WO2014125873A1 - 電磁誘導式位置検出器の検出位置補正方法 - Google Patents

電磁誘導式位置検出器の検出位置補正方法 Download PDF

Info

Publication number
WO2014125873A1
WO2014125873A1 PCT/JP2014/050891 JP2014050891W WO2014125873A1 WO 2014125873 A1 WO2014125873 A1 WO 2014125873A1 JP 2014050891 W JP2014050891 W JP 2014050891W WO 2014125873 A1 WO2014125873 A1 WO 2014125873A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
detection
electromagnetic induction
position detector
moving body
Prior art date
Application number
PCT/JP2014/050891
Other languages
English (en)
French (fr)
Inventor
竹内 克佳
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480003645.9A priority Critical patent/CN104884904B/zh
Publication of WO2014125873A1 publication Critical patent/WO2014125873A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2066Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to a single other coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils

Definitions

  • the present invention relates to a detection position correction method for an electromagnetic induction type position detector which is a linear scale or a rotary scale.
  • An inductive thin scale that is an electromagnetic induction type position detector is applied to position detection in various machines such as machine tools, automobiles, and robots.
  • Induct thin type scales include linear scales and rotary scales.
  • the linear scale is installed on a moving body that moves linearly, such as an XY table of a machine tool, and detects a linear position (movement distance) of the moving body.
  • the rotary scale is installed on a rotating body (rotating body) such as a rotary table of a machine tool, and detects the rotational position (rotating angle) of the moving body (rotating body).
  • the linear scale and the rotary scale are based on the same detection principle, and the position is detected by electromagnetic induction of coil patterns arranged so as to face each other in parallel. This detection principle will be described with reference to FIG.
  • the detection unit 10 of the electromagnetic induction type position detector includes a primary side member (slider or stator) 1 and a secondary side. And a side member (scale or rotor) 2.
  • the primary side member 1 and the secondary side member 2 are shown linearly for convenience of explanation, but in the case of a rotary scale, the primary side is actually used.
  • the stator as the member 1 and the rotor as the secondary member are both circular.
  • a primary member (slider or stator) 1 includes a first primary coil (first slider coil for a slider and a first stator coil for a stator) 3 and a second primary coil (a second slider for a slider).
  • a second stator coil 4 in the case of a coil and a stator.
  • the secondary side member (scale or rotor) 2 has a secondary side coil (scale coil for scale, rotor coil for rotor) 5.
  • the coils 3, 4 and 5 are formed in a zigzag shape by connecting a plurality of U-shaped sectors (comb pattern), and in the case of the first and second slider coils and scale coils. Is entirely linear, in the case of the first and second stator coils, the whole is arcuate, and in the case of the rotor coil, the whole is annular.
  • the slider is attached to a moving body that moves linearly, such as an XY table of a machine tool, and moves linearly with the moving body, while the scale is fixed to a fixed part in a machine tool or the like.
  • a moving body that moves linearly, such as an XY table of a machine tool, and moves linearly with the moving body, while the scale is fixed to a fixed part in a machine tool or the like.
  • the rotor is attached to a rotating moving body (rotating body) such as a rotary table of a machine tool and rotates together with the moving body (rotating body), while the stator serves as a fixed part in the machine tool or the like. Fixed.
  • the primary side member (slider or stator) 1 and the secondary side member (scale or rotor) 2 are composed of first and second primary coils (first and second slider coils).
  • the first and second stator coils (3, 4) and the secondary coil (scale coil or rotor coil) 5 are arranged so as to face each other in parallel while maintaining a predetermined gap g. Yes.
  • Coil or second stator coil) 4 is offset by a quarter pitch.
  • the first primary coil (first slider coil or first stator coil) 3 and the second primary coil (second) When an exciting current (alternating current) is passed through the slider coil or the second stator coil 4, the primary side member 1 (in the case of the slider) or the secondary side member 2 (in the case of the rotor) moves with the moving body (the slider is As the rotor moves linearly, the first and second primary coils (first and second slider coils or first and second stator coils) 3, 4 and the secondary side
  • the first and second primary coils (first and second sliders) as shown in FIG. Coil or first Degree of electromagnetic coupling between the second stator coil) 3,4 and the secondary coil (scale coil or rotor coil) 5 periodically changes. For this reason, an induced voltage that periodically changes is generated in the secondary coil (scale coil or rotor coil) 5.
  • the first exciting current Ia as expressed by the following formula (1) is supplied to the first primary coil (the first primary coil). 1 and a second stator current coil (second slider coil or second stator coil) as shown in the following equation (2).
  • Ia ⁇ Icos (k ⁇ ) sin ( ⁇ t) (1)
  • Ib Isin (k ⁇ ) sin ( ⁇ t) (2)
  • I magnitude of excitation current k: 2 ⁇ / p p: Coil pitch ⁇ : Angular frequency of excitation current (alternating current)
  • t Time ⁇ : Excitation position
  • the coil pitch p is a length (mm) for a linear scale and an angle (degree) for a rotary scale.
  • the electromagnetic induction type position detector linear type scale or rotary type scale
  • the actual electromagnetic induction type position detector (linear type scale or rotary type scale) has a manufacturing error and an installation error. Therefore, the above equation (4) is not satisfied, and the detection position X has an error.
  • an error of the coil pitch period (an error that periodically fluctuates according to the period of the coil pitch p) is prominently displayed as an error included in the detection position X, and is referred to as an interpolation error.
  • the first and first primary coils (first and second slider coils or first and second stators).
  • the coil pitch of the coils 3 and 4 may not be 2 mm or 2 degrees but may be a little smaller than this.
  • the size s of one sector of the first and first primary coils (first and second slider coils or first and second stator coils) 3 and 4 is 2/3 mm (in the case of a linear scale) ) Or 15/16 degrees (in the case of a rotary scale).
  • the coil pitch p of the secondary side coil is 2 mm or 2 degrees.
  • N N is a positive integer
  • an interpolation error for example, 1 mm that is 1/2 or an interpolation error that varies with a period of 1 degree, 0.5 mm that is 1/4 or 0. Interpolation error that fluctuates at a cycle of 5 degrees
  • the sector dimensions s of the first and first primary coils (first and second slider coils or first and second stator coils) 3 and 4 are 2/3 mm or 15/16 degrees. As a result, an interpolation error that fluctuates with a period of 2/3 mm or 15/16 degrees also occurs.
  • an error that fluctuates in a cycle of the coil interval d or a cycle of 1 / N thereof also occurs.
  • the coil interval d is 1.5 mm (in the case of a linear scale) or 7.5 degrees (in the case of a rotary scale)
  • An error that fluctuates with a period of 0.75 mm or 3.75 degrees that is / 2 also occurs.
  • the present invention has been made in view of the above circumstances, and can correct an error inherent in the electromagnetic induction position detector to improve the position detection accuracy of the electromagnetic induction position detector itself. It is an object of the present invention to provide a detection position correction method for an inductive position detector.
  • the detection position correction method of the electromagnetic induction type position detector of the first invention that solves the above-described problem is A first procedure for attaching an electromagnetic induction type position detector for detecting an absolute position and a master position detector having a position detection accuracy higher than that of the electromagnetic induction type position detector to a moving body; A second procedure in which the moving body controller moves and positions the moving body so that the detection position of the electromagnetic induction type position detector becomes 0 position; A third procedure for resetting the detection position of the master position detector to the 0 position; The moving body is moved by the moving body controller to calculate a detection position error which is a difference between a detection position of the electromagnetic induction type position detector and a detection position of the master position detector.
  • a fourth procedure for acquiring the detection position of the electromagnetic induction type position detector at every fixed interval position A fifth procedure for performing FFT analysis on the acquired detection position error and the detection position data of the electromagnetic induction type position detector; An error corresponding to the natural period of the error variation of the electromagnetic induction type position detector is extracted from the result of the FFT analysis, and the natural period and the error data corresponding to the natural period are stored in storage means.
  • the detection position correction method of the electromagnetic induction type position detector of the second invention is: A first procedure for attaching an electromagnetic induction type position detector for detecting an absolute position to a moving body; A second procedure in which the moving body controller moves and positions the moving body so that the detection position of the electromagnetic induction type position detector becomes 0 position; A third procedure for resetting the moving time used for position calculation in the moving body position calculating means to zero; The moving body controller moves the moving body at a constant speed, and the detection position of the electromagnetic induction type position detector and the constant speed of the moving body and the moving time of the moving body in the moving body position calculating means are obtained.
  • a detection position error which is a difference from the position of the moving body calculated by multiplication, is calculated, and a detection position error and a detection position of the electromagnetic induction type position detector are obtained at fixed intervals.
  • the detection position correcting method of the electromagnetic induction type position detector of the first invention since it has the above-mentioned first to ninth procedures, an error inherent in the electromagnetic induction type position detector Therefore, the correction does not adversely affect the position detection accuracy of the electromagnetic induction position detector itself, and the position detection accuracy of the electromagnetic induction position detector itself can be improved.
  • the 1 / N period error, sector dimension period error, coil interval period error, and 1 / N period error can be corrected.
  • an error corresponding to the natural period of the error variation of the electromagnetic induction type position detector is extracted from the result of the FFT analysis, and the natural period and the error data corresponding to the natural period are stored in the storage means.
  • the storage capacity of the storage means can be reduced as compared with the case where all of the detected position error and the data of the detection position of the electromagnetic induction type position detector are stored.
  • the detection position correction method of the electromagnetic induction type position detector of the second invention is characterized by having the first to ninth steps described above, and is inherent to the electromagnetic induction type position detector. Therefore, the correction does not adversely affect the position detection accuracy of the electromagnetic induction type position detector itself, and the position detection accuracy of the electromagnetic induction type position detector itself can be improved.
  • the 1 / N period error, sector dimension period error, coil interval period error, and 1 / N period error can be corrected.
  • an error corresponding to the natural period of the error variation of the electromagnetic induction type position detector is extracted from the result of the FFT analysis, and the natural period and the error data corresponding to the natural period are stored in the storage means.
  • the storage capacity of the storage means can be reduced as compared with the case where all of the detected position error and the data of the detection position of the electromagnetic induction type position detector are stored. Furthermore, since it is not necessary to use a master position detector, the labor and cost of correction work can be reduced.
  • the electromagnetic induction position detector 22 and the master position detector 23 to be corrected are attached to the moving body 21.
  • the moving body 21 is a moving body that moves linearly such as an XY table of a machine tool, or a rotating body (rotating body) that rotates such as a rotary table of a machine tool.
  • the electromagnetic induction type position detector 22 is a linear type scale or a rotary type scale, and is the same as the conventional electromagnetic induction type position detector explained based on FIG. 8 and detects the absolute position as the detection position X. It is something that can be done.
  • the electromagnetic induction type position detector (linear type scale or rotary type scale) 22 includes a detection unit 22A and a position detection controller 22B.
  • a detector 22A is attached to the moving body 21.
  • the detection unit 22A is the same as the detection unit 10 described with reference to FIG.
  • the position detection controller 22B includes a position detection unit 22a, an error calculation unit 22b, a switch unit 22c, a sampling data acquisition unit 22d, an FFT (Fast Fourier Transform) analysis unit 22e, and a natural period error component extraction.
  • the unit 22f and the ROM 22g storage means are included.
  • a master position detector 23 that can detect the linear position (movement distance) of the moving body 21 is used.
  • the electromagnetic induction type position detector 22 is a rotary scale
  • a master position detector 23 that can detect the rotation position (rotation angle) of the moving body (rotating body) 21 is used.
  • the master position detector 23 has a position detection accuracy higher than that of the electromagnetic induction position detector 22 (for example, the position detection error is 1/10 or less compared to the electromagnetic induction position detector 22). Use. As such a high-precision master position detector 23, for example, an optical position detector can be used. Note that the movable portion of the master position detector 23 is attached to the moving body 21.
  • the detection position of the electromagnetic induction type position detector (linear scale or rotary scale) 22 is set to 0 position (origin: 0 mm for the linear scale and 0 degree for the rotary scale).
  • the moving body controller 24 moves and positions the moving body 21.
  • the position detection unit 22a of the position detection controller 22B based on the induced voltage output from the detection unit (scale or rotor) 22A, the absolute position of the moving body 21 (movement distance in the linear scale, rotary scale) Then, the rotation angle) is detected, and this detection position (detection distance or detection angle) is output. Then, the moving body 21 is moved and positioned by issuing a movement command from the moving body controller 24 so that the detection position (detection distance or detection angle) becomes 0 position (0 mm or 0 degree).
  • the detection position (detection distance or detection angle) of the master position detector 23 is reset to 0 position (0 mm or 0 degree).
  • the position detection unit 22a when the detection position (detection distance or detection angle) obtained by the position detection unit 22a becomes 0 position (0 mm or 0 degree), 0 is reset to the master position detector 23.
  • the signal r1 is output.
  • the master position detector 23 resets the detection position (detection distance or detection angle) in the master position detector 23 to the 0 position (0 mm or 0 degree) based on the 0 reset signal r1.
  • the moving body controller 24 is moved by the moving body controller 24 to detect the detection position (detection distance or detection angle) of the electromagnetic induction type position detector 22 and the detection position (detection distance) of the master position detector 23.
  • a detection position error (detection distance error or detection angle error), which is a difference from the detection angle), is calculated, and the detection position error and the detection position of the electromagnetic induction type position detector 22 are obtained (sampling) at regular intervals.
  • the moving body controller 24 positions the moving body 21 so that the detection position of the electromagnetic induction type position detector 22 becomes 0 position, and then moves the moving body 21 at a constant speed in order to obtain error data. Move.
  • the electromagnetic induction type position detector 22 is a linear scale and the moving body 21 moves linearly, a certain length of the electromagnetic induction type position detector 22 (that is, the entire length of the scale), The moving body 21 is moved.
  • the electromagnetic induction position detector 22 is a rotary scale and the moving body 21 is a rotating body, the moving body 21 is rotated 360 degrees (that is, one rotation of the rotor).
  • the error calculation unit 22b detects the detection position (detection distance or detection angle) output from the electromagnetic induction position detector 22 (position detection unit 22a) and the detection position (detection distance) of the master position detector 23. Alternatively, a detection position error (detection distance error or detection angle error) that is a difference from the detection angle) is calculated. Further, the position detection unit 22a detects the detection position (detection) at every fixed interval position (for example, every 0.1 mm for the linear scale and every 0.1 degree for the rotary scale) at the switch unit 22c and the sampling data acquisition unit 22d. Distance or detection angle).
  • the detection position error calculated by the error calculation unit 22b is set to a detection position (detection distance or detection angle) from the position detection unit 22a at regular intervals (every 0.1 mm or every 0.1 degree). Each time it is input, it is output to the sampling data acquisition unit 22d.
  • the sampling data acquisition unit 22d acquires a detection position error (detection distance error or detection angle error) from the error calculation unit 22b via the switch unit 22c at every fixed interval position (every 0.1 mm or every 0.1 degree). (Sampling), and the detection position (detection distance or detection angle) of the electromagnetic induction type position detector 22 is acquired from the position detection unit 22a at regular intervals (every 0.1 mm or every 0.1 degree) ( Sampling).
  • the relationship between the detection position (detection distance or detection angle) acquired by the sampling data acquisition unit 22d and the detection position error (detection distance error or detection angle error) is illustrated in FIG. FIG.
  • FIG 3 illustrates the relationship between the detection angle (degree) and the detection angle error (second) when the electromagnetic induction type position detector 22 is a rotary scale, and the detection angle error fluctuates periodically. The situation is shown. Although illustration is omitted, the relationship between the detection distance (mm) and the detection distance error (second) when the electromagnetic induction type position detector 22 is a linear scale is the same as this.
  • the FFT analysis unit 22e performs FFT analysis on the detected position error and the detected position data acquired by the sampling data acquiring unit 22d.
  • the result of this FFT analysis is illustrated in FIG. FIG. 4 illustrates the relationship between the angle (degrees) and the error amplitude (seconds) when the electromagnetic induction type position detector 22 is a rotary scale. Although illustration is omitted, the relationship between the distance (mm) and the error amplitude (mm) when the electromagnetic induction type position detector 22 is a linear scale is the same as this.
  • an error (natural period error) corresponding to the natural period of the error variation of the electromagnetic induction type position detector (linear scale or rotary scale) 22 is extracted from the result of the FFT analysis,
  • the natural period and error data (correction data) corresponding to the natural period are stored in the storage means.
  • the natural period error component extraction unit 22f calculates the electromagnetic induction position detector (linear scale or rotary scale) 22 from the result of the FFT analysis illustrated in FIG. 4 performed by the FFT analysis unit 22e. An error (natural period error) corresponding to the natural period of the error fluctuation is extracted.
  • the coil pitch p of the secondary coil (scale coil or rotor coil) in the electromagnetic induction type position detector (linear scale or rotary scale) 22 is set to 2 mm or 2 degrees
  • the electromagnetic induction type position detector ( The sector dimension s of the primary side coil (first and second slider coils or first and second stator coils) in the linear scale or rotary scale) 22 is 2/3 mm or 15/16 degrees
  • the coil interval d is It is assumed that it is set to 1.5 mm or 7.5 degrees.
  • the natural period of error variation of the electromagnetic induction type position detector (linear type scale or rotary type scale) 22 is 0.5 mm, 0.5 degree, 2/3 mm, 15/16 degree, 1 mm or For example, 1 degree, 2 mm or 2 degrees, 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees. Therefore, in the natural period error component extraction unit 22f, from the result of the FFT analysis, the natural period of error variation is 0.5 mm or 0.5 degrees, 2/3 mm or 15/16 degrees, 1 mm or 1 degree, 2 mm or 2 degrees, An error (natural period error) corresponding to 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees is extracted. In the example of the rotary scale shown in FIG.
  • Ec, an error Ed corresponding to the natural period of 2 degrees, an error Ee corresponding to the natural period of 3.75 degrees, and an error Ef corresponding to the natural period of 7.5 degrees are extracted. Although illustration is omitted, the same applies to the case of a linear scale.
  • an error of the natural period such as 1/8 (0.25 mm or 0.25 degree) is also generated, but the error of the natural period of 1/8 or less is small. I ignored it.
  • the natural period error extracted here is more specifically the magnitude of the amplitude of the sin component and the magnitude of the amplitude of the cos component.
  • the error data (correction data) corresponding to these natural periods is stored in a ROM 22h (slider or scale for a linear scale, a stator or rotor for a rotary scale) 22A ( Memory).
  • correction data may be stored not only in the ROM 22h of the detection unit 22A but also in the ROM 22g (storage means) of the position detection controller 22B.
  • the position detection controller 22B needs to be replaced when the detection unit 22A is replaced.
  • correction data is stored in the ROM 22h of the detection unit 22A, only the detection unit 22A needs to be replaced, which is advantageous in terms of cost and workability.
  • the procedures from the first procedure to the sixth procedure as described above are performed, for example, before the electromagnetic induction position detector 22 is shipped at the electromagnetic induction position detector manufacturing factory. Then, the electromagnetic induction position detector 22 storing the correction data in the ROM 22h of the detection unit 22A or the ROM 22g of the position detection controller 22B is shipped.
  • the electromagnetic induction position detector 22 is attached to the moving body 31.
  • the moving body 31 is a moving body that moves linearly such as an XY table of a machine tool, or a rotating body (rotating body) that rotates such as a rotary table of a machine tool.
  • the detection unit 22A is attached to the moving body 31.
  • the electromagnetic induction type position detector 22 is a linear scale
  • a slider movable part
  • the electromagnetic induction type position detector 22 is a rotary scale
  • a rotor movable part
  • the moving body 31 and the moving body controller 32 that use the electromagnetic induction type position detector 22 and the moving body 21 and the moving body for obtaining correction data of the electromagnetic induction type position detector 22 are used.
  • the controller 24 is different from the controller 24, the controller 24 is not limited to this and may be the same.
  • the position detection controller 22B also includes a power ON determination unit 22j, a data reading unit 22i, an inverse FFT analysis unit 22k, a correction table 22m, and a correction calculation unit 22n.
  • the natural periods of error fluctuations and error data (correction data) corresponding to these natural periods are read from the storage means (ROM 22h or ROM 22g).
  • the power ON determination unit 22j performs ON determination of the power (not shown) of the position detection controller 22B.
  • the data reading unit 22i receives a natural period of 0.5 mm or 0.5 degree, 2/3 mm from the ROM 22h of the detection unit 22A or the ROM 22g of the position detection controller 22B. 15/16 degrees, 1 mm or 1 degree, 2 mm or 2 degrees, 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees, and error data (correction data) corresponding to these natural periods are read. .
  • electromagnetic induction is performed by performing inverse FFT analysis on the natural periods of error fluctuations read from the storage means (ROM 22h or ROM 22g) and error data (correction data) corresponding to these natural periods.
  • An error correction amount corresponding to the detection position (absolute detection position) of the equation position detector 22 is obtained.
  • the natural period read from the ROM 22h of the detection unit 22A or the ROM 22g of the position detection controller 22B in the data reading unit 22i is 0.5 mm or 0.5 degrees, 2/3 mm or 15/16 degrees. 1 mm or 1 degree, 2 mm or 2 degrees, 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees, and the inverse FFT based on the error data (correction data) corresponding to these natural periods Analyze.
  • the relationship between the detection position (distance or angle) and the detection error (detection distance error or detection angle error) similar to that before performing the FFT analysis in the fifth procedure described above (FIG. 3) is obtained.
  • the inverse FFT analysis unit 22k based on the result of the inverse FFT analysis, 0 position of the electromagnetic induction type position detector (linear type scale or rotary type scale) 22 (0 mm for the linear type scale and 0 degree for the rotary type scale).
  • the error correction amount (detection distance error correction amount or detection angle error correction amount) obtained by the inverse FFT analysis unit 22k is stored in association with the detection position (detection distance or detection angle).
  • the detection position of the electromagnetic induction type position detector 22 is corrected based on the error correction amount.
  • an electromagnetic induction type position detector (linear scale or rotary) is used.
  • (Shape scale) 22 detects the position (distance or angle) of the moving body 31. That is, in the position detection unit 22a of the position detection controller 22B, based on the induced voltage output from the detection unit (scale or rotor) 22A, the absolute position of the moving body 31 (movement distance in a linear scale, rotation in a rotary scale) Angle) is detected, and this detection position (detection distance or detection angle) X (m) is output.
  • An error correction amount (detection distance error correction amount or detection angle error correction amount) E (m) corresponding to (detection angle) X (m) is selected, and based on this error correction amount E (m), the following ( The detected position X (m) is corrected as in equation (11), and the corrected detected position X ′ (m) is output.
  • X ′ (m) X (m) + E (m) (11) FIG.
  • FIG. 5 illustrates the error at the corrected detection position (detection angle) X ′ (m)
  • FIG. 6 illustrates the result of FFT analysis of the error at the corrected detection position (detection angle) X ′ (m). Illustrated. As shown in FIG. 5, the error at the corrected detection position (detection angle) X ′ (m) is much smaller than that before the correction (FIG. 3). There is almost no error at 5 degrees, 15/16 degrees, 1 degree, 2 degrees, 3.75 degrees, and 7.5 degrees.
  • the 1 / N period error, sector dimension period error, coil interval period error, and 1 / N period error can be corrected.
  • an error corresponding to the natural period of the error variation of the electromagnetic induction type position detector 22 is extracted from the result of the FFT analysis, and the natural period and the error data corresponding to the natural period are stored in the storage means (ROM 22h or ROM 22g). Therefore, the storage capacity of the storage means (ROM 22h or ROM 22g) can be reduced as compared with the case where all of the acquired detection position error and the detection position data of the electromagnetic induction position detector are stored.
  • the electromagnetic induction position detector 42 to be corrected is attached to the moving body 41.
  • the moving body 41 is a moving body that moves linearly such as an XY table of a machine tool, or a moving body (rotating body) that rotates such as a rotary table of a machine tool.
  • the electromagnetic induction type position detector 42 is a linear type scale or a rotary type scale, and is the same as the conventional electromagnetic induction type position detector explained based on FIG. 8, and detects the absolute position as the detection position X. It is something that can be done.
  • the electromagnetic induction type position detector (linear type scale or rotary type scale) 42 includes a detection unit 42A and a position detection controller 42B.
  • the detection unit 42A is attached to the moving body 41.
  • the detection unit 42A is the same as the detection unit 10 described with reference to FIG.
  • the position detection controller 42B includes a position detection unit 42a, an error calculation unit 42b, a moving body position calculation unit 42c (moving body position calculation means), a switch unit 42d, a sampling data acquisition unit 42e, and an FFT analysis unit 42f.
  • the natural period error component extraction unit 42g and the ROM 42h (storage means) are provided.
  • the detection position of the electromagnetic induction type position detector (linear scale or rotary scale) 22 is set to 0 position (origin: 0 mm for the linear scale and 0 degree for the rotary scale).
  • the moving body controller 43 moves and positions the moving body 41.
  • the position detection unit 42a of the position detection controller 42B based on the induced voltage output from the detection unit (scale or rotor) 42A, the absolute position of the moving body 41 (movement distance in the linear type scale, rotary scale) Then, the rotation angle) is detected, and this detection position (detection distance or detection angle) is output. Then, the moving body 41 is moved and positioned by issuing a movement command from the moving body controller 43 so that the detection position (detection distance or detection angle) becomes 0 position (0 mm or 0 degree).
  • the moving time T used for position calculation in the moving object position calculating unit 43c (moving object position calculating means) is reset to zero.
  • the position detection unit 42a when the detection position (detection distance or detection angle) obtained by the position detection unit 42a becomes 0 position (0 mm or 0 degree), 0 is sent to the moving body position calculation unit 43c.
  • a reset signal r2 is output.
  • the moving body position calculating unit 43c resets the moving time T used for calculating the position (distance or angle) of the moving body 41 in the moving body position calculating unit 43c to 0 based on the 0 reset signal r2. That is, the start time of the moving body 41 is reset to zero.
  • the moving body controller 43 moves the moving body 41 at a constant speed S (a constant linear moving speed when the moving body 41 moves linearly, and the moving body 41 is a rotating body.
  • a constant rotational speed the detection position (detection distance or detection angle) of the electromagnetic induction type position detector 42, the constant speed S of the mobile body 41 and the mobile body 41 in the mobile body position calculation unit 43c.
  • a detection position error (detection distance error or detection angle error), which is a difference from the position (distance or angle) of the moving body 41 calculated by multiplying the movement time T, is calculated, and this detection position error and the electromagnetic induction type
  • the detection position of the position detector 42 is acquired (sampled) at regular intervals.
  • the moving body controller 43 positions the moving body 41 so that the detection position of the electromagnetic induction type position detector 42 becomes 0 position, and then moves the moving body 41 to a constant speed S in order to obtain error data. Move with.
  • the electromagnetic induction type position detector 42 is a linear scale and the moving body 41 moves linearly, the electromagnetic induction type position detector 42 has a certain length (that is, the entire length of the scale), The moving body 41 is moved.
  • the electromagnetic induction type position detector 42 is a rotary scale and the moving body 41 is a rotating body, the moving body 41 is rotated 360 degrees (that is, one rotation of the rotor).
  • the moving body position calculation unit 42c multiplies (S ⁇ T) the constant speed S of the moving body 41 and the moving time T (time after resetting to 0) of the moving body 41.
  • the position (distance or angle) of the moving body 41 is calculated.
  • the detection position (detection distance or detection angle) output from the electromagnetic induction type position detector 42 (position detection unit 42a) and the position of the moving body 41 calculated by the moving body position calculation unit 42c A detection position error (detection distance error or detection angle error) that is a difference from the distance or angle is calculated.
  • the position detection unit 42a detects the detection positions (detection) at regular intervals (for example, every 0.1 mm for the linear scale and every 0.1 degrees for the rotary scale) at the switch unit 42d and the sampling data acquisition unit 42e. Distance or detection angle).
  • the detection position error calculated by the error calculation unit 42b is detected from the position detection unit 42a at a predetermined interval position (every 0.1 mm or every 0.1 degree). Every time it is input, it is output to the sampling data acquisition unit 42e.
  • a detection position error (detection distance error or detection angle error) is acquired from the error calculation unit 42b via the switch unit 42d at every fixed interval position (every 0.1 mm or every 0.1 degree). (Sampling), and the detection position (detection distance or detection angle) of the electromagnetic induction type position detector 42 is acquired from the position detection unit 42a at regular intervals (every 0.1 mm or every 0.1 degree) ( Sampling).
  • the relationship between the detection position (detection distance or detection angle) acquired by the sampling data acquisition unit 42e and the detection position error (detection distance error or detection angle error) is the same as in the first embodiment (FIG. 3). is there.
  • the FFT analysis unit 42f performs FFT analysis on the detection position error and the detection position data acquired by the sampling data acquisition unit 42e.
  • the result of this FFT analysis is also the same as in the case of the first embodiment (FIG. 4).
  • an error (natural period error) corresponding to the natural period of the error variation of the electromagnetic induction type position detector (linear scale or rotary scale) 22 is extracted from the result of the FFT analysis,
  • the natural period and error data (correction data) corresponding to the natural period are stored in the storage means.
  • the natural period error component extraction unit 42g the natural period of the error fluctuation of the electromagnetic induction type position detector (linear type scale or rotary type scale) 42 is obtained from the result of the FFT analysis performed by the FFT analysis unit 42f.
  • the corresponding error (natural period error) is extracted.
  • the coil pitch p of the secondary coil (scale coil or rotor coil) in the electromagnetic induction type position detector (linear type scale or rotary type scale) 42 is set to 2 mm or 2 degrees
  • the electromagnetic induction type position detector ( The sector dimension s of the primary side coil (first and second slider coils or first and second stator coils) in the linear scale or rotary scale) 22 is 2/3 mm or 15/16 degrees
  • the coil interval d is It is assumed that it is set to 1.5 mm or 7.5 degrees.
  • the natural period of the error variation of the electromagnetic induction type position detector (linear type scale or rotary type scale) 42 is 0.5 mm, 0.5 degree, 2/3 mm, 15/16 degree, 1 mm or For example, 1 degree, 2 mm or 2 degrees, 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees. Therefore, in the natural period error component extraction unit 42g, from the result of the FFT analysis, the natural period of error variation is 0.5 mm or 0.5 degrees, 2/3 mm or 15/16 degrees, 1 mm or 1 degree, 2 mm or 2 degrees, An error (natural period error) corresponding to 0.75 mm or 3.75 degrees, 1.5 mm or 7.5 degrees is extracted.
  • the natural period error extracted here is more specifically the magnitude of the amplitude of the sin component and the magnitude of the amplitude of the cos component.
  • correction data may be stored in the ROM 42h (storage means) of the position detection controller 42B, not limited to the ROM 42i of the detection unit 42A.
  • the correction data stored in the ROM 42i of the detection unit 42A is advantageous in terms of cost and workability because only the detection unit 42A needs to be replaced.
  • the procedures from the first procedure to the sixth procedure as described above are performed, for example, before the electromagnetic induction position detector 42 is shipped at the electromagnetic induction position detector manufacturing factory. Then, the electromagnetic induction position detector 42 storing the correction data in the ROM 42i of the detection unit 42A or the ROM 42h of the position detection controller 42B is shipped.
  • the procedure is the seventh procedure to the ninth procedure in the first embodiment. Since it is the same as the procedure, description here is omitted.
  • the moving body and position detection controller using the electromagnetic induction position detector 42 and the moving body 41 and moving body controller 43 for obtaining correction data of the electromagnetic induction position detector 42 are used.
  • the present invention is not limited to this, and they may be the same.
  • the first procedure to the ninth procedure (the seventh procedure to the ninth procedure are described above). Therefore, in order to correct an error inherent in the electromagnetic induction position detector 42, the position detection accuracy of the electromagnetic induction position detector 42 itself is corrected. The position detection accuracy of the electromagnetic induction type position detector 42 itself can be improved. In addition to the coil pitch period error, the 1 / N period error, sector dimension period error, coil interval period error, and 1 / N period error can be corrected.
  • an error corresponding to the natural period of the error variation of the electromagnetic induction position detector 42 is extracted from the result of the FFT analysis, and the natural period and the error data corresponding to the natural period are stored in the storage means (ROM 42i or ROM 42h). Therefore, the storage capacity of the storage means (ROM 42i or ROM 42h) can be reduced as compared with the case where all of the acquired detection position error and the detection position data of the electromagnetic induction position detector are stored. Furthermore, since it is not necessary to use a master position detector, the labor and cost of correction work can be reduced.
  • the present invention relates to a detection position correction method for an electromagnetic induction type position detector, and is intended to improve the position detection accuracy of the electromagnetic induction type position detector itself regardless of the mounting state of the electromagnetic induction type position detector. It is useful to apply.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

電磁誘導式位置検出器(22)とマスター位置検出器(23)とを移動体(21)に取り付ける第1の手順と、電磁誘導式位置検出器の検出位置が0位置となるように移動体を位置決めする第2の手順と、マスター位置検出器の検出位置を0位置にリセットとする第3の手順と、移動体を移動させて電磁誘導式位置検出器の検出位置とマスター位置検出器の検出位置との差である検出位置誤差を演算し、この検出位置誤差と電磁誘導式位置検出器の検出位置とを一定間隔位置毎に取得する第4の手順と、この取得データをFFT解析する第5の手順と、FFT解析結果から誤差変動の固有周期に対応した誤差を抽出してこれらを記憶手段に記憶する第6の手順などを実施し、この記憶データを逆FFT解析して電磁誘導式位置検出器の検出位置を補正する。

Description

電磁誘導式位置検出器の検出位置補正方法
 本発明はリニア形スケール又はロータリ形スケールである電磁誘導式位置検出器の検出位置補正方法に関する。
 電磁誘導式位置検出器であるインダクトシン方式のスケールは、工作機械、自動車、ロボットなどの各種機械における位置検出に適用される。インダクトシン方式のスケールにはリニア形スケールとロータリ形スケールがある。
 リニア形スケールは、工作機械のXYテーブルなどのように直線的に移動する移動体に設置されて、当該移動体の直線的な位置(移動距離)を検出するものである。
 ロータリ形スケールは、工作機械の回転テーブルなどのように回転する移動体(回転体)に設置されて、当該移動体(回転体)の回転位置(回転角度)を検出するものである。
 リニア形スケールとロータリ形スケールは同じ検出原理であり、互いに平行に向かい合わせになるように配置されたコイルパターンの電磁誘導により位置を検出するものである。この検出原理を図8に基づいて説明する。
 電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)、検出部と位置検出コントローラとを有している。
 図8(a)及び図8(b)に示すように、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)の検出部10は、一次側部材(スライダ又はステータ)1と、二次側部材(スケール又はロータ)2とを有している。なお、図8(a)及び図8(b)では、説明の便宜上、一次側部材1と二次側部材2を直線的に図示しているが、ロータリ形スケールの場合、実際には一次側部材1としてのステータと二次側部材としてのロータが何れも円形状である。
 一次側部材(スライダ又はステータ)1は、第1の一次側コイル(スライダでは第1のスライダコイル、ステータでは第1のステータコイル)3と、第2の一次側コイル(スライダでは第2のスライダコイル、ステータでは第2のステータコイル)4とを有している。
 二次側部材(スケール又はロータ)2は、二次側コイル(スケールではスケールコイル、ロータではロータコイル)5を有している。
 コイル3,4,5はコ字状のセクタが複数連結されてジグザグ状に折り返された形状((櫛形パターン)となっており、且つ、第1及び第2のスライダコイルやスケールコイルの場合には全体が直線状、第1及び第2のステータコイルの場合には全体が円弧状、ロータコイルの場合には全体が円環状となっている。
 リニア形スケールの場合、スライダは工作機械のXYテーブルなどのような直線的に移動する移動体に取り付けられて当該移動体とともに直線的に移動する一方、スケールは工作機械などにおける固定部に固定される。ロータリ形スケールの場合、ロータは工作機械の回転テーブルなどのような回転する移動体(回転体)に取り付けられて当該移動体(回転体)とともに回転する一方、ステータは工作機械などにおける固定部に固定される。
 図8(a)に示すように、一次側部材(スライダ又はステータ)1と二次側部材(スケール又はロータ)2は、第1及び第2の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4と、二次側コイル(スケールコイル又はロータコイル)5とが所定のギャップgを保持した状態で互いに平行に向かい合わせになるように配置されている。また、図8(a)及び図8(b)に示すように、第1の一次側コイル(第1のスライダコイル又は第1のステータコイル)3と第2の一次側コイル(第2のスライダコイル又は第2のステータコイル)4は、1/4ピッチずれている。
 かかる構成の電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)では、第1の一次側コイル(第1のスライダコイル又は第1のステータコイル)3と第2の一次側コイル(第2のスライダコイル又は第2のステータコイル)4に励磁電流(交流電流)を流すと、移動体とともに一次側部材1(スライダの場合)又は二次側部材2(ロータの場合)が移動(スライダは直線的な移動、ロータは回転)するのに伴って、第1及び第2の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4と二次側コイル(スケールコイル又はロータコイル)5との相対的な位置関係が変化するのに応じて、図8(c)に示すように第1及び第2の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4と二次側コイル(スケールコイル又はロータコイル)5との電磁結合度が周期的に変化する。このため、二次側コイル(スケールコイル又はロータコイル)5には周期的に変化する誘起電圧が発生する。
 具体的には、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)の位置検出コントローラでは、下記の(1)式のような第1の励磁電流Iaを第1の一次側コイル(第1のスライダコイル又は第1のステータコイル)3に流し、下記の(2)式のような第2の励磁電流Ibを第2の一次側コイル(第2のスライダコイル又は第2のステータコイル)4に流す。
  Ia=-Icos(kα)sin(ωt)  (1)
   Ib=Isin(kα)sin(ωt)   (2)
    但し、I:励磁電流の大きさ
       k:2π/p
       p:コイルピッチ
       ω:励磁電流(交流電流)の角周波数
       t:時間
       α:励振位置
 なお、コイルピッチpは、リニア形スケールでは長さ(mm)、ロータリ形スケールでは角度(度)である。
 第1の励磁電流Iaと第2の励磁電流Ibを流した結果、第1及び第2の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4と二次側コイル(スケールコイル又はロータコイル)5との間の電磁誘導作用により、二次側コイル(スケールコイル又はロータコイル)5には下記の(3)式のような誘起電圧Vが発生する。
  V=KIsin(k(X-α))sin(ωt)  (3)
     但し、K:ギャップgと励磁電流の角周波数ωに依存する伝達係数
        X:検出位置(移動体の移動位置)
 従って、(3)式の誘起電圧Vをサンプリングしたピーク振幅Vpは、下記の(4)式となる。
  Vp=KIsin(k(X-α))   (4)
 そこで、位置検出コントローラでは、二次側コイル(スケールコイル又はロータコイル)5の誘起電圧Vからピーク振幅Vpをサンプリングし、このピーク振幅Vpが0となる励振位置α(即ちX=αとなる励振位置α)の値を計算し、この励振位置αを、移動体の検出位置Xとして出力し、且つ、この励振位置αに基づいて第1励磁電流Ia及び第2励磁電流Ibを調整する。即ち、X=αとなるように移動体の位置Xに対して励振位置αを追従させて、誘起電圧Vp=0となるように制御することにより、移動体の位置Xを検出して出力する。
 また、かかる電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)としては、詳細な説明は省略するが、検出位置Xとして絶対位置を検出することができるものも知られている。
特開2007-064771号公報
 しかしながら、現実の電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)は、製造誤差や取り付け誤差があるため、上記の(4)式が成立せず、検出位置Xに誤差が伴う。一般に検出位置Xに含まれている誤差として顕著に現れるのはコイルピッチ周期の誤差(コイルピッチpの周期に応じて周期的に変動する誤差)であり、これを内挿誤差という。
 例えば、コイルピッチpが2mm(リニア形スケールの場合)又は2度(ロータリ形スケールの場合)であるとすると、2mm又は2度の周期で変動する内挿誤差が生じる。
 また、この2mm又は2度の周期で変動する内挿誤差が大きくなり過ぎるのを避けるため、第1及び第1の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4のコイルピッチは2mm又は2度とはせずに、これよりも少し小さな値とすることがある。例えば、第1及び第1の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4の1つのセクタの寸法sを2/3mm(リニア形スケールの場合)又は15/16度(ロータリ形スケールの場合)とする。
 この場合、2mm又は2度の周期で変動する内挿誤差だけでなく、二次側コイル(スケールコイル又はロータコイル)のコイルピッチpが2mm又は2度であることに起因して、その1/N(Nは正の整数)の周期で変動する内挿誤差(例えば、その1/2である1mm又は1度の周期で変動する内挿誤差、その1/4である0.5mm又は0.5度の周期で変動する内挿誤差など)も生じる。
 また、第1及び第1の一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)3,4のセクタ寸法sが2/3mm又は15/16度であることに起因して、2/3mm又は15/16度の周期で変動する内挿誤差も生じる。
 更には、第1の一次側コイル(第1のスライダコイル又は第1のステータコイル)3と第2の一次側コイル(第2のスライダコイル又は第2のステータコイル)4との間隔dに起因して、コイル間隔dの周期やその1/Nの周期で変動する誤差も生じる。
 例えばコイル間隔dが1.5mm(リニア形スケールの場合)又は7.5度(ロータリ形スケールの場合)であるとすると、1.5mm又は7.5度の周期で変動する誤差や、その1/2である0.75mm又は3.75度の周期で変動する誤差なども生じる。
 電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)の取り付けに起因する誤差は、同一の電磁誘導式位置検出器であっても、その取り付け状態に応じて様々である。
 これに対して、上記のような0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度などの固有周期で変動する誤差は、取り付け状態などとは無関係であり、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)に固有の誤差(固有周期誤差)である。
 従って、この固有周期誤差を補正することができれば、電磁誘導式位置検出器自体の位置検出精度を向上させることができる。
 従って本発明は上記の事情に鑑みてなされたものであり、電磁誘導式位置検出器に固有の誤差を補正して、当該電磁誘導式位置検出器自体の位置検出精度を向上させることができる電磁誘導式位置検出器の検出位置補正方法を提供することを課題とする。
 上記課題を解決する第1発明の電磁誘導式位置検出器の検出位置補正方法は、
 絶対位置を検出する電磁誘導式位置検出器と、この電磁誘導式位置検出器よりも高い位置検出精度を有するマスター位置検出器とを、移動体に取り付ける第1の手順と、
 前記電磁誘導式位置検出器の検出位置が0位置となるように移動体コントローラにより、前記移動体を移動させて位置決めする第2の手順と、
 前記マスター位置検出器の検出位置を、0位置にリセットとする第3の手順と、
 前記移動体コントローラにより前記移動体を移動させて、前記電磁誘導式位置検出器の検出位置と前記マスター位置検出器の検出位置との差である検出位置誤差を演算し、この検出位置誤差と前記電磁誘導式位置検出器の検出位置とを一定間隔位置毎に取得する第4の手順と、
 この取得した前記検出位置誤差と前記電磁誘導式位置検出器の検出位置のデータを、FFT解析する第5の手順と、
 前記FFT解析の結果から、前記電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶する第6の手順と、
 前記記憶手段から、前記固有周期と前記固有周期に対応した誤差のデータを読み込む第7の手順と、
 前記記憶手段から読み込んだ前記固有周期と前記固有周期に対応した誤差のデータを、逆FFT解析することにより、前記電磁誘導式位置検出器の検出位置に応じた誤差補正量を求める第8の手順と、
 前記電磁誘導式位置検出器の検出位置を、前記誤差補正量に基づいて補正する第9の手順と
を有することを特徴とする。
 また、第2発明の電磁誘導式位置検出器の検出位置補正方法は、
 絶対位置を検出する電磁誘導式位置検出器を、移動体に取り付ける第1の手順と、
 前記電磁誘導式位置検出器の検出位置が0位置となるように移動体コントローラにより、前記移動体を移動させて位置決めする第2の手順と、
 移動体位置計算手段において位置計算に用いる移動時間を、0にリセットとする第3の手順と、
 前記移動体コントローラにより前記移動体を一定速度で移動させ、前記電磁誘導式位置検出器の検出位置と、前記移動体位置計算手段において前記移動体の前記一定速度と前記移動体の移動時間とを乗算することによって算出する前記移動体の位置との差である検出位置誤差を演算し、この検出位置誤差と前記電磁誘導式位置検出器の検出位置とを一定間隔位置毎に取得する第4の手順と、
 この取得した前記検出位置誤差と前記電磁誘導式位置検出器の検出位置のデータを、FFT解析する第5の手順と、
 前記FFT解析の結果から、前記電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶する第6の手順と、
 前記記憶手段から、前記固有周期と前記固有周期に対応した誤差のデータを読み込む第7の手順と、
 前記記憶手段から読み込んだ前記固有周期と前記固有周期に対応した誤差のデータを、逆FFT解析することにより、前記電磁誘導式位置検出器の検出位置に応じた誤差補正量を求める第8の手順と、
 前記電磁誘導式位置検出器の検出位置を、前記誤差補正量に基づいて補正する第9の手順と
を有することを特徴とする。
 第1発明の電磁誘導式位置検出器の検出位置補正方法によれば、上記の第1の手順~第9の手順を有することを特徴としていることから、電磁誘導式位置検出器に固有の誤差のを補正するため、補正によって電磁誘導式位置検出器自体の位置検出精度に悪影響を及ぼすことがなく、電磁誘導式位置検出器自体の位置検出精度を向上させることができる。
 また、コイルピッチ周期の誤差だけでなく、その1/N周期の誤差、セクタ寸法周期の誤差、コイル間隔周期の誤差、その1/N周期の誤差も補正することができる。
 また、FFT解析の結果から、電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶するため、取得した検出位置誤差と電磁誘導式位置検出器の検出位置のデータ全てを記憶する場合に比べて、記憶手段の記憶容量を小さくことができる。
 同様に、第2発明の電磁誘導式位置検出器の検出位置補正方法においても、上記の第1の手順~第9の手順を有することを特徴としていることから、電磁誘導式位置検出器に固有の誤差のを補正するため、補正によって電磁誘導式位置検出器自体の位置検出精度に悪影響を及ぼすことがなく、電磁誘導式位置検出器自体の位置検出精度を向上させることができる。
 また、コイルピッチ周期の誤差だけでなく、その1/N周期の誤差、セクタ寸法周期の誤差、コイル間隔周期の誤差、その1/N周期の誤差も補正することができる。
 また、FFT解析の結果から、電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶するため、取得した検出位置誤差と電磁誘導式位置検出器の検出位置のデータ全てを記憶する場合に比べて、記憶手段の記憶容量を小さくことができる。
 更には、マスター位置検出器を用いる必要がないため、補正作業の手間やコストを低減することができる。
本発明の実施の形態例1に係る電磁誘導式位置検出器の検出位置補正方法の関するブロック図である。 本発明の実施の形態例1に係る電磁誘導式位置検出器の検出位置補正方法の関するブロック図である。 補正前の検出位置データ(検出角度と誤差の関係)を示すグラフである。 補正前の検出位置データ(検出角度と誤差の関係)をFFT解析した結果を示すグラフである。 補正後の検出位置データ(検出角度と誤差の関係)を示すグラフである。 補正後の検出位置データ(検出角度と誤差の関係)をFFT解析した結果を示すグラフである。 本発明の実施の形態例2に係る電磁誘導式位置検出器の検出位置補正方法の関するブロック図である。 (a)は電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)の一次側部材(スライダ又はステータ)と二次側部材(スケール又はロータ)とを互いに平行に向かい合わせになるように配置した状態を示す斜視図、(b)は前記一次側部材(スライダ又はステータ)と前記二次側部材(スケール又はロータ)とを並べて示す図、(c)は前記一次側部材(スライダ又はステータ)と前記二次側部材(スケール又はロータ)との電磁結合度を示す図である。
 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。
 <実施の形態例1>
 図1~図6に基づき、本発明の実施の形態例1に係る電磁誘導式位置検出器の検出位置補正方法について説明する。
 まず、誤差補正用のデータ(電磁誘導式位置検出器の誤差変動の固有周期と、この固有周期に対応した誤差のデータ)をROM(記憶手段)に記憶するまでの手順について説明する。
 図1に示すように、第1の手順では、補正対象の電磁誘導式位置検出器22と、マスター位置検出器23とを、移動体21に取り付ける。
 詳述すると、移動体21は、工作機械のXYテーブルなどのような直線的に移動する移動体、又は、工作機械の回転テーブルなどのような回転する移動体(回転体)である。
 電磁誘導式位置検出器22はリニア形スケール又はロータリ形スケールであり、図8に基づいて説明した従来の電磁誘導式位置検出器と同様のものであり、検出位置Xとして絶対位置を検出することができるものである。
 電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22は、検出部22Aと位置検出コントローラ22Bとを有している。移動体21には検出部22Aを取り付ける。検出部22Aは図8に基づいて説明した検出部10と同様のものであり、一次側部材(スライダ又はステータ)と二次側部材(スケール又はロータ)とを有している。
 従って、電磁誘導式位置検出器22がリニア形スケールである場合には、直線的に移動する移動体21にスライダ(可動部)を取り付ける。電磁誘導式位置検出器22がロータリ形スケールである場合には、回転体である移動体21にロータ(可動部)を取り付ける。
 位置検出コントローラ22Bは、位置検出部22aと、誤差演算部22bと、スイッチ部22cと、サンプリングデータ取得部22dと、FFT(Fast Fourier Transform:高速フーリエ変換)解析部22eと、固有周期誤差成分抽出部22fと、ROM22g(記憶手段)とを有している。
 電磁誘導式位置検出器22がリニア形スケールである場合には、マスター位置検出器23として、移動体21の直線的な位置(移動距離)を検出することができるものを用いる。電磁誘導式位置検出器22がロータリ形スケールである場合には、マスター位置検出器23として、移動体(回転体)21の回転位置(回転角度)を検出することができるものを用いる。
 マスター位置検出器23は、電磁誘導式位置検出器22に比べて位置検出精度が高いもの(例えば電磁誘導式位置検出器22に比べて位置検出誤差の大きさが1/10以下のもの)を用いる。かかる高精度のマスター位置検出器23としては、例えば光学式の位置検出器などを用いることができる。なお、移動体21にはマスター位置検出器23の可動部が取り付けられる。
 次の第2の手順では、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の検出位置が0位置(原点:リニア形スケールでは0mm、ロータリ形スケールでは0度)になるように移動体コントローラ24により、移動体21を移動させて位置決めする。
 詳述すると、位置検出コントローラ22Bの位置検出部22aでは、検出部(スケール又はロータ)22Aから出力される誘起電圧に基づいて、移動体21の絶対位置(リニア形スケールでは移動距離、ロータリ形スケールでは回転角度)を検出し、この検出位置(検出距離又は検出角度)を出力する。そして、この検出位置(検出距離又は検出角度)が0位置(0mm又は0度)になるように移動体コントローラ24から移動指令を行うことにより、移動体21を移動させて位置決めする。
 次の第3の手順では、マスター位置検出器23の検出位置(検出距離又は検出角度)を、0位置(0mm又は0度)にリセットする。
 詳述すると、位置検出部22aでは、この位置検出部22aで得られた検出位置(検出距離又は検出角度)が0位置(0mm又は0度)になったとき、マスター位置検出器23へ0リセット信号r1を出力する。そして、マスター位置検出器23では、このマスター位置検出器23における検出位置(検出距離又は検出角度)を、0リセット信号r1に基づいて0位置(0mm又は0度)にリセットする。
 次の第4の手順では、移動体コントローラ24により移動体21を移動させて、電磁誘導式位置検出器22の検出位置(検出距離又は検出角度)とマスター位置検出器23の検出位置(検出距離又は検出角度)との差である検出位置誤差(検出距離誤差又は検出角度誤差)を演算し、この検出位置誤差と電磁誘導式位置検出器22の検出位置とを一定間隔位置毎に取得(サンプリング)する。
 詳述すると、移動体コントローラ24では、電磁誘導式位置検出器22の検出位置が0位置になるように移動体21を位置決めしてから、誤差データを取得するために移動体21を一定速度で移動させる。電磁誘導式位置検出器22がリニア形スケールであり、移動体21が直線的に移動するものである場合には、電磁誘導式位置検出器22の一定長さ分(即ちスケールの全長分)、移動体21を移動させる。電磁誘導式位置検出器22がロータリ形スケールであり、移動体21が回転体である場合には、移動体21を360度(即ちロータの1回転分)回転させる。
 そして、このときに誤差演算部22bでは、電磁誘導式位置検出器22(位置検出部22a)から出力される検出位置(検出距離又は検出角度)と、マスター位置検出器23の検出位置(検出距離又は検出角度)との差である検出位置誤差(検出距離誤差又は検出角度誤差)を演算する。
 また、位置検出部22aでは、一定間隔位置毎(例えば、リニア形スケールでは0.1mm毎、ロータリ形スケールでは0.1度毎)にスイッチ部22cとサンプリングデータ取得部22dとに検出位置(検出距離又は検出角度)を出力する。
 スイッチ部22cでは、誤差演算部22bで演算された検出位置誤差を、位置検出部22aから一定間隔位置毎(0.1mm毎又は0.1度毎)に検出位置(検出距離又は検出角度)を入力する度にサンプリングデータ取得部22dへ出力する。
 サンプリングデータ取得部22dでは、誤差演算部22bから、スイッチ部22cを介して一定間隔位置毎(0.1mm毎又は0.1度毎)に検出位置誤差(検出距離誤差又は検出角度誤差)を取得(サンプリング)し、且つ、位置検出部22aから、一定間隔位置毎(0.1mm毎又は0.1度毎)に電磁誘導式位置検出器22の検出位置(検出距離又は検出角度)を取得(サンプリング)する。
 このサンプリングデータ取得部22dで取得した検出位置(検出距離又は検出角度)と検出位置誤差(検出距離誤差又は検出角度誤差)の関係が、図3に例示されている。図3には電磁誘導式位置検出器22がロータリ形スケールである場合の検出角度(度)と検出角度誤差(秒)の関係が例示されており、検出角度誤差が周期的に変動している様子が示されている。図示は省略するが、電磁誘導式位置検出器22がリニア形スケールである場合の検出距離(mm)と検出距離誤差(秒)との関係も、これと同様である。
 次の第5の手順では、サンプリングデータ取得部22dで取得した検出位置誤差と検出位置のデータを、FFT解析部22eにおいてFFT解析する。
 このFFT解析の結果が、図4に例示されている。図4には電磁誘導式位置検出器22がロータリ形スケールである場合の角度(度)と誤差振幅(秒)の関係が例示されている。図示は省略するが、電磁誘導式位置検出器22がリニア形スケールである場合の距離(mm)と誤差振幅(mm)の関係も、これと同様である。
 次の第6の手順では、FFT解析の結果から、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の誤差変動の固有周期に対応した誤差(固有周期誤差)を抽出し、前記固有周期と、前記固有周期に対応した誤差のデータ(補正データ)を記憶手段に記憶する。
 詳述すると、固有周期誤差成分抽出部22fでは、FFT解析部22eで行われた図4に例示するようなFFT解析の結果から、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の誤差変動の固有周期に対応した誤差(固有周期誤差)を抽出する。
 ここでは電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22における二次側コイル(スケールコイル又はロータコイル)のコイルピッチpが2mm又は2度に設定され、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22における一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)のセクタ寸法sが2/3mm又は15/16度、コイル間隔dが1.5mm又は7.5度に設定されているとする。
 このため、前述のとおり電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の誤差変動の固有周期は、0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度などである。
 従って、固有周期誤差成分抽出部22fでは、FFT解析の結果から、誤差変動の固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度に対応した誤差(固有周期誤差)を抽出する。
 図4に示すロータリ形スケールの場合の例では、固有周期の0.5度に対応した誤差Eaと、固有周期の15/16度に対応した誤差Ebと、固有周期の1度に対応した誤差Ecと、固有周期の2度に対応した誤差Edと、固有周期の3.75度に対応した誤差Eeと、固有周期の7.5度に対応した誤差Efとを抽出する。図示は省略するが、リニア形スケールの場合についても、これと同様である。
 コイルピッチpが2mm又は2度である場合、その1/8(0.25mm又は0.25度)などの固有周期の誤差も生じるが、1/8以下の固有周期の誤差は小さいため、ここでは無視している。
 なお、ここで抽出する固有周期誤差は、より具体的にはsin成分の振幅の大きさと、cos成分の振幅の大きさである。
 そして、固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度と、これらの固有周期に対応した誤差のデータ(補正データ)を、電磁誘導式位置検出器22の検出部(リニア形スケールではスライダ又はスケール、ロータリ形スケールではステータ又はロータ)22Aに設けたROM22h(記憶手段)に記憶する。
 なお、これらの補正データは、検出部22AのROM22hに限らず、位置検出コントローラ22BのROM22g(記憶手段)に記憶するようにしてもよい。しかし、位置検出コントローラ22BのROM22gに補正データを記憶させた場合には、検出部22Aを取り換える際に位置検出コントローラ22Bも取り換える必要がある。これに対して、検出部22AのROM22hに補正データを記憶させた場合の方が、検出部22Aだけを取り換えればよいため、コストや作業性などの点で有利である。
 上記のような第1の手順~第6の手順の手順は、例えば、電磁誘導式位置検出器の製造工場において電磁誘導式位置検出器22を出荷する前に実施する。そして、検出部22AのROM22h又は位置検出コントローラ22BのROM22gに補正データを記憶した電磁誘導式位置検出器22を出荷する。
 次に、電磁誘導式位置検出器の検出位置を補正するまでの手順について説明する。
 図2に示すように、検出部22AのROM22h又は位置検出コントローラ22BのROM22gに補正データを記憶した電磁誘導式位置検出器22を用いて移動体31の位置検出を行う場合、当該電磁誘導式位置検出器22を当該移動体31に取り付ける。
 移動体31は、工作機械のXYテーブルなどのような直線的に移動する移動体、又は、工作機械の回転テーブルなどのような回転する移動体(回転体)である。
 移動体31には検出部22Aを取り付ける。電磁誘導式位置検出器22がリニア形スケールである場合には、直線的に移動する移動体31にスライダ(可動部)を取り付ける。電磁誘導式位置検出器22がロータリ形スケールである場合には、回転体である移動体31にロータ(可動部)を取り付ける。
 なお、本実施の形態例1では電磁誘導式位置検出器22を利用する移動体31や移動体コントローラ32と、電磁誘導式位置検出器22の補正データを取得するための移動体21や移動体コントローラ24とは異なるものであるとしているが、これに限定するものでなく、これらは同じものであってもよい。
 図2に示すように、位置検出コントローラ22Bは、電源ON判定部22jと、データ読み込み部22iと、逆FFT解析部22kと、補正テーブル22mと、補正演算部22nも有している。
 そして、第7の手順では、記憶手段(ROM22h又はROM22g)から、誤差変動の固有周期と、これらの固有周期に対応した誤差のデータ(補正データ)を読み込む。
 詳述すると、電源ON判定部22jでは、位置検出コントローラ22Bの電源(図示省略)のON判定を行う。
 電源ON判定部22jで電源がONになったと判定すると、データ読み込み部22iでは、検出部22AのROM22h又は位置検出コントローラ22BのROM22gから、固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度と、これらの固有周期に対応した誤差のデータ(補正データ)を読み込む。
 次の第8の手順では、記憶手段(ROM22h又はROM22g)から読み込んだ誤差変動の固有周期と、これらの固有周期に対応した誤差のデータ(補正データ)を、逆FFT解析することにより、電磁誘導式位置検出器22の検出位置(絶対検出位置)に応じた誤差補正量を求める。
 詳述すると、逆FFT解析部22kでは、データ読み込み部22iにおいて検出部22AのROM22h又は位置検出コントローラ22BのROM22gから読み込んだ固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度と、これらの固有周期に対応した誤差のデータ(補正データ)に基づいて、逆FFT解析を行う。
 その結果、前述の第5の手順でFFT解析を行う前(図3)と同様の検出位置(距離又は角度)と検出誤差(検出距離誤差又は検出角度誤差)の関係が得られる。
 そして、逆FFT解析部22kでは、逆FFT解析の結果に基づき、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の0位置(リニア形スケールでは0mm、ロータリ形スケールでは0度)を基準とした誤差補正量を計算する。即ち、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の絶対検出位置(絶対検出距離又は絶対検出角度)に対応する誤差補正量(検出距離誤差の補正量又は検出角度誤差の補正量)を求める。
 補正テーブル22mでは、逆FFT解析部22kで求めた誤差補正量(検出距離の誤差補正量又は検出角度の誤差補正量)を、検出位置(検出距離又は検出角度)に対応させて記憶する。
 次の第9の手順では、電磁誘導式位置検出器22の検出位置を、前記誤差補正量に基づいて補正する。
 詳述すると、移動体31が停止しているときや、移動体コントローラ32によって移動体31を移動(直線的に移動又は回転)させているとき、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22では、移動体31の位置(距離又は角度)を検出する。
 即ち、位置検出コントローラ22Bの位置検出部22aでは、検出部(スケール又はロータ)22Aから出力される誘起電圧に基づいて、移動体31の絶対位置(リニア形スケールでは移動距離、ロータリ形スケールでは回転角度)を検出し、この検出位置(検出距離又は検出角度)X(m)を出力する。
 補正演算部22nでは、補正テーブル22mに記憶されている誤差補正量(検出距離の誤差補正量又は検出角度の誤差補正量)のデータから、位置検出部22aから出力される検出位置(検出距離又は検出角度)X(m)に対応した誤差補正量(検出距離の誤差補正量又は検出角度の誤差補正量)E(m)を選択し、この誤差補正量E(m)に基づいて下記の(11)式のように当該検出位置X(m)を補正し、この補正した検出位置X´(m)を出力する。
  X´(m)=X(m)+E(m)   (11)
 図5には補正後の検出位置(検出角度)X´(m)における誤差を例示し、図6には補正後の検出位置(検出角度)X´(m)における誤差をFFT解析した結果を例示している。図5に示すように補正後の検出位置(検出角度)X´(m)における誤差は、補正前(図3)に比べて非常に小さくなっており、図6に示すように固有周期0.5度、15/16度、1度、2度、3.75度、7.5度における誤差はほとんど生じていない。
 以上のように、本実施の形態例1に係る電磁誘導式位置検出器の検出位置補正方法によれば、上記の第1の手順~第9の手順を有することを特徴としていることから、電磁誘導式位置検出器22に固有の誤差のを補正するため、補正によって電磁誘導式位置検出器22自体の位置検出精度に悪影響を及ぼすことがなく、電磁誘導式位置検出器22自体の位置検出精度を向上させることができる。
 また、コイルピッチ周期の誤差だけでなく、その1/N周期の誤差、セクタ寸法周期の誤差、コイル間隔周期の誤差、その1/N周期の誤差も補正することができる。
 また、FFT解析の結果から、電磁誘導式位置検出器22の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段(ROM22h又はROM22g)に記憶するため、取得した検出位置誤差と電磁誘導式位置検出器の検出位置のデータ全てを記憶する場合に比べて、記憶手段(ROM22h又はROM22g)の記憶容量を小さくことができる。
 <実施の形態例2>
 図7に基づき、本発明の実施の形態例2に係る電磁誘導式位置検出器の検出位置補正方法について説明する。
 上記実施の形態例1ではマスター位置検出器を用いたが、本実施の形態例2ではマスター位置検出器は用いず、移動体の移動速度(一定速度)と移動時間とから移動体の位置を算出する。
 まず、誤差補正用のデータ(電磁誘導式位置検出器の誤差変動の固有周期と、この固有周期に対応した誤差のデータ)をROM(記憶手段)に記憶するまでの手順について説明する。
 図7に示すように、第1の手順では、補正対象の電磁誘導式位置検出器42を移動体41に取り付ける。
 詳述すると、移動体41は、工作機械のXYテーブルなどのような直線的に移動する移動体、又は、工作機械の回転テーブルなどのような回転する移動体(回転体)である。
 電磁誘導式位置検出器42はリニア形スケール又はロータリ形スケールであり、図8に基づいて説明した従来の電磁誘導式位置検出器と同様のものであり、検出位置Xとして絶対位置を検出することができるものである。
 電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)42は、検出部42Aと位置検出コントローラ42Bとを有している。移動体41には検出部42Aを取り付ける。検出部42Aは図8に基づいて説明した検出部10と同様のものであり、一次側部材(スライダ又はステータ)と二次側部材(スケール又はロータ)とを有している。従って、電磁誘導式位置検出器42がリニア形スケールである場合には、直線的に移動する移動体41にスライダ(可動部)を取り付ける。電磁誘導式位置検出器42がロータリ形スケールである場合には、回転体である移動体41にロータ(可動部)を取り付ける。
 位置検出コントローラ42Bは、位置検出部42aと、誤差演算部42bと、移動体位置計算部42c(移動体位置計算手段)と、スイッチ部42dと、サンプリングデータ取得部42eと、FFT解析部42fと、固有周期誤差成分抽出部42gと、ROM42h(記憶手段)とを有している。
 次の第2の手順では、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の検出位置が0位置(原点:リニア形スケールでは0mm、ロータリ形スケールでは0度)になるように移動体コントローラ43により、移動体41を移動させて位置決めする。
 詳述すると、位置検出コントローラ42Bの位置検出部42aでは、検出部(スケール又はロータ)42Aから出力される誘起電圧に基づいて、移動体41の絶対位置(リニア形スケールでは移動距離、ロータリ形スケールでは回転角度)を検出し、この検出位置(検出距離又は検出角度)を出力する。そして、この検出位置(検出距離又は検出角度)が0位置(0mm又は0度)になるように移動体コントローラ43から移動指令を行うことにより、移動体41を移動させて位置決めする。
 次の第3の手順では、移動体位置計算部43c(移動体位置計算手段)において位置計算に用いる移動時間Tを、0にリセットとする。
 詳述すると、位置検出部42aでは、この位置検出部42aで得られた検出位置(検出距離又は検出角度)が0位置(0mm又は0度)になったとき、移動体位置計算部43cへ0リセット信号r2を出力する。そして、移動体位置計算部43cでは、この移動体位置計算部43cにおいて移動体41の位置(距離又は角度)の計算に用いる移動時間Tを、0リセット信号r2に基づいて0にリセットする。即ち、移動体41のスタート時間を0にリセットする。
 次の第4の手順では、移動体コントローラ43により移動体41を一定速度S(移動体41が直線的に移動するものである場合には一定の直線移動速度、移動体41が回転体である場合には一定の回転速度)で移動させ、電磁誘導式位置検出器42の検出位置(検出距離又は検出角度)と、移動体位置計算部43cにおいて移動体41の一定速度Sと移動体41の移動時間Tとを乗算することによって算出する移動体41の位置(距離又は角度)との差である検出位置誤差(検出距離誤差又は検出角度誤差)を演算し、この検出位置誤差と電磁誘導式位置検出器42の検出位置とを一定間隔位置毎に取得(サンプリング)する。
 詳述すると、移動体コントローラ43では、電磁誘導式位置検出器42の検出位置が0位置になるように移動体41を位置決めしてから、誤差データを取得するために移動体41を一定速度Sで移動させる。電磁誘導式位置検出器42がリニア形スケールであり、移動体41が直線的に移動するものである場合には、電磁誘導式位置検出器42の一定長さ分(即ちスケールの全長分)、移動体41を移動させる。電磁誘導式位置検出器42がロータリ形スケールであり、移動体41が回転体である場合には、移動体41を360度(即ちロータの1回転分)回転させる。
 そして、このときに移動体位置計算部42cでは、移動体41の一定速度Sと、移動体41の移動時間T(0にリセットしてからの時間)とを乗算(S×T)することによって、移動体41の位置(距離又は角度)を算出する。
 誤差演算部42bでは、電磁誘導式位置検出器42(位置検出部42a)から出力される検出位置(検出距離又は検出角度)と、移動体位置計算部42cで算出される移動体41の位置(距離又は角度)との差である検出位置誤差(検出距離誤差又は検出角度誤差)を演算する。
 また、位置検出部42aでは、一定間隔位置毎(例えば、リニア形スケールでは0.1mm毎、ロータリ形スケールでは0.1度毎)にスイッチ部42dとサンプリングデータ取得部42eとに検出位置(検出距離又は検出角度)を出力する。
 スイッチ部42dでは、誤差演算部42bで演算された検出位置誤差を、位置検出部42aから一定間隔位置毎(0.1mm毎又は0.1度毎)に検出位置(検出距離又は検出角度)を入力する度にサンプリングデータ取得部42eへ出力する。
 サンプリングデータ取得部42eでは、誤差演算部42bから、スイッチ部42dを介して一定間隔位置毎(0.1mm毎又は0.1度毎)に検出位置誤差(検出距離誤差又は検出角度誤差)を取得(サンプリング)し、且つ、位置検出部42aから、一定間隔位置毎(0.1mm毎又は0.1度毎)に電磁誘導式位置検出器42の検出位置(検出距離又は検出角度)を取得(サンプリング)する。このサンプリングデータ取得部42eで取得した検出位置(検出距離又は検出角度)と検出位置誤差(検出距離誤差又は検出角度誤差)の関係は、上記実施の形態例1の場合(図3)と同様である。
 次の第5の手順では、サンプリングデータ取得部42eで取得した検出位置誤差と検出位置のデータを、FFT解析部42fにおいてFFT解析する。このFFT解析の結果も、上記実施の形態例1の場合(図4)と同様である。
 次の第6の手順では、FFT解析の結果から、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22の誤差変動の固有周期に対応した誤差(固有周期誤差)を抽出し、前記固有周期と、前記固有周期に対応した誤差のデータ(補正データ)を記憶手段に記憶する。
 詳述すると、固有周期誤差成分抽出部42gでは、FFT解析部42fで行われたFFT解析の結果から、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)42の誤差変動の固有周期に対応した誤差(固有周期誤差)を抽出する。
 ここでは電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)42における二次側コイル(スケールコイル又はロータコイル)のコイルピッチpが2mm又は2度に設定され、電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)22における一次側コイル(第1及び第2のスライダコイル又は第1及び第2のステータコイル)のセクタ寸法sが2/3mm又は15/16度、コイル間隔dが1.5mm又は7.5度に設定されているとする。
 このため、前述のとおり電磁誘導式位置検出器(リニア形スケール又はロータリ形スケール)42の誤差変動の固有周期は、0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度などである。
 従って、固有周期誤差成分抽出部42gでは、FFT解析の結果から、誤差変動の固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度に対応した誤差(固有周期誤差)を抽出する。
 コイルピッチpが2mm又は2度である場合、その1/8(0.25mm又は0.25度)などの周期の誤差も生じるが、1/8以下の周期の誤差は小さいため、ここでは無視している。
 なお、ここで抽出する固有周期誤差は、より具体的にはsin成分の振幅の大きさと、cos成分の振幅の大きさである。
 そして、固有周期0.5mm又は0.5度、2/3mm又は15/16度、1mm又は1度、2mm又は2度、0.75mm又は3.75度、1.5mm又は7.5度と、これらの固有周期に対応した誤差のデータ(補正データ)を、電磁誘導式位置検出器42の検出部(リニア形スケールではスライダ又はスケール、ロータリ形スケールではステータ又はロータ)42Aに設けたROM42i(記憶手段)に記憶する。
 なお、これらの補正データは、検出部42AのROM42iに限らず、位置検出コントローラ42BのROM42h(記憶手段)に記憶するようにしてもよい。しかし、先にも述べたとおり、検出部42AのROM42iに補正データを記憶させた場合の方が、検出部42Aだけを取り換えればよいため、コストや作業性などの点で有利である。
 上記のような第1の手順~第6の手順の手順は、例えば、電磁誘導式位置検出器の製造工場において電磁誘導式位置検出器42を出荷する前に実施する。そして、検出部42AのROM42i又は位置検出コントローラ42BのROM42hに補正データを記憶した電磁誘導式位置検出器42を出荷する。
 次に、電磁誘導式位置検出器42の検出位置X(m)を補正するまでの手順を実施することになるが、この手順については上記実施の形態例1おける第7の手順~第9の手順と同様であるため、ここでの説明は省略する。
 なお、本実施の形態例2でも電磁誘導式位置検出器42を利用する移動体や位置検出コントローラと、電磁誘導式位置検出器42の補正データを取得するための移動体41や移動体コントローラ43とは異なるものであるとしているが、これに限定するものでなく、これらは同じものであってもよい。
 以上のように、本実施の形態例2に係る電磁誘導式位置検出器の検出位置補正方法によれば、上記の第1の手順~第9の手順(第7の手順~第9の手順は上記実施の形態例1と同様)を有することを特徴としていることから、電磁誘導式位置検出器42に固有の誤差のを補正するため、補正によって電磁誘導式位置検出器42自体の位置検出精度に悪影響を及ぼすことがなく、電磁誘導式位置検出器42自体の位置検出精度を向上させることができる。
 また、コイルピッチ周期の誤差だけでなく、その1/N周期の誤差、セクタ寸法周期の誤差、コイル間隔周期の誤差、その1/N周期の誤差も補正することができる。
 また、FFT解析の結果から、電磁誘導式位置検出器42の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段(ROM42i又はROM42h)に記憶するため、取得した検出位置誤差と電磁誘導式位置検出器の検出位置のデータ全てを記憶する場合に比べて、記憶手段(ROM42i又はROM42h)の記憶容量を小さくことができる。
 更には、マスター位置検出器を用いる必要がないため、補正作業の手間やコストを低減することができる。
 本発明は電磁誘導式位置検出器の検出位置補正方法に関するものであり、電磁誘導式位置検出器の取り付け状態などには関わらず、電磁誘導式位置検出器自体の位置検出精度を向上させる場合に適用して有用なものである。
 21 移動体
 22 電磁誘導式位置検出器
 22A 検出部
 22B 位置検出コントローラ
 22a 位置検出部
 22b 誤差演算部
 22c スイッチ部
 22d サンプリングデータ取得部
 22e FFT解析部
 22f 固有周期誤差成分抽出部
 22g,22h ROM
 22i データ読み込み部
 22j 電源ON判定部
 22k 逆FFT解析部
 22m 補正テーブル
 22n 補正演算部
 23 マスター位置検出器
 24 移動体コントローラ
 31 移動体
 32 移動体コントローラ
 41 移動体
 42 電磁誘導式位置検出器
 42A 検出部
 42B 位置検出コントローラ
 42a 位置検出部
 42b 誤差演算部
 42c 移動体位置計算部
 42d スイッチ部
 42e サンプリングデータ取得部
 42f FFT解析部
 42g 固有周期誤差成分抽出部
 42h,42i ROM
 43 移動体コントローラ

Claims (2)

  1.  絶対位置を検出する電磁誘導式位置検出器と、この電磁誘導式位置検出器よりも高い位置検出精度を有するマスター位置検出器とを、移動体に取り付ける第1の手順と、
     前記電磁誘導式位置検出器の検出位置が0位置となるように移動体コントローラにより、前記移動体を移動させて位置決めする第2の手順と、
     前記マスター位置検出器の検出位置を、0位置にリセットとする第3の手順と、
     前記移動体コントローラにより前記移動体を移動させて、前記電磁誘導式位置検出器の検出位置と前記マスター位置検出器の検出位置との差である検出位置誤差を演算し、この検出位置誤差と前記電磁誘導式位置検出器の検出位置とを一定間隔位置毎に取得する第4の手順と、
     この取得した前記検出位置誤差と前記電磁誘導式位置検出器の検出位置のデータを、FFT解析する第5の手順と、
     前記FFT解析の結果から、前記電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶する第6の手順と、
     前記記憶手段から、前記固有周期と前記固有周期に対応した誤差のデータを読み込む第7の手順と、
     前記記憶手段から読み込んだ前記固有周期と前記固有周期に対応した誤差のデータを、逆FFT解析することにより、前記電磁誘導式位置検出器の検出位置に応じた誤差補正量を求める第8の手順と、
     前記電磁誘導式位置検出器の検出位置を、前記誤差補正量に基づいて補正する第9の手順と
    を有することを特徴とする電磁誘導式位置検出器の検出位置補正方法。
  2.  絶対位置を検出する電磁誘導式位置検出器を、移動体に取り付ける第1の手順と、
     前記電磁誘導式位置検出器の検出位置が0位置となるように移動体コントローラにより、前記移動体を移動させて位置決めする第2の手順と、
     移動体位置計算手段において位置計算に用いる移動時間を、0にリセットとする第3の手順と、
     前記移動体コントローラにより前記移動体を一定速度で移動させ、前記電磁誘導式位置検出器の検出位置と、前記移動体位置計算手段において前記移動体の前記一定速度と前記移動体の移動時間とを乗算することによって算出する前記移動体の位置との差である検出位置誤差を演算し、この検出位置誤差と前記電磁誘導式位置検出器の検出位置とを一定間隔位置毎に取得する第4の手順と、
     この取得した前記検出位置誤差と前記電磁誘導式位置検出器の検出位置のデータを、FFT解析する第5の手順と、
     前記FFT解析の結果から、前記電磁誘導式位置検出器の誤差変動の固有周期に対応した誤差を抽出し、前記固有周期と前記固有周期に対応した誤差のデータを記憶手段に記憶する第6の手順と、
     前記記憶手段から、前記固有周期と前記固有周期に対応した誤差のデータを読み込む第7の手順と、
     前記記憶手段から読み込んだ前記固有周期と前記固有周期に対応した誤差のデータを、逆FFT解析することにより、前記電磁誘導式位置検出器の検出位置に応じた誤差補正量を求める第8の手順と、
     前記電磁誘導式位置検出器の検出位置を、前記誤差補正量に基づいて補正する第9の手順と
    を有することを特徴とする電磁誘導式位置検出器の検出位置補正方法。
PCT/JP2014/050891 2013-02-13 2014-01-20 電磁誘導式位置検出器の検出位置補正方法 WO2014125873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480003645.9A CN104884904B (zh) 2013-02-13 2014-01-20 电磁感应式位置检测器的检测位置补正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013025215A JP2014153294A (ja) 2013-02-13 2013-02-13 電磁誘導式位置検出器の検出位置補正方法
JP2013-025215 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014125873A1 true WO2014125873A1 (ja) 2014-08-21

Family

ID=51353883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050891 WO2014125873A1 (ja) 2013-02-13 2014-01-20 電磁誘導式位置検出器の検出位置補正方法

Country Status (4)

Country Link
JP (1) JP2014153294A (ja)
CN (1) CN104884904B (ja)
TW (1) TWI512271B (ja)
WO (1) WO2014125873A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595755B2 (ja) * 2014-12-02 2019-10-23 日本電産サンキョー株式会社 補正テーブル作成装置、エンコーダ、及び補正テーブル作成方法
WO2016117028A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法
WO2016117029A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法
WO2016157643A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 位置検出器の角度誤差補正装置、角度誤差補正方法、エレベータ制御装置およびエレベータシステム
JP6029724B1 (ja) * 2015-09-16 2016-11-24 三菱重工工作機械株式会社 ロータリ形スケール
EP3745080A4 (en) * 2018-01-23 2021-10-06 Amiteq Co., Ltd. INDUCTIVE ROTATION DETECTION DEVICE
CN111982052B (zh) * 2020-08-04 2021-03-02 广西科技大学 圆特征测量的形状误差分解方法
CN113809972B (zh) * 2021-10-25 2023-12-15 国华(青岛)智能装备有限公司 一种机器人用电机的位置传感器误差矫正系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170531A (ja) * 1996-12-06 1998-06-26 Railway Technical Res Inst 回転位置/速度検出方法
JP2004226064A (ja) * 2002-12-09 2004-08-12 Sokkia Co Ltd ロータリエンコーダ
JP2007064771A (ja) * 2005-08-31 2007-03-15 Japan Servo Co Ltd エンコーダの誤差補正装置
JP2010145149A (ja) * 2008-12-17 2010-07-01 Mitsubishi Heavy Ind Ltd 電磁誘導式位置検出器及び電磁誘導式位置検出方法
JP2010164426A (ja) * 2009-01-15 2010-07-29 Japan Aviation Electronics Industry Ltd Rdコンバータ及び角度検出装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753436B2 (ja) * 1995-06-02 2006-03-08 エリクソン インコーポレイテッド マルチバンドのプリント形モノポール・アンテナ
JPH11248478A (ja) * 1998-03-02 1999-09-17 Mitsumi Electric Co Ltd 位置認識装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170531A (ja) * 1996-12-06 1998-06-26 Railway Technical Res Inst 回転位置/速度検出方法
JP2004226064A (ja) * 2002-12-09 2004-08-12 Sokkia Co Ltd ロータリエンコーダ
JP2007064771A (ja) * 2005-08-31 2007-03-15 Japan Servo Co Ltd エンコーダの誤差補正装置
JP2010145149A (ja) * 2008-12-17 2010-07-01 Mitsubishi Heavy Ind Ltd 電磁誘導式位置検出器及び電磁誘導式位置検出方法
JP2010164426A (ja) * 2009-01-15 2010-07-29 Japan Aviation Electronics Industry Ltd Rdコンバータ及び角度検出装置

Also Published As

Publication number Publication date
TW201435312A (zh) 2014-09-16
TWI512271B (zh) 2015-12-11
JP2014153294A (ja) 2014-08-25
CN104884904B (zh) 2017-11-24
CN104884904A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2014125873A1 (ja) 電磁誘導式位置検出器の検出位置補正方法
JP4568298B2 (ja) 位置検出装置
JP6595755B2 (ja) 補正テーブル作成装置、エンコーダ、及び補正テーブル作成方法
JP2014153294A5 (ja)
CN107179095B (zh) 旋转编码器以及旋转编码器的角度补正方法
US11796305B2 (en) Magnetic position sensor system, device, magnet and method
JP4889808B2 (ja) 磁極位置検出装置及び方法
JP5731569B2 (ja) 精度補正機能を備えたエンコーダ
CN108075703B (zh) 用于降低永磁激励电马达的同步波动的方法
JP2010156554A (ja) 位置検出装置
JP5106336B2 (ja) 位置検出装置
JP2005061943A (ja) バリアブルリラクタンス型レゾルバ
JP2020012634A (ja) ロータリーエンコーダ信号処理装置及びその信号処理方法
TWI502169B (zh) Detection Method for Detecting Position of Electromagnetic Induction Position Detector
US10146205B2 (en) Method for checking the positioning accuracy of a machine part that is displaceable with respect to at least one axis by means of a drive and a controller
JP6636769B2 (ja) リラクタンスレゾルバのロータ芯出し方法
JP6037881B2 (ja) 位置検出器の精度補正方法
JP2018025398A (ja) 電磁誘導式位置検出器
JP2017083355A (ja) リラクタンスレゾルバのロータ芯出し方法
Antineskul Novel algorithm for mover position measurement in linear motion systems
JP5810552B2 (ja) モータ回転角度検出装置及び搬送装置
JP2010045907A (ja) 誘起電圧波形テーブル作成装置及び誘起電圧波形テーブルの作成法
JP2008298437A (ja) 磁気抵抗式レゾルバの設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752181

Country of ref document: EP

Kind code of ref document: A1