WO2014123107A1 - 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法 - Google Patents

化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法 Download PDF

Info

Publication number
WO2014123107A1
WO2014123107A1 PCT/JP2014/052530 JP2014052530W WO2014123107A1 WO 2014123107 A1 WO2014123107 A1 WO 2014123107A1 JP 2014052530 W JP2014052530 W JP 2014052530W WO 2014123107 A1 WO2014123107 A1 WO 2014123107A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
forming
compound represented
layer film
Prior art date
Application number
PCT/JP2014/052530
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
牧野嶋 高史
直哉 内山
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US14/766,499 priority Critical patent/US9809601B2/en
Priority to JP2014560765A priority patent/JP6388126B2/ja
Priority to CN201480007892.6A priority patent/CN104969127B/zh
Priority to KR1020157021507A priority patent/KR102178662B1/ko
Priority to EP14749602.0A priority patent/EP2955577B1/en
Publication of WO2014123107A1 publication Critical patent/WO2014123107A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • G03F7/327Non-aqueous alkaline compositions, e.g. anhydrous quaternary ammonium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Definitions

  • the present invention relates to a compound having a specific structure, an underlayer film forming material for lithography containing the compound, and a pattern forming method using the underlayer film forming material for lithography.
  • the light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • KrF excimer laser 248 nm
  • ArF excimer laser (193 nm)
  • a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist can be used.
  • a material for forming such a resist underlayer film for lithography it contains a resin component having at least a substituent that generates a sulfonic acid residue when a predetermined energy is applied and a solvent, and a solvent.
  • An underlayer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1).
  • a resist underlayer film for lithography having a smaller dry etching rate selection ratio than that of the resist can be used.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (for example, see Patent Document 2).
  • a resist underlayer film for lithography having a small dry etching rate selection ratio compared to a semiconductor substrate can also be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group has been proposed (see, for example, Patent Document 3).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the inventors of the present invention provide a lithographic lower layer containing a naphthalene formaldehyde polymer containing a specific structural unit and an organic solvent as a material that is excellent in optical characteristics and etching resistance and is soluble in a solvent and applicable to a wet process.
  • a film-forming composition has been proposed (see, for example, Patent Documents 4 and 5).
  • a silicon nitride film formation method for example, refer to Patent Document 6
  • a silicon nitride film CVD formation method for example, Patent Document 7
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (for example, see Patent Documents 8 and 9).
  • the present invention has been made in view of the above problems. That is, the object of the present invention is to apply a wet process and use a compound, a lower layer film forming material for lithography, and the material useful for forming a photoresist lower layer film having excellent heat resistance and etching resistance. It is to provide a pattern forming method.
  • each X is independently an oxygen atom or a sulfur atom
  • R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
  • the hydrocarbon group is ,
  • R 2 is a linear, branched or cyclic group having 1 to 10 carbon atoms
  • m is an integer of 0 to 3
  • n is an integer of 1 to 4
  • p is 0 or 1 and q is an integer of 1 to 100.
  • a material for forming a lower layer film for lithography which can be applied to a wet process and is useful for forming a photoresist lower layer film having excellent heat resistance and etching resistance.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the compound of this embodiment is represented by the following general formula (1). Since the compound of this embodiment has such a structure, the heat resistance is high, the carbon concentration is relatively high, the oxygen concentration is relatively low, and the solvent solubility is also high.
  • the lower layer film forming material for lithography of the present embodiment contains the compound of the present embodiment. Since it has such a structure, the lower layer film forming material for lithography of the present embodiment can be applied with a wet process and is excellent in heat resistance and etching resistance.
  • the lower layer film forming material for lithography of this embodiment uses the compound or resin having the specific structure described above, the deterioration of the film during high-temperature baking is suppressed, and the etching resistance against oxygen plasma etching and the like is excellent. A lower layer film can be formed. Furthermore, since the material for forming a lower layer film for lithography of this embodiment is also excellent in adhesion with the resist layer, an excellent resist pattern can be obtained.
  • each X is independently an oxygen atom or a sulfur atom
  • the R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
  • the group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms
  • each R 2 is independently a straight chain having 1 to 10 carbon atoms.
  • Examples of the 2n-valent hydrocarbon group include those having a linear, branched, or cyclic structure.
  • the 2n-valent hydrocarbon group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • the cyclic hydrocarbon group includes a bridged cyclic hydrocarbon group.
  • the compound represented by the general formula (1) is a resist underlayer film material containing a polymer obtained by copolymerizing a conventional repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group, although it has a low molecular weight, it has high heat resistance due to its structural rigidity, so it can be used even under high temperature baking conditions.
  • the compound represented by the general formula (1) has a low molecular weight and a low viscosity as compared with the conventional resist underlayer film materials and the like, so that the substrate having a step (particularly, a fine space or a hole pattern) is used.
  • the lithographic lower layer film forming material using this has an advantageous embedding property compared to the conventional resist lower layer film material and the like. Can be enhanced. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance is also imparted.
  • the compound represented by the general formula (1) preferably includes a compound represented by the following formula (1a).
  • the compound represented by the general formula (1a) more preferably includes a compound represented by the following formula (1b).
  • X, R 1 , n, p, q are as defined in the above formula (1), and each R 4 is independently a straight chain having 1 to 10 carbon atoms.
  • the compound represented by the general formula (1b) includes a compound represented by the following formula (1c).
  • R 1 , n, and q are the same as those described in the above formula (1), and R 4 , m 4 are the same as those described in the above formula (1b).
  • the compound represented by the general formula (1c) more preferably includes a compound represented by the following formula (1d).
  • R 1 is a single bond or a divalent hydrocarbon group having 1 to 30 carbon atoms, and the hydrocarbon group is a cyclic hydrocarbon group, a double bond, a hetero atom or a carbon number. May have an aromatic group of 6 to 30, q is as defined in the above formula (1), and R 4 and m 4 are as defined in the above formula (1b). It is.
  • the compound represented by the general formula (1d) more preferably includes a compound represented by the following formula (1e).
  • R 1 has the same meaning as described in the above formula (1d)
  • q has the same meaning as described in the above formula (1)
  • R 4 , m 4 and It is synonymous with what was demonstrated by Formula (1b).
  • the compound having the structure represented by the general formula (1) preferably has a xanthene skeleton or a thioxanthene skeleton represented by the following general formula (1A).
  • a xanthene skeleton or a thioxanthene skeleton represented by the following general formula (1A).
  • X is an oxygen atom or a sulfur atom (in addition, when X is an oxygen atom, it is xanthene, and when X is a sulfur atom, it is thioxanthene).
  • the compound having the structure represented by the general formula (1) preferably has a benzoxanthene skeleton or a benzothioxanthene skeleton.
  • the compound represented by the general formula (1e) includes a compound represented by the following formula (1f) or (1g).
  • R 1 has the same meaning as described in the above formula (1d)
  • q has the same meaning as that described in the above formula (1)
  • R 4 , m 4 is synonymous with what was demonstrated by said formula (1b).
  • the compound represented by the general formula (1f) is more preferably a compound represented by the following formula (1h) or (1i).
  • R 1 has the same meaning as that described in the above formula (1d)
  • R 4 and m 4 have the same meaning as those described in the above formula (1b).
  • the compound represented by the general formula (1g) more preferably includes a compound represented by the following formula (1j) or (1k).
  • R 1 has the same meaning as that described in the above formula (1d)
  • R 4 and m 4 have the same meaning as those described in the above formula (1b).
  • Examples of the compound represented by the above formula (1) include, but are not limited to, the following.
  • the compound represented by the general formula (1) can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited. For example, by subjecting phenols, thiophenols, naphthols or thionaphthols to a polycondensation reaction under normal pressure with an aldehyde or ketone corresponding to the structure of the desired compound under an acid catalyst, A compound represented by the formula (1) can be obtained. Moreover, it can also carry out under pressure as needed.
  • phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, trimethylhydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use hydroquinone and trimethylhydroquinone from the viewpoint that a xanthene structure can be easily formed.
  • thiophenols examples include, but are not particularly limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, trimethylbenzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use benzenedithiol or trimethylbenzenedithiol from the viewpoint of easily making a thioxanthene structure.
  • naphthols examples include, but are not particularly limited to, naphthol, methyl naphthol, methoxynaphthalene, naphthalene diol, naphthalene triol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use naphthalenediol and naphthalenetriol from the viewpoint that a xanthene structure can be easily formed.
  • thionaphthols examples include, but are not limited to, naphthalenethiol, methylnaphtholnaphthalenethiol, methoxynaphthalenethiol, naphthalenedithiol, naphthalenetrithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use naphthalene dithiol and naphthalene trithiol from the viewpoint that a xanthene structure can be easily formed.
  • aldehydes examples include formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, hexylaldehyde, decylaldehyde, undecylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehyde, Chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phen
  • benzaldehyde hydroxybenzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phenanthrenecarboxaldehyde , Pyrenecarboxaldehyde, glyoxal, glutaraldehyde, phthalaldehyde, naphthalene dicarboxyaldehyde, biphenyl dicarboxaldehyde, anthracene dicarboxalde
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone and the like. However, it is not particularly limited to these. These can be used alone or in combination of two or more.
  • cyclopentanone cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, and anthraquinone is preferable from the viewpoint of providing high heat resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • Specific examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid.
  • Organic acids such as acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid; zinc chloride, aluminum chloride Lewis acids such as iron chloride and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid, but are not particularly limited thereto.
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehyde or ketone to be used and the phenol or thiophenol proceeds, and can be appropriately selected from known ones. , Water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of these solvent can be suitably set according to the raw material to be used, the kind of acid catalyst to be used, and also reaction conditions.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw materials.
  • the reaction temperature is not particularly limited, but is usually preferably in the range of 10 to 200 ° C.
  • the reaction temperature is preferably higher, specifically in the range of 60 to 200 ° C. Is preferred.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited.
  • the reaction method may be a method in which phenols or thiophenols, aldehydes or ketones, and an acid catalyst are charged all at once, phenols or thiols.
  • phenols, aldehydes or ketones are dropped in the presence of an acid catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, acid catalysts, etc. present in the system, a general method such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg, etc. By taking it, the target compound can be obtained.
  • reaction conditions 1 mol to excess of phenol or thiophenol and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of aldehyde or ketone, and 50 to 200 ° C. at normal pressure. The reaction proceeds for about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the solid obtained by filtration is dried, followed by column chromatography.
  • the compound having a structure represented by the above general formula (1), which is the target product can be obtained by separating and purifying from the by-product and performing solvent distillation, filtration and drying.
  • the molecular weight of the compound having the structure represented by the general formula (1) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably from 500 to 30,000, more preferably from 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the compound having the structure represented by the general formula (1) has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.1. Those within the range of ⁇ 7 are preferred. In addition, said Mw and Mn can be measured by the method as described in the Example mentioned later.
  • the compound having the structure represented by the general formula (1) described above is preferably highly soluble in a solvent from the viewpoint of easier application of a wet process. More specifically, when these compounds and / or resins use 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is 10% by mass or more. It is preferable that Here, the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • 10 g of the compound represented by the general formula (1) is evaluated as being dissolved in 90 g of PGMEA when the solubility of the compound represented by the general formula (1) in PGMEA is “10% by mass or more”. Yes, it is evaluated that it does not dissolve when the solubility is “less than 10% by mass”.
  • the content of the compound having the structure represented by the general formula (1) is not particularly limited, but the organic solvent The total amount is preferably 1 to 33 parts by mass, more preferably 2 to 25 parts by mass, and still more preferably 3 to 20 parts by mass.
  • the lower layer film forming material for lithography contains other components such as a crosslinking agent, an acid generator, and an organic solvent as necessary. May be included. Hereinafter, these optional components will be described.
  • the lower layer film forming material for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent that can be used in this embodiment include double bonds such as melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, epoxy compounds, thioepoxy compounds, isocyanate compounds, azide compounds, alkenyl ether groups, and the like.
  • these crosslinking agents can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use these as an additive.
  • the crosslinkable group may be introduced as a pendant group into the polymer side chain in the compound represented by the general formula (1).
  • a compound containing a hydroxy group can also be used as a crosslinking agent.
  • the melamine compound include, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl melamine And a compound in which 1 to 6 methylol groups of hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
  • epoxy compound examples include tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like.
  • the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or mixtures thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of methylol glycoluril are acyloxymethylated, or mixtures thereof.
  • urea compound examples include, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
  • the compound containing an alkenyl ether group include, for example, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neo Pentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether, etc. Can be mentioned.
  • the content of the crosslinking agent is not particularly limited, but is 5 to 50 parts by mass with respect to 100 parts by mass of the compound having the structure represented by the general formula (1).
  • the amount is preferably 10 to 40 parts by mass.
  • the underlayer film forming material for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition and those that generate an acid by light irradiation are known, and any of them can be used.
  • R 101a , R 101b and R 101c are each independently a linear, branched or cyclic alkyl group, alkenyl group, oxoalkyl group or oxoalkenyl group having 1 to 12 carbon atoms; aryl groups of 1-20;.
  • R 101b And R 101c may form a ring, and in the case of forming a ring, R 101b and R 101c each independently represent an alkylene group having 1 to 6 carbon atoms, and K ⁇ represents a non-nucleophilic facing group.
  • R 101d , R 101e , R 101f and R 101g are each independently represented by adding a hydrogen atom to R 101a , R 101b and R 101c , R 101d and R 101e , R 101d and R 101e , R 101f may form a ring and form a ring R 101d and R 101e and R 101d and R 101e and R 101f each represents an alkylene group having 3 to 10 carbon atoms, or a heteroaromatic ring having a nitrogen atom in the ring. Show.)
  • R 101a , R 101b , R 101c , R 101d , R 101e , R 101f and R 101g may be the same as or different from each other.
  • Specific examples of the alkyl group include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group.
  • alkenyl groups include, but are not limited to, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups, and cyclohexenyl groups.
  • oxoalkyl groups include, but are not limited to, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, and the like.
  • oxoalkenyl group include, but are not limited to, a 2-oxo-4-cyclohexenyl group, a 2-oxo-4-propenyl group, and the like.
  • aryl group examples include, but are not limited to, phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group.
  • Alkoxyphenyl groups such as m-tert-butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, Alkylphenyl groups such as dimethylphenyl group; alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group; alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group; dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group; Group, diethoxynaphthy Dialkoxy naphthyl group such as a group.
  • aralkyl group For example, a benzyl group, a phenylethyl group, a phenethyl group etc. are mentioned.
  • aryloxoalkyl groups include, but are not limited to, 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, and the like. And 2-aryl-2-oxoethyl group.
  • non-nucleophilic counter ion of K ⁇ examples include, but are not limited to, halide ions such as chloride ion and bromide ion; triflate, 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, and the like.
  • aryl sulfonates such as tosylate, benzene sulfonate, 4-fluorobenzene sulfonate, 1,2,3,4,5-pentafluorobenzene sulfonate; alkyl sulfonates such as mesylate and butane sulfonate.
  • the heteroaromatic ring may be an imidazole derivative (for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N- Methylpyrrolidone etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyri
  • imidazole derivative for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.
  • the onium salts of the above general formulas (P1a-1) and (P1a-2) have a function as a photoacid generator and a thermal acid generator.
  • the onium salt of the general formula (P1a-3) has a function as a thermal acid generator.
  • R 102a and R 102b each independently represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms.
  • R 103 is a linear structure having 1 to 10 carbon atoms, A branched or cyclic alkylene group, R 104a and R 104b each independently represents a 2-oxoalkyl group having 3 to 7 carbon atoms, and K ⁇ represents a non-nucleophilic counter ion.
  • R 102a and R 102b include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • R 103 include, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 103 includes, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 104a and R 104b include, but are not limited to, 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like.
  • K - is the formula (P1a-1), can be exemplified the same ones as described in (P1a-2) and (P1a-3).
  • R 105 and R 106 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, aryl group or halogen having 6 to 20 carbon atoms. An aryl group or an aralkyl group having 7 to 12 carbon atoms.
  • alkyl group for R 105 and R 106 examples include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl.
  • halogenated alkyl group examples include, but are not limited to, a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group.
  • aryl group examples include, but are not limited to, phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert- Alkoxyphenyl groups such as butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, dimethylphenyl group, etc.
  • An alkylphenyl group etc. are mentioned.
  • halogenated aryl group examples include, but are not limited to, a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5-pentafluorophenyl group, and the like.
  • aralkyl group examples include, but are not limited to, a benzyl group and a phenethyl group.
  • R 107 , R 108 and R 109 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms; aryl having 6 to 20 carbon atoms; Or an aralkyl group having 7 to 12 carbon atoms, R 108 and R 109 may be bonded to each other to form a cyclic structure, and in the case of forming a cyclic structure, R 108 and R 109 Each represents a linear or branched alkylene group having 1 to 6 carbon atoms.
  • Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 .
  • the alkylene group for R 108 and R 109 is not limited to the following, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
  • R 101a and R 101b are the same as above.
  • R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms. Part or all of the hydrogen atoms of these groups May be further substituted with a linear or branched alkyl group having 1 to 4 carbon atoms or an alkoxy group, a nitro group, an acetyl group, or a phenyl group, and R 111 is a straight chain having 1 to 8 carbon atoms.
  • the arylene group of R 110 is not limited to the following, and examples thereof include a 1,2-phenylene group and a 1,8-naphthylene group.
  • the alkylene group include, but are not limited to, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3-diyl group, and the like.
  • the alkenylene group include, but are not limited to, 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group, and the like.
  • the alkyl group for R 111 include the same groups as R 101a to R 101c .
  • alkenyl group examples include, but are not limited to, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group. Group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl group and the like.
  • alkoxyalkyl group examples include, but are not limited to, for example, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, Ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, A methoxypentyl group, an ethoxypentyl group, a methoxyhexyl group, a methoxyheptyl group, etc. are mentioned.
  • the optionally substituted alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert- A butyl group etc. are mentioned.
  • alkoxy group having 1 to 4 carbon atoms include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and tert-butoxy group.
  • Examples of the phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group include, but are not limited to, for example, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group , P-acetylphenyl group, p-nitrophenyl group and the like.
  • Examples of the heteroaromatic group having 3 to 5 carbon atoms include, but are not limited to, a pyridyl group and a furyl group.
  • the acid generator include, but are not limited to, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, camphorsulfonic acid Triethylammonium, pyridinium camphorsulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p -Tert-butoxyphenyl) phenyliodonium, p-toluen
  • triphenylsulfonium trifluoromethanesulfonate trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid Triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid cyclo
  • the content of the acid generator is not particularly limited, but is 0.1% with respect to 100 parts by mass of the compound having the structure represented by the above general formula (1).
  • the amount is preferably ⁇ 50 parts by mass, more preferably 0.5 to 40 parts by mass.
  • the material for forming a lower layer film for lithography according to the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, A nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like are exemplified, but not limited thereto.
  • primary aliphatic amines include, but are not limited to, ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, Examples include pentylamine, tert-amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, and tetraethylenepentamine.
  • secondary aliphatic amines include, but are not limited to, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyl Examples include tetraethylenepentamine.
  • tertiary aliphatic amines include, but are not limited to, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine , Tripentylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N ′ -Tetramethylmethylenediamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyltetraethylenepentamine and the like.
  • hybrid amines include, but are not limited to, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine, and the like.
  • aromatic amines and heterocyclic amines include, but are not limited to, aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2 -Methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitro Aniline, 3,5-dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenyl (p-
  • nitrogen-containing compounds having a carboxy group include, but are not limited to, aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine). Glycylleucine, leucine, methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like.
  • aminobenzoic acid indolecarboxylic acid
  • amino acid derivatives for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine.
  • nitrogen-containing compound having a sulfonyl group examples include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like.
  • Specific examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include, but are not limited to, 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3- Indolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino- 1-propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2- Hydroxy
  • amide derivative examples include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like.
  • imide derivative examples include, but are not limited to, phthalimide, succinimide, maleimide and the like.
  • the content of the basic compound is not particularly limited, but is 0.001 with respect to 100 parts by mass of the compound having the structure represented by the general formula (1) described above. It is preferably 2 parts by mass, more preferably 0.01-1 part by mass. By making it into the above preferred range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
  • the lower layer film forming material for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling the absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heteroaromatic ring such as methacrylate, vinylnaphthalene, polyacenaphthylene, etc., biphenyl rings such as phenanthrenequinone, fluorene, etc., heterocycles having heteroatoms such as thiophene, indene, etc .; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclodextrin,
  • the material for forming a lower layer film for lithography of the present embodiment may contain an organic solvent.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate Ester solvents such as isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; aromatics such as toluene, xylene and anisole Examples thereof include, but are not
  • cyclohexanone propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate, and anisole are particularly preferable from the viewpoint of safety.
  • the content of the organic solvent is not particularly limited, but from the viewpoint of solubility and film formation, 100 to 10,000 masses per 100 mass parts of the compound having the structure represented by the general formula (1) described above. Parts, and more preferably 200 to 5,000 parts by mass.
  • the lower layer film for lithography of this embodiment is formed from the material for forming a lower layer film for lithography of this embodiment.
  • the pattern forming method of this embodiment includes a step (A-1) of forming a lower layer film on a substrate using the lower layer film forming material for lithography of the present embodiment, and at least one layer on the lower layer film.
  • a photoresist layer (A-2) and after the step (A-2), irradiating a predetermined region of the photoresist layer with radiation to perform alkali development (A-3); Have.
  • the pattern forming method of the present embodiment includes a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography of the present embodiment, and silicon atoms on the lower layer film.
  • a predetermined region of the photoresist layer is irradiated with radiation and subjected to alkali development to form a resist pattern (B-4), and after step (B-4) described above
  • the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask.
  • the formation method of the lower layer film for lithography of the present embodiment is not particularly limited as long as it is formed from the material for forming the lower layer film for lithography of the present embodiment, and a known method can be applied.
  • the lower layer film forming material for lithography according to the present embodiment is applied on a substrate by a known coating method such as spin coating or screen printing or a printing method, and then removed by volatilizing an organic solvent.
  • a film can be formed.
  • baking is preferably performed in order to suppress the occurrence of the mixing phenomenon with the upper layer resist and to promote the crosslinking reaction.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. It is preferable.
  • a silicon-containing resist layer is formed thereon, or a single-layer resist made of ordinary hydrocarbons.
  • a silicon-containing intermediate layer is formed thereon, and further thereon. It is preferable to produce a single-layer resist layer that does not contain silicon.
  • a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of normal hydrocarbon is formed on the lower layer film, and in the case of a three-layer process, a silicon-containing layer is formed on the lower layer film.
  • a single-layer resist layer not containing silicon can be formed on the intermediate layer and further on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but by suppressing the reflection in the intermediate layer, The substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquioxy crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Sun is preferably used.
  • an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film of this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film of this embodiment. Therefore, by using the lower layer film of this embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas can be added.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used in the etching of the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • etching mainly using a chlorofluorocarbon gas if p-Si, Al, or W is chlorine or bromine gas, Etching mainly composed of can be performed.
  • etching a substrate with a chlorofluorocarbon-based gas the silicon-containing resist in the two-layer resist process and the silicon-containing intermediate layer in the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film of this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis.
  • GC-MS analysis measurement was performed using Agilent 5975 / 6890N manufactured by Agilent. Alternatively, measurement was performed by LC-MS analysis using Water UP Acquity UPLC / MALDI-Synapt HDMS.
  • reaction solution was concentrated, and 50 g of pure water was added to precipitate the reaction product. After cooling to room temperature, the solution was filtered and separated. The solid obtained by filtration was dried and then separated and purified by column chromatography to obtain 0.10 g of the target compound (BisN-1) represented by the following formula and 0.05 g of (BisN-2). .
  • the following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula.
  • the compound BisN-1 had a carbon concentration of 87.02% and an oxygen concentration of 8.28%.
  • the compound BisN-2 had a carbon concentration of 87.92% and an oxygen concentration of 7.41%. Since the compound BisN-1 and the compound BisN-2 have a high carbon content and a low oxygen content, they were evaluated as having high etching resistance. With respect to the obtained compound, the molecular weight thereof was measured by the aforementioned method. As a result, the compound BisN-1 was 772, and the compound BisN-2 was 1078. As a result of thermogravimetry (TG), the thermal decomposition temperatures of Compound BisN-1 and Compound BisN-2 were both 400 ° C. or higher.
  • TG thermogravimetry
  • the compound BisN-1 and the compound BisN-2 have high heat resistance and can be applied to high-temperature baking.
  • the solubility of Compound BisN-1 and Compound BisN-2 in PGME and PGMEA was 10 wt% or more (Evaluation A), and it was evaluated that Compound BisN-1 and Compound BisN-2 have excellent solubility. Therefore, the compound BisN-1 and the compound BisN-2 have high storage stability in a solution state and can be sufficiently applied to edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in semiconductor microfabrication processes. It was evaluated.
  • edge beat rinse liquid PGME / PGMEA mixed liquid
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • the carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
  • Comparative Example 1 Lithographic lower layer film forming materials corresponding to Examples 1 and 2 and Comparative Example 1 were prepared so that the compositions shown in Table 1 were obtained. That is, the following materials were used.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent cyclohexanone (CHN) Novolak: PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the lower layer film forming materials of Examples 1 and 2 and Comparative Example 1 are spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 200 nm. Each was produced. And the etching test was done on the conditions shown below, and etching tolerance was evaluated. The evaluation results are shown in Table 1.
  • Etching resistance was evaluated according to the following procedure. First, a novolac underlayer film was produced under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (BisN-1) in Example 1. Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • Examples 3 to 4> the lower layer film forming material solution for lithography of Examples 1 and 2 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to obtain a film thickness. A lower layer film of 80 nm was formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer.
  • a compound of the following formula (11) 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass are blended.
  • the prepared one was used.
  • the compound of following formula (11) was prepared as follows. That is, 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, 0.38 g of azobisisobutyronitrile, The reaction solution was dissolved in 80 mL.
  • This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane.
  • the product resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure to obtain a compound of the following formula (11).
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • Examples 5 to 6> The lower layer film forming material solution for lithography of Examples 1 and 2 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 80 nm. A film was formed. A silicon-containing intermediate layer material was applied on the lower layer film. Next, an intermediate layer film having a thickness of 35 nm was formed by baking at 200 ° C. for 60 seconds. Further, the ArF resist solution used in Examples 3 to 4 was applied on this intermediate layer film, and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer.
  • the silicon-containing intermediate layer material As the silicon-containing intermediate layer material, a silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used. Next, the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern of 55 nm L / S (1: 1) was obtained by developing with an aqueous solution of TMAH for 60 seconds. Thereafter, dry etching of the silicon-containing intermediate layer film (SOG) was performed using RIE-10NR manufactured by Samco International Co., Ltd. using the obtained resist pattern as a mask. Subsequently, dry etching processing of the lower layer film using the obtained silicon-containing intermediate layer film pattern as a mask and dry etching processing of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • the lower film forming material and lower film for lithography of the present invention have a relatively high carbon concentration, a relatively low oxygen concentration, a relatively high heat resistance, a relatively high solvent solubility, and a wet process. Applicable. Therefore, the lower layer film forming material and the lower layer film for lithography of the present invention can be used widely and effectively in various applications that require these performances.
  • the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, etc. ⁇
  • Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment It can be used widely and effectively in an agent, a resist resin for a semiconductor, a resin for forming a lower layer film, and the like.
  • the present invention can be used particularly effectively in the field of lithography lower layer films and multilayer resist lower layer films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明のリソグラフィー用下層膜形成材料は、下記一般式(1)で表される構造を有する化合物を含有する。(式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、0~3の整数であり、nは、1~4の整数であり、pは、0又は1であり、qは、1~100の整数である。)

Description

化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
 本発明は、特定の構造を有する化合物、該化合物を含有するリソグラフィー用下層膜形成材料、及び該リソグラフィー用下層膜形成材料を用いるパターン形成方法に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むにつれ、解像度の問題又は現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。このような要望に対して、単にレジストの薄膜化を行うのみでは、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作成し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDにより形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物を提案している(例えば、特許文献4及び5を参照。)。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献6参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献7参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献8及び9参照)。
特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2009/072465号パンフレット 国際公開第2011/034062号パンフレット 特開2002-334869号公報 国際公開第2004/066377号パンフレット 特開2007-226170号公報 特開2007-226204号公報
 上述したように、従来数多くのリソグラフィー用下層膜形成材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い水準で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上記の課題を鑑みてなされたものである。すなわち、本発明の目的は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な、化合物、リソグラフィー用下層膜形成材料、及び該材料を用いたパターン形成方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の構造を有する化合物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は、以下[1]~[19]を提供する。
[1]下記一般式(1)で表される構造を有する化合物を含有する、リソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000017
(式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、0~3の整数であり、nは、1~4の整数であり、pは、0又は1であり、qは、1~100の整数である。)
[2]前記一般式(1)で表される構造を有する化合物が、下記一般式(1a)で表される化合物を含む、[1]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000018
(式(1a)中、X、R、R、m、n、p、qは、上記式(1)で説明したものと同義である。)
[3]前記一般式(1a)で表される化合物が、下記一般式(1b)で表される化合物を含む、[2]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000019
(式(1b)中、X、R、n、p、qは、上記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、各々独立して、0~2の整数である。)
[4]前記一般式(1b)で表される化合物が、下記一般式(1c)で表される化合物を含む、[3]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000020
(式(1c)中、R、n、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[5]前記一般式(1c)で表される化合物が、下記一般式(1d)で表される化合物を含む、[4]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000021
(式(1d)中、Rは、単結合又は炭素数1~30の2価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[6]前記一般式(1d)で表される化合物が、下記一般式(1e)で表される化合物を含む、[5]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000022
(式(1e)中、Rは、上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[7]前記一般式(1e)で表される化合物が、下記一般式(1f)又は(1g)で表される化合物を含む、[6]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式(1f)及び式(1g)中、Rは上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[8]前記一般式(1f)で表される化合物が、下記一般式(1h)又は(1i)で表される化合物を含む、[7]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式(1h)及び式(1i)中、Rは、上記式(1d)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[9]前記一般式(1g)で表される化合物が、下記一般式(1j)又は(1k)で表される化合物を含む、[7]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式(1j)及び式(1k)中、Rは、上記式(1d)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
[10]前記一般式(1h)で表される化合物が、下記式(BisN-1)で表される化合物を含む、[8]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000029
[11]前記一般式(1i)で表される化合物が、下記式(BisN-2)で表される化合物を含む、[8]に記載のリソグラフィー用下層膜形成材料。
Figure JPOXMLDOC01-appb-C000030
[12]有機溶媒をさらに含有する、[1]~[11]のいずれかに記載のリソグラフィー用下層膜形成材料。
[13]酸発生剤をさらに含有する、[1]~[12]のいずれかに記載のリソグラフィー用下層膜形成材料。
[14]架橋剤をさらに含有する、[1]~[13]のいずれかに記載のリソグラフィー用下層膜形成材料。
[15][1]~[14]のいずれかに記載のリソグラフィー用下層膜形成材料から形成される、リソグラフィー用下層膜。
[16]基板上に、[1]~[14]のいずれかに記載の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
 前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像を行う工程(A-3)と、
 を有する、パターン形成方法。
[17]基板上に、[1]~[14]のいずれかに記載の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
 前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像してレジストパターンを形成する工程(B-4)と、
 前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
 を有する、パターン形成方法。
[18]下記式(BisN-1)で表される、化合物。
Figure JPOXMLDOC01-appb-C000031
[19]下記式(BisN-2)で表される、化合物。
Figure JPOXMLDOC01-appb-C000032
 本発明によれば、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用なリソグラフィー用下層膜形成材料を提供することができる。
 以下、本発明の実施の形態(以下、単に「本実施形態」とも記す)について説明する。なお、以下の実施の形態は本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
(リソグラフィー用下層膜形成材料)
 本実施形態の化合物は、下記一般式(1)で表される。本実施形態の化合物は、このような構造を有するため、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高い。また、本実施形態のリソグラフィー用下層膜形成材料は、本実施形態の化合物を含有するものである。このような構成を有するため、本実施形態のリソグラフィー用下層膜形成材料は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態のリソグラフィー用下層膜形成材料は、上述した特定構造の化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することがでる。さらにまた、本実施形態のリソグラフィー用下層膜形成材料は、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。
Figure JPOXMLDOC01-appb-C000033
 上記一般式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、上記Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、0~3の整数であり、nは、1~4の整数であり、pは、0又は1であり、qは、1~100の整数である。
 なお、前記2n価の炭化水素基とは、n=1のときには、炭素数1~30のアルキレン基、n=2のときには、炭素数1~30のアルカンテトライル基、n=3のときには、炭素数2~30のアルカンヘキサイル基、n=4のときには、炭素数3~30のアルカンオクタイル基のことを示す。前記2n価の炭化水素基としては、例えば、直鎖状、分岐状又は環状構造を有するものが挙げられる。
 また、前記2n価の炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよい。ここで、前記環式炭化水素基については、有橋環式炭化水素基も含まれる。
 一般式(1)で示される化合物は、従来のアセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料などに比べ、低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、一般式(1)で示される化合物は、上記従来のレジスト下層膜材料などに比べ、低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性が上記従来のレジスト下層膜材料などに比べ、有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。
 ここで、上記一般式(1)で示される化合物は、下記式(1a)で示される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000034
 上記式(1a)中、X、R、R、m、n、p、qは、上記一般式(1)で説明したものと同義である。
 また、上記一般式(1a)で示される化合物は、下記式(1b)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000035
 上記式(1b)中、X、R、n、p、qは、上記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、各々独立して、0~2の整数である。
 また、上記一般式(1b)で示される化合物は、下記式(1c)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000036
 上記式(1c)中、R、n、qは、上記式(1)で説明したものと同義であり、R、m、は上記式(1b)で説明したものと同義である。
 また、上記一般式(1c)で示される化合物は、下記式(1d)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 上記式(1d)中、Rは、単結合又は炭素数1~30の2価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、qは、上記式(1)で説明したものと同義であり、R、mは、上記式(1b)で説明したものと同義である。
 また、上記一般式(1d)で示される化合物は、下記式(1e)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000038
 上記式(1e)中、Rは、上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、m、は上記式(1b)で説明したものと同義である。
 本実施形態において、上記一般式(1)で示される構造を有する化合物は、下記一般式(1A)で示されるキサンテン骨格又はチオキサンテン骨格を有していることが好ましい。キサンテン骨格又はチオキサンテン骨格を有する場合、その構造の剛直さから、より高い耐熱性を発現する傾向にある。
Figure JPOXMLDOC01-appb-C000039
 上記式(1A)中、Xは酸素原子又は硫黄原子である(なお、Xが酸素原子の場合はキサンテン、Xが硫黄原子の場合はチオキサンテンである。)。
 また、本実施形態において、上記一般式(1)で示される構造を有する化合物は、ベンゾキサンテン骨格又はベンゾチオキサンテン骨格を有していることが好ましい。
 上記一般式(1e)で示される化合物は、下記式(1f)又は(1g)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 上記式(1f)又は(1g)中、Rは、上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、m、は上記式(1b)で説明したものと同義である。
 また、上記一般式(1f)で示される化合物は、下記式(1h)又は(1i)で示される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 上記式(1h)又は(1i)中、Rは、上記式(1d)で説明したものと同義であり、R、m、は上記式(1b)で説明したものと同義である。
 また、上記一般式(1g)で示される化合物は、下記式(1j)又は(1k)で示される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 上記式(1j)又は(1k)中、Rは、上記式(1d)で説明したものと同義であり、R、m、は上記式(1b)で説明したものと同義である。
 上記式(1)で示される化合物(n=1、2、3の場合)は、例えば、以下のようなものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000046
 上記一般式(1)で示される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、フェノール類、チオフェノール類、ナフトール類或いはチオナフトール類と、所望とする化合物の構造に対応するアルデヒド類或いはケトン類とを酸触媒下にて重縮合反応させることによって、上記一般式(1)で示される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。
 前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ハイドロキノン、トリメチルハイドロキノンを用いることがキサンテン構造を容易に作ることができる観点からより好ましい。
 前記チオフェノール類としては、例えば、ベンゼンチオール、メチルベンゼンチオール、メトキシベンゼンチオール、ベンゼンジチオール、トリメチルベンゼンジチオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンゼンジチオール、トリメチルベンゼンジチオールを用いることがチオキサンテン構造を容易に作ることができる観点からより好ましい。
 前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフタレン、ナフタレンジオール、ナフタレントリオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジオール、ナフタレントリオールを用いることがキサンテン構造を容易に作ることができる観点からより好ましい。
 前記チオナフトール類としては、例えば、ナフタレンチオール、メチルナフトールナフタレンチオール、メトキシナフタレンチオール、ナフタレンジチオール、ナフタレントリチオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジチオール、ナフタレントリチオールを用いることがキサンテン構造を容易に作ることができる観点からより好ましい。
 前記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、アントラセンジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒドを用いることが、高い耐熱性を与える観点から好ましい。
 前記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。これらのなかでも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノンを用いることが、高い耐熱性を与える観点から好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られている。上記酸触媒の具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸および固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類或いはケトン類とフェノール類或いはチオフェノール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができる。上記反応温度としては、特に限定されないが、通常10~200℃の範囲であることが好ましい。本実施形態の一般式(1)で表される構造を有する化合物として、キサンテン構造或いはチオキサンテン構造を形成するためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、フェノール類或いはチオフェノール類、アルデヒド類或いはケトン類、酸触媒を一括で仕込む方法や、フェノール類或いはチオフェノール類やアルデヒド類或いはケトン類を酸触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や酸触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
 好ましい反応条件としては、アルデヒド類或いはケトン類1モルに対し、フェノール類或いはチオフェノール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~200℃で20分~100時間程度反応させることにより進行する。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、濾過により得られた固形物を乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記一般式(1)で表される構造を有する化合物を得ることができる。
 なお、上記一般式(1)で示される構造を有する化合物の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記一般式(1)で示される構造を有する化合物は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.1~7の範囲内のものが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により測定することができる。
 上述した一般式(1)で表される構造を有する化合物は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記一般式(1)で示される化合物10gがPGMEA90gに対して溶解すると評価されるのは、一般式(1)で示される化合物のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
 本実施形態のリソグラフィー用下層膜形成材料が後述する任意成分である有機溶媒を含む場合、上述した一般式(1)で表される構造を有する化合物の含有量は、特に限定されないが、有機溶媒を含む総量100質量部に対して、1~33質量部であることが好ましく、より好ましくは2~25質量部、さらに好ましくは3~20質量部である。
(他の成分)
 本実施形態のリソグラフィー用下層膜形成材料は、上述した一般式(1)で表される構造を有する化合物以外に、必要に応じて、架橋剤、酸発生剤、有機溶媒等の他の成分を含んでいてもよい。以下、これらの任意成分について説明する。
 本実施形態のリソグラフィー用下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。
 本実施形態で使用可能な架橋剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基を置換基(架橋性基)として有するものなどが挙げるが、これらに特に限定されない。なお、これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよい。なお、上記架橋性基を上記一般式(1)で示される化合物におけるポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
 メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。エポキシ化合物の具体例としては、例えば、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが挙げられる。
 グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 アルケニルエーテル基を含む化合物の具体例としては、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
 本実施形態のリソグラフィー用下層膜形成材料において、架橋剤の含有量は、特に限定されないが、上述した一般式(1)で表される構造を有する化合物100質量に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
 本実施形態のリソグラフィー用下層膜形成材料は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、
1)下記一般式(P1a-1)、(P1a-2)、(P1a-3)又は(P1b)のオニウム塩、
2)下記一般式(P2)のジアゾメタン誘導体、
3)下記一般式(P3)のグリオキシム誘導体、
4)下記一般式(P4)のビススルホン誘導体、
5)下記一般式(P5)のN-ヒドロキシイミド化合物のスルホン酸エステル、
6)β-ケトスルホン酸誘導体、
7)ジスルホン誘導体、
8)ニトロベンジルスルホネート誘導体、
9)スルホン酸エステル誘導体
等が挙げられるが、これらに特に限定されない。なお、これらの酸発生剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000047
(上記式中、R101a、R101b、R101cはそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基;炭素数6~20のアリール基;又は炭素数7~12のアラルキル基若しくはアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ独立して炭素数1~6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、それぞれ独立してR101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3~10のアルキレン基を示し、又は、式中の窒素原子を環の中に有する複素芳香族環を示す。)
 上記のR101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよい。具体的には、アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、以下に限定されないが、例えば、2-オキソシクロペンチル基、2-オキソシクロヘキシル基等や、2-オキソプロピル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。オキソアルケニル基としては、以下に限定されないが、例えば、2-オキソ-4-シクロヘキセニル基、2-オキソ-4-プロペニル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基等や、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基;メチルナフチル基、エチルナフチル基等のアルキルナフチル基;メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基;ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基;ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、以下に限定されないが、例えば、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては、以下に限定されないが、例えば、塩化物イオン、臭化物イオン等のハライドイオン;トリフレート、1,1,1-トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート;トシレート、ベンゼンスルホネート、4-フルオロベンゼンスルホネート、1,2,3,4,5-ペンタフルオロベンゼンスルホネート等のアリールスルホネート;メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
 また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環である場合、その複素芳香族環としては、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
 上記一般式(P1a-1)と一般式(P1a-2)のオニウム塩は、光酸発生剤及び熱酸発生剤としての機能を有する。上記一般式(P1a-3)のオニウム塩は、熱酸発生剤としての機能を有する。
Figure JPOXMLDOC01-appb-C000048
(式(P1b)中、R102a、R102bはそれぞれ独立して炭素数1~8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1~10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ独立して炭素数3~7の2-オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
 上記R102a、R102bとして具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103の具体例としては、以下に限定されないが、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4-シクロへキシレン基、1,2-シクロへキシレン基、1,3-シクロペンチレン基、1,4-シクロオクチレン基、1,4-シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの具体例としては、以下に限定されないが、2-オキソプロピル基、2-オキソシクロペンチル基、2-オキソシクロヘキシル基、2-オキソシクロヘプチル基等が挙げられる。K-は式(P1a-1)、(P1a-2)及び(P1a-3)で説明したものと同様のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000049
(式(P2)中、R105、R106はそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6~20のアリール基又はハロゲン化アリール基、又は炭素数7~12のアラルキル基を示す。)
 R105、R106のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、以下に限定されないが、例えば、トリフルオロメチル基、1,1,1-トリフルオロエチル基、1,1,1-トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基等が挙げられる。ハロゲン化アリール基としては、以下に限定されないが、例えば、フルオロフェニル基、クロロフェニル基、1,2,3,4,5-ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000050
(式(P3)中、R107、R108、R109はそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基又はハロゲン化アルキル基;炭素数6~20のアリール基若しくはハロゲン化アリール基;又は炭素数7~12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1~6の直鎖状又は分岐状のアルキレン基を示す。)
 R107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure JPOXMLDOC01-appb-C000051
(式(P4)中、R101a、R101bは上記と同様である。)
Figure JPOXMLDOC01-appb-C000052
(式(P5)中、R110は炭素数6~10のアリーレン基、炭素数1~6のアルキレン基又は炭素数2~6のアルケニレン基を示す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4の直鎖状若しくは分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1~8の直鎖状、分岐状若しくは置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4のアルキル基又はアルコキシ基;炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3~5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
 ここで、R110のアリーレン基としては、以下に限定されないが、例えば、1,2-フェニレン基、1,8-ナフチレン基等が挙げられる。アルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン-2,3-ジイル基等が挙げられる。アルケニレン基としては、以下に限定されないが、例えば、1,2-ビニレン基、1-フェニル-1,2-ビニレン基、5-ノルボルネン-2,3-ジイル基等が挙げられる。R111のアルキル基としては、R101a~R101cと同様のものが挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、3-ブテニル基、イソプレニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ジメチルアリル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基、1-ヘプテニル基、3-ヘプテニル基、6-ヘプテニル基、7-オクテニル基等が挙げられる。アルコキシアルキル基としては、以下に限定されないが、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
 なお、さらに置換されていてもよい炭素数1~4のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、以下に限定されないが、例えば、フェニル基、トリル基、p-tert-ブトキシフェニル基、p-アセチルフェニル基、p-ニトロフェニル基等が挙げられる。炭素数3~5のヘテロ芳香族基としては、以下に限定されないが、例えば、ピリジル基、フリル基等が挙げられる。
 酸発生材の具体例としては、以下に限定されないが、トリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn-ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p-トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、p-トルエンスルホン酸ジフェニルヨードニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p-トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、p-トルエンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p-トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p-トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2-オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec-アミルスルホニル)ジアゾメタン、ビス(tert-アミルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-アミルスルホニル)ジアゾメタン、1-tert-アミルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(p-トルエスルホニル)-α-ジフェニルグリオキシム、ビス-(p-トルエンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(p-トルエンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(p-トルエンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジフェニルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(n-ブタンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(メタンスルホニル)-α-ジメチルグリオキシム、ビス-(トリフルオロメタンスルホニル)-α-ジメチルグリオキシム、ビス-(1,1,1-トリフルオロエタンスルホニル)-α-ジメチルグリオキシム、ビス-(tert-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(パーフルオロオクタンスルホニル)-α-ジメチルグリオキシム、ビス-(シクロヘキサンスルホニル)-α-ジメチルグリオキシム、ビス-(ベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-フルオロベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-tert-ブチルベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(キシレンスルホニル)-α-ジメチルグリオキシム、ビス-(カンファースルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体;ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス-p-トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体;2-シクロヘキシルカルボニル-2-(p-トルエンスルホニル)プロパン、2-イソプロピルカルボニル-2-(p-トルエンスルホニル)プロパン等のβ-ケトスルホン誘導体;ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体;p-トルエンスルホン酸2,6-ジニトロベンジル、p-トルエンスルホン酸2,4-ジニトロベンジル等のニトロベンジルスルホネート誘導体;1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミドエタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-オクタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシスクシンイミドp-メトキシベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド2-クロロエタンスルホン酸エステル、N-ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド-2,4,6-トリメチルベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ナフタレンスルホン酸エステル、N-ヒドロキシスクシンイミド2-ナフタレンスルホン酸エステル、N-ヒドロキシ-2-フェニルスクシンイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドエタンスルホン酸エステル、N-ヒドロキシ-2-フェニルマレイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドメタンスルホン酸エステル、N-ヒドロキシフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシフタルイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドp-トルエンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
 これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体;ビスナフチルスルホニルメタン等のビススルホン誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
 本実施形態のリソグラフィー用下層膜形成材料において、酸発生剤の含有量は、特に限定されないが、上述した一般式(1)で表される構造を有する化合物100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
 さらに、本実施形態のリソグラフィー用下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
 第一級の脂肪族アミン類の具体例としては、以下に限定されないが、アンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が挙げられる。第二級の脂肪族アミン類の具体例としては、以下に限定されないが、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が挙げられる。第三級の脂肪族アミン類の具体例としては、以下に限定されないが、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が挙げられる。
 また、混成アミン類の具体例としては、以下に限定されないが、ジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が挙げられる。芳香族アミン類及び複素環アミン類の具体例としては、以下に限定されないが、アニリン誘導体(例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等)、ジフェニル(p-トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が挙げられる。
 さらに、カルボキシ基を有する含窒素化合物の具体例としては、以下に限定されないが、アミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン)等が挙げられる。スルホニル基を有する含窒素化合物の具体例としては、3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が挙げられる。水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物の具体例としては、以下に限定されないが、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノ-ル、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-クイヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が挙げられる。アミド誘導体の具体例としては、以下に限定されないが、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体の具体例としては、以下に限定されないが、フタルイミド、スクシンイミド、マレイミド等が挙げられる。
 本実施形態のリソグラフィー用下層膜形成材料において、塩基性化合物の含有量は、特に限定されないが、上述した一般式(1)で表される構造を有する化合物100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
 また、本実施形態のリソグラフィー用下層膜形成材料は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成材料は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
 本実施形態のリソグラフィー用下層膜形成材料は、有機溶媒を含有していてもよい。有機溶媒としては、上述した一般式(1)で表される構造を有する化合物が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 有機溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられるが、これらに特に限定されない。これらの有機溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記有機溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 有機溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、上述した一般式(1)で表される構造を有する化合物100質量部に対して、100~10,000質量部であることが好ましく、より好ましくは200~5,000質量部である。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成材料から形成されることを特徴とする。
 また、本実施形態のパターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像を行う工程(A-3)と、を有する。
 さらに、本実施形態のパターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像してレジストパターンを形成する工程(B-4)と、前記する工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成するする工程(B-5)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを、3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで中間層として、無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。
 このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板加工をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態の下層膜は、これら基板のエッチング耐性に優れる特徴がある。
 なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
 以下、本発明を合成例及び実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度)
 有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
 GC-MS分析により、Agilent社製Agilent5975/6890Nを用いて測定した。あるいは、LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
(ポリスチレン換算分子量)
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1ml/min
 温度:40℃
(熱分解温度(Tg))
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度(Tg)とした。
(溶解度)
 23℃にて、化合物の1-メトキシ-2-プロパノール(PGME)及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解量を測定し、その結果を以下の基準で評価した。
 評価A:10wt%以上
 評価B:3wt%以上10wt%未満
 評価C:3wt%未満
(合成例1及び2)BisN-1及びBisN-2の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,6-ジヒドロキシナフタレン(シグマ-アルドリッチ社製試薬)1.10g(10mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)と、メチルイソブチルケトン30mlとを仕込み、95%の硫酸5mlを加えて、反応液を調製した。この反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BisN-1)0.10g及び(BisN-2)0.05gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
化合物 BisN-1
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.6(2H,O-H)、7.2~8.3(32H,Ph-H)、6.6(2H,C-H)
化合物 BisN-2
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.6(2H,O-H)、7.2~8.4(45H,Ph-H)、6.6(3H,C-H)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 有機元素分析の結果、化合物BisN-1の炭素濃度は87.02%、酸素濃度は8.28%であった。
また、化合物BisN-2の炭素濃度は87.92%、酸素濃度は7.41%であった。化合物BisN-1及び化合物BisN-2は炭素含有率が高く、酸素含有率が低いことから、高いエッチング耐性を有するものと評価された。
 得られた化合物について、前記方法により分子量を測定した結果、化合物BisN-1は772、化合物BisN-2は1078であった。
 熱重量測定(TG)の結果、化合物BisN-1及び化合物BisN-2の熱分解温度はいずれも400℃以上であった。そのため、化合物BisN-1及び化合物BisN-2は高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 化合物BisN-1及び化合物BisN-2のPGME及びPGMEAに対する溶解性は、10wt%以上(評価A)であり、化合物BisN-1及び化合物BisN-2は優れた溶解性を有するものと評価された。そのため、化合物BisN-1及び化合物BisN-2は溶液状態での高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(製造例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。また、炭素濃度は84.2質量%、酸素濃度は8.3質量%であった。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
<実施例1~2、比較例1>
 表1に示す組成となるように、実施例1~2、比較例1に対応するリソグラフィー用下層膜形成材料を各々調製した。すなわち、下記の材料を使用した。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:シクロヘキサノン(CHN)
 ノボラック:群栄化学社製 PSM4357
 次に、実施例1~2、比較例1の下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。
 そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1に示す。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例1の化合物(BisN-1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1、2及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 <評価基準>
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure JPOXMLDOC01-appb-T000055
<実施例3~4>
 次に、実施例1~2のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を各々形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 なお、下記式(11)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(11)の化合物を得た。
Figure JPOXMLDOC01-appb-C000056
(式(11)中、40、40、20とあるのは各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
<比較例2>
 下層膜の形成を行わないこと以外は、実施例2と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例3~4及び比較例2のそれぞれについて、得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000057
 表2から明らかなように、実施例3~4の下層膜は、比較例2に比して、解像性および感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例のリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
<実施例5~6>
 実施例1~2のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布した。次いで、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、実施例3~4で用いたArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行った。続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られた実施例5~6のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。その結果、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず、本発明の下層膜を用いた実施例5~6は、パターン断面においても良好な形状を有することが確認された。
 上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
 本出願は、2013年2月8日出願の日本特許出願(特願2013-023809号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のリソグラフィー用下層膜形成材料及び下層膜は、炭素濃度が比較的に高く、酸素濃度が比較的に低く、耐熱性が比較的に高く、溶媒溶解性も比較的に高く、湿式プロセスが適用可能である。そのため、本発明のリソグラフィー用下層膜形成材料及び下層膜は、これらの性能が要求される各種用途において、広く且つ有効に利用可能である。したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂等において、広く且つ有効に利用可能である。特に、本発明は、リソグラフィー用下層膜及び多層レジスト用下層膜の分野において、特に有効に利用可能である。

Claims (19)

  1.  下記一般式(1)で表される構造を有する化合物を含有する、リソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、0~3の整数であり、nは、1~4の整数であり、pは、0又は1であり、qは、1~100の整数である。)
  2.  前記一般式(1)で表される構造を有する化合物が、下記一般式(1a)で表される化合物を含む、請求項1に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000002
    (式(1a)中、X、R、R、m、n、p、qは、上記式(1)で説明したものと同義である。)
  3.  前記一般式(1a)で表される化合物が、下記一般式(1b)で表される化合物を含む、請求項2に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000003
    (式(1b)中、X、R、n、p、qは、上記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、mは、各々独立して、0~2の整数である。)
  4.  前記一般式(1b)で表される化合物が、下記一般式(1c)で表される化合物を含む、請求項3に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000004
    (式(1c)中、R、n、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  5. 前記一般式(1c)で表される化合物が、下記一般式(1d)で表される化合物を含む、請求項4に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000005
    (式(1d)中、Rは、単結合又は炭素数1~30の2価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  6.  前記一般式(1d)で表される化合物が、下記一般式(1e)で表される化合物を含む、請求項5に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000006
    (式(1e)中、Rは、上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  7.  前記一般式(1e)で表される化合物が、下記一般式(1f)又は(1g)で表される化合物を含む、請求項6に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式(1f)及び式(1g)中、Rは上記式(1d)で説明したものと同義であり、qは、上記式(1)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  8.  前記一般式(1f)で表される化合物が、下記一般式(1h)又は(1i)で表される化合物を含む、請求項7に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (式(1h)及び式(1i)中、Rは、上記式(1d)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  9.  前記一般式(1g)で表される化合物が、下記一般式(1j)又は(1k)で表される化合物を含む、請求項7に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (式(1j)及び式(1k)中、Rは、上記式(1d)で説明したものと同義であり、R、mは上記式(1b)で説明したものと同義である。)
  10.  前記一般式(1h)で表される化合物が、下記式(BisN-1)で表される化合物を含む、請求項8に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000013
  11.  前記一般式(1i)で表される化合物が、下記式(BisN-2)で表される化合物を含む、請求項8に記載のリソグラフィー用下層膜形成材料。
    Figure JPOXMLDOC01-appb-C000014
  12.  有機溶媒をさらに含有する、請求項1~11のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  13.  酸発生剤をさらに含有する、請求項1~12のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  14.  架橋剤をさらに含有する、請求項1~13のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  15.  請求項1~14のいずれか一項に記載のリソグラフィー用下層膜形成材料から形成される、リソグラフィー用下層膜。
  16.  基板上に、請求項1~14のいずれか一項に記載の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
     前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像を行う工程(A-3)と、
     を有する、パターン形成方法。
  17.  基板上に、請求項1~14のいずれか一項に記載の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
     前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、アルカリ現像してレジストパターンを形成する工程(B-4)と、
     前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
     を有する、パターン形成方法。
  18.  下記式(BisN-1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000015
  19.  下記式(BisN-2)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000016
PCT/JP2014/052530 2013-02-08 2014-02-04 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法 WO2014123107A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/766,499 US9809601B2 (en) 2013-02-08 2014-02-04 Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JP2014560765A JP6388126B2 (ja) 2013-02-08 2014-02-04 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
CN201480007892.6A CN104969127B (zh) 2013-02-08 2014-02-04 化合物、光刻用下层膜形成材料、光刻用下层膜及图案形成方法
KR1020157021507A KR102178662B1 (ko) 2013-02-08 2014-02-04 화합물, 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴 형성방법
EP14749602.0A EP2955577B1 (en) 2013-02-08 2014-02-04 Compound, material for forming underlayer film for lithography, underlayer film for lithography, and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023809 2013-02-08
JP2013023809 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123107A1 true WO2014123107A1 (ja) 2014-08-14

Family

ID=51299701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052530 WO2014123107A1 (ja) 2013-02-08 2014-02-04 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法

Country Status (7)

Country Link
US (1) US9809601B2 (ja)
EP (1) EP2955577B1 (ja)
JP (1) JP6388126B2 (ja)
KR (1) KR102178662B1 (ja)
CN (1) CN104969127B (ja)
TW (1) TWI632145B (ja)
WO (1) WO2014123107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014191A1 (ja) * 2015-07-22 2017-01-26 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123032A1 (ja) 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
US9809601B2 (en) 2013-02-08 2017-11-07 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JP6390911B2 (ja) * 2013-02-08 2018-09-19 三菱瓦斯化学株式会社 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
WO2016158169A1 (ja) 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物
WO2016158168A1 (ja) 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 化合物、レジスト組成物及びそれを用いるレジストパターン形成方法
EP3346334B1 (en) 2015-08-31 2020-08-12 Mitsubishi Gas Chemical Company, Inc. Use of a composition for forming a photoresist underlayer film for lithography, photoresist underlayer film for lithography and method for producing same, and resist pattern forming method
EP3346335A4 (en) 2015-08-31 2019-06-26 Mitsubishi Gas Chemical Company, Inc. MATERIAL FOR FORMING LITHOGRAPHY OF LAYER LAYERS, COMPOSITION FOR FORMING LITHOGRAPHY LAYER LAYERS, LITHOGRAPHY LAYERINGS AND METHOD FOR THE PRODUCTION THEREOF, PATTERN FORMULATION, RESIN AND CLEANING METHOD
WO2017043561A1 (ja) 2015-09-10 2017-03-16 三菱瓦斯化学株式会社 化合物、樹脂、レジスト組成物又は感放射線性組成物、レジストパターン形成方法、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、回路パターンの形成方法、及び、精製方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172925A (ja) * 1997-07-03 1999-03-16 Toshiba Corp 下層膜用組成物およびこれを用いたパターン形成方法
JP2002334869A (ja) 2001-02-07 2002-11-22 Tokyo Electron Ltd シリコン窒化膜の形成方法、形成装置及びこの形成装置の洗浄前処理方法
JP2002341542A (ja) * 2001-05-18 2002-11-27 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、パターンの製造法及び電子部品
WO2003017002A1 (fr) * 2001-08-20 2003-02-27 Nissan Chemical Industries, Ltd. Composition permettant la formation d'un film anti-reflechissant destine a etre utilise en lithographie
JP2004177668A (ja) 2002-11-27 2004-06-24 Tokyo Ohka Kogyo Co Ltd 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
WO2004066377A1 (ja) 2003-01-24 2004-08-05 Tokyo Electron Limited 被処理基板上にシリコン窒化膜を形成するcvd方法
JP2004271838A (ja) 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd レジスト下層膜材料ならびにパターン形成方法
JP2005250434A (ja) 2004-02-04 2005-09-15 Shin Etsu Chem Co Ltd レジスト下層膜材料ならびにパターン形成方法
WO2005111724A1 (ja) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. ビニルエーテル化合物を含む反射防止膜形成組成物
JP2007226204A (ja) 2006-01-25 2007-09-06 Shin Etsu Chem Co Ltd 反射防止膜材料、基板、及びパターン形成方法
JP2007226170A (ja) 2006-01-27 2007-09-06 Shin Etsu Chem Co Ltd 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP2008065081A (ja) * 2006-09-07 2008-03-21 Jsr Corp レジスト下層膜形成用組成物及びパターン形成方法
WO2009072465A1 (ja) 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法
WO2011034062A1 (ja) 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100798A (en) * 1933-05-02 1937-11-30 Ig Farbenindustrie Ag Condensation products of carbenium compounds and process of preparing the same
US2546872A (en) 1947-10-10 1951-03-27 Ciba Ltd Hydroxy-compounds of the benzoxanthene series and process of making same
US3947468A (en) * 1971-05-26 1976-03-30 General Electric Company Production of dibenzopyrans, their isomeric fluorenols and dibenzothiopyrans
US4579758A (en) * 1981-01-16 1986-04-01 The B. F. Goodrich Company Internally coated reaction vessel for use in olefinic polymerization
JPH01283280A (ja) 1988-05-06 1989-11-14 Asahi Denka Kogyo Kk 新規エポキシ化合物及びその製造方法
JP2919142B2 (ja) 1990-12-27 1999-07-12 株式会社東芝 感光性組成物およびそれを用いたパターン形成方法
JPH0649402A (ja) 1992-08-04 1994-02-22 Nippon Kayaku Co Ltd ソルダーレジストインキ組成物及びその硬化物
JPH06242607A (ja) 1993-02-18 1994-09-02 Mitsubishi Electric Corp ポジ型レジスト組成物およびそれを用いたパターン形成法
JP3498857B2 (ja) 1994-01-28 2004-02-23 株式会社ノエビア 皮膚外用剤
JP3582936B2 (ja) 1996-07-10 2004-10-27 株式会社ノエビア 皮膚外用剤
WO2002014437A1 (en) * 2000-08-14 2002-02-21 Silverbrook Research Pty Ltd Bridged diarylpolymethine chromophores
JP2002214769A (ja) 2001-01-18 2002-07-31 Fuji Photo Film Co Ltd 感放射線性ポジ型レジスト組成物
US6844273B2 (en) 2001-02-07 2005-01-18 Tokyo Electron Limited Precleaning method of precleaning a silicon nitride film forming system
JP2002334896A (ja) 2001-05-07 2002-11-22 Nagase & Co Ltd 突起電極の製造方法
US6784228B2 (en) 2001-07-12 2004-08-31 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
EP1300403A1 (en) 2001-10-02 2003-04-09 Aventis Pharma S.A. Process for the manufacture of hypoxyxylerone derivatives
US7238462B2 (en) 2002-11-27 2007-07-03 Tokyo Ohka Kogyo Co., Ltd. Undercoating material for wiring, embedded material, and wiring formation method
EP1666970A4 (en) 2003-09-18 2009-09-02 Mitsubishi Gas Chemical Co COMPOSITION FOR RESIST AND RADIATION COMPATIBLE COMPOSITION
JP4614056B2 (ja) 2003-09-18 2011-01-19 三菱瓦斯化学株式会社 レジスト用化合物および感放射線性組成物
CN1942825B (zh) 2004-04-15 2010-05-12 三菱瓦斯化学株式会社 抗蚀剂组合物
JP4966484B2 (ja) 2004-07-22 2012-07-04 大阪瓦斯株式会社 フルオレン化合物およびその製造方法
JP4678195B2 (ja) 2005-02-03 2011-04-27 三菱瓦斯化学株式会社 フェナントレンキノン誘導体及びその製造方法
JP2007019294A (ja) * 2005-07-08 2007-01-25 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体素子及び有機薄膜トランジスタ
JP4659678B2 (ja) 2005-12-27 2011-03-30 信越化学工業株式会社 フォトレジスト下層膜形成材料及びパターン形成方法
JP2007192294A (ja) * 2006-01-19 2007-08-02 Nsk Ltd センサ付き軸受
JP4998271B2 (ja) * 2006-01-25 2012-08-15 日立化成工業株式会社 フェノール樹脂及び樹脂組成物
US7585613B2 (en) 2006-01-25 2009-09-08 Shin-Etsu Chemical Co., Ltd. Antireflection film composition, substrate, and patterning process
JP2009098155A (ja) 2006-02-08 2009-05-07 Mitsubishi Gas Chem Co Inc 感放射線性組成物
TW200741353A (en) 2006-02-27 2007-11-01 Mitsubishi Gas Chemical Co Compound for forming antireflective film and antireflective film
JP2007262398A (ja) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2007326847A (ja) 2006-03-31 2007-12-20 Honshu Chem Ind Co Ltd 新規な多核体ポリフェノール化合物
US8138355B2 (en) * 2006-08-28 2012-03-20 Tosoh Corporation Heteroacene derivative, tetrahaloterphenyl derivative, and processes for producing the same
JP4858136B2 (ja) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5092492B2 (ja) 2007-03-28 2012-12-05 Dic株式会社 熱硬化性ポリイミド樹脂組成物
JP5446118B2 (ja) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
JP2009073738A (ja) 2007-09-18 2009-04-09 Idemitsu Kosan Co Ltd ポリカルボン酸エステル化合物、フォトレジスト基材及びフォトレジスト組成物
KR20100077192A (ko) 2007-10-10 2010-07-07 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 이용한 고분자 발광 소자
JP2009119201A (ja) * 2007-11-09 2009-06-04 Yuko Yoshino 衣類、布製品用の縫い代付きデザイン面ファスナー
JP5249578B2 (ja) 2007-12-26 2013-07-31 大阪瓦斯株式会社 フルオレン骨格を有するエポキシ化合物
WO2009119201A1 (ja) * 2008-03-28 2009-10-01 Jsr株式会社 レジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法
WO2009145224A1 (ja) 2008-05-27 2009-12-03 パナソニック電工株式会社 プリント配線板用エポキシ樹脂組成物、ソルダーレジスト組成物、樹脂フィルム、樹脂シート、プリプレグ、樹脂付き金属箔、カバーレイ、フレキシブルプリント配線板
JP5118073B2 (ja) 2009-01-26 2013-01-16 信越化学工業株式会社 レジスト下層膜形成方法及びこれを用いたパターン形成方法
JP2010219295A (ja) * 2009-03-17 2010-09-30 Mitsui Chemicals Inc 有機トランジスタ
JP5513825B2 (ja) 2009-09-28 2014-06-04 大阪ガスケミカル株式会社 フルオレン骨格を有するアルコールの製造方法
JP5466927B2 (ja) 2009-11-19 2014-04-09 大阪瓦斯株式会社 フルオレンポリエステルオリゴマー及びその製造方法
JP5068828B2 (ja) 2010-01-19 2012-11-07 信越化学工業株式会社 レジスト下層膜形成用組成物、レジスト下層膜形成方法、及びパターン形成方法
KR20130124166A (ko) 2010-05-26 2013-11-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 환상 화합물의 정제 방법
JP5229278B2 (ja) * 2010-06-21 2013-07-03 信越化学工業株式会社 ナフタレン誘導体、レジスト下層膜材料、レジスト下層膜形成方法及びパターン形成方法
JP5556773B2 (ja) * 2010-09-10 2014-07-23 信越化学工業株式会社 ナフタレン誘導体及びその製造方法、レジスト下層膜材料、レジスト下層膜形成方法及びパターン形成方法
JP5485188B2 (ja) 2011-01-14 2014-05-07 信越化学工業株式会社 レジスト下層膜材料及びこれを用いたパターン形成方法
US8742403B2 (en) * 2011-03-08 2014-06-03 Samsung Electronics Co., Ltd. Xanthene based semiconductor compositions
CN103619892B (zh) 2011-06-03 2016-08-24 三菱瓦斯化学株式会社 酚醛系树脂以及光刻用下层膜形成材料
KR101907481B1 (ko) 2011-08-12 2018-10-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법
KR20140079359A (ko) * 2011-08-12 2014-06-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물, 레지스트 패턴 형성방법, 이에 이용되는 폴리페놀 화합물 및 이로부터 유도될 수 있는 알코올 화합물
JP5698184B2 (ja) 2011-09-02 2015-04-08 信越化学工業株式会社 ポジ型レジスト材料及びパターン形成方法
JP5958734B2 (ja) 2011-10-17 2016-08-02 三菱瓦斯化学株式会社 新規エポキシ化合物及びその製造方法
KR101873018B1 (ko) 2011-11-02 2018-07-03 주식회사 동진쎄미켐 페놀계 단량체, 이를 포함하는 레지스트 하층막 형성용 고분자 및 이를 포함하는 레지스트 하층막 조성물
JP6390911B2 (ja) * 2013-02-08 2018-09-19 三菱瓦斯化学株式会社 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
US9809601B2 (en) 2013-02-08 2017-11-07 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
WO2014123032A1 (ja) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
KR102094211B1 (ko) 2013-02-08 2020-03-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 알릴 화합물 및 그 제조방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172925A (ja) * 1997-07-03 1999-03-16 Toshiba Corp 下層膜用組成物およびこれを用いたパターン形成方法
JP2002334869A (ja) 2001-02-07 2002-11-22 Tokyo Electron Ltd シリコン窒化膜の形成方法、形成装置及びこの形成装置の洗浄前処理方法
JP2002341542A (ja) * 2001-05-18 2002-11-27 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、パターンの製造法及び電子部品
WO2003017002A1 (fr) * 2001-08-20 2003-02-27 Nissan Chemical Industries, Ltd. Composition permettant la formation d'un film anti-reflechissant destine a etre utilise en lithographie
JP2004177668A (ja) 2002-11-27 2004-06-24 Tokyo Ohka Kogyo Co Ltd 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
WO2004066377A1 (ja) 2003-01-24 2004-08-05 Tokyo Electron Limited 被処理基板上にシリコン窒化膜を形成するcvd方法
JP2004271838A (ja) 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd レジスト下層膜材料ならびにパターン形成方法
JP2005250434A (ja) 2004-02-04 2005-09-15 Shin Etsu Chem Co Ltd レジスト下層膜材料ならびにパターン形成方法
WO2005111724A1 (ja) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. ビニルエーテル化合物を含む反射防止膜形成組成物
JP2007226204A (ja) 2006-01-25 2007-09-06 Shin Etsu Chem Co Ltd 反射防止膜材料、基板、及びパターン形成方法
JP2007226170A (ja) 2006-01-27 2007-09-06 Shin Etsu Chem Co Ltd 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP2008065081A (ja) * 2006-09-07 2008-03-21 Jsr Corp レジスト下層膜形成用組成物及びパターン形成方法
WO2009072465A1 (ja) 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法
WO2011034062A1 (ja) 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955577A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014191A1 (ja) * 2015-07-22 2017-01-26 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
CN107848983A (zh) * 2015-07-22 2018-03-27 三菱瓦斯化学株式会社 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及抗蚀图案形成方法、电路图案形成方法、及纯化方法
JPWO2017014191A1 (ja) * 2015-07-22 2018-05-24 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
US10364314B2 (en) 2015-07-22 2019-07-30 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
CN107848983B (zh) * 2015-07-22 2021-07-09 三菱瓦斯化学株式会社 化合物、树脂、光刻用下层膜形成材料、抗蚀图案和电路图案形成方法及纯化方法

Also Published As

Publication number Publication date
US20150376202A1 (en) 2015-12-31
KR102178662B1 (ko) 2020-11-13
EP2955577A4 (en) 2016-07-13
JP6388126B2 (ja) 2018-09-12
CN104969127B (zh) 2019-11-26
TWI632145B (zh) 2018-08-11
KR20150115793A (ko) 2015-10-14
TW201446770A (zh) 2014-12-16
JPWO2014123107A1 (ja) 2017-02-02
EP2955577B1 (en) 2018-01-31
EP2955577A1 (en) 2015-12-16
CN104969127A (zh) 2015-10-07
US9809601B2 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
JP6573217B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法
JP5979384B2 (ja) リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP6094947B2 (ja) フルオレン構造を有する樹脂及びリソグラフィー用下層膜形成材料
JP6064904B2 (ja) フェノール系樹脂およびリソグラフィー用下層膜形成材料
JP5742715B2 (ja) 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物
EP3346334B1 (en) Use of a composition for forming a photoresist underlayer film for lithography, photoresist underlayer film for lithography and method for producing same, and resist pattern forming method
JP6390911B2 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP6880537B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
JP5853959B2 (ja) 芳香族炭化水素樹脂、リソグラフィー用下層膜形成組成物及び多層レジストパターンの形成方法
JP6388126B2 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
WO2016104214A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
WO2016143635A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び化合物又は樹脂の精製方法
WO2016158457A1 (ja) 化合物、樹脂、及びそれらの精製方法、リソグラフィー用の下層膜形成材料、下層膜形成用組成物、及び下層膜、並びに、レジストパターン形成方法、及び回路パターン形成方法
WO2016140081A1 (ja) リソグラフィー用下層膜形成用材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、及び回路パターン形成方法
JP2016184152A (ja) リソグラフィー用下層膜形成用材料、該材料を含む組成物及びパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560765

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014749602

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157021507

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14766499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE