WO2014126066A1 - ピストンリング及びその製造方法 - Google Patents

ピストンリング及びその製造方法 Download PDF

Info

Publication number
WO2014126066A1
WO2014126066A1 PCT/JP2014/053094 JP2014053094W WO2014126066A1 WO 2014126066 A1 WO2014126066 A1 WO 2014126066A1 JP 2014053094 W JP2014053094 W JP 2014053094W WO 2014126066 A1 WO2014126066 A1 WO 2014126066A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston ring
chromium
plating
plating solution
compound
Prior art date
Application number
PCT/JP2014/053094
Other languages
English (en)
French (fr)
Inventor
學 品田
鈴木 正行
村松 暁
洋輔 高階
Original Assignee
日本化学工業株式会社
株式会社クリタ
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社, 株式会社クリタ, 株式会社リケン filed Critical 日本化学工業株式会社
Priority to CN201480007674.2A priority Critical patent/CN105143520A/zh
Priority to JP2014536017A priority patent/JP5636140B1/ja
Priority to EP14752012.6A priority patent/EP2957660A4/en
Publication of WO2014126066A1 publication Critical patent/WO2014126066A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a piston ring having a chromium plating film and a method for manufacturing the same.
  • chrome plating Since chrome plating has a high hardness and a low coefficient of friction, it is widely used for sliding members that require wear resistance, such as piston rings. However, a large amount of hexavalent chromium is used in the plating solution used for this plating. Since hexavalent chromium is concerned about the influence on the human body, development of a plating solution using trivalent chromium with little concern is desired.
  • Patent Document 1 describes using a plating solution having a composition of chromium chloride hexahydrate, boric acid, glycine, ammonium chloride, and aluminum chloride hexahydrate. ing.
  • This plating solution has an advantage that a good plating surface can be obtained.
  • ammonium chloride in the plating solution may be decomposed to generate chlorine gas, there is a concern that the working environment may be adversely affected.
  • Patent Document 2 describes that ammonium sulfamate is used as an ammonium source in order to deposit a thick chromium plating having a specular gloss.
  • Patent Document 3 proposes adding urea to a trivalent chromium-containing liquid for the purpose of maintaining the water resistance of the film with trivalent chromium.
  • the present applicant also has a film thickness that can be industrially satisfied in advance, and as a trivalent chromium plating solution capable of forming a chromium plating excellent in film properties such as corrosion resistance and wear resistance, a trivalent chromium compound,
  • a trivalent chromium plating solution comprising an aqueous solution containing a pH buffer, an aminocarboxylic acid compound, a sulfamate compound and an aminocarbonyl compound was proposed (see Patent Document 4).
  • the physical properties of the plating film are formed by positively forming a dense mesh-like macrocrack in the chromium plating film and the crack reaching the base material or the groove width of the crack widens.
  • a method for suppressing deterioration is known.
  • macro cracks become one factor of peeling and collapse of the coating during use of the plated member, studies are being made to improve the corrosion resistance by suppressing the occurrence of macro cracks. Macro cracks are likely to occur not only during the plating operation but also under heat treatment conditions of 200 ° C. or higher after plating.
  • an object of the present invention is to produce macro cracks in the plating film even under high-temperature heat treatment conditions of about 200 to 300 ° C. with respect to a piston ring having a plating film formed using a trivalent chromium plating solution. It is intended to achieve excellent film properties in terms of corrosion resistance and wear resistance.
  • a trivalent chromium compound As a result of intensive studies to further improve the properties of a plating film formed using a trivalent chromium plating solution, the present inventors have obtained a trivalent chromium compound, a pH buffer, a sulfamate compound, and an aminocarbonyl compound.
  • a chromium plating is formed using a trivalent chromium plating solution in which a complexing agent selected from a dicarboxylic acid and a salt thereof is further added to a trivalent chromium plating solution containing benzene, it is 200 to 300 ° C. as compared with the conventional method. It has been found that a macroscopic crack in the plating film can be effectively suppressed even under heat treatment conditions of a certain degree, and a plating film having excellent film properties such as corrosion resistance and wear resistance can be formed. It was.
  • the piston ring to be provided by the present invention has an annular piston ring base material and a plating film provided on the outer peripheral surface of the piston ring base material.
  • the plating film is an aqueous solution containing a trivalent chromium compound, a pH buffer, a sulfamate compound, an aminocarbonyl compound, and a complexing agent containing at least one selected from dicarboxylic acids and salts thereof. It is chromium plating formed from a trivalent chromium plating solution.
  • the occurrence of macro cracks in the plating film provided on the surface of the piston ring can be more effectively suppressed even under heat treatment conditions of about 200 to 300 ° C., and the corrosion resistance, wear resistance, etc.
  • a piston ring having a chromium plating with excellent film properties is provided.
  • the plating film of the piston ring of the present invention can have a film thickness sufficient for piston ring applications.
  • the trivalent chrome plating solution used to obtain the piston ring according to the present invention suppresses the generation of harmful gases such as halogen gas due to decomposition of components in the solution, so that it has excellent long-term storage and improves the working environment. Can contribute.
  • FIG. 4 is a scanning electron micrograph of a longitudinal section of a plating film in Example 2.
  • FIG. 4 is a scanning electron micrograph of a longitudinal section of a plating film in Example 4.
  • FIG. 1 (a) is a perspective view showing an embodiment of a piston ring
  • FIG. 1 (b) is an end view in the II direction of the piston ring of FIG. 1 (a).
  • the piston ring 1 of the present embodiment includes an annular piston ring base material 2 having two end portions facing each other in the circumferential direction, and an inner peripheral surface and an outer peripheral surface S facing each other in the radial direction, and an outer peripheral surface of the piston ring base material 2 And a plating film 3 covering S.
  • the piston ring 1 has two end portions facing each other in the circumferential direction, and an inner circumferential surface and an outer circumferential surface facing each other in the radial direction.
  • the outer peripheral surface of the piston ring 1 is a sliding surface that slides against a mating member such as a liner when the piston ring is used in an engine or the like.
  • the plating film 3 is chromium plating formed using a trivalent chromium plating solution described below.
  • the piston ring 1 can be manufactured, for example, by a method including a step of forming the plating film 3 on the outer peripheral surface S of the piston ring base material 2 using a chromium plating solution.
  • the plating film may also be provided on a surface other than the outer peripheral surface S of the piston ring base material 2.
  • the trivalent chromium plating solution for forming chromium plating on the piston ring substrate is an aqueous solution containing water as a medium.
  • This plating solution contains a trivalent chromium compound, a pH buffer, an aminocarboxylic acid compound, a sulfamate compound, an aminocarbonyl compound, and at least one complexing agent selected from carboxylic acids and salts thereof. To do.
  • a water-soluble compound having a trivalent chromium valence can be used without particular limitation.
  • examples of such compounds include inorganic acid chromium such as chromium chloride, chromium nitrate, chromium sulfate and chromium phosphate, chromium lactate, chromium gluconate, chromium glycolate, chromium oxalate, chromium malate, chromium maleate, and malon.
  • Organic acid chromium such as chromium acid chromium, chromium citrate, chromium acetate and chromium tartrate can be mentioned.
  • trivalent chromium compounds can be used alone or in combination of two or more.
  • concentration of trivalent chromium in the plating solution is 0.2 to 1.8 mol / liter, or 0.4 to 1.4 mol / liter, based on the volume of the plating solution, because chromium plating can be performed successfully. It may be.
  • the pH buffer contained in the plating solution is blended for the purpose of successfully carrying out chrome plating by making the pH suitable for chrome plating.
  • Suitable pH buffering agents for this purpose include, for example, boric acid, sodium borate, potassium borate, ammonium sulfate, phosphoric acid, disodium hydrogen phosphate, dipotassium hydrogen phosphate, sodium carbonate, and sodium bicarbonate. .
  • boric acid, sodium borate or potassium borate can be used. These compounds can be used alone, or can be used as a buffer system combining two or more kinds.
  • the blending amount of the pH buffering agent can be set such that the pH of the plating solution can be maintained at 0.3 to 2.0, or 0.4 to 1.5.
  • boric acid is used as a pH buffering agent, there is an advantage that, in addition to the pH buffering action, the metal chromium crystals produced by the reduction become finer.
  • the sulfamate compound contained in the plating solution mainly has a role as a supporting electrolyte in the plating solution, and is blended for the purpose of increasing the electrical conductivity of the plating solution to a predetermined level. Since the sulfamate compound also has a pH buffering action of the plating solution, the pH of the plating solution is further stabilized by the combined use with the pH buffer described above.
  • the sulfamate compound also has a catalytic action of a reaction in which trivalent chromium is reduced, whereby a metal chromium crystal refining action and a chromium film glossing action are exhibited.
  • sulfamate for example, ammonium sulfamate, sodium sulfamate, or potassium sulfamate can be used. These compounds can be used alone or in combination of two or more.
  • the sulfamate can be blended in an amount of 0.3 to 2.5 mol, particularly 0.5 to 2 mol with respect to 1 mol of trivalent chromium in the plating solution. By using such a blending amount, the voltage at the time of electrolytic plating decreases, the rise in the temperature of the plating solution is suppressed, and the production of chromium hydroxide that affects the properties of the plating film is suppressed. .
  • the concentration of sulfamate in the plating solution can be 0.4 to 2.1 mol / liter, particularly 0.6 to 1.9 mol / liter, based on the volume of the plating solution.
  • the aminocarbonyl compound contained in the plating solution is a compound having at least one carbonyl group and at least one amino group in the molecule.
  • the aminocarbonyl compound has the effect of increasing the reduction rate of trivalent chromium.
  • the reason is considered as follows. That is, in the process where trivalent chromium is reduced to metallic chromium, divalent chromium is generated. It is considered that divalent chromium is present adsorbed on the cathode or in the electric double layer.
  • the reduction of trivalent chromium to metallic chromium is the rate-limiting step.
  • the aminocarbonyl compound has a function of increasing the rate at which divalent chromium is reduced to metallic chromium.
  • the present inventor believes that the rate at which trivalent chromium is reduced to metallic chromium is increased.
  • the aminocarbonyl compound also has an action of suppressing the triation of trivalent chromium.
  • trivalent chromium In the process in which trivalent chromium is reduced to metallic chromium, hydrolysis and olation reactions occur near the cathode, which may inhibit metal chromium electrodeposition.
  • an aminocarbonyl compound When an aminocarbonyl compound is present in the plating solution, the compound forms a complex with trivalent chromium. Since this complex formation reaction is a competitive reaction with the trivalent chromium olation, the trivalent chromium olation can be minimized. This also increases the reduction rate of trivalent chromium.
  • the aminocarbonyl compound acts as a pH buffer agent that hardens the plating film by supplying nitrogen atoms contained in the compound to the plating film, and maintains the pH of the plating solution. It also has the effect of.
  • aminocarbonyl compounds have a remarkable effect when used in combination with the sulfamate compounds described above. Details are as follows.
  • the advantages of blending the sulfamate compound in the plating solution of the present embodiment are as described above, and the electrodeposition stress of the plating film tends to increase due to the use of the sulfamate compound.
  • An increase in electrodeposition stress causes cracks in the plating film.
  • the sulfamate compound and the aminocarbonyl compound coexist, the growth rate of the chromium crystal is increased by the aminocarbonyl compound, so that the development of the magnetic field is inhibited, and as a result, the electrodeposition stress is lowered. This effectively suppresses the occurrence of cracks in the plating film.
  • the blending amount of the sulfamate with respect to the aminocarbonyl compound used in the present embodiment may be in the range of 0.4 to 1.5 in molar ratio.
  • aminocarbonyl compounds examples include compounds having at least one amide group formed by bonding the carbonyl group and amino group, such as urea and carbamic acid. These compounds can be used alone or in combination.
  • urea has high acidity of hydrogen at the ⁇ -position with respect to the carbonyl group, so that hydrogen can be easily extracted.
  • the aminocarbonyl compound may be blended in an amount of 0.2 to 3.0 mol, particularly 0.3 to 2.2 mol, with respect to 1 mol of trivalent chromium in the plating solution.
  • the concentration of the aminocarbonyl compound in the plating solution may be 0.1 to 4.4 mol / liter, particularly 0.2 to 2.5 mol / liter.
  • Patent Document 3 described above also describes that urea, which is a kind of aminocarbonyl compound, is added to a trivalent chromium plating solution.
  • urea which is a kind of aminocarbonyl compound
  • the reason for using urea in the same document is to decompose urea to produce ammonia and to improve the water resistance of the plating film with ammonia (paragraph [0033] of Patent Document 3). Therefore, urea itself does not exist in the plating solution described in this document, or even if it exists, the amount thereof is considered to be very small.
  • this document relates to a chromate chemical conversion treatment solution, and the role of urea is completely different from the plating solution of this embodiment.
  • the complexing agent selected from the dicarboxylic acids or salts thereof contained in the plating solution is for the purpose of forming a complex with trivalent chromium in the plating solution to stabilize the plating solution, and to successfully perform chromium plating. Blended.
  • the present applicants previously used an aminocarboxylic acid compound as a drug having this type of function, but in this embodiment, by using a complexing agent selected from dicarboxylic acid or a salt thereof, an aminocarboxylic acid is used.
  • a plating film that can more effectively suppress the occurrence of macro cracks even under heat treatment conditions of about 200 to 300 ° C., and has better film properties such as corrosion resistance and wear resistance. Can be formed.
  • Dicarboxylic acid is a compound having two carboxyl groups in the molecule.
  • the dicarboxylic acid include malonic acid, malic acid, maleic acid, tartaric acid, succinic acid, succinic acid, and the like.
  • the dicarboxylic acid may be in the form of a salt such as an alkali metal salt such as disodium malonate, sodium malate, and sodium tartrate. These complexing agents can be used alone or in combination of two or more.
  • the complexing agent used in the present embodiment can include a dicarboxylic acid having 2 to 3 carbon atoms or a salt thereof.
  • malonic acid has a particularly high effect of suppressing the occurrence of macro cracks in the plating film, and can form a plating film that is more excellent in terms of film properties such as corrosion resistance and wear resistance.
  • the complexing agent selected from dicarboxylic acids or salts thereof may be blended in an amount of 0.01 to 0.8 mol, particularly 0.05 to 0.6 mol, with respect to 1 mol of trivalent chromium in the plating solution. These blending amounts are advantageous in that a stable chromium complex plating solution can be obtained and appropriate electrolytic plating can be performed. For the same reason, the concentration of the dicarboxylic acid or its salt in the plating solution may be 0.01 to 0.8 mol / liter, particularly 0.05 to 0.5 mol / liter.
  • the rate at which trivalent chromium is reduced to metallic chromium is high, while more effectively suppressing the occurrence of macro cracks seen in the plating film, A plating film having a film thickness that can be industrially satisfied can be easily formed.
  • advantageous effects such as an increase in the hardness of the plating film and an increase in corrosion resistance, wear resistance and the like are also exhibited.
  • the plating solution used to obtain the piston ring of the present embodiment does not need to contain ammonium chloride, which is a component mixed in the conventional plating solution. Generation of generated chlorine gas can be prevented, and the environment of the plating operation is improved. From this point of view, the plating solution of the present embodiment may not contain ammonium halide such as ammonium chloride.
  • the concentration of ammonium halide in the plating solution may be 0.1 mol / liter or less based on the volume of the plating solution.
  • ceramic particles can also be blended in the plating solution used to obtain the piston ring of the present embodiment. Ceramic particles are taken into the plating film during the metal chromium electrodeposition process. Ceramic particles are mainly present at grain boundaries or defects in the plating film, thereby suppressing the propagation of cracks and effectively mitigating fatigue, fracture, and delamination. In addition, the ceramic particles exposed on the surface are in contact with the mating sliding surface as a sliding surface in the friction and wear action with the mating sliding surface, improving wear resistance and seizure resistance, and forming an oil film. Will help.
  • the ceramic particles may have an average particle size of 0.2 to 12 ⁇ m, in particular 0.4 to 6.0 ⁇ m, especially 0.5 to 3.0 ⁇ m. The average particle diameter of the ceramic particles can be measured by, for example, a laser method.
  • the average particle size of the ceramic particles blended in the plating solution of the present embodiment is within the above range, the average particle size of the ceramic particles taken into the plating film is usually 0.2 to 8.0 ⁇ m, 0.3 to 5.0 ⁇ m, or 0.5 to 3.0 ⁇ m. Thereby, the effects such as fatigue, breakage, and peeling effectively described above can be further prominent.
  • the shape of the ceramic particles may be spherical or the like from the viewpoint of improving the friction with the mating sliding surface and the wear action.
  • the ceramic particles are not particularly limited as long as they do not adversely affect the reduction of trivalent chromium. From the viewpoint of easy incorporation into the plating film, those having a zeta potential in the plating solution of 20 to 100 mV, particularly 40 to 70 mV can be used. Examples of such ceramic particles include Al 2 O 3 , Si 3 N 4 , AlN, Cr 3 C 2 , B 4 C, TiC, WC, TiO 2 , Cr 2 O 3 , c-BN, and Fe 3 O 4. And the like. These ceramic particles can be used alone or in combination of two or more.
  • the ceramic particles are blended in the plating solution of this embodiment so as to be 5 to 100 g / liter, particularly 10 to 60 g / liter, so that the fluidity of the plating solution is suitable.
  • the amount of ceramic particles taken up can be easily adjusted to an appropriate amount.
  • Ceramic particles generally have a large specific gravity, so they tend to settle in the plating solution. Depending on the particle size, ceramic particles may aggregate in the plating solution. From the viewpoint of preventing these problems, when ceramic particles are blended in the plating solution, aluminum chloride can be blended together with the ceramic particles as an aggregation inhibitor. Various surfactants can also be blended in the plating solution as an aggregation inhibitor.
  • Surfactants include anionic surfactants such as monoalkyl sulfates and alkylpolyoxyethylene sulfates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, polyoxyethylene alkyl ethers and fatty acid sorbitans
  • anionic surfactants such as monoalkyl sulfates and alkylpolyoxyethylene sulfates
  • cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts
  • polyoxyethylene alkyl ethers and fatty acid sorbitans
  • Nonionic surfactants such as esters are exemplified.
  • aluminum chloride exhibits an advantageous effect of controlling the zeta potential of the ceramic particles to improve the dispersibility of the particles and preventing the particles from aggregating. Moreover, it becomes easy to take in ceramic particles uniformly in a plating film. From the viewpoint of making these effects more prominent, aluminum chloride may be added in an amount of 0.005 to 0.5 mol, particularly 0.01 to 0.3 mol, per 1 mol of trivalent chromium in the plating solution. Good. For the same reason, the concentration of aluminum chloride in the plating solution may be 0.02 to 0.5 mol / liter, particularly 0.05 to 0.3 mol / liter, based on the volume of the plating solution.
  • a water-soluble organic solvent can also be blended in the plating solution used to obtain the piston ring of the present embodiment.
  • tip can be prevented effectively by the mixing
  • the water-soluble organic solvent may be added in an amount of 0.4 to 2.1 mol, particularly 0.6 to 1.3 mol, with respect to 1 mol of trivalent chromium in the plating solution.
  • the water-soluble organic solvent include glycerin, polyethylene glycol, ethanol, methanol, and n-propanol.
  • the plating solution of this embodiment contains a pH buffer as described above, and the pH of the solution may be kept in the range of 0.3 to 2.0, or 0.5 to 1.5.
  • the water as the plating solution medium used to obtain the piston ring of the present embodiment may be pure water, ion exchange water, industrial water, tap water, distilled water, or the like. Of these, industrial water and tap water can be used from the economical aspect on the premise that the storage stability of the plating solution and the film properties are not affected.
  • the plating film of the piston ring of this embodiment can contain self-lubricating particles as necessary.
  • a plating solution containing self-lubricating particles By using a plating solution containing self-lubricating particles, a plating film containing self-lubricating particles can be formed.
  • the surface frictional force is reduced when the particles are exposed to the surface, so that the wear resistance of the plating film can be further improved.
  • the self-lubricating particles include graphite, molybdenum disulfide, tungsten disulfide, fluororesin, or boron nitride (h-BN) particles.
  • the compounding amount of the self-lubricating particles may be 5 to 70 g / liter, particularly 10 to 50 g / liter, based on the volume of the plating solution.
  • the self-lubricating particles may be scaly. In the case of scales, the thickness may be 0.5 to 2 ⁇ m and the diameter may be 1 to 10 ⁇ m.
  • the temperature of the plating bath can be set to 20 to 60 ° C. or 30 to 60 ° C.
  • the current density can be set to 15 to 60 A / dm 2 or 20 to 40 A / dm 2 .
  • the anode graphite or various dimensionally stabilized anodes (DSA) such as a Ti—Pt electrode can be used, and as the cathode, a piston ring substrate which is an object to be plated can be used.
  • DSA various dimensionally stabilized anodes
  • chromium is generally amorphous. Amorphous chromium plating films tend to have lower hardness than crystalline ones. Therefore, the plating film can be made into a crystalline chromium film by performing a heat treatment process on the plating film formed by electrolytic plating.
  • the heat treatment conditions may be 150 to 600 ° C., 200 to 600 ° C., or 200 to 450 ° C. in the atmosphere.
  • the heating time can be 30 to 90 minutes, provided that the temperature is within this range.
  • the plating film obtained by electrolytic plating under the above conditions has a film thickness that is sufficient to be applied to the piston ring and that is industrially satisfactory.
  • the film thickness may be 3 to 300 ⁇ m, or 5 to 100 ⁇ m.
  • the plating film obtained by electrolytic plating under the above conditions is particularly excellent in film properties such as wear resistance and corrosion resistance. Therefore, the sliding characteristics required for the piston ring can be imparted by plating the sliding surface (outer peripheral surface) of the piston ring base material using the trivalent chromium plating solution of the present embodiment.
  • Piston ring base material The piston ring base material is not particularly limited and can be appropriately selected from those usually used in the art.
  • the material of the piston ring base material may be, for example, a metal such as iron, or a ceramic or plastic such as alumina with a conductive film on the surface.
  • the piston ring substrate has, for example, an outer diameter of 20 mm to 100 mm, an inner diameter of 15 mm to 950 mm, and a thickness of 0.5 mm to 50 mm.
  • low chromium steel 5 ⁇ 5 ⁇ 20 tip 10R
  • SUS304 50 ⁇ 100 ⁇ 5 mm
  • the obtained plated product was heat-treated at 200 ° C. for 30 minutes in the air, and then evaluated.
  • Comparative Example 3 The components shown in Table 1 below were added to water to prepare a hexavalent chromium plating solution having the composition shown in the same table. Using the obtained plating solution, electrolytic plating was performed under the conditions shown in the same table. The same cathode as in Example 1 was used. A lead tin plate was used as the anode. As a base material for plating, low chromium steel (tip 10R of dimensions 5 ⁇ 5 ⁇ 20) was used for evaluating wear resistance of the plating film, and SUS304 (dimension 50 ⁇ 100 ⁇ 5 mm) was used for evaluating corrosion resistance. . After the plating treatment, the obtained plated product was heat-treated at 200 ° C. for 30 minutes in the air, and then evaluated.
  • tip 10R of dimensions 5 ⁇ 5 ⁇ 20
  • SUS304 dimension 50 ⁇ 100 ⁇ 5 mm
  • the thickness of the chromium plating film in the obtained plated product was measured by the following method. Further, the appearance of the surface of the plating film was visually observed to investigate the degree of gloss and the presence of cracks. Further, the Vickers hardness of the plating film was measured by the following method, and the wear resistance and corrosion resistance were evaluated by the following methods. Furthermore, about Example 2 and 3 and the comparative example 2, the content rate (dispersion degree) of the ceramic particle in a plating film was measured with the following method. The results are shown in Table 2 below.
  • Thickness of plating film The thickness of the cross section of the plating film was measured at a magnification of 400 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS).
  • Vickers Hardness of Plating Film The Vickers hardness of the cross section of the plating film was measured with a load of 200 gf ⁇ 15 sec using a microhardness tester (HM-103 manufactured by Mitutoyo).
  • the abrasion resistance of the plating films was evaluated using a Kaken type corrosion wear tester.
  • Cast iron FC250 conforming to JIS G 5501-1995
  • the contact load in the friction tester was 39N.
  • the temperature of the corrosive liquid was normal temperature.
  • the amount of wear of the plating film was measured, and the value was used as an index of wear resistance.
  • a SUS304 plated product obtained in the examples or comparative examples having a plating film area of 1 cm 2 was prepared.
  • the plated product was suspended in a sulfuric acid and hydrochloric acid aqueous solution (volume: 1 liter) adjusted to a predetermined pH with a vinyl fishing line.
  • the temperature of the aqueous solution was kept at 70 ° C., and the aqueous solution was stirred for 1 hour. Thereafter, the amount of chromium dissolved in the aqueous solution was measured by an ICP emission spectrometer (ICPS-7510 manufactured by Shimadzu Corporation), and used as a measure of corrosion resistance.
  • ICPS-7510 manufactured by Shimadzu Corporation
  • the content rate here is an area ratio of ceramic particles in an observation field per unit area when a cross section of the plating film is observed. This area ratio is measured by the following method. That is, the longitudinal section of the plating film was observed at a magnification of 1000 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS). And the ratio of the area which the ceramic particle which exists in a 30 micrometer square frame occupies was measured using the laser microscope.
  • the plating film was heat-treated under the conditions shown in Table 2, and after the heat treatment, the film cross-section of the plating film was corroded with Murakami's reagent, and then a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS) was used. Measurement was performed at double magnification, and the degree of macro cracks was evaluated based on the following evaluation criteria.
  • the scanning electron micrograph of the longitudinal cross-section of the plating film in the chromium plating obtained from Example 1 and Comparative Example 1 is shown in FIG. A: Less than 10 macro cracks B: 10 or more and less than 20 macro cracks C: 20 or more macro cracks
  • Example 1 As is clear from the comparison between Example 1 and Examples 2 and 3, it can be seen that the wear resistance of the plating film is further improved by blending ceramic particles in the plating solution.
  • Piston ring fabrication and evaluation Piston ring base material made of low-chromium steel for piston rings with a bore of 73 mm, width (radial direction) 2.3 mm, and thickness (piston travel direction) 1.0 mm Prepared as.
  • chromium plating plating film
  • the plating film was heat-treated at 200 ° C. for 30 minutes in the air.
  • the piston ring was attached to a 4-cylinder gasoline engine with a displacement of 1500 cm 3 (bore diameter 73 mm), and the engine was operated intermittently for 100 hours under the operating conditions of a rotational speed of 5,700 rpm and a load of 4/4.
  • the piston ring was taken out and the wear amount of the plating film and the cylinder wear depth were measured.
  • the wear amount of the plating film the difference in the thickness of the piston ring before and after the test was measured at five locations at equal intervals in the circumferential direction of the piston ring.
  • the cylinder wear depth 1/2 of the difference in the cylinder diameter before and after the test was measured at five locations near the center in the axial direction of the sliding portion of the top ring at equal intervals in the circumferential direction.
  • engine performance engine oil consumption was measured immediately after the start of operation and immediately before the end of operation for 100 hours. The evaluation results are shown in Table 3.
  • FIG. 3 shows a scanning electron micrograph of the longitudinal section of the plating film obtained in Example 2. As shown in FIG. 3, it was confirmed that spherical ceramic particles were taken into the plating film.
  • Example 4 A trivalent chromium plating solution having the same composition as in Example 1 was prepared except that 30 g / liter of scaly molybdenum disulfide particles having an average thickness of 1 ⁇ m and an average diameter of 6 ⁇ m were added as self-lubricating particles. And the piston ring which has a plating film by the method similar to Example 1 was created. A scanning electron micrograph of the longitudinal section of the created piston ring is shown in FIG. The dark portions in FIG. 4 are molybdenum disulfide particles, and it was confirmed that a good plating film was formed in which the scaly molybdenum disulfide particles were arranged in the lateral direction so as to interrupt the current.
  • a piston ring was prepared using the same plating solution as in Example 1 except that 30 g / liter of spherical molybdenum disulfide particles having an average particle diameter of 2 ⁇ m were contained.
  • the surface friction force of the obtained plating film of the piston ring was 67% with respect to the surface friction force of the plating film of Example 1.
  • the occurrence of macro cracks in the plating film is more effectively suppressed even under heat treatment conditions of about 200 to 300 ° C., and has a film thickness that is industrially satisfactory, and has corrosion resistance and wear resistance.
  • a piston ring having a chromium plating having excellent coating properties such as properties is provided.
  • a possible piston ring is provided.

Abstract

 環状のピストンリング基材と、ピストンリング基材の外周面上に形成されためっき皮膜と、を有するピストンリングが開示される。めっき皮膜は、三価クロム化合物と、pH緩衝剤と、スルファミン酸塩化合物と、アミノカルボニル化合物と、ジカルボン酸及びその塩から選ばれる少なくとも一種を含む錯化剤と、を含有する水溶液である三価クロムめっき液を用いて形成されたクロムめっきである。

Description

ピストンリング及びその製造方法
 本発明は、クロムめっき皮膜を有するピストンリング及びその製造方法に関する。
 クロムめっきは、高い硬度と低い摩擦係数を有するので、ピストンリングをはじめとする、耐摩耗性を要する摺動部材に広く用いられている。しかしこのめっきに用いられるめっき液には多量の六価クロムが用いられている。六価クロムは人体への影響が懸念されるので、その懸念の少ない三価クロムを用いためっき液の開発が望まれている。
 三価のクロムを用いためっき液として、例えば特許文献1には、塩化クロム六水和物、ホウ酸、グリシン、塩化アンモニウム及び塩化アルミニウム六水和物の組成のめっき液を用いることが記載されている。このめっき液は、良好なめっき表面を得ることができるという利点を有する。しかし、めっき液中の塩化アンモニウムが分解して塩素ガスが発生する可能性があるので、作業環境に悪影響を及ぼすことが懸念される。
 また、三価のクロムを用いて形成されためっき皮膜は、膜厚を大きくすることが容易でなく、厚いめっき皮膜が要求されるピストンリング用途では実用的なめっき液を供給できているとは言い難い。これを解決する目的で、特許文献2では、鏡面光沢を有する厚いクロムめっきを電析させるために、アンモニウム源としてスルファミン酸アンモニウムを使用することが記載されている。
 特許文献3では三価クロムによる皮膜の耐水性を維持させる目的で、三価のクロムの含有液に尿素を加えることが提案されている。
 本出願人も、先に工業的に満足し得る膜厚をもち、耐食性及び耐摩耗性等の皮膜特性に優れたクロムめっきを形成することができる三価クロムめっき液として、三価クロム化合物、pH緩衝剤、アミノカルボン酸化合物、スルファミン酸塩化合物及びアミノカルボニル化合物を含有する水溶液からなる三価クロムめっき液を提案した(特許文献4参照)。
国際公開第2008/136223号 特開平9-95793号公報 特開平6-173027号公報 国際公開第2012/133613号
 このように、皮膜特性の向上及び作業環境の改善を求めて、三価クロムめっき液について多くの提案がなされているが、さらなる改良が求められている。
 めっき皮膜の耐食性を向上させる方法として、クロムめっき皮膜に積極的に網目状の緻密なマクロクラックを形成し、亀裂が母材に到達すること又は亀裂の溝幅が広がることによるめっき皮膜の物性の劣化を抑制する方法が知られている。
 その一方で、マクロクラックはめっき部材の使用中に皮膜の剥離及び崩壊の一つの要因にもなることから、マクロクラックの発生を抑制して耐食性を向上させる検討も行われている。マクロクラックは、めっき操作中は勿論のこと、めっき後に200℃以上の加熱処理条件下でも発生しやすい。
 そこで、本発明の目的は、3価クロムめっき液を用いて形成されためっき皮膜を有するピストンリングに関して、200~300℃程度の高温の加熱処理条件下でもめっき皮膜中のマクロクラックの発生を効果的に抑制し、耐食性及び耐摩耗性等の点でも優れた皮膜特性を達成することにある。
 本発明者らは、三価クロムめっき液を用いて形成されるめっき皮膜の特性を更に向上させるべく鋭意研究を重ねた結果、三価クロム化合物、pH緩衝剤、スルファミン酸塩化合物、アミノカルボニル化合物を含む三価クロムめっき液に、更にジカルボン酸及びその塩から選ばれる錯化剤を含有させた三価クロムめっき液を用いてクロムめっきを形成すると、従来の方法に比べて、200~300℃程度の加熱処理条件下でもめっき皮膜中のマクロクラックの発生をより効果的に抑制でき、耐食性及び耐摩耗性等の皮膜特性にも優れためっき皮膜が形成できることを見出し本発明を完成するに到った。
 本発明が提供しようとするピストンリングは、環状のピストンリング基材及び該ピストンリング基材の外周面上に設けられためっき皮膜を有する。当該めっき皮膜は、三価クロム化合物と、pH緩衝剤と、スルファミン酸塩化合物と、アミノカルボニル化合物と、ジカルボン酸及びその塩から選ばれる少なくとも一種を含む錯化剤と、を含有する水溶液である三価クロムめっき液から形成されるクロムめっきである。
 本発明によれば、200~300℃程度の加熱処理条件下でも、ピストンリング表面に設けられためっき皮膜中のマクロクラックの発生をより効果的に抑制でき、また、耐食性及び耐摩耗性等の皮膜特性に優れたクロムめっきを有するピストンリングが提供される。また、本発明のピストンリングのめっき皮膜は、ピストンリング用途に充分な膜厚を有することができる。本発明に係るピストンリングを得るために用いられる三価クロムめっき液は、液中成分の分解によるハロゲンガス等の有害ガスの発生が抑えられるため、長期保存性に優れるとともに、作業環境の改善に寄与することができる。
ピストンリングの一実施形態を示す斜視図及び端面図である。 (a)は実施例1で得られたクロムめっき物における加熱処理後のめっき皮膜の縦断面の走査型電子顕微鏡写真を示す。(b)は比較例1で得られたクロムめっき物における加熱処理後のめっき皮膜の縦断面の走査型電子顕微鏡写真を示す。 実施例2におけるめっき皮膜の縦断面の走査型電子顕微鏡写真である。 実施例4におけるめっき皮膜の縦断面の走査型電子顕微鏡写真である。
 以下、本発明をその好ましい実施形態に基づき説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 図1の(a)はピストンリングの一実施形態を示す斜視図であり、図1の(b)は、(a)のピストンリングのI-I方向の端面図である。本実施形態のピストンリング1は、周方向において対向する2つの端部並びに半径方向において対向する内周面及び外周面Sを有する環状のピストンリング基材2と、ピストンリング基材2の外周面Sを覆うめっき皮膜3とを備える。ピストンリング1は、周方向において対向する2つの端部と、半径方向において対向する内周面及び外周面とを有している。ピストンリング1の外周面は、ピストンリングがエンジン等に用いられた際にライナー等の相手材に対して摺動する摺動面である。めっき皮膜3は、以下に説明する三価クロムめっき液を用いて形成されるクロムめっきである。ピストンリング1は、例えば、ピストンリング基材2の外周面S上に、クロムめっき液を用いてめっき皮膜3を形成する工程を備える方法により、製造することができる。めっき皮膜は、ピストンリング基材2の外周面S以外の面上にも設けられていてもよい。
めっき皮膜
 ピストンリング基材上にクロムめっきを形成するための三価クロムめっき液は水を媒体として含有する水溶液である。このめっき液は、三価クロム化合物と、pH緩衝剤と、アミノカルボン酸化合物と、スルファミン酸塩化合物と、アミノカルボニル化合物と、カルボン酸及びその塩から選ばれる少なくとも一種の錯化剤とを含有する。
 めっき液に含まれる三価クロム化合物としては、クロムの価数が三価である水溶性化合物を特に制限なく用いることができる。そのような化合物としては、例えば塩化クロム、硝酸クロム、硫酸クロム及びリン酸クロムなどの無機酸クロム、乳酸クロム、グルコン酸クロム、グリコール酸クロム、シュウ酸クロム、リンゴ酸クロム、マレイン酸クロム、マロン酸クロム、クエン酸クロム、酢酸クロム及び酒石酸クロムなどの有機酸クロムが挙げられる。これらの三価クロム化合物は、1種又は2種以上を組み合わせて用いることができる。めっき液中における三価のクロムの濃度は、クロムめっきを首尾よく行い得る点から、めっき液の体積を基準として、0.2~1.8mol/リットル、又は0.4~1.4mol/リットルであってもよい。
 めっき液に含まれるpH緩衝剤は、クロムめっきを行うときのpHを適切なものにして、クロムめっきを首尾よく行う目的で配合される。この目的に適したpH緩衝剤としては例えばホウ酸、ホウ酸ナトリウム、ホウ酸カリウム、硫酸アンモニウム、リン酸、リン酸水素二ナトリウム、リン酸水素二カリウム、炭酸ナトリウム、及び炭酸水素ナトリウムなどが挙げられる。特にホウ酸、ホウ酸ナトリウム又はホウ酸カリウムを用いることができる。これらの化合物は単独で用いることもでき、あるいは2種以上を組み合わせた緩衝系として用いることもできる。pH緩衝剤の配合量は、めっき液のpHを0.3~2.0、又は0.4~1.5に維持し得る量とすることができる。特にpH緩衝剤としてホウ酸を用いると、pH緩衝作用のほかに、還元によって生成する金属クロムの結晶が微細化するという利点がある。
 めっき液に含まれるスルファミン酸塩化合物は、めっき液において主として支持電解質としての役割を有し、めっき液の電気伝導度を所定のレベルに高める目的で配合される。スルファミン酸塩化合物は、めっき液のpH緩衝作用も有しているので、先に述べたpH緩衝剤との併用でめっき液のpHが一層安定化する。スルファミン酸塩化合物は、三価のクロムが還元される反応の触媒作用も有し、それによって金属クロムの結晶の微細化作用、及びクロム皮膜の光沢作用が発現する。スルファミン酸塩としては、例えばスルファミン酸アンモニウム、スルファミン酸ナトリウム又はスルファミン酸カリウムを用いることができる。これらの化合物は1種又は2種以上を組み合わせて用いることができる。スルファミン酸塩は、めっき液中の三価のクロム1molに対して、0.3~2.5mol、特に0.5~2mol配合されることができる。このような配合量にすることで、電解めっき時の電圧が下がり、めっき液の液温の上昇が抑制されて、めっき皮膜の特性に影響を及ぼす水酸化クロムの生成が抑制されるからである。またクロムめっきの表面調整作用の安定化及びめっき皮膜の析出の安定化を図ることができるからである。同様の理由により、めっき液中のスルファミン酸塩の濃度は、めっき液の体積を基準として、0.4~2.1mol/リットル、特に0.6~1.9mol/リットルとすることができる。
 めっき液に含まれるアミノカルボニル化合物は、分子中に少なくとも1個のカルボニル基と、少なくとも1個のアミノ基とを有する化合物である。アミノカルボニル化合物は、三価のクロムの還元速度を高める作用を有する。この理由は次のとおりであると考えられる。すなわち、三価のクロムが金属クロムに還元される過程では二価のクロムが生成する。二価のクロムは陰極上や電気二重層の中に吸着された状態で存在していると考えられる。三価のクロムから金属クロムへの還元は、二価のクロムの還元が律速段階になっている。本発明者の検討の結果、アミノカルボニル化合物は、二価のクロムが金属クロムに還元する速度を高める働きを有することが判明した。その結果、三価のクロムが金属クロムに還元する速度が高まったものと本発明者は考えている。
 アミノカルボニル化合物は、三価のクロムのオール化(olation)を抑制する作用も有する。三価のクロムが金属クロムに還元される過程では、加水分解とオール化の反応が陰極付近で生じ、金属クロムの電析が阻害されることがある。めっき液中にアミノカルボニル化合物が存在すると、該化合物が三価のクロムと錯体を形成する。この錯形成反応は、三価のクロムのオール化との競争反応になるので、三価のクロムのオール化を最小限に抑えることができる。このことによっても三価のクロムの還元速度が高まる。
 これらの有利な作用に加えて、アミノカルボニル化合物は、該化合物に含まれる窒素原子をめっき皮膜に供給して該めっき皮膜を硬質化する作用、及び、めっき液のpHを維持するpH緩衝剤としての作用も有する。
 特にアミノカルボニル化合物は、先に説明したスルファミン酸塩化合物と組み合わせて使用することによって顕著な効果を奏する。詳細には次のとおりである。本実施形態のめっき液においてスルファミン酸塩化合物を配合することの利点は上述したとおりであるところ、スルファミン酸塩化合物を用いることに起因してめっき皮膜の電着応力が増大する傾向にある。電着応力の増大はめっき皮膜にクラックを生じさせる原因となる。これに対して、スルファミン酸塩化合物とアミノカルボニル化合物とを共存させると、アミノカルボニル化合物によってクロムの結晶成長速度が速まるので、磁場の発達が阻害され、その結果、電着応力が低下する。これによってめっき皮膜にクラックが発生することが効果的に抑制される。かかる観点から、本実施形態で用いられるアミノカルボニル化合物に対するスルファミン酸塩の配合量はモル比で0.4~1.5の範囲であってもよい。
 本実施形態において用いることのできるアミノカルボニル化合物としては、例えば尿素及びカルバミン酸などの、当該カルボニル基及びアミノ基が結合して形成された少なくとも1個のアミド基を有する化合物が挙げられる。これらの化合物は1種又は2種を組み合わせて用いることができる。特に尿素は、カルボニル基に対するα位の水素の酸性度が高いので、容易に水素を引き抜くことができる。アミノカルボニル化合物は、めっき液中の三価のクロム1molに対して、0.2~3.0mol、特に0.3~2.2mol配合されてもよい。これらの配合量は、めっき時におけるめっき液中のクロム錯体の安定化、めっき皮膜の特性に影響を及ぼす水酸化クロムの生成の抑制、皮膜の緻密結晶化作用の促進などの点で特に有利である。同様の理由により、めっき液中のアミノカルボニル化合物の濃度は、0.1~4.4mol/リットル、特に0.2~2.5mol/リットルであってもよい。
 なお、先に述べた特許文献3にも、三価のクロムのめっき液に、アミノカルボニル化合物の一種である尿素を配合させることが記載されている。しかし、同文献において尿素を用いる理由は、尿素を分解させてアンモニアを生成させ、アンモニアによってめっき皮膜の耐水性を向上させることにある(特許文献3の段落[0033])。したがって同文献に記載のめっき液には尿素自体は存在していないか、又は存在していたとしてもその量は微量であると考えられる。また、同文献はクロメート化成処理液に関するものであり、本実施形態のめっき液とは、尿素の役割が全く相違している。
 めっき液に含まれるジカルボン酸又はその塩から選ばれる錯化剤は、めっき液中において三価のクロムと錯体を形成し、めっき液の安定化を図る目的、及びクロムめっきを首尾よく行う目的で配合される。
 本出願人らは、先にこの種の機能を持つ薬剤としてアミノカルボン酸化合物を用いていたが、本実施形態では、ジカルボン酸又はその塩から選ばれる錯化剤を用いることで、アミノカルボン酸化合物を用いたものに比べて、200~300℃程度の加熱処理条件下でもマクロクラックの発生をより効果的に抑制でき、また、より優れた耐食性及び耐摩耗性等の皮膜特性を有するめっき皮膜を形成することができる。ジカルボン酸は分子中に2個のカルボキシル基を有する化合物である。ジカルボン酸の例としては、マロン酸、リンゴ酸、マレイン酸、酒石酸、及び蓚酸、コハク酸等が挙がられる。また、本実施形態において、ジカルボン酸は、マロン酸二ナトリウム、リンゴ酸ナトリウム及び酒石酸ナトリウム等のアルカリ金属塩等の塩の形態であってもよい。これらの錯化剤は1種又は2種以上を組み合わせて用いることができる。
 本実施形態で使用する錯化剤は、これらの中、炭素数2~3のジカルボン酸又はその塩を含むことができる。特にマロン酸によれば、めっき皮膜中のマクロクラックの発生の抑制効果が特に高く、また耐食性及び耐摩耗性等の皮膜特性の点でもより一層優れためっき皮膜を形成することができる。
 ジカルボン酸又はその塩から選ばれる錯化剤は、めっき液中の三価のクロム1molに対して、0.01~0.8mol、特に0.05~0.6mol配合されていてもよい。これらの配合量は、安定したクロム錯体のめっき液が得られ、適正な電解めっきを行うことができる点から有利である。同様の理由により、めっき液中のジカルボン酸又はその塩の濃度は、0.01~0.8mol/リットル、特に0.05~0.5mol/リットルであってもよい。
 上述の各成分を有する本実施形態のめっき液によれば、三価のクロムが金属クロムに還元される速度が高く、めっき皮膜中に見られるマクロクラックの発生をより効果的に抑制しながら、工業的に満足し得る膜厚を有するめっき皮膜を容易に形成することができる。前記のアミノカルボニル化合物に由来する窒素原子がめっき皮膜中に取り込まれる結果、めっき皮膜の硬度が高まったり、耐食性や耐摩耗性等が高まったりするという有利な効果も奏される。本実施形態に係るめっき液を用いて形成されたクロムめっき皮膜の場合、錯化剤としてジカルボン酸又はその塩を用いることで、めっき皮膜中に有機物が含有されにくくなり、200~300℃程度の加熱処理条件下でもマクロクラックの発生がより効果的に抑制される。更に、本実施形態のピストンリングを得るために使用されるめっき液には、従来のめっき液に配合されていた成分である塩化アンモニウムを配合する必要がないので、塩化アンモニウムの分解に起因して生成する塩素ガスの発生を防止することができ、めっき作業の環境が改善される。この観点から、本実施形態のめっき液は、塩化アンモニウムを始めとするハロゲン化アンモニウムを含有していなくてもよい。例えば、めっき液におけるハロゲン化アンモニウムの濃度が、めっき液の体積を基準として、0.1mol/リットル以下であってもよい。
 更に本実施形態のピストンリングを得るために用いられるめっき液にセラミック粒子を配合することもできる。セラミック粒子は、金属クロムの電析過程においてめっき皮膜中に取り込まれる。セラミック粒子は、主としてめっき皮膜中の粒界又は欠陥に存在し、それによってクラックの伝播が抑えられ、疲労、破壊、及び剥離が効果的に緩和される。また、表面に露出したセラミックス粒子は、相手摺動面との摩擦及び摩耗作用において粒子自身が摺動面として相手摺動面と接触作用し、耐摩耗性及び耐焼付き性の向上や油膜形成の助けとなる。セラミック粒子はその平均粒径が0.2~12μm、特に0.4~6.0μm、とりわけ0.5~3.0μmであってもよい。セラミック粒子の平均粒径は、例えばレーザー法によって測定することができる。
 本実施形態のめっき液に配合されるセラミック粒子の平均粒径が前記の範囲内であると、めっき皮膜中に取り込まれたセラミック粒子の平均粒径は、通常、0.2~8.0μm、0.3~5.0μm、又は0.5~3.0μmとなる。これにより、先に述べた疲労や破壊、剥離が効果的に緩和される等の効果が一層顕著となり得る。
 粒径に関連して、セラミック粒子はその形状が、相手摺動面との摩擦や摩耗作用の向上の点から、球状等の形状であってもよい。
 セラミック粒子としては、三価のクロムの還元に悪影響を及ぼさないものであればその種類に特に制限はない。めっき皮膜への取り込まれやすさの点からは、めっき液中でのゼータ電位が20~100mV、特に40~70mVであるものを用いることができる。そのようなセラミック粒子としては例えば、Al23、Si34、AlN、Cr32、B4C、TiC、WC、TiO2、Cr23、c-BN、Fe34などの粒子が挙げられる。これらのセラミック粒子は1種又は2種以上を組み合わせて用いることができる。
 セラミック粒子は、本実施形態のめっき液中に、5~100g/リットル、特に10~60g/リットルとなるように配合されることにより、めっき液の流動性が好適になるので、めっき皮膜へのセラミック粒子の取り込み量を容易に適正量とすることができる。
 セラミック粒子は一般的に比重が大きいことから、めっき液中において沈降しやすい。また、粒径によってはセラミック粒子どうしがめっき液中において凝集することもある。これらのことを防止する観点から、めっき液中にセラミック粒子を配合する場合には、セラミック粒子とともに、凝集防止剤として塩化アルミニウムを配合することができる。各種の界面活性剤を凝集防止剤としてめっき液に配合することもできる。界面活性剤としては、モノアルキル硫酸塩及びアルキルポリオキシエチレン硫酸塩等のアニオン性界面活性剤、アルキルトリメチルアンモニウム塩及びジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤、ポリオキシエチレンアルキルエーテル及び脂肪酸ソルビタンエステル等のノニオン性界面活性剤等が挙げられる。
 これらの凝集防止剤のうち塩化アルミニウムは、セラミック粒子のゼータ電位をコントロールして粒子の分散性を向上させたり、粒子どうしの凝集を防止したりする有利な効果を発現する。また、セラミック粒子がめっき皮膜中へ均一に取り込まれやすくもなる。これらの効果を一層顕著なものとする観点から、塩化アルミニウムは、めっき液中の三価のクロム1molに対して、0.005~0.5mol、特に0.01~0.3mol配合されてもよい。同様の理由により、めっき液中の塩化アルミニウムの濃度は、めっき液の体積を基準として、0.02~0.5mol/リットル、特に0.05~0.3mol/リットルであってもよい。
 本実施形態のピストンリングを得るために使用されるめっき液には水溶性有機溶剤を配合することもできる。水溶性有機溶剤の配合によって、バリや欠けの発生を効果的に防止できる。また、めっき液中に、先に述べたセラミック粒子が配合されている場合には、該粒子の分散性が向上する。これらの観点から、水溶性有機溶剤は、めっき液中の三価のクロム1molに対して、0.4~2.1mol、特に0.6~1.3mol配合されてもよい。水溶性有機溶剤としては、例えばグリセリン、ポリエチレングリコール、エタノール、メタノール、及びn-プロパノールが挙げられる。
 本実施形態のめっき液には、上述のとおりpH緩衝剤が含まれており、液のpHが0.3~2.0、又は0.5~1.5の範囲に保たれてもよい。
 本実施形態のピストンリングを得るために使用されるめっき液の媒体としての水は、純水、イオン交換水、工業用水、水道水、又は蒸留水等であってもよい。これらのうち、めっき液の保存安定性、皮膜特性に影響を及ぼさないことを前提として、経済性の面から、工業用水、水道水を使用することができる。
 本実施形態のピストンリングのめっき皮膜には、自己潤滑性を有する粒子を必要により含有させることができる。自己潤滑性を有する粒子を含有するメッキ液を用いることにより、自己潤滑性を有する粒子を含有するめっき皮膜を形成することができる。
 自己潤滑性を有する粒子を使用することにより、この粒子が表面に露出すると表面の摩擦力を小さくするので、めっき皮膜の耐摩耗性を一層向上させることができる。自己潤滑性を有する粒子としては、例えばグラファイト、二硫化モリブデン、二硫化タングステン、フッ素樹脂、又は窒化ホウ素(h-BN)の粒子が挙げられる。自己潤滑性を有する粒子の配合量は、めっき液の体積を基準として、5~70g/リットル、特に10~50g/リットルであってもよい。自己潤滑性粒子は、鱗片状であってもよい。鱗片状の場合、厚さが0.5~2μmで、直径が1~10μmであってもよい。
 本実施形態のめっき液には、上記以外の成分として、必要により当該技術分野で通常用いられる光沢剤、表面調整剤、コロイダルシリカ等公知の添加剤を本発明の趣旨を逸脱しない範囲の量で含有させることができる。
 以上の各成分を含むめっき液を用いてクロムめっきを形成する条件として、めっき浴の温度を20~60℃、又は30~60℃に設定することができる。電流密度は15~60A/dm2、又は20~40A/dm2に設定することができる。陽極としては、黒鉛や各種の寸法安定化陽極(DSA)、例えばTi-Pt電極などを用い、陰極としては、めっきの対象物であるピストンリング基材を用いることができる。
 上述の条件下において電解めっきによって形成されためっき皮膜においては、クロムは一般的に非晶質となっている。非晶質のクロムのめっき皮膜はその硬度が結晶質のものと比較して低い傾向にある。そこで、電解めっきによって形成されためっき皮膜を加熱処理する工程を経ることによって、めっき皮膜を結晶質のクロムの皮膜とすることができる。加熱処理の条件としては、大気下に150~600℃、200~600℃、又は200~450℃とすることができる。加熱時間は、温度がこの範囲であることを条件として、30~90分とすることができる。
 前記の条件下での電解めっきによって得られるめっき皮膜は、ピストンリングに適用するのに充分で工業的に満足し得る膜厚をもつ。その膜厚は3~300μm、又は5~100μmであってもよい。また、前記の条件下での電解めっきによって得られるめっき皮膜は、耐摩耗性及び耐食性等の皮膜特性が特に優れる。したがって、本実施形態の三価クロムめっき液を用いてピストンリング基材の摺動面(外周面)に対してめっきを施すことによって、ピストンリングに必要な摺動特性を付与することができる。
ピストンリング基材
 ピストンリング基材は、特に制限なく、当該技術分野において通常用いられるものから適宜選択することができる。ピストンリング基材の材料は、例えば、鉄などの金属や、導電性の皮膜を表面に付したアルミナなどのセラミックスやプラスチックであってもよい。ピストンリング基材は、例えば、20mm~100mmの外径、15mm~950mmの内径、及び0.5mm~50mmの厚さを有する。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
1.めっき皮膜の形成とその評価
実施例1ないし3並びに比較例1及び2
 以下の表1に示す成分を水に添加して、同表に示す組成を有する三価のクロムのめっき液を調製した。得られためっき液を用い、同表に示す条件で電解めっきを行い、母材の表面上にめっき皮膜を形成させた。陽極としては高密度黒鉛板を用いた。陰極としてはピストンリング基材のひとつである低クロム鋼を用いた。
 また、めっきを行う母材として、めっき皮膜の耐摩耗性評価用などに低クロム鋼(寸法5×5×20の先端10R)を、耐食性評価用にSUS304(寸法50×100×5 mm)を用いた。めっき処理の後、得られためっき物を200℃で30分間、大気中で加熱処理してから、各評価を行った。
比較例3
 以下の表1に示す成分を水に添加して、同表に示す組成を有する六価のクロムのめっき液を調製した。得られためっき液を用い、同表に示す条件で電解めっきを行った。陰極は実施例1と同様のものを用いた。陽極としては鉛錫板を用いた。
 めっきを行う母材として、めっき皮膜の耐摩耗性評価用などに低クロム鋼(寸法5×5×20の先端10R)を、耐食性評価用にSUS304(寸法50×100×5 mm)を用いた。めっき処理の後、得られためっき物を200℃で30分間、大気中で加熱処理してから、各評価を行った。
Figure JPOXMLDOC01-appb-T000001
めっき皮膜の評価
 得られためっき物におけるクロムめっき皮膜の厚みを以下の方法で測定した。また、めっき皮膜の表面の外観を目視観察して光沢の程度及びクラックの発生の有無を調査した。更に以下の方法で、めっき皮膜のビッカース硬度を測定し、耐摩耗性及び耐食性を以下の方法で評価した。更に実施例2及び3並びに比較例2については、めっき皮膜中のセラミック粒子の含有率(分散度)を以下の方法で測定した。それらの結果を以下の表2に示す。
めっき皮膜の厚み
 めっき皮膜の断面の厚みを、レーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用いて400倍の倍率で測定した。
めっき皮膜のビッカース硬度
 めっき皮膜の断面のビッカース硬度を、微小硬さ試験機(ミツトヨ製 HM-103)を用いて、荷重200gf×15secで測定した。
めっき皮膜の耐摩耗性
 実施例及び比較例で得られためっき処理を施したリング材について、科研式腐食摩耗試験機を用いてめっき皮膜の耐摩耗性を評価した。摩擦の相手となるライナー材として鋳鉄(JIS G 5501-1995に準拠したFC250)を用いた。
 摩擦試験器における接触荷重は39Nとした。摩擦速度は0.25m/sec、摩擦距離は5400m(=6時間)とした。腐食液として硫酸水溶液(pH=2.0)を用い、1.5ml/minで滴下した。腐食液温度は常温とした。めっき皮膜の摩耗量を測定し、その値を耐摩耗性の指標とした。
めっき皮膜の耐食性
 めっき皮膜の面積が1cm2である、実施例又は比較例で得られたSUS304のめっき物を準備した。該めっき物を所定のpHに調整された硫酸及び塩酸水溶液(容積1リットル)中に、ビニール製の釣糸で吊り下げた。水溶液の温度を70℃に保ち、水溶液を1時間にわたって攪拌した。その後、水溶液中に溶解したクロムの量をICP発光分析装置(島津製作所社製 ICPS-7510)によって測定し、耐食性の尺度とした。
めっき皮膜中のセラミック粒子の含有率
 ここでいう含有率とは、めっき皮膜の断面を観察したときに、単位面積あたりの観察視野に占めるセラミック粒子の面積率のことである。この面積率は次の方法で測定される。すなわち、めっき皮膜の縦断面を、レーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用いて、1000倍の倍率で観察した。そして、30μm四方の枠内に存在するセラミック粒子が占有する面積の比率を、同レーザー顕微鏡を用いて計測した。
マクロクラックの有無の評価
 表2に示す条件でめっき皮膜を加熱処理し、加熱処理後のめっき皮膜の皮膜断面を、村上試薬で腐食してから、レーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用い1000倍の倍率で測定し、下記評価基準に基づいて、マクロクラックの存在の程度を評価した。実施例1及び比較例1から得られたクロムめっき物におけるめっき皮膜の縦断面の走査型電子顕微鏡写真を図2に示す。
 A;マクロクラックが10個未満
 B;マクロクラックが10個以上20個未満
 C;マクロクラックが20個以上
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、各実施例のめっき液を用いてクロムの電解めっきを行うと、比較例のめっき液を用いた場合に比べて同じめっき時間で厚いめっき皮膜を形成できることが分かる。また、各実施例のめっき液を用いて得られためっき皮膜の表面外観は良好であり、光沢を有するものであることが分かる。特に、実施例1ないし3と比較例3との対比から明らかなように、三価のクロムのめっき液を用いても、従来用いられていた六価のクロムのめっき液を用いた場合と同様又はそれ以上の性能を有するめっき皮膜が得られることが分かる。
 また、錯化剤としてマロン酸を含む各実施例のめっき液を用いると、200~300℃で加熱処理を行っても得られためっき皮膜にマクロクラックがほとんど生じていないことが分かる。
 更に、実施例1と、実施例2及び3との対比から明らかなように、めっき液中にセラミック粒子を配合することで、めっき皮膜の耐摩耗性が一層向上することが分かる。
2.ピストンリングの作製とその評価
 ピストンリング用低クロム鋼で作製された、ボア径73mm、幅(半径方向)2.3mm、厚さ(ピストンの進行方向)1.0mmのトップリングをピストンリング基材として準備した。複数のピストンリング基材をその軸方向にスタックした状態で、ピストンリング基材の外周面上に、表1の実施例、比較例の各めっき液を用いてクロムめっき(めっき皮膜)を形成させた、その後、200℃で30分間、大気中でめっき皮膜を加熱処理した。
 ピストンリングを排気量1500cmの4気筒ガソリンエンジン(ボア径73mm)に取り付け、回転数5,700rpm、負荷4/4の運転条件で、断続的に100時間エンジンを運転させた。
 その後、ピストンリングを取り出して、めっき皮膜の摩耗量とシリンダー摩耗深さを測定した。めっき皮膜の摩耗量として、テスト前後におけるピストンリングの厚さの差を、ピストンリングの周方向に等間隔で5箇所測定した。シリンダー摩耗深さとして、テスト前後におけるシリンダー径の差の1/2を、トップリング摺動部の軸方向中央付近、周方向に等間隔で5箇所測定した。また、エンジン性能として、運転開始直後と100時間の運転終了直前で、エンジンオイル消費量とを測定した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、各実施例のピストンリングは、エンジンに用いられたときに、六価クロムめっき液を用いた比較例3と同等又はそれ以上の優れた耐摩耗性を示すことが確認された。
 実施例2で得られためっき皮膜の縦断面の走査型電子顕微鏡写真を図3に示す。図3のように、めっき皮膜中に球状のセラミック粒子が取り込まれていることが確認された。
実施例4
 自己潤滑性を有する粒子として平均厚さ1μm、平均直径6μmの鱗片状の二硫化モリブデン粒子を30g/リットル加えたこと以外は実施例1と同様の組成を有する三価のクロムのめっき液を調製し、実施例1と同様の方法によりめっき皮膜を有するピストンリングを作成した。作成したピストンリングの縦断面の走査型電子顕微鏡写真を図4に示す。図4の暗い箇所が二硫化モリブデン粒子であり、鱗片状の二硫化モリブデン粒子が電流をさえぎるように横方向に並んでいる良好なめっき皮膜が形成されたことが確認された。このめっき皮膜の表面摩擦力を測定したところ、その値は実施例1のめっき皮膜の表面摩擦力に対し23%であった。さらに、平均粒径2μmの球形の二硫化モリブデン粒子を30g/リットル含有すること以外は実施例1と同様のめっき液を用いてピストンリングを作成した。得られたピストンリングのめっき皮膜の表面摩擦力は、実施例1のめっき皮膜の表面摩擦力に対して67%であった。
 本発明によれば、200~300℃程度の加熱処理条件下でもめっき皮膜中のマクロクラックの発生がより効果的に抑制され、また、工業的に満足し得る膜厚をもち、耐食性及び耐摩耗性等の皮膜特性に優れたクロムめっきを有するピストンリングが提供される。また、本発明によれば、液中成分の分解によるハロゲンガス等の有害ガスの発生が抑えられるため、長期保存性に優れ、作業環境の改善につながる三価クロムめっき液を用いて得ることのできるピストンリングが提供される。
 1…ピストンリング、2…ピストンリング基材、3…めっき皮膜、S…ピストンリング基材の外周面。

Claims (12)

  1.  環状のピストンリング基材と、
     前記ピストンリング基材の外周面上に形成されためっき皮膜と、
    を有し、
     前記めっき皮膜が、三価クロム化合物と、pH緩衝剤と、スルファミン酸塩化合物と、アミノカルボニル化合物と、ジカルボン酸及びその塩から選ばれる少なくとも一種を含む錯化剤と、を含有する水溶液である三価クロムめっき液を用いて形成されたクロムめっきである、
    ピストンリング。
  2.  前記クロムめっき液がセラミック粒子を更に含有する、請求項1記載のピストンリング。
  3.  前記セラミック粒子が、前記クロムめっき液中で20~100mVのゼータ電位を有する、請求項2記載のピストンリング。
  4.  前記クロムめっき液がセラミック粒子の凝集防止剤を更に含有する、請求項2又は3記載のピストンリング。
  5.  前記凝集防止剤が塩化アルミニウムを含む、請求項4に記載のピストンリング。
  6.  前記三価クロム化合物が、塩化クロム、硝酸クロム、硫酸クロム及びリン酸クロムからなる群より選ばれる少なくとも一種を含む、請求項1~5のいずれか一項に記載のピストンリング。
  7.  前記pH緩衝剤が、ホウ酸、ホウ酸ナトリウム及びホウ酸カリウムからなる群より選ばれる少なくとも一種を含む、請求項1~6のいずれか一項に記載のピストンリング。
  8.  前記スルファミン酸塩化合物が、スルファミン酸アンモニウム、スルファミン酸ナトリウム及びスルファミン酸カリウムからなる群より選ばれる少なくとも一種を含む、請求項1~7のいずれか一項に記載のピストンリング。
  9.  前記錯化剤がマロン酸を含む、請求項1~8のいずれか一項に記載のピストンリング。
  10.  前記クロムめっき液が自己潤滑性を有する粒子を更に含有する、請求項1~9のいずれか一項に記載のピストンリング。
  11.  環状のピストンリング基材の外周面上に、クロムめっき液を用いてめっき皮膜を形成する工程を備え、
     前記クロムめっき液が、三価クロム化合物と、pH緩衝剤と、スルファミン酸塩化合物と、アミノカルボニル化合物と、ジカルボン酸及びその塩から選ばれる少なくとも一種を含む錯化剤と、を含有する水溶液である、
    請求項1記載のピストンリングを製造する方法。
  12.  前記めっき皮膜を加熱処理する工程を更に備える、請求項11記載の方法。
PCT/JP2014/053094 2013-02-13 2014-02-10 ピストンリング及びその製造方法 WO2014126066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480007674.2A CN105143520A (zh) 2013-02-13 2014-02-10 活塞环及其制造方法
JP2014536017A JP5636140B1 (ja) 2013-02-13 2014-02-10 ピストンリング及びその製造方法
EP14752012.6A EP2957660A4 (en) 2013-02-13 2014-02-10 PISTON SEGMENT AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026053 2013-02-13
JP2013-026053 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126066A1 true WO2014126066A1 (ja) 2014-08-21

Family

ID=51354067

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/053095 WO2014126067A1 (ja) 2013-02-13 2014-02-10 三価クロムめっき液
PCT/JP2014/053094 WO2014126066A1 (ja) 2013-02-13 2014-02-10 ピストンリング及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053095 WO2014126067A1 (ja) 2013-02-13 2014-02-10 三価クロムめっき液

Country Status (4)

Country Link
EP (1) EP2957660A4 (ja)
JP (2) JP5636140B1 (ja)
CN (1) CN105143520A (ja)
WO (2) WO2014126067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200088297A1 (en) * 2018-09-13 2020-03-19 Tenneco Inc. Piston ring with wear resistant coating
KR102120248B1 (ko) * 2019-12-27 2020-06-08 (주)대동스프링 클램프링 및 이의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501280B2 (ja) * 2015-12-21 2019-04-17 地方独立行政法人大阪産業技術研究所 クロムめっき液、電気めっき方法及びクロムめっき液の製造方法
JP7266338B2 (ja) 2020-01-07 2023-04-28 ヤマウチ株式会社 制振ダンパ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173027A (ja) 1992-12-08 1994-06-21 Nippon Parkerizing Co Ltd 3価クロム化合物のゾルを含む金属表面処理用組成物およびその製造方法
JPH0995793A (ja) 1995-09-29 1997-04-08 Shigeo Hoshino 熱硬化性を有するクロムめっきを析出する3価クロムめっき浴
JP2005126769A (ja) * 2003-10-24 2005-05-19 Yoichi Yamagishi 黒色皮膜および黒色皮膜の形成方法
WO2008136223A1 (ja) 2007-04-27 2008-11-13 Nippon Chemical Industrial Co., Ltd. 水酸化クロム、その製造方法、それを用いた三価クロム含有液及びクロムめっき方法
JP2012521495A (ja) * 2009-03-24 2012-09-13 マクダーミッド アキューメン インコーポレーテッド 塩化カルシウム環境における耐食性が強化されたクロム合金コーティング
WO2012133613A1 (ja) 2011-03-31 2012-10-04 日本化学工業株式会社 三価クロムめっき液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269905A (en) * 1990-04-30 1993-12-14 Elf Atochem North America, Inc. Apparatus and process to regenerate a trivalent chromium bath
JP2002285375A (ja) * 2001-03-28 2002-10-03 Chunichi Craft Kk 3価クロムめっき浴
CN101839341B (zh) * 2009-11-14 2011-11-16 襄樊新立恒星活塞环有限责任公司 一种活塞环及其表面松孔镀铬工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173027A (ja) 1992-12-08 1994-06-21 Nippon Parkerizing Co Ltd 3価クロム化合物のゾルを含む金属表面処理用組成物およびその製造方法
JPH0995793A (ja) 1995-09-29 1997-04-08 Shigeo Hoshino 熱硬化性を有するクロムめっきを析出する3価クロムめっき浴
JP2005126769A (ja) * 2003-10-24 2005-05-19 Yoichi Yamagishi 黒色皮膜および黒色皮膜の形成方法
WO2008136223A1 (ja) 2007-04-27 2008-11-13 Nippon Chemical Industrial Co., Ltd. 水酸化クロム、その製造方法、それを用いた三価クロム含有液及びクロムめっき方法
JP2012521495A (ja) * 2009-03-24 2012-09-13 マクダーミッド アキューメン インコーポレーテッド 塩化カルシウム環境における耐食性が強化されたクロム合金コーティング
WO2012133613A1 (ja) 2011-03-31 2012-10-04 日本化学工業株式会社 三価クロムめっき液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957660A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200088297A1 (en) * 2018-09-13 2020-03-19 Tenneco Inc. Piston ring with wear resistant coating
US11149851B2 (en) * 2018-09-13 2021-10-19 Tenneco Inc. Piston ring with wear resistant coating
KR102120248B1 (ko) * 2019-12-27 2020-06-08 (주)대동스프링 클램프링 및 이의 제조방법

Also Published As

Publication number Publication date
JPWO2014126067A1 (ja) 2017-02-02
JPWO2014126066A1 (ja) 2017-02-02
JP5636140B1 (ja) 2014-12-03
WO2014126067A1 (ja) 2014-08-21
EP2957660A4 (en) 2016-11-30
EP2957660A1 (en) 2015-12-23
JP6262710B2 (ja) 2018-01-17
CN105143520A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5890394B2 (ja) 三価クロムめっき液
JP4125765B2 (ja) 金属のセラミックス皮膜コーティング方法およびそれに用いる電解液ならびにセラミックス皮膜および金属材料
JP5636140B1 (ja) ピストンリング及びその製造方法
Ünal et al. Production and characterization of electrodeposited Ni-B/hBN composite coatings
JP5345155B2 (ja) 金属の電解セラミックスコーティング方法、金属の電解セラミックスコーティング用電解液および金属材料
TW201400645A (zh) 形成黑色三價氧化鉻鍍層之電化學方法及其黑色三價氧化鉻鍍層
JP2013014809A (ja) 無電解ニッケルめっき皮膜および無電解ニッケルめっき液
TWI546422B (zh) Trivalent chromium plating bath
Tseluikin Composite electrochemical coatings: Preparation, structure, properties
JP2022141949A (ja) 少なくとも1つの基板上にクロム層またはクロム合金層を堆積するための制御された方法
JP6055611B2 (ja) クロムめっき物及びクロムめっき皮膜
JP6240274B2 (ja) クロムめっき物及びクロムめっき皮膜
JP2014214341A (ja) 無電解複合めっき皮膜、並びにそれが形成された摺動部品、転動部品及び金型
Antihovich et al. Electrodeposition of nickel and composite nickel-fullerenol coatings from low-temperature sulphate-chloride-isobutyrate electrolyte
JP2010189673A (ja) 3価クロムめっき浴
TW202126862A (zh) 鋅-鎳-氧化矽複合鍍覆浴及使用該鍍覆浴之鍍覆方法
TWI441954B (zh) 形成碳化鉻類金屬陶瓷層之電化學方法及其碳化鉻類金屬陶瓷層
JP4740528B2 (ja) ニッケル−モリブデン合金めっき液とそのめっき皮膜及びめっき物品
JP2014162935A (ja) プラズマ電解酸化による皮膜形成方法
TW201213624A (en) Trivalent chromium electroplating solution and electroplating method using the same
WO2017109834A1 (ja) クロムめっき液、電気めっき方法及びクロムめっき液の製造方法
Zhang et al. Influences of Al particles and current density on structural, mechanical and anti-corrosion properties of electrodeposited Ni–Co/Al composite coatings
JPH09217192A (ja) 金属材料の高速高硬度鉄含有金属めっき方法
TW202248465A (zh) 用於在基板上沉積鉻或鉻合金層之電鍍組合物
CN111501071A (zh) 一种镍电沉积层及包括该镍电沉积层的制件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480007674.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014536017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014752012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014752012

Country of ref document: EP