WO2014126144A1 - 撮像モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、及び内視鏡 - Google Patents
撮像モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、及び内視鏡 Download PDFInfo
- Publication number
- WO2014126144A1 WO2014126144A1 PCT/JP2014/053313 JP2014053313W WO2014126144A1 WO 2014126144 A1 WO2014126144 A1 WO 2014126144A1 JP 2014053313 W JP2014053313 W JP 2014053313W WO 2014126144 A1 WO2014126144 A1 WO 2014126144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging module
- groove
- solid
- mounting surface
- electric cable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/26—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/51—Housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
- A61B1/051—Details of CCD assembly
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
Definitions
- the present invention relates to an imaging module having a configuration in which a solid-state imaging device is mounted on a three-dimensional wiring substrate, an imaging module with an insulating tube configured using the imaging module, an imaging module with a lens, and an endoscope.
- the imaging module used for the endoscope must be small.
- the imaging module is composed of a small solid-state imaging device such as a CCD (Charge Coupled Device) chip or a CMOS (Complementary Metal Oxide Semiconductor) chip, and a wiring substrate on which wiring is formed and on which the solid-state imaging device is mounted. Is done.
- the solid-state imaging device has a structure in which, for example, a stacked chip is provided with a terminal for connecting to a wiring substrate on the opposite side of the light receiving surface by through wiring (TSV: Through Silicon Via).
- TSV Through Silicon Via
- the three-dimensional wiring substrate is used to three-dimensionally mount electronic components, and has a structure in which wiring is formed on the surface of a three-dimensional molded product made of resin, ceramic, or the like.
- the three-dimensional wiring substrate is formed in a substantially cylindrical shape, and a circular mounting surface is provided at the tip of the substantially cylindrical shape.
- Patent Documents 1 to 4 listed below disclose an imaging module that includes the above-described solid-state imaging device and a three-dimensional wiring substrate and is used for an endoscope.
- Japanese Unexamined Patent Publication No. 2001-27734 Japanese Unexamined Patent Publication No. 2009-201762 Japanese Unexamined Patent Publication No. 2011-240053 Japanese Unexamined Patent Publication No. 2012-254176
- the imaging module in order to ensure electrical insulation of the surface wiring formed on the three-dimensional wiring substrate, the imaging module is covered with a cylindrical insulating tube, but when the imaging module is inserted into the insulating tube, the three-dimensional wiring is used. Since the shape of the mounting surface of the substrate is circular, there is a problem that the entire outer periphery of the mounting surface is caught by the inner surface of the insulating tube and is difficult to insert into the insulating tube. In the above prior art, it is necessary to provide an alignment mark on the surface of the mounting surface as a mark for mounting the solid-state imaging device at the correct position. However, the mounting surface of the three-dimensional wiring substrate used in the imaging module of the endoscope is required. Since the size is very small, it is very difficult to provide alignment marks on the mounting surface.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an alignment mark for making it easy to insert a solid-state imaging device into an insulating tube and attaching the solid-state imaging device to a correct position.
- an imaging module includes an electrical cable, a solid-state imaging device having a light receiving surface orthogonal to the axial direction of the distal end of the electrical cable, and extends in the axial direction.
- a wiring is formed on the surface of the molded product, the electrical cable and the solid-state imaging device are electrically connected by the wiring, and a mounting surface for mounting the solid-state imaging device is provided at the tip of the molded product.
- the mounting surface has two vertices facing each other so as to sandwich a center portion, and the distance between the two vertices is between two points on the side of the mounting surface.
- the longest of the distances is formed, and a cross section parallel to the mounting surface of the three-dimensional wiring substrate is equal to or smaller than the mounting surface, and the side of the solid-state imaging device in a plan view shape On top
- the distance between two points is the longest is shorter than or equal to the distance between the two vertices.
- the mounting surface is preferably a hexagon.
- the molded product has a first surface and a second surface located so as to sandwich the molded product, and 1 is provided for each of the first surface and the second surface.
- an electrical cable is provided.
- the angle of the bent portion formed in the extending direction of the molded product is larger than a right angle.
- the mounting surface includes a concave housing portion that fixes the solid-state imaging device.
- the surface of the molded product is provided with a groove extending along the extending direction of the molded product in order to accommodate the electric cable. Is preferred.
- the groove is located on the same plane as the surface of the molded product, and has a groove opening having a width smaller than the diameter of the electric cable, and the inside of the groove. And an inner groove that accommodates the electric cable and has a width larger than the width of the groove opening.
- the electrical cable has a plurality of built-in electrical cables inside and has a number of grooves corresponding to the number of the built-in electrical cables. .
- the groove is located on the same plane as the surface of the molded product, and has a groove opening having a width smaller than the diameter of the built-in electric cable, and the groove It is preferable to include an internal groove that is formed inside and has a width larger than the width of the groove opening and accommodates the built-in electric cable.
- the built-in electric cable includes an inner conductor, a primary coating layer covering the inner conductor, an outer conductor provided around the primary coating layer, and a secondary coating covering the outer conductor.
- the groove portion is provided with a step along the inner conductor, the primary covering layer, and the outer conductor exposed at the tip of the built-in electric cable.
- the imaging module with an insulating tube according to the second aspect of the present invention includes the imaging module according to the first aspect and an insulating tube that houses the imaging module.
- the imaging module with a lens according to the third aspect of the present invention is a sleeve-like metal, together with the lens unit fixed to the solid-state imaging element, the three-dimensional wiring substrate and the solid-state imaging element of the imaging module with an insulating tube according to the second aspect. It is accommodated in a frame member.
- An endoscope according to a fourth aspect of the present invention includes the imaging module with a lens according to the third aspect and an insertion portion that accommodates the imaging module with a lens.
- the imaging module since the imaging module has the above-described configuration, when the imaging module is inserted into the insulating tube, the insulating tube is in contact with the two apexes of the three-dimensional wiring substrate, so that the imaging module is inserted into the insulating tube. It becomes easy.
- 1 is a side view showing the structure of an imaging module A according to an embodiment of the present invention, an imaging module B with an insulating tube configured using the imaging module A, and an imaging module C with a lens.
- 1 is a side view showing the structure of an imaging module A according to an embodiment of the present invention, an imaging module B with an insulating tube configured using the imaging module A, and an imaging module C with a lens.
- It is sectional drawing which shows the structure of the mounting surface 21a vicinity of the three-dimensional wiring base
- FIG. 21 It is a schematic diagram which shows the groove part 21b formed in the molded article 21 of the three-dimensional wiring base
- An imaging module A is a small imaging device used for an endoscope, and includes a solid-state imaging device 1, a three-dimensional wiring base 2, and an electric cable 3 as shown in FIGS. 1A and 1B. Yes. Further, as shown in the drawing, such an imaging module A is accommodated in an insulating tube 7 to constitute an imaging module B with an insulating tube. Further, as shown in the figure, the imaging module B with an insulating tube has a lens together with a cover member 4 fixed to the solid-state imaging device 1, a lens unit 5 (objective lens unit), and a sleeve-like metal frame member 6 such as a cylindrical shape. The attached imaging module C is configured.
- the solid-state imaging device 1 is a semiconductor image sensor such as a CCD (Charge Coupled Device) chip or a CMOS (Complementary Metal Oxide Semiconductor) chip, and is fixed to a mounting surface 21a of a molded product 21 in a three-dimensional wiring substrate 2 described later.
- a solid-state imaging device 1 has a front surface (light receiving surface) on which a light receiving unit that receives external light is mounted, and a back surface opposite to the front surface.
- the solid-state imaging device 1 includes bumps 12 (terminals) such as solder bumps, stud bumps, or plating bumps that are electrically connected to an electric circuit inside the solid-state imaging device 1 provided on the back surface. For example, as shown in FIG.
- the solid-state image sensor 1 is formed in, for example, a through-hole 13 that penetrates the solid-state image sensor 1 in the plate thickness direction and is provided on both front and back surfaces of the solid-state image sensor 1. , 15 is included in the through wiring 16 (through hole wiring).
- a backside illumination type CMOS image sensor BI: Back-side Illumination
- the wiring can be drawn out to the surface opposite to the light receiving surface by the through wiring.
- the bumps 12 are bonded and fixed to the terminals 21T (see FIG. 2) formed on the mounting surface 21a of the three-dimensional wiring substrate 2 by a flip chip method.
- the solid-state imaging device 1 is electrically connected to wirings 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, and 22 g in a three-dimensional wiring substrate 2 described later, and is mounted on the mounting surface 21 a of the three-dimensional wiring substrate 2.
- the three-dimensional wiring substrate 2 is a wiring substrate used to three-dimensionally mount electronic components, and is a resin (PEEK (polyetherthertone), LCP (Liquid Crystal Polymer) material having heat resistance against heat generated during soldering. ) And ceramics, and seven wirings 22a, 22b, 22c, 22d, 22e, 22f, and 22g formed on the surface of the molded product 21.
- the soldering described above is performed when the wirings 22a, 22b, 22c, 22d, 22e, 22f, and 22g are connected to the electric cable 3.
- the molded product 21 is made of a resin or ceramic (PEEK material or LCP material) having heat resistance against heat generated during soldering, and is molded using a mold or the like.
- a molded product 21 has a shape extending in the axial direction of the built-in electric cable 31 exposed from the distal end of the electric cable 3 described later (perpendicular to the mounting surface 21a described later).
- the mounting surface 21a on which the solid-state imaging device 1 is mounted is formed in a hexagon as shown in FIGS. 3A and 3B.
- four grooves 21b are formed on the surface of the molded product 21 along the extending direction of the molded product 21 in order to accommodate a built-in electric cable 31 of the electrical cable 3 described later. Is provided.
- the seven wirings 22 a to 22 g are provided on the surface of the molded product 21.
- Each of the wirings 22a to 22g has a first end and a second end.
- one end (first end) provided on the mounting surface 21a is a terminal 21T (FIG. 2) connected to the solid-state imaging device 1, and the other end (second end) is an electricity described later.
- This is a terminal connected to the built-in electric cable 31 of the cable 3. That is, the solid-state imaging device 1 and the electric cable 31 are electrically connected via the wirings 22a to 22g.
- portions other than the terminals are covered with an electrically insulating resin. The details of the three-dimensional wiring substrate 2 including the molded product 21 and the wirings 22a to 22g described above will be described later.
- the electrical cable 3 is used to electrically connect an external device (not shown) (for example, a display device or the like) and the solid-state imaging device 1, and as shown in FIG. 5, a plurality (4 in the illustrated example)
- the cable unit includes a built-in electric cable 31 and a jacket 32.
- the built-in electric cable 31 is a coaxial cable, and covers an internal conductor 31a, a primary coating layer 31c that covers the internal conductor 31a, an external conductor 31b that is formed by a thin metal wire and is provided around the primary coating layer 31c, and the external conductor 31b. Secondary coating layer 31d.
- Such a built-in electric cable 31 is exposed from the jacket 32 at the tip of the electric cable 3.
- the inner conductor 31a, the primary covering layer 31c, and the outer conductor 31b are exposed at the tip of the built-in electric cable 31 exposed from the outer jacket 32.
- the inner conductor 31a and the outer conductor 31b in the four built-in electric cables 31 are connected to any of the wirings 22a to 22g described above.
- the solid-state imaging device 1 and the electric cable 31 are electrically connected via the wirings 22a to 22g.
- the internal conductor 31a and the external conductor 31b of the built-in electric cable 31 and the wirings 22a to 22g are connected by solder or a conductive adhesive.
- the jacket 3 is made of a predetermined resin and collectively covers a plurality of built-in electric cables 31.
- the insulating tube 7 is provided to electrically insulate the connection portion connecting the wirings 22a to 22g and the internal conductor 31a and the external conductor 31b in the built-in electric cable 31 from the outside. As illustrated, the insulating tube 7 houses the imaging module A. The insulating tube 7 is fixed and integrated with the solid-state imaging device 1, the three-dimensional wiring substrate 2, and the built-in electric cable 31 disposed on the inside thereof by the resin 8 filled and cured inside the insulating tube 7. . As a result, the wirings 22a to 22g and the connecting portion connecting the internal conductor 31a and the external conductor 31b in the built-in electric cable 31 are in contact with the metal frame member 6 and do not short-circuit.
- the cover member 4 is a transparent plate-like member that covers the light receiving portion of the solid-state imaging device 1.
- the cover member 4 is a transparent plate member made of glass or resin.
- the lens unit 5 has a configuration in which an objective lens (not shown) is incorporated in a cylindrical barrel 5a.
- the lens unit 5 is aligned with the optical axis of the light receiving portion of the solid-state imaging device 1, and is provided with one end of the lens barrel 5 a in the axial direction fixed to the cover member 4.
- the lens unit 5 causes the light guided from the opposite side of the cover member 4 through the lens in the lens barrel 5 a to form an image on the light receiving portion of the solid-state imaging device 1.
- the metal frame member 6 is bonded and fixed to the insulating tube 7 with a resin 9 filled and cured inside the metal frame member 6.
- a metal frame member 6 accommodates not only the solid-state imaging device 1 and the three-dimensional wiring substrate 2 in the imaging module A but also the built-in electric cable 31.
- the portion of the electric cable 1 covered with the jacket 3 is disposed outside the metal frame member 6, while the built-in electric cable 31 exposed from the jacket 3 of the electric cable 1 is drawn into the metal frame member 6. It is.
- the imaging module B with an insulating tube mentioned above comprises the endoscope D with the insertion part 50 which accommodates the imaging module B with an insulating tube.
- the endoscope D includes a lumen 51 (first lumen) in an insertion portion 50 that houses an imaging module B with a lens, and a lumen 53 (second lumen) that houses an optical fiber 52 for illumination (for a light guide). ).
- a flat solid-state imaging device 1 having a 0.75 mm square, a three-dimensional wiring substrate 2 having a maximum width of 1.00 mm or less on the mounting surface 21a, and a silicone insulating tube 7 having an outer diameter of 1.05 mm.
- An imaging module C with a lens was manufactured using a cylindrical metal frame member 6 having an outer diameter of 1.2 mm.
- the outer diameter of the insertion portion of the endoscope D that was prototyped using the imaging module C with a lens was 5 mm.
- a molded product 21 is created. That is, molding having a predetermined shape is performed by pouring a resin (PEEK material or LCP material), ceramic, or the like having heat resistance against heat generated during soldering into a mold for casting the molded product 21. A product 21 is created. Then, copper (Cu) is plated on the entire surface of the molded product 21, and a wiring pattern is drawn with a laser, whereby the three-dimensional wiring substrate 2 is manufactured.
- a resin PEEK material or LCP material
- ceramic or the like having heat resistance against heat generated during soldering into a mold for casting the molded product 21.
- a product 21 is created.
- copper (Cu) is plated on the entire surface of the molded product 21, and a wiring pattern is drawn with a laser, whereby the three-dimensional wiring substrate 2 is manufactured.
- the three-dimensional wiring substrate 2 in the present embodiment manufactured through the above manufacturing process has three characteristic configurations. First, it has the following features as the first point.
- the mounting surface 21a of the three-dimensional wiring substrate 2 on which the solid-state imaging device 1 is mounted is formed in a hexagon as shown in FIGS. 3A and 3B.
- the distance between two vertices P1 and P2 facing each other across the center of the six vertices of the hexagon is the distance between two points on the side H1 of the mounting surface 21a. Among them, it is the longest.
- the line segment L1 between the vertices P1 and P2 is the longest line segment existing on the mounting surface 21a such as the diagonal line between the other vertices or the line segment L2 orthogonal to the line segment L1 shown in FIG. 3A. ing.
- the cross section of the three-dimensional wiring substrate 2 parallel to the mounting surface 21a is equal to or smaller than the mounting surface 21a. That is, the three-dimensional wiring substrate 2 has a shape that extends along the vertical direction of the mounting surface 21a with the mounting surface 21a as a tip, and when the mounting surface 21a is viewed in plan, the periphery of the three-dimensional wiring substrate 2 The surface does not protrude from the range of the mounting surface 21a.
- the distance between the two longest points on the side H2 of the planar imaging shape of the solid-state imaging device 1 is equal to or shorter than the distance between the two vertices P1 and P2 of the mounting surface 21a.
- the diagonal line L3 between the vertices of the planar view shape (square shape) of the solid-state imaging device 1 shown in FIG. 3B is equal to or shorter than the distance between the two vertices P1 and P2 of the mounting surface 21a.
- the mounting surface 21a has two vertices P1 and P2 that face each other with the center portion interposed therebetween, and is formed so that the distance between the two vertices P1 and P2 is the longest line segment on the mounting surface 21a.
- the cross section of the three-dimensional wiring substrate 2 parallel to the mounting surface 21a is equal to or smaller than the mounting surface 21a, and the line segment in the plan view shape of the solid-state imaging device 1 is between the two vertices P1 and P2 of the mounting surface 21a. Also short.
- the imaging module A when the imaging module A is inserted into the insulating tube 7, the insulating tube 7 comes into contact with the two apexes P1 and P2 of the three-dimensional wiring substrate 2, that is, the portion in contact with the insulating tube 7 is narrow.
- the module A is easily inserted into the insulating tube 7.
- the molded product 21 in the three-dimensional wiring substrate 2 has a straight part 21e extending along the extending direction and an inclined part 21f inclined with respect to the straight part 21e.
- the angle of the bent portion 21c formed in the extending direction is larger than the right angle. That is, the bent portion 21c is not formed at an acute angle that is 90 degrees or less, but is formed at a gentle angle that is 90 degrees or more.
- the wirings 22a to 22g arranged along the extending direction of the three-dimensional wiring substrate 2 are not bent at a sharp angle that is equal to or less than a right angle, disconnection can be suppressed.
- a groove portion 21 b is provided along the extending direction of the molded product 21 in order to accommodate the electric cable 3. That is, the number of the groove portions 21b is the same as the number of the built-in electric cables 31 (four). Further, in the groove 21b, as shown in FIGS. 4A to 4C, a step 21D is formed along the shape of the inner conductor 31a exposed at the tip of the built-in electric cable 31, and the shapes of the primary coating layer 31c and the outer conductor 31b. Is provided. As a result, the built-in electric cable 31 can be attached to the correct position on the three-dimensional wiring substrate 2. Moreover, since the built-in electric cable 31 can be easily attached to the three-dimensional wiring substrate 2 with the above-described configuration, it is possible to save time and effort at the time of attachment.
- the mounting surface 21a has two vertices P1 and P2 that face each other with the center portion interposed therebetween, and the distance between the two vertices P1 and P2 is the longest line segment on the mounting surface 21a.
- the cross section parallel to the mounting surface 21a of the three-dimensional wiring substrate 2 is equal to or smaller than the mounting surface 21a, and the line segment in the planar view shape of the solid-state imaging device 1 has two vertices P1 of the mounting surface 21a. , Shorter than between P2.
- the imaging module A when the imaging module A is inserted into the insulating tube 7, the insulating tube 7 comes into contact with the two apexes of the three-dimensional wiring substrate 2, that is, from the three-dimensional wiring substrate formed into a cylindrical shape as in the prior art. Since the area in contact with the insulating tube 7 is small, the imaging module A is easily inserted into the insulating tube 7.
- an alignment mark is formed on the mounting surface 21a, and the positional relationship between the alignment mark and the solid-state imaging device 1 is adjusted.
- the alignment mark is provided on the mounting surface 21a, it is necessary to enlarge the three-dimensional wiring substrate 2 by the space for forming the alignment mark.
- the two vertices P1 and P2 on the mounting surface 21a can be used as alignment marks. Therefore, the solid-state imaging device 1 can be attached to the correct position on the mounting surface 21a without providing an alignment mark on the mounting surface 21a.
- the angle of the bent portion 21 c formed in the extending direction is provided to be larger than the right angle, whereby the extending direction of the three-dimensional wiring substrate 2.
- the wirings 22a to 22g arranged along the line are not bent at a sharp angle that is equal to or less than a right angle. Thereby, disconnection can be suppressed.
- the groove portion 21 b is provided along the extending direction of the molded product 21 in order to accommodate the built-in electric cable 31.
- the built-in electric cable 31 can be attached to the correct position on the three-dimensional wiring base 2, and the built-in electric cable 31 can be easily attached to the body wiring base 2. This saves the trouble of attachment. Can do.
- An endoscope D houses an imaging module A in a sleeve-shaped metal frame member 6 together with a lens unit 5 fixed to the solid-state imaging device 1.
- the imaging module is not particularly limited as long as it is an imaging module according to the embodiment of the present invention.
- the mounting surface 21a was shape
- the mounting surface 21a may be a polygon other than a hexagon or a shape other than a polygon as long as it meets the above-described conditions.
- the step 21D is provided in the groove 21b along the shapes of the inner conductor 31a, the primary coating layer 31c, and the outer conductor 31b.
- the step 21D may not be provided.
- the inner conductor 31a, the primary coating layer 31c, and the outer conductor 31b may be pressed and accommodated in the groove 21b where the step 21D is not provided.
- the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the shape of the mounting surface 41a is a rectangle, and the molded product 41 is formed in a plate shape.
- the molded product 41 has a first surface 42a positioned so as to sandwich the molded product 41, and a second surface 42b positioned on the opposite side of the first surface 42a.
- Each of the first surface 42a and the second surface 42b is provided with one electric cable.
- the electric cable 43a is provided on the first surface 42a
- the electric cable 43b is provided on the second surface 42b.
- the bumps of the solid-state imaging device are bonded and fixed to terminals formed on the mounting surface.
- the solid-state imaging device is electrically connected to the electric cables 43a and 43b provided on the first surface 42a and the second surface 42b, and is mounted on the mounting surface 41a.
- the groove part which accommodates the built-in electric cable of an electric cable may be provided in the 1st surface 42a and the 2nd surface 42b along the extension direction of the molded article 41.
- a concave accommodating portion 46 that fixes the solid-state imaging device 1 is provided on the mounting surface 45 a of the molded product 45.
- the housing portion 46 is provided on the mounting surface 45a so as to surround the solid-state imaging device 1, and the solid-state imaging device 1 is positioned by positioning the solid-state imaging device 1 inside the housing portion 46, and the mounting surface 45a.
- the terminal 21T formed on the substrate and the bump 12 of the solid-state imaging device 1 are securely bonded (see FIG. 2).
- the wiring extending from the terminal 21T toward the electric cable may be formed along the surface of the accommodating portion 46, or may be connected to the electric cable through a notch portion partially provided in the accommodating portion 46. .
- the present invention is not limited to such a configuration.
- the accommodating portion is formed so as to protrude from the mounting surface between the wirings 22a and 22b, the wirings 22b and 22c, the wirings 22d and 22e, and the wirings 22f and 22g shown in FIG. 3B. May be.
- the accommodating portion may be formed between the wirings adjacent to each other formed on the mounting surface.
- the solid-state imaging device 1 and the housing portion are in contact with each other at least at three locations, and the solid-state imaging device 1 is positioned.
- FIG. 9A to 9C show modified examples of the groove 21b provided along the extending direction of the molded product 21.
- “width” means a dimension in a direction perpendicular to the direction in which the groove 21b extends
- “width direction” means a direction perpendicular to the direction in which the groove 21b extends.
- the groove portion 21b has a groove opening portion 21g and an internal groove 21h, and is formed on the surface 21d of the molded product 21.
- the groove opening 21g is located on the same plane as the surface 21d of the molded product 21.
- the internal groove 21h opens at the groove opening 21g and is formed inside the groove 21b.
- the width 21w of the groove opening 21g (the distance between the ends of the groove opening 21g) is smaller than the width (diameter) 3w of the electric cable 3. Further, the width 21x of the internal groove 21h is larger than the width 21w of the groove opening 21g.
- the width 21w of the groove opening 21g is set to the width of the electric cable 3 when the electric cable 3 contracts in the width direction due to elastic deformation. That is, the width 21w is substantially equal to the width of the electric cable 3 obtained when the diameter is reduced by elastic deformation.
- the width 21x of the internal groove 21h is determined according to the width 3w of the electric cable 3 so that the electric cable 3 can be accommodated inside the groove 21b.
- the width 21x of the internal groove 21h may be substantially the same as the width 3w after the elastically deformed electric cable 3 is restored inside the internal groove 21h. Further, in order to stably hold the electric cable 3 by the internal groove 21h, the width 21x may be slightly smaller than the width 3w.
- the electric cable 3 is arranged so as to face the groove 21b. It is pressed against the surface 21d in the direction indicated by Q.
- the width 3w is larger than the width 21w, when the electric cable 3 comes into contact with the end of the groove opening 21g and is pressed toward the inner groove 21h, the electric cable 3 is pressed against the end of the groove opening 21g. While being elastically deformed, the width 3w decreases. Thereafter, the electric cable 3 passes through the groove opening 21g and reaches the internal groove 21h, and the elastic deformation state of the electric cable 3 is eliminated. As shown in the sectional view of FIG. 9C, the shape of the electric cable 3 is restored in the internal groove 21h, and the electric cable 3 is accommodated in the internal groove 21h.
- FIG. 9C shows a state in which the electric cable 3 is accommodated in the internal groove 21h. However, while the electric cable 3 is maintained, a part of the electric cable 3 is in the groove opening 21g. You may protrude from.
- the shape of the internal groove 21h is substantially circular (a shape in which a circle is cut out by the groove opening 21g), but is not limited to this shape, and may be a rectangle.
- the shape and size of the internal groove 21 h are appropriately determined according to the shape and size of the electric cable 3 or the holding state of the electric cable 3. Further, the groove opening 21g having the width 21w smaller than the width 21x of the internal groove 21h is not necessarily provided in all the portions where the groove 21b is formed. That is, it is only necessary that the plurality of groove openings 21g are partially formed along the formation portion (extending direction) of the groove 21b. In this case, a plurality of groove openings 21g may be formed at appropriate positions along the extending direction of the groove 21b so as to prevent the electric cable 3 from being detached from the internal groove 21h. The intervals at which the plurality of groove openings 21g are formed may be equal pitches. Furthermore, a groove opening 21g may be formed at a location where the electric cable 3 is easily detached from the groove 21b.
- the groove portions 21 b are provided along the extending direction of the molded product 21 by the number (four) according to the built-in electric cable 31.
- the present invention is not limited to such a configuration, and the built-in electric cable 31 may be provided in the groove 21b having the groove opening 21g and the internal groove 21h shown in FIGS. 9A to 9C.
- the built-in electric cable 31 is inserted into the internal groove 21h through the groove opening 21g, and the built-in electric cable 31 is held by the internal groove 21h.
- the internal groove 21h opens at the groove opening 21g and is formed inside the groove 21b.
- the width 21w of the groove opening 21g (the distance between the ends of the groove opening 21g) is smaller than the width (diameter) of the built-in electric cable 31. Further, the width 21x of the internal groove 21h is larger than the width 21w of the groove opening 21g. In this state, since the width 21w of the groove opening 21g is smaller than the width of the built-in electric cable 31, the built-in electric cable 31 is prevented from coming out of the internal groove 21h.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- Endoscopes (AREA)
- Studio Devices (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
Description
本願は、2013年2月13日に、日本に出願された特願2013-025475号に基づき優先権を主張し、その内容をここに援用する。
また、配線22a~22gにおいて、端子以外の箇所は、電気絶縁性を有する樹脂によって覆われている。なお、上述した成形品21及び配線22a~22gを含む立体配線基体2の詳細については、後述する。
内蔵電気ケーブル31は、同軸ケーブルであり、内部導体31a、内部導体31aを被覆する一次被覆層31c、金属細線によって形成され一次被覆層31cの周囲に設けられた外部導体31b及び外部導体31bを被覆する二次被覆層31dから構成されている。
このような内蔵電気ケーブル31は、電気ケーブル3の先端において外被32から露出する。また、外被32から露出した内蔵電気ケーブル31の先端では、図1A及び図1Bに示すように、内部導体31a、一次被覆層31c、外部導体31bは、露出している。
一方、外被3は、所定の樹脂からなり、複数本の内蔵電気ケーブル31を一括被覆する。
レンズユニット5は、円筒状の鏡筒5a内に、対物レンズ(図示略)が組み込まれた構成を有する。このレンズユニット5は、固体撮像素子1の受光部の光軸に位置合わせされており、鏡筒5aの軸線方向における一端をカバー部材4に固定して設けられている。レンズユニット5は、カバー部材4の反対側から鏡筒5a内のレンズを介して導いた光を固体撮像素子1の受光部に結像させる。
レンズ付き撮像モジュールの具体例として、0.75mm角の平板状の固体撮像素子1、実装面21aの最大幅1.00mm以下の立体配線基体2、外径1.05mmのシリコーン製の絶縁チューブ7、外径1.2mmの円筒状の金属枠部材6を用いてレンズ付き撮像モジュールCを試作した。また、このレンズ付き撮像モジュールCを用いて試作した内視鏡Dの挿入部外径は5mmであった。
最初に立体配線基体2の製造工程について説明する。製造工程において、最初に、成形品21を作成する。つまり、成形品21を鋳造するための金型に、はんだ付けの際に発生する熱に対する耐熱性を有する樹脂(PEEK材あるいはLCP材)やセラミック等を流しこむことで、所定の形状を有する成形品21を作成する。その上で、成形品21の全面に銅(Cu)をめっきして、レーザーにて配線パターンを描写することで、立体配線基体2を製造する。
立体配線基体2における成形品21は、延在方向に沿って伸びる直線部21eと、直線部21eに対して傾斜する傾斜部21fとを有する。成形品21において、延在方向に形成された屈曲部21cの角度(直線部21eと傾斜部21fとの間の角度)は、直角よりも大きい。つまり、屈曲部21cは、90度以下となるような鋭角に形成されず、90度以上となるような緩やかな角度で形成されている。この結果、立体配線基体2の延在方向に沿って配置される配線22a~22gは、直角以下となるような鋭い角度で屈曲されないので、断線を抑制できる。
成形品21の表面には、電気ケーブル3を収容するために成形品21の延在方向に沿って溝部21bが設けられている。つまり、溝部21bは、内蔵電気ケーブル31に合わせた数(4つ)だけ設けられている。また、溝部21bにおいては、図4A~図4Cに示すように、内蔵電気ケーブル31の先端において露出する内部導体31aの形状と、一次被覆層31c及び外部導体31bの形状とに沿って段差21Dが設けられている。この結果、内蔵電気ケーブル31を立体配線基体2上の正しい位置に取り付けることが可能である。また、上記構成によって立体配線基体2に内蔵電気ケーブル31を容易に取り付けることができるので、取り付け時の手間を省くことができる。
本発明に係る実施形態に係る内視鏡Dは、撮像モジュールAを、固体撮像素子1に固定したレンズユニット5とともにスリーブ状の金属枠部材6に収容している。撮像モジュールとしては、本発明に係る実施形態の撮像モジュールであれば特に限定はない。
また、本実施形態において、溝部21bに内部導体31a、一次被覆層31c及び外部導体31bの形状に沿って段差21Dを設けたが、段差21Dを設けなくてもよい。例えば、段差21Dが設けられていない溝部21bに、内部導体31a、一次被覆層31c及び外部導体31bを押し付けるようにして収容するようにしてもよい。また、溝部21bは、内蔵電気ケーブル31を収容する電気ケーブル3を収容するようにしてもよい。
次に、図7~図9Cを参照して上記実施形態の変形例について説明する。
図7~図9Cにおいて、上記実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
図7に示す変形例においては、実装面41aの形状が長方形であり、成形品41は板状に形成されている。具体的に、成形品41は、成形品41を挟むように位置する第1面42aと、第1面42aとは反対側に位置する第2面42bとを有する。第1面42a及び第2面42bの各々には、1本の電気ケーブルが設けられている。即ち、第1面42aには電気ケーブル43aが設けられ、第2面42bには電気ケーブル43bが設けられている。固体撮像素子のバンプは、図2に示すように、実装面に形成された端子に接合固定される。固体撮像素子は、第1面42a及び第2面42bの各々に設けられた電気ケーブル43a,43bと電気的に接続され、実装面41a上に実装されている。なお、第1面42a及び第2面42bには、電気ケーブルの内蔵電気ケーブルを収容する溝部が、成形品41の延在方向に沿って設けられてもよい。
なお、端子21Tから電気ケーブルに向けて延びる配線は、収容部46の表面に沿って形成されてもよいし、収容部46に部分的に設けられた切欠部を通じて電気ケーブルに接続されてもよい。
また、図8においては、収容部46の一部(外面)が成形品45の外面を形成している構成が示されているが、本発明はこのような構成に限定されない。例えば、図3Bに示す配線22aと22bとの間、配線22bと22cとの間、配線22dと22eとの間、配線22fと22gの間に、実装面から突出するように収容部が形成されてもよい。換言すると、実装面上に形成された互いに隣り合う配線の間に収容部が形成されてもよい。この場合、少なくとも3ヶ所において固体撮像素子1と収容部とが接触し、固体撮像素子1が位置決めされることが好ましい。
以下に述べる変形例において、「幅」は溝部21bが延在する方向に直交する方向の寸法を意味し、「幅方向」は溝部21bが延在する方向に直交する方向を意味する。
溝部21bは、溝開口部21g及び内部溝21hを有し、成形品21の表面21dに形成されている。溝開口部21gは、成形品21の表面21dと同一面上に位置している。内部溝21hは、溝開口部21gにおいて開口し、溝部21bの内部に形成されている。溝開口部21gの幅21w(溝開口部21gの端部間の距離)は、電気ケーブル3の幅(径)3wよりも小さい。また、内部溝21hの幅21xは、溝開口部21gの幅21wよりも大きい。
ここで、溝開口部21gの幅21wは、電気ケーブル3が弾性変形によって幅方向に収縮した際の、電気ケーブル3の幅に設定されている。即ち、幅21wは、弾性変形によって縮径した際に得られる電気ケーブル3の幅に略等しい。
また、内部溝21hの幅21xは、溝部21bの内部にて電気ケーブル3を収容することができるように、電気ケーブル3の幅3wに応じて決定される。例えば、内部溝21hの幅21xは、弾性変形した電気ケーブル3が内部溝21hの内部で復元した後の幅3wと略同じであってもよい。また、内部溝21hによって電気ケーブル3を安定的に保持するため、幅21xは幅3wよりも若干小さくてもよい。
図9Aの斜視図及び図9Bの断面図に示すように、溝開口部21gを通じて内部溝21hに電気ケーブル3が挿入される際には、電気ケーブル3は、溝部21bに対向するように、符号Qで示された方向に表面21dに押し付けられる。幅3wは幅21wよりも大きいため、電気ケーブル3が溝開口部21gの端部に接触して内部溝21hに向けて押圧されると、電気ケーブル3は溝開口部21gの端部に押圧されながら弾性変形し、幅3wは減少する。その後、電気ケーブル3は、溝開口部21gを通過し、内部溝21hに到達し、電気ケーブル3の弾性変形状態が解消される。図9Cの断面図に示すように、内部溝21hにおいては、電気ケーブル3の形状は復元し、電気ケーブル3は内部溝21hに収容される。この状態では、電気ケーブル3の幅3wよりも溝開口部21gの幅21wが小さいため、電気ケーブル3が内部溝21hから抜けることが防止される。
上記変形例においては、図9Cは、内部溝21h内に電気ケーブル3が収容された状態を示しているが、電気ケーブル3の保持状態が維持されながら電気ケーブル3の一部が溝開口部21gから突出してもよい。また、図9B及び図9Cに示すように、内部溝21hの形状は略円形(円が溝開口部21gによって切り欠かれた形状)であるが、この形状に限らず、矩形でもよい。内部溝21hの形状及び寸法は、電気ケーブル3の形状、寸法、或いは電気ケーブル3の保持状態に応じて適切に決定される。
また、内部溝21hの幅21xより小さい幅21wを有する溝開口部21gは、必ずしも溝部21bの形成部分の全てに設ける必要はない。即ち、溝部21bの形成箇所(延在方向)に沿って、複数の溝開口部21gが部分的に形成されていればよい。この場合、電気ケーブル3が内部溝21hから外れることを防止するように、複数の溝開口部21gが溝部21bの延在方向に沿って適切な位置に形成されてもよい。複数の溝開口部21gが形成される間隔は、等ピッチでもよい。更に、電気ケーブル3が溝部21bから外れやすい箇所に溝開口部21gが形成されてもよい。
この場合、図9A~図9Cに示す電気ケーブル3に代えて、内蔵電気ケーブル31が溝開口部21gを通じて内部溝21hに挿入され、内蔵電気ケーブル31は内部溝21hによって保持される。ここで、内部溝21hは、溝開口部21gにおいて開口し、溝部21bの内部に形成されている。溝開口部21gの幅21w(溝開口部21gの端部間の距離)は、内蔵電気ケーブル31の幅(径)よりも小さい。また、内部溝21hの幅21xは、溝開口部21gの幅21wよりも大きい。この状態では、内蔵電気ケーブル31の幅よりも溝開口部21gの幅21wが小さいため、内蔵電気ケーブル31が内部溝21hから抜けることが防止される。
Claims (13)
- 電気ケーブルと、前記電気ケーブルの先端の軸線方向に直交する受光面を有する固体撮像素子と、前記軸線方向に延在する成形品の表面に配線が形成され、前記配線によって前記電気ケーブルと前記固体撮像素子との間を電気的に接続し、前記固体撮像素子を実装するための実装面が前記成形品の先端に設けられている立体配線基体とを具備し、
前記実装面は、中心部を挟むように対向する2つの頂点を有し、前記2つの頂点間の距離が前記実装面の辺上における2点間の距離の内、最長となるように成形され、前記立体配線基体における前記実装面に平行な断面は前記実装面と同等または前記実装面より小さくなっており、前記固体撮像素子の平面視形状の辺上における最長となる2点間の距離が前記2つの頂点間の距離と等しいまたはより短くなっている撮像モジュール。 - 前記実装面は、六角形である請求項1に記載の撮像モジュール。
- 前記成形品は、前記成形品を挟むように位置する第1面及び第2面を有し、前記第1面及び前記第2面の各々に1本の電気ケーブルが設けられている請求項1に記載の撮像モジュール。
- 前記成形品における延在方向に形成された屈曲部の角度は、直角よりも大きくなるように設けられている請求項1又は請求項2に記載の撮像モジュール。
- 前記実装面に前記固体撮像素子を固定する凹形状の収容部を備えている請求項4に記載の撮像モジュール。
- 前記成形品の前記表面には、前記電気ケーブルを収容するために、前記成形品の延在方向に沿って延在する溝部が設けられている請求項1から請求項4のいずれか一項に記載の撮像モジュール。
- 前記溝部は、
前記成形品の前記表面と同一面上に位置し、前記電気ケーブルの径よりも小さい幅を有する溝開口部と、
前記溝部の内部に形成され、前記溝開口部の幅よりも大きい幅を有し、前記電気ケーブルを収容する内部溝
とを含む請求項6に記載の撮像モジュール。 - 前記電気ケーブルは、内部に複数の内蔵電気ケーブルを有し、
複数の前記内蔵電気ケーブルの数に合わせた数の溝部が設けられている請求項6に記載の撮像モジュール。 - 前記溝部は、
前記成形品の前記表面と同一面上に位置し、前記内蔵電気ケーブルの径よりも小さい幅を有する溝開口部と、
前記溝部の内部に形成され、前記溝開口部の幅よりも大きい幅を有し、前記内蔵電気ケーブルを収容する内部溝
とを含む請求項8に記載の撮像モジュール。 - 前記内蔵電気ケーブルは、内部導体、内部導体を被覆する一次被覆層、一次被覆層の周囲に設けられた外部導体及び外部導体を被覆する二次被覆層から構成される同軸ケーブルであり、
前記溝部は、前記内蔵電気ケーブルの先端において露出する前記内部導体、一次被覆層及び外部導体に沿って段差が設けられている請求項8に記載の撮像モジュール。 - 請求項1から請求項10のいずれか一項に記載の撮像モジュールと、前記撮像モジュールを収容する絶縁チューブとを具備する絶縁チューブ付き撮像モジュール。
- 請求項11に記載の絶縁チューブ付き撮像モジュールの立体配線基体及び固体撮像素子を、前記固体撮像素子に対して固定されたレンズユニットとともにスリーブ状の金属枠部材に収容してなるレンズ付き撮像モジュール。
- 請求項12に記載のレンズ付き撮像モジュールと、前記レンズ付き撮像モジュールを収容する挿入部とを具備する内視鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014000800.1T DE112014000800T5 (de) | 2013-02-13 | 2014-02-13 | Bildgebungsmodul, isolierrohrbefestigtes Bildgebungsmodul, linsenbefestigtes Bildgebungsmodul und Endoskop |
JP2015500282A JP6012842B2 (ja) | 2013-02-13 | 2014-02-13 | 絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、及び内視鏡 |
US14/761,757 US9667843B2 (en) | 2013-02-13 | 2014-02-13 | Imaging module, insulating-tube-attached imaging module, lens-attached imaging module, and endoscope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-025475 | 2013-02-13 | ||
JP2013025475 | 2013-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014126144A1 true WO2014126144A1 (ja) | 2014-08-21 |
Family
ID=51354143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053313 WO2014126144A1 (ja) | 2013-02-13 | 2014-02-13 | 撮像モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、及び内視鏡 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9667843B2 (ja) |
JP (1) | JP6012842B2 (ja) |
DE (1) | DE112014000800T5 (ja) |
WO (1) | WO2014126144A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106061365A (zh) * | 2014-10-20 | 2016-10-26 | 奥林巴斯株式会社 | 固体摄像装置及具有该固体摄像装置的电子内窥镜 |
JP6072209B1 (ja) * | 2015-11-30 | 2017-02-01 | 株式会社フジクラ | 撮像モジュール及び内視鏡 |
JP2017046832A (ja) * | 2015-08-31 | 2017-03-09 | 富士フイルム株式会社 | 内視鏡用撮像装置及び内視鏡 |
JP2017099856A (ja) * | 2016-10-05 | 2017-06-08 | 株式会社フジクラ | 撮像モジュール及び内視鏡 |
US10560612B2 (en) | 2015-08-31 | 2020-02-11 | Panasonic I-Pro Sensing Solutions Co., Ltd. | Endoscope |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6097644B2 (ja) * | 2013-06-19 | 2017-03-15 | 株式会社フジクラ | 撮像モジュール、測距モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、および内視鏡 |
US11632490B2 (en) | 2018-04-06 | 2023-04-18 | i-PRO Co., Ltd. | Camera module, camera, and cable connection method for camera module |
JP6596551B1 (ja) * | 2018-09-06 | 2019-10-23 | 株式会社フジクラ | 電子部品ユニット |
US11963667B2 (en) * | 2021-11-26 | 2024-04-23 | Altek Biotechnology Corporation | Endoscopic image capturing assembly and endoscopic device therewith |
DE102021132567B4 (de) * | 2021-12-09 | 2024-08-08 | NET New Electronic Technology GmbH | Endoskop und Endoskopsystem für Cardio-Float Anwendungen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298318A (ja) * | 1985-10-25 | 1987-05-07 | Olympus Optical Co Ltd | 内視鏡 |
JPS63118120A (ja) * | 1987-10-08 | 1988-05-23 | Olympus Optical Co Ltd | 撮像装置 |
JPS63155016A (ja) * | 1986-12-18 | 1988-06-28 | Asahi Optical Co Ltd | 固体撮像素子を用いた内視鏡 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000209472A (ja) * | 1999-01-11 | 2000-07-28 | Sony Corp | 固体撮像装置 |
DE19924189C2 (de) * | 1999-05-27 | 2001-04-26 | Storz Karl Gmbh & Co Kg | Bildaufnehmermodul sowie Verfahren zum Zusammenbauen eines derartigen Bildaufnehmermoduls |
JP2001027734A (ja) | 1999-07-13 | 2001-01-30 | Olympus Optical Co Ltd | 撮像装置 |
JP5530055B2 (ja) | 2007-03-28 | 2014-06-25 | オリンパスメディカルシステムズ株式会社 | 撮像装置 |
DE102007034704A1 (de) | 2007-07-18 | 2009-01-22 | Karl Storz Gmbh & Co. Kg | Bildaufnehmermodul |
US9308348B2 (en) * | 2007-11-21 | 2016-04-12 | Actuated Medical, Inc. | Devices and methods for clearing occlusions and for providing irrigation in in-situ artificial and natural lumens |
JP2009201762A (ja) | 2008-02-28 | 2009-09-10 | Hoya Corp | 内視鏡および撮影モジュール |
US8698887B2 (en) * | 2010-04-07 | 2014-04-15 | Olympus Corporation | Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus |
JP5165023B2 (ja) | 2010-05-20 | 2013-03-21 | パナソニック株式会社 | 内視鏡 |
DE102010047288A1 (de) * | 2010-09-27 | 2012-03-29 | Karl Storz Gmbh & Co. Kg | Bildaufnehmermodul sowie Verfahren zur Herstellung eines Bildaufnehmermoduls |
JP6210656B2 (ja) | 2011-06-08 | 2017-10-11 | オリンパス株式会社 | 撮像装置 |
JP5912058B2 (ja) * | 2012-03-30 | 2016-04-27 | 株式会社フジクラ | 撮像モジュール、レンズ付き撮像モジュール、内視鏡、撮像モジュールの製造方法、フレキシブル配線基板成形装置 |
JP5259852B1 (ja) | 2012-03-30 | 2013-08-07 | 株式会社東芝 | 支持台、撮像装置、撮像装置の接続方法 |
-
2014
- 2014-02-13 DE DE112014000800.1T patent/DE112014000800T5/de not_active Withdrawn
- 2014-02-13 WO PCT/JP2014/053313 patent/WO2014126144A1/ja active Application Filing
- 2014-02-13 JP JP2015500282A patent/JP6012842B2/ja active Active
- 2014-02-13 US US14/761,757 patent/US9667843B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298318A (ja) * | 1985-10-25 | 1987-05-07 | Olympus Optical Co Ltd | 内視鏡 |
JPS63155016A (ja) * | 1986-12-18 | 1988-06-28 | Asahi Optical Co Ltd | 固体撮像素子を用いた内視鏡 |
JPS63118120A (ja) * | 1987-10-08 | 1988-05-23 | Olympus Optical Co Ltd | 撮像装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106061365A (zh) * | 2014-10-20 | 2016-10-26 | 奥林巴斯株式会社 | 固体摄像装置及具有该固体摄像装置的电子内窥镜 |
JP2017046832A (ja) * | 2015-08-31 | 2017-03-09 | 富士フイルム株式会社 | 内視鏡用撮像装置及び内視鏡 |
US10560612B2 (en) | 2015-08-31 | 2020-02-11 | Panasonic I-Pro Sensing Solutions Co., Ltd. | Endoscope |
JP6072209B1 (ja) * | 2015-11-30 | 2017-02-01 | 株式会社フジクラ | 撮像モジュール及び内視鏡 |
US10429633B2 (en) | 2015-11-30 | 2019-10-01 | Fujikura Ltd. | Imaging module and endoscope |
JP2017099856A (ja) * | 2016-10-05 | 2017-06-08 | 株式会社フジクラ | 撮像モジュール及び内視鏡 |
Also Published As
Publication number | Publication date |
---|---|
US9667843B2 (en) | 2017-05-30 |
US20150365571A1 (en) | 2015-12-17 |
JPWO2014126144A1 (ja) | 2017-02-02 |
DE112014000800T5 (de) | 2015-10-29 |
JP6012842B2 (ja) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012842B2 (ja) | 絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、及び内視鏡 | |
JP4366356B2 (ja) | 画像ピックアップモジュールおよび画像ピックアップモジュールの組み立て方法 | |
CN100490162C (zh) | 固体摄像装置及其制造方法 | |
US11337597B2 (en) | Imaging module and method of manufacturing the same | |
US20200203854A1 (en) | Cable assembly, cable holder, and production method for cable assembly | |
JP6072209B1 (ja) | 撮像モジュール及び内視鏡 | |
JP5583372B2 (ja) | 集合ケーブル、電子回路モジュールおよび撮像装置 | |
JP2013123628A (ja) | 内視鏡用撮像ユニット | |
JP6097644B2 (ja) | 撮像モジュール、測距モジュール、絶縁チューブ付き撮像モジュール、レンズ付き撮像モジュール、および内視鏡 | |
JP6689908B2 (ja) | 撮像モジュール | |
JP6535087B2 (ja) | 撮像モジュール、および撮像モジュールの製造方法 | |
JP6081170B2 (ja) | 撮像装置、内視鏡及び撮像装置の製造方法 | |
CN113568127A (zh) | 摄像模组及其组装方法、电子设备 | |
US10660507B2 (en) | Imaging module and catheter with flexible wiring substrate | |
JP2011249870A (ja) | 撮像装置 | |
JP2017099856A (ja) | 撮像モジュール及び内視鏡 | |
JP6188479B2 (ja) | 基板モジュール | |
US10200580B2 (en) | Imaging module and catheter with flexible wiring substrate | |
JP6743117B2 (ja) | 撮像モジュール | |
JP5263021B2 (ja) | 細径同軸ケーブルアレイ及びその製造方法 | |
JP2019047300A (ja) | 撮像モジュール及びハーネスユニット | |
JP2005165165A (ja) | レセプタクル及びレセプタクルの製造方法 | |
US20190231180A1 (en) | Imaging module | |
JP2007232888A (ja) | 光ファイバ接続構造 | |
JP2010251605A (ja) | 固体撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14752167 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015500282 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14761757 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014000800 Country of ref document: DE Ref document number: 1120140008001 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14752167 Country of ref document: EP Kind code of ref document: A1 |