28 2018-11-21 三菱電機株式会社 電力用半導体素子の駆動回路
WO2019021590A1 (ja) * 2017-07-28 2019-01-31 三菱電機株式会社 電力用半導体素子の駆動回路
JP2020054088A (ja) * 2018-09-26 2020-04-02 株式会社デンソー スイッチの駆動回路
JP7110871B2 (ja) 2018-09-26 2022-08-02 株式会社デンソー スイッチの駆動回路

Also Published As

Publication number Publication date
TWI508405B (zh) 2015-11-11
EP2961047A4 (en) 2016-11-16
TW201440359A (zh) 2014-10-16
JPWO2014128951A1 (ja) 2017-02-02
EP2961047B1 (en) 2019-04-10
JP5933107B2 (ja) 2016-06-08
EP2961047A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP5933107B2 (ja) 電力変換装置
JP2020150791A (ja) 半導体デバイスおよびそれを含む電子回路
US9882465B2 (en) Commutation cell, power converter and compensation circuit having dynamically controlled voltage gains
CN103378757B (zh) 功率转换装置
JP6329944B2 (ja) 絶縁ゲート型半導体素子の制御装置およびそれを用いた電力変換装置
JP5752234B2 (ja) 電力変換装置
JPWO2014097485A1 (ja) 駆動保護回路、半導体モジュール及び自動車
JP2012090435A (ja) 駆動回路及びこれを備える半導体装置
JP6136011B2 (ja) 半導体装置、および電力変換装置
JP6067136B2 (ja) 電力変換装置
JP6988670B2 (ja) 駆動回路、パワーモジュール及び電力変換システム
CN105103427A (zh) 绝缘栅型半导体装置
JP2014117112A (ja) 半導体制御装置及び電力変換装置
CN103888002A (zh) 用于操作电力整流器的方法以及电力整流器
JP2015032984A (ja) 半導体素子の駆動装置およびそれを用いた電力変換装置
JP5619673B2 (ja) スイッチング回路及び半導体モジュール
JP6314532B2 (ja) 電力変換システム
WO2015114788A1 (ja) 半導体素子の保護回路
WO2018193527A1 (ja) 過電流検出回路及び電力変換装置
JP2012147591A (ja) 駆動回路
JP2007189828A (ja) 半導体素子の駆動回路
JP6135551B2 (ja) 電力変換装置
JP6052417B2 (ja) 半導体スイッチング装置
JP5309923B2 (ja) 半導体素子の駆動回路
WO2015114789A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501214

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013875894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE