WO2014123004A1 - 燃料噴射装置の駆動装置 - Google Patents

燃料噴射装置の駆動装置 Download PDF

Info

Publication number
WO2014123004A1
WO2014123004A1 PCT/JP2014/051434 JP2014051434W WO2014123004A1 WO 2014123004 A1 WO2014123004 A1 WO 2014123004A1 JP 2014051434 W JP2014051434 W JP 2014051434W WO 2014123004 A1 WO2014123004 A1 WO 2014123004A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
injection device
solenoid valve
current
drive
Prior art date
Application number
PCT/JP2014/051434
Other languages
English (en)
French (fr)
Inventor
歩 畑中
亮 草壁
安部 元幸
青野 俊宏
広津 鉄平
坂本 英之
隆夫 福田
秀治 江原
豊原 正裕
西岡 明
堀 俊雄
清 愛木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP14749644.2A priority Critical patent/EP2955365B1/en
Priority to US14/766,253 priority patent/US9714626B2/en
Priority to CN201480007767.5A priority patent/CN104968926B/zh
Publication of WO2014123004A1 publication Critical patent/WO2014123004A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the present invention relates to a drive device for a fuel injection device used in, for example, an internal combustion engine.
  • fuel can be injected over a wide range from the minimum injection amount corresponding to the minimum output obtained by reducing the engine displacement to the maximum injection amount corresponding to the maximum output obtained by supercharging. There is a need to expand the control range of the injection amount.
  • the injection amount of the fuel injection device is controlled by the pulse width of the injection pulse output from the electronic control unit (ECU).
  • ECU electronice control unit
  • Increasing the injection pulse width increases the injection amount, and shortening the injection pulse width decreases the injection amount, and the relationship is substantially linear.
  • the mover reaches the valve closing position after stopping the injection pulse due to the rebound phenomenon (bound behavior of the mover) that occurs when the mover collides with the fixed core or the like.
  • the time has fluctuated until this time, and the injection amount does not change linearly with respect to the injection pulse width, which increases the minimum injection amount that can be controlled by the fuel injection device.
  • the injection amount may not be stable for each individual fuel injection device due to the above-described mover bounce phenomenon, and the individual with the largest injection amount must be set as the minimum controllable injection amount. In some cases, the minimum controllable injection amount is increased.
  • an intermediate lift region where the movable element and the fixed core do not collide, that is, the valve body does not fully lift. In this intermediate lift region, even if the same injection pulse is supplied to the fuel injection device of each cylinder, the lift amount of the fuel injection device varies due to individual differences caused by the dimensional tolerance of the fuel injection device. The individual variability increased, and it was difficult to use this intermediate lift region from the viewpoint of combustion stability.
  • the injection pulse width it is required to control the injection amount in a short injection pulse region where the relationship between the injection amount and the injection amount is not a straight line or an intermediate lift region where the injection pulse is small and the valve element does not reach the target lift.
  • the air resistance between the mover and the fixed core is rapidly reduced, so that the magnetic resistance of the magnetic circuit composed of the mover and the fixed core is reduced. Focusing on the phenomenon that the magnetic material is magnetically saturated and the inductance of the magnetic circuit changes due to the increase of the magnetic flux density through the mover and the fixed core, the timing at which the second-order differential value of the current switches from negative to positive By detecting, the timing which a needle
  • Patent Document 2 paying attention to the fact that the ON / OFF cycle of the drive current of the solenoid valve becomes longer as the valve opening operation proceeds and the inductance of the drive coil increases, the ON / OFF cycle is longer than the set value. A method is described in which it is determined that the valve is opened when it becomes.
  • the time resolution of detection is fixed to the above-described set value of the on / off cycle.
  • the set value of the on / off cycle should be set longer than the on / off cycle other than when the valve is open, and in order to improve the detection time resolution, it is necessary to naturally shorten the on / off cycle other than when the valve is open. is there.
  • it is difficult to shorten the on / off cycle due to an increase in electromagnetic noise, an increase in loss of switch elements, and the like.
  • the fuel that can reliably and accurately detect the operation timing of the valve body, that is, the valve opening timing, which is necessary to correct the variation of the fuel injection amount due to the individual variation of the plurality of electromagnetic valves and the characteristic change due to deterioration.
  • An object of the present invention is to provide an injection driving device.
  • the drive device of the present invention applies a first voltage across the electromagnetic valve by turning on the first switch element, and turns on the second switch element to turn on the electromagnetic switch.
  • a solenoid valve drive device that opens and closes the solenoid valve by applying a second voltage lower than the first voltage between both ends of the valve, the first switch element is turned on and the energization current of the solenoid valve Is increased to the first current value, the first switch element is turned off and the second switch element is turned on to pass a current smaller than the first current value for a predetermined period, and during the predetermined period And when the said 2nd switch element is not OFF, it detects that the said solenoid valve reached
  • the completion timing of opening of the solenoid valve can be detected reliably and with high accuracy.
  • it is possible to switch to a drive mode in which detected information can be further fed back it is possible to provide a fuel injection device and an internal combustion engine that can perform fuel injection with high accuracy.
  • FIG. 1 is a configuration diagram of an electromagnetic valve driving circuit of the fuel injection valve driving apparatus according to the first embodiment, and shows a driving circuit for one electromagnetic valve 300.
  • the fuel injection device is connected to a battery 100 that is a vehicle-mounted power source and a solenoid valve drive circuit 200, and includes a solenoid valve 300.
  • the solenoid valve 300 is constituted by a solenoid coil, for example.
  • the solenoid valve drive circuit includes a booster circuit 250, a FET (Hi) 211, a backflow prevention diode (Hi) 212, and a shunt resistor (Hi) 213 for current measurement, and boosts by controlling the FET (Hi) 211.
  • the output voltage VH of the circuit 250 is applied to the solenoid valve 300.
  • FET (Mid) 201 backflow prevention diode (Mid) 202, and shunt resistor (Mid) 203 for current measurement.
  • FET (Mid) 201 battery voltage VB is applied to solenoid valve 300. To do.
  • the downstream side of the solenoid valve 300 is provided with a FET (Lo) 221 and a shunt resistor (Lo) 224 for current measurement for energizing the solenoid valve 300, and operates as a relay when the solenoid valve 300 is energized.
  • a free wheel diode 223 is provided, and when the FET (Lo) 221 is on and the FET (Hi) 211 and FET (Mid) 201 are off, the current flowing through the solenoid valve 300 is referred to as the free wheel diode 223. Freewheeling is performed in a closed circuit including the solenoid valve 300 and the FET (Lo) 221.
  • the booster circuit 250 includes an input side capacitor 251, a booster coil 252, a booster FET 253, a booster chopper 254, and an output capacitor 255, and boosts the battery voltage VB to the booster voltage VH by controlling the booster FET 253.
  • the IC 230 monitors the current flowing through the shunt resistors 203, 213, and 224, and drives the FETs 201, 211, 221, and 253 by applying a gate signal.
  • the microcomputer 240 acquires current / voltage information monitored by the IC 230 and information from sensors, which are not shown in the drawing, etc., and sets the injection pulse and injection mode that determine the injection time of the solenoid valve so that an appropriate injection amount is obtained. Apply information to IC230. In response to this, the IC 230 generates a gate signal.
  • the microcomputer 240 and the drive circuit including the IC 230 and the like may be configured as an integrated electronic control device, or may be configured as separate electronic control devices.
  • FIG. 2 is a schematic cross-sectional view of the electromagnetic valve 300, and shows a closed state and an open state for comparison.
  • the electromagnetic valve 300 includes a fixed core 301, a spring 302, a coil 303, a mover 304, a valve body 305, and a nozzle holder 306.
  • the spring 302 is pressed in the compression direction by a spring presser 308 fixed to the fixed core 301. Further, the spring 302 urges the valve body 305 and the mover 304 downward in the drawing. For this reason, when the coil 303 is not energized, the tip of the valve body 305 is pressed against the nozzle holder 306, and the valve is closed. At this time, an air gap 310 exists between the fixed core 301 and the mover 304.
  • the valve body 305 and the movable element 304 are configured to be relatively displaceable, but the valve body 305 and the movable element 304 may be configured of the same parts.
  • the movable element performs a preliminary operation in the valve opening direction by a magnetic attractive force, and the movable element and the valve element collide to separate the valve element from the nozzle holder. May be.
  • Fig. 3 shows a simple equivalent circuit of the solenoid valve 300.
  • the coil of the electromagnetic valve can be simply expressed by a series connection of an inductance component 320 and a winding resistance component 321.
  • the voltage VL applied to the inductance component of the coil is expressed by Expression (1), and can be expressed as Expression (3) by Expression (2). From the second term on the right side of Equation (3), it can be seen that when the inductance increases due to the decrease in the air gap as described above, the induced electromotive force is generated in a direction that obstructs the current flowing through the solenoid valve 300. This becomes a factor of current change during the valve opening operation of the mover 304.
  • the magnetic saturation of the core magnetic material itself is not considered.
  • inductance reduction due to magnetic saturation is superimposed, a change in induced electromotive force due to valve operation similarly occurs.
  • inductance reduction due to magnetic saturation of the magnetic material due to current increase and inductance increase due to valve operation occur simultaneously, the inductance change is canceled, which is not desirable.
  • a method for suppressing this will be described later in the description of the operation. (Note that if magnetic saturation occurs immediately after the valve opening operation due to an increase in inductance due to the valve opening operation, the current change before and after completion of the valve opening increases, which is desirable.)
  • the operation in the first embodiment will be described with respect to the injection pulse applied to the IC 230 from the microcomputer 240 shown in FIG. 4, the gate signals of the FET (Mid) 201, the FET (Hi) 211, and the FET (Lo) 221,
  • the voltage between the terminals of the valve, the drive current, the amount of displacement of the valve body 305, and the output of the accelerometer attached to the electromagnetic valve 300, although not shown, are shown.
  • FET (Hi) 211 and FET (Lo) 221 are first turned on, a voltage of VH is applied to the solenoid valve, and a current is passed through the solenoid valve.
  • both FET (Hi) 211 and FET (Lo) 221 are turned off, and the current is regenerated through the current regeneration diode 222. A voltage is applied and the solenoid valve current decreases.
  • FET (Mid) 201 and FET (Lo) 221 are turned on, and the voltage VB is applied to the solenoid valve until time t5.
  • the condition for turning on the FET (Mid) 201 and the FET (Lo) 221 may be time control as well.
  • dI / dt is suppressed and a stable current can be applied.
  • the inductance change due to the magnetic saturation of the magnetic material itself can be suppressed. That is, it is possible to clearly grasp the inductance change caused by the valve opening operation and the inductance change caused by the magnetic saturation of the magnetic material accompanying the valve opening operation.
  • the valve opening completion timing can be determined by eliminating the influence of switching noise. Note that during the period from time t3 to t5, it is not always necessary to turn on the FET (Mid) 201 at 100% duty, and it is turned on and off at the duty ratio necessary to control the energization to the current value necessary for the operation of the solenoid valve. You may control. At this time, since the timing of switching the FET (Mid) 201 can be recognized by the microcomputer 240 or the IC 230, the completion of the valve opening may not be determined by performing mask processing at the timing of switching the FET (Mid) 201. As a result, even when 100% duty control is not performed during the period from time t3 to t5, the valve opening completion can be determined only when the FET (Mid) 201 is not turned off. Can be prevented.
  • valve opening completion and valve closing completion can also be detected by an accelerometer, and can be confirmed by showing a waveform like the output of the accelerometer in FIG.
  • the output of the accelerometer detects the vibration when the fixed core 301 and the mover 304 collide at the valve opening completion timing, and the vibration when the valve body 305 and the nozzle holder 306 collide at the valve closing completion timing. Is detected.
  • the simplified electromagnetic valve shown in FIG. 2 has been described as an example. However, in principle, a similar phenomenon occurs in an electromagnetic valve composed of a coil and a magnetic material. Further, an electromagnetic valve having a more complicated configuration may be used in which the movable element performs a preliminary operation in the valve opening direction by the magnetic attractive force before the valve body is separated from the nozzle holder.
  • the current is reduced by applying a voltage ⁇ VH between time t2 and time t3, but the method for reducing the current is not limited to this. For example, it is possible to detect the valve opening completion timing even if the current is reduced in a free wheel state using the free wheel diode 223.
  • the solenoid valve current increases rapidly toward I3, which is applied to the fixed core 301 so as to cancel the magnetic flux change accompanying the change of the solenoid valve coil current. It is thought that it was influenced by the generated eddy current. Since it is not accompanied by the valve opening operation and becomes a false detection factor, detection of the valve opening completion timing should be started from a timing slightly delayed from t3.
  • the solenoid valve current will fluctuate, so the VB voltage needs to be stable when detecting valve opening. For this reason, it is preferable to use a microcomputer to select the detection data when VB is monitored and detect when VB is stable, and to determine the validity.
  • the fuel injection device of the present embodiment is not limited to a single use as a fuel injection device, but may be mounted on an internal combustion engine such as an engine control unit (ECU) or a direct injection gasoline engine. .
  • ECU engine control unit
  • direct injection gasoline engine a direct injection gasoline engine.
  • the following effects can be obtained.
  • a detection period in the period from time t3 (or time later than time t3) to time t5 it is possible to clearly detect the change in inductance due to the change in inductance caused by the valve opening operation, and the valve opening timing can be detected by current. It is. Since the current is increased by applying the voltage VH boosted by the booster circuit, detection corresponding to high-speed valve opening in an internal combustion engine with high fuel pressure is possible.
  • FIG. 5 is a diagram corresponding to FIG. 1 in Example 1
  • FIG. 6 is a diagram corresponding to FIG. 3 in Example 1.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • different parts will be described.
  • the electromagnetic valve drive circuit 200 shown in FIG. 5 is different in that a filter circuit 2510 and a differentiator 2520 are provided.
  • the current of the solenoid valve detected by the shunt resistance (Lo) 224 in the IC 230 is processed in the IC 230 to determine whether the valve is open.
  • a filter circuit 2510 and a differentiator 2520 separately from the IC 230, This eliminates the need for special functions in the IC230, reducing IC development time and development costs.
  • the solenoid valve terminal voltage, solenoid valve drive current, current first-order differential value, and displacement shown in FIG. 6 are obtained by enlarging the waveform of the valve opening completion timing, and individual solenoid valves having individual variations in spring strength and dimensions. Differences are shown in the waveforms of A, individual B, and individual C.
  • the current first-order differential value is the output of the differentiator 2520.
  • the individual valve opening completion times t4A, t4B, and t4C of the individual A, individual B, and individual C, and the solenoid valve current is convex downward, and the current first-order differential value is It coincides with the zero crossing time when changing from negative to positive. That is, the valve opening completion can be determined by using the first-order differential value of the current.
  • a differentiator may be further added to perform second-order differentiation.
  • peaks will be present at t4A, t4B, and t4C, and the valve opening completion timing can be similarly determined.
  • FIG. 1 has been described in the first embodiment
  • FIG. 7 is a view corresponding to FIG. 4 in the first embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Different parts will be described.
  • the operation waveforms shown in FIG. 7 are different in the control of the FETs 201, 211, and 221 after time t5.
  • the difference is that a current of I4 lower than I3 is held by turning on / off FET (Mid) 201 from time t6 and applying a pulsed voltage to the solenoid valve a plurality of times.
  • the current I4 is set to a minimum current value necessary to maintain the solenoid valve 300 open.
  • the solenoid valve 300 By energizing a current of I4 lower than I3, the solenoid valve 300 is kept open for a period corresponding to the injection pulse while suppressing the heat generation of the solenoid valve as compared with the case where the current is continuously energized at I3, and the fuel injection time (injection time) Amount) can be controlled.
  • the current can be interrupted earlier after the injection pulse ends at time t8, and the eddy current flowing through the fixed core after the current is interrupted can be reduced.
  • the valve can be made and the control accuracy of the injection amount can be improved.
  • the FET (Mid) 201 is not turned on / off (or the number of times of on / off control is small) compared to the period from time t5 to time t8. Can be reduced.
  • the FET (Lo) 221 is turned on and the FET (Mid) 201 is turned off during the period from the time t5 to the time t6, and the freewheel current is supplied to the freewheel diode 223.
  • the FET (Lo) 221 is turned off
  • the FET (Mid) 201 is turned off
  • the current regeneration diode 222 is energized
  • -VH is applied to the solenoid valve to attenuate the current. May be.
  • FIG. 8 is a diagram corresponding to FIG. 7 in Example 3.
  • the same parts as those of the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • different parts will be described.
  • the operation waveform shown in FIG. 8 is different in that the lift amount and current waveform under the conditions of the highest fuel pressure and high spring force that need to be dealt with and the output of the accelerometer are added.
  • the higher the fuel pressure and the larger the spring force the later the timing for completing the valve opening.
  • the valve opening is completed at time t4 'later than time t4 under the conditions of high pressure fuel and high spring force.
  • the time t4 ' exists from the time t3 to the time t5
  • a downwardly convex current is generated in the electromagnetic valve current at the time t4', and the valve opening can be detected.
  • the valve opening completion is the most in the range of the fuel pressure that needs to be dealt with and the variation range of the spring force in consideration of the valve opening delay that may occur due to the deterioration of the characteristics of the solenoid valve.
  • valve closing timing time t7 ' is earlier than time t7.
  • FIG. 9 is a view corresponding to FIG. 7 in Example 3.
  • the same parts as those of the third embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts will be described below.
  • the fifth embodiment describes the operation when the characteristics of the electromagnetic valve change due to deterioration or the like, and the valve opening completion timing is not detected in the period from t3 to t5.
  • the valve opening completion timing shown in Fig. 9 is time t4 ", which is earlier than time t3.
  • the solenoid valve current when the FETs 211, 201, and 221 are driven under the same voltage application conditions as in Fig. 7. Is indicated by a gray solid line.
  • the valve opening completion timing t4 " is earlier than the time t3
  • the valve opening is detected during the period when the switch noise from t3 to t5 is reduced. I can't.
  • the current change is large, and it is difficult to detect the valve opening completion because the current change due to the dielectric electromotive force cannot be detected. Become.
  • the peak current I1 of the solenoid valve current is reduced to I1 ', and the time t2 when reaching I2 is advanced to t2'.
  • the time t3 at which VB is applied can be advanced to time t3 ′, which is an earlier timing than time t4 ′′. Due to this operation, the characteristics of the electromagnetic valve have changed due to deterioration or the like, and the valve opening completion timing has been advanced. Even in this case, it is possible to reliably detect the completion of the valve opening.
  • the current set value may be changed from I1 to I1 ′, or the pulse application time of FET (Hi) 211 may be reduced. (It may be controlled by current value or by time)
  • the valve opening can be controlled to be completed during the valve opening detection period t3 to t5. Even if it changes, the valve opening completion timing can be reliably detected.
  • FIG. 10 is a diagram corresponding to FIG. 7 in Example 3.
  • the same parts as those of the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • different parts will be described.
  • FIG. 10 is different in that a current waveform flowing through the booster coil is added.
  • This step-up coil current does not flow during the period from t3 to t5 and stops the step-up operation. Since the step-up circuit 250 switches the step-up FET 253 at a high frequency with a large current of about 10 [A], it causes fluctuations in VB voltage and switch noise. Since the solenoid valve current fluctuates due to the fluctuation of the VB voltage during the period from t3 to t5, it is necessary to suppress this. In addition, noise including high-frequency components such as ringing at the time of switching can propagate through the parasitic capacitance of the circuit element, which causes false detection.
  • FIG. 11 is a view corresponding to FIG. 7 in the third embodiment.
  • the same parts as those in the third embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts will be described below.
  • VB application in the period from t3 to t5 in FIG. 7 and valve opening completion detection in that period are not performed.
  • This is the normal drive mode.
  • a mode in which the valve opening completion is detected by applying VB during the period from t3 to t5 is referred to as a detection drive mode.
  • the injection pulse width can be set freely. Therefore, the injection pulse can be shortened and the minimum injection amount can be further reduced compared to the detection drive mode.
  • FIG. 12 shows a switching table of the driving state of the automobile and the injection drive mode of the fuel injection device.
  • the detection drive mode is set during a part of the idle period of the automobile and the normal drive mode is set during traveling, so that fuel consumption can be improved and exhaust gas can be cleaned.
  • the detection drive mode when the fuel pressure is in a predetermined pressure range, and the completion of valve opening can be detected more accurately in the detection drive mode. For example, what is necessary is just to set so that the period which detects completion of valve opening may be shorter than the fluctuation cycle of the fuel pressure upstream of the fuel injection device. Furthermore, it is desirable to set a period for detecting the completion of valve opening in a period longer than the delay in the operation time of the mover of the solenoid valve caused by individual differences of the solenoid valves.
  • the value of Ipeak of the valve opening current may be changed by reflecting the detection information of the detection drive mode in the normal drive mode. That is, the valve opening timing may be equalized from the start of injection pulse application by reducing Ipeak of the solenoid valve with early valve opening completion timing and increasing Ipeak of the electromagnetic valve with later valve opening completion timing. As a result, variation in the injection amount for each solenoid valve is reduced, so that fuel consumption can be improved and exhaust gas can be cleaned.
  • FIG. 13 shows the solenoid valve current waveforms of the individual A, B, and C and the displacement amount of the valve body in the normal drive mode.
  • the individual A is an individual that has a weak spring force and is easy to open
  • the individual B is an individual that has a moderate spring force and is easy to open
  • the individual C is an individual that has a strong spring force and is difficult to open. Since the valve opening timing of each individual is already known by the detection drive mode, feedback such as increasing or decreasing the peak current of each individual or correcting the injection pulse width so that the valve opening timing of all the individuals is the same time topen. Is possible.
  • the peak current of IpeakA is applied to individual A at time tPA
  • the peak current of IpeakB greater than IpeakA is applied to individual B at time tPB
  • IpeakB is applied to individual C at time tPC.
  • Apply a larger peak current of IpeakC As a result, the timing for completing the opening of the individual A, B, and C can be aligned with the time topen, and the variation among the individual can be reduced, so that the fuel injection amount can be highly accurate.
  • valve opening timing information of each injection device obtained by the detection drive mode is not only when the fuel injection device is fully lifted so that the mover collides with the individual core, but also when the mover does not collide with the individual core.
  • the present invention is also applicable to so-called intermediate lift control in which a target lift is set for the amount. Especially in the intermediate lift region, even if the same injection pulse is supplied to the fuel injection device of each cylinder, the lift amount of the fuel injection device differs due to individual differences caused by the dimensional tolerance of the fuel injection device. Since individual variation increases, it is desirable to perform correction based on information obtained by the detection drive mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

 弁体の動作タイミングすなわち開弁タイミングを確実に且つ高精度に検知できる燃料噴射装置を提供することを目的とする。 時刻t3に電磁弁電流がI2に到達すると、FET201とFET221がオン状態となり、時刻t5に至るまで電磁弁にはVBの電圧が印加される。時刻t3と時刻t5の間にある時刻t4に弁体の変位量は目標リフトに到達、即ち固定コア301と可動子304は接触する。時刻t3と時刻t5の期間に、開弁タイミングの検知を行う。

Description

燃料噴射装置の駆動装置
 本発明は、例えば内燃機関に使用される燃料噴射装置の駆動装置に関する。
 近年、炭酸ガスの排出規制の強化や、化石燃料枯渇の懸念から、内燃機関における燃費(燃料消費率)の向上が求められている。これに対する有効な方法として、排気量を減らして小型化するとともに、過給器によって出力を得るようにしたダウンサイジングエンジンが注目されている。ダウンサイジングエンジンでは、排気量を減らすことで、ポンピングロスやフリクションを低減することができるため、燃費を向上することができる。一方で、過給器を用いることで十分な出力を得ると共に、筒内直接噴射による吸気冷却効果により、過給に伴う圧縮比の低下を抑制して、燃費を向上することができる。特に、このダウンサイジングエンジンに用いる燃料噴射装置では、低排気量化によって得る最低出力に対応した最小噴射量から、過給によって得る最高出力に対応した最大噴射量までの広範囲に亘って燃料を噴射できる必要があり、噴射量の制御範囲の拡大が求められる。
 一般に、燃料噴射装置の噴射量は、電子制御ユニット(ECU)より出力される噴射パルスのパルス幅によって制御する。噴射パルス幅を長くすると噴射量が大きく、噴射パルス幅を短くすると噴射量が小さくなり、その関係は略線形的である。しかしながら、噴射パルスの幅が短い領域では、可動子が固定コアなどに衝突した際に生じる跳ね返り現象(可動子のバウンド挙動)により、噴射パルスを停止してから可動子が閉弁位置に到達するまでに時間が変動してしまい、噴射パルス幅に対して噴射量が直線的に変化せず、このために燃料噴射装置の制御可能な最小噴射量が増加してしまうという問題があった。また、前述の可動子の跳ね返り現象のために噴射量が燃料噴射装置の個体ごとに安定しない場合があり、噴射量が最も大きくなる個体を制御可能な最小噴射量として設定せざるを得ないため、制御可能な最小噴射量を増大させる要因となることがあった。また、噴射パルスと噴射量の関係が直線とならない非線形領域での噴射パルスからさらに噴射パルス幅を短くすると、可動子と固定コアが衝突しない、すなわち弁体がフルリフトしない中間リフトの領域となる。この中間リフトの領域では、各気筒の燃料噴射装置に同じ噴射パルスを供給しても、燃料噴射装置の寸法公差の影響によって生じる個体差によって、燃料噴射装置のリフト量が異なるため、噴射量の個体ばらつきが大きくなり、燃焼の安定性の観点からこの中間リフト領域を使用することは困難であった。
 上述したように、燃費を向上するためには、燃料噴射装置の噴射量ばらつき低減と制御可能な最小噴射量を低減する必要があり、最小噴射量の大幅な低減のためには、噴射パルス幅と噴射量の関係が直線とならない短い噴射パルス領域や噴射パルスが小さく、弁体が目標リフトに到達しない中間リフトの領域での噴射量を制御することが求められている。
 噴射量ばらつきの低減と最小噴射量を低減するためには、開弁時に可動子が固定コアなどに衝突した際に生ずる可動子のバウンド現象によって発生する噴射パルスを停止してから可動子が閉弁位置に到達するまでの時間の変動など、弁動作のばらつきや噴射量のばらつきを、各気筒の燃料噴射装置ごとに駆動装置で検知できる必要がある。
 これに対し、特許文献1に開示された燃料噴射制御装置では、可動子と固定コアの間のエアギャップが急速に縮小することで可動子と固定コアで構成される磁気回路の磁気抵抗が減少し、可動子と固定コアを貫く磁束密度が増加することにより磁性材が磁気飽和して磁気回路のインダクタンスが変化する現象に着目して、電流の2階微分値が負から正に切り替わるタイミングを検出することにより、可動子が固定コアに衝突するタイミングを検知している。
 また、特許文献2には、電磁弁の駆動電流のオンオフの周期が開弁動作が進んで駆動コイルのインダクタンスが増加していくにつれて長くなっていくことに着目し、オンオフ周期が設定値より長くなった場合に開弁と判定する方法が記載されている。
特開2001-221121号 特開平4-287850号
 電磁弁の動作に伴うインダクタンスの変化を、電流の時間変化あるいは、駆動電流のオンオフ制御の際の周期の変化により検出する方法は前述のように既に提案されている。
 しかしながら、特許文献1に開示されている検知方法では、エアギャップの縮小の前に磁気飽和するような電磁弁あるいは通電電流の場合には、既に磁気飽和しているがためにエアギャップの縮小に伴うインダクタンスの変化が小さいため、検知は困難になると考えられる。
 さらに、燃料圧力の高い燃料を噴射する燃料噴射装置においては、電磁弁を開弁させるために短時間の間に大電流を通電する必要があるため、バッテリ電圧を昇圧した高電圧を印加して、短時間の間に電磁弁の通電電流を増加させる。このような用途においては、高電圧の印加に伴う電流変化が急峻であるため、開弁によるインダクタンスの変化を電流変化として捉える事が困難である。
 また、特許文献2に開示されている装置においては、検知の時間分解能は前出のオンオフ周期の設定値に固定される。ここでオンオフ周期の設定値は、開弁時以外のオンオフ周期より長く設定されるはずであり、検知の時間分解能を向上させるためには、自然、開弁時以外のオンオフ周期を短くする必要がある。しかし、オンオフ周期を短くすることは、電磁ノイズの増加、スイッチ素子の損失増加などから困難である。
 本発明では、複数の電磁弁の個体ばらつきおよび劣化による特性変化による燃料噴射量のばらつきを補正するために必要となる、弁体の動作タイミングすなわち開弁タイミングを確実に且つ高精度に検知できる燃料噴射の駆動装置を提供することを目的とする。
 上記課題を解決するため、本願発明の駆動装置は、第1のスイッチ素子をオンすることで電磁弁の両端間へ第1の電圧を印加し、第2のスイッチ素子をオンすることで前記電磁弁の両端間へ前記第1の電圧よりも低い第2の電圧を印加して前記電磁弁を開閉駆動する電磁弁駆動装置において、前記第1のスイッチ素子をオンして前記電磁弁の通電電流が第1の電流値に増加した後、前記第1のスイッチ素子をオフかつ前記第2のスイッチ素子をオンして前記第1の電流値よりも小さい電流を所定期間通電し、前記所定期間中かつ前記第2のスイッチ素子がオフしていないときに、前記電磁弁の通電電流に基づいて前記電磁弁が制御目標リフト量に達したことを検知する。
 本発明によれば、電磁弁の開弁完了タイミングを確実に且つ高精度に検知できる。たま、本発明の一態様によれば、さらに検知した情報をフィードバックできる駆動モードに切り替えることが可能なため、高精度に燃料噴射が可能な燃料噴射装置および内燃機関を提供することができる。
第一の実施形態の燃料噴射装置の電磁弁駆動回路の構成図 第一の実施形態の電磁弁の断面概略図 第一の実施形態の電磁弁の等価回路 第一の実施形態の電磁弁の動作波形 第二の実施形態の燃料噴射装置の電磁弁駆動回路の構成図 第二の実施形態の電磁弁の動作波形 第三の実施形態の電磁弁の動作波形 第四の実施形態の電磁弁の動作波形 第五の実施形態の電磁弁の動作波形 第六の実施形態の電磁弁の動作波形 第七の実施形態の電磁弁の動作波形(通常駆動モード) 第七の実施形態のモード切替えの図 第八の実施形態の電磁弁の動作波形
 以下に、本発明の第1の実施形態について、図1、図2、図3、図5により燃料噴射装置およびその駆動装置の構成を、図4により動作を詳細に説明する。
 図1は、第一の実施形態の燃料噴射弁駆動装置の電磁弁駆動回路の構成図であり、一つの電磁弁300に対する駆動回路を示している。燃料噴射装置は、車載電源であるバッテリ100と、電磁弁駆動回路200と、に接続され、電磁弁300を備える。電磁弁300は例えばソレノイドコイルで構成される。電磁弁駆動回路は、昇圧回路250と、FET(Hi)211と逆流防止用ダイオード(Hi)212と電流測定用のシャント抵抗(Hi)213を備え、FET(Hi)211を制御することにより昇圧回路250の出力電圧VHを電磁弁300に印加する。 また、FET(Mid)201と、逆流防止用ダイオード(Mid)202と電流測定用のシャント抵抗(Mid)203を備え、FET(Mid)201を制御することによりバッテリ電圧VBを電磁弁300に印加する。
 電磁弁300の下流側には、FET(Lo)221と電磁弁300に通電する電流測定用のシャント抵抗 (Lo)224を備え、電磁弁300への通電の際にリレーとし動作する。また、フリーホイールダイオード223を備え、FET(Lo)221がオン状態でFET(Hi)211、FET(Mid)201がオフ状態のときに、電磁弁300に流れている電流をフリーホイールダイオード223と電磁弁300とFET(Lo)221とを含む閉回路でフリーホイールする。また、電流回生用ダイオード222を備え、FET(Lo)221、FET(Hi)211、FET(Mid)201がオフ状態のときに電磁弁300に流れている電流を昇圧回路250の出力コンデンサ255に回生する。また、昇圧回路250は入力側コンデンサ251、昇圧コイル252、昇圧FET253、昇圧チョッパ254、出力コンデンサ255から構成され、昇圧FET253を制御することによりバッテリ電圧VBから、昇圧電圧VHに昇圧する。
 また、IC230はシャント抵抗203、213、224に流れる電流をモニタし、FET201、211、221、253にゲート信号を印加して、駆動する。ここで、FET201、211、221はIC内部に内蔵されていても問題ない。マイコン240は、IC230がモニタした電流・電圧情報および、図面では省略するがセンサ類からの情報等を取得し、適切な噴射量となるように電磁弁の噴射時間を決める噴射パルスや噴射モードの情報をIC230に印加する。これを受け、IC230はゲート信号を生成する。なお、マイコン240とIC230等を含む駆動回路とは一体の電子制御装置として構成されても良いし、別体の電子制御装置として構成されてもよい。
 図2は、電磁弁300の断面概略図であり、比較のため、閉弁状態と開弁状態を示している。電磁弁300は固定コア301と、スプリング302と、コイル303と、可動子304と、弁体305とノズルホルダ306から構成される。スプリング302は,固定コア301に固定されたばね押さえ308で圧縮方向に押されている。また、スプリング302は弁体305および可動子304を図中の下方向に付勢する。このため、コイル303に通電されていない時には、弁体305の先端はノズルホルダ306に押しつけられ、閉弁状態となる。この時、固定コア301と可動子304の間にはエアギャップ310が存在する。また,図2では,弁体305と可動子304とは相対変位可能に構成されているが,弁体305と可動子304は,同一の部品で構成されていても良い。
 コイル303に通電すると、固定コア301と可動子304には磁気吸引力が発生し、磁気吸引力が閉弁方向の力であるスプリング力と弁体に作用する燃料圧力による力の和を上回ったときに可動子304は図中の上方向に付勢され、弁体305を押し上げるため弁体305はノズルホルダ306から離間し、開弁状態となり燃料噴射孔307から燃料を噴射する。開弁状態においては、エアギャップ310は、閉弁状態に比べ非常に小さい状態となる。閉弁状態から開弁状態に移行する際に、固定コア301と可動子304間のエアギャップの減少に伴い両コアを貫く磁束は増加するため、インダクタンスが増加する。なお、弁体がノズルホルダから離間する前に磁気吸引力により可動子が開弁方向へ予備動作を行い、可動子と弁体とが衝突して弁体がノズルホルダから離間するように構成されていても良い。
 図3に電磁弁300の簡易的な等価回路を示す。電磁弁のコイルは簡易的に、インダクタンス成分320と巻き線抵抗成分321の直列接続で表現できる。コイルのインダクタンス成分にかかる電圧VLは式(1)で示され、式(2)により式(3)と表すことができる。式(3)右辺2項から、前述のようにエアギャップの減少によりインダクタンスが増加する時、電磁弁300に流れる電流を妨げる向きに誘導起電力が発生することがわかる。これが可動子304の開弁動作中の電流変化の要因となる。開弁動作が完了した後は、固定コア301と可動子304の位置関係は固定されるため、インダクタンスの式(3)の第二項目は小さくなるため、開弁動作中と開弁動作完了後では誘導起電力に差が生じ、電流の傾きが変化することとなる。また、電磁弁の巻き線抵抗Rinjに発生する電圧降下VRinjは式(4)で表され、電磁弁両端間の電圧はVinj = VL + VRinj で示される。なお、一般的に誘導起電力の符号は負で示されるが、電圧と電流の向きを図3のように定義すると式(3)のように表される。また、一般的にコイルの誘導起電力を表す際、式(1)(2)(3)の右辺にはコイルの巻き数Nを乗じられるが、ここでは簡単のためコイルの巻き数Nは省略している。
 なお、ここでの説明ではコアの磁性材自体の磁気飽和は考慮していない。磁気飽和を考慮した場合には、磁気飽和によるインダクタンス低減が重畳するものの、弁動作に起因する誘導起電力の変化は同様に発生する。電流増加に伴う磁性材の磁気飽和によるインダクタンスの低減と弁動作によるインダクタンス増加が同時に発生する場合にはインダクタンス変化がキャンセルされるため、望ましいものではない。これを抑制する方法は、後述の動作説明の中で述べる。(なお、開弁動作によるインダクタンス増加に伴う、開弁動作直後に磁気飽和が発生する場合は、開弁完了前後の電流変化が大きくなるため、望ましい)
Figure JPOXMLDOC01-appb-I000001
 以下、第1の実施形態における動作を、図4に示すマイコン240からIC230に印加される噴射パルスと、FET(Mid)201とFET(Hi)211とFET(Lo)221のゲート信号と、電磁弁の端子間電圧と、駆動電流および、弁体305の変位量と、図示は省略するが電磁弁300に取り付けた加速度計の出力を示す。
 時刻t1で噴射パルスが印加されると、まずFET(Hi)211およびFET(Lo)221がオン状態となり、電磁弁にはVHの電圧が印加され、電磁弁には電流が通電される。
 時刻t2に電磁弁電流がI1に到達すると、FET(Hi)211、FET(Lo)221ともにオフ状態となり、電流回生用ダイオード222を介して電流が回生されるため、電磁弁には-VHの電圧が印加され、電磁弁電流は減少する。なお、FET(Hi)211、FET(Lo)221をオフする条件として、電磁弁電流とI1の比較ではなく、印加時間が所定時間に達したかどうかを判定して時間制御してもよい。
 時刻t3に電磁弁電流がI2に到達すると、FET(Mid)201とFET(Lo)221がオン状態となり、時刻t5に至るまで電磁弁にはVBの電圧が印加される。FET(Mid)201とFET(Lo)221をオンする条件も、同様に時間制御であってもよい。
 時刻t3と時刻t5の間にある時刻t4に弁体の変位量は目標リフトに到達、即ち固定コア301と可動子304が接触する。この時、前述のように電流の向きを妨げる方向に誘導起電力が発生するため、電磁弁電流は減少する。開弁完了した時刻t4以降はインダクタンスの変化が小さくなるため、VB / Rinjで表わされる電流値I3に漸近することとなる。(∴I3 = VB / Rinj)これは、開弁完了のタイミングに電磁弁電流の傾きが変化することを示しており、電流波形のパターン認識あるいは1階微分、あるいは2階微分により判定が可能となる。即ち、時刻t3と時刻t5の間の電流波形をモニタすることにより、開弁完了のタイミングを判定することが可能となる。なおIC230の内部には電流情報に含まれるノイズを除去するフィルタや波形の特徴を抽出する微分回路、A/D変換器が含まれてもよい。また、このフィルタや微分回路はデジタル回路で構成されていても問題はない。更に、開弁タイミングが重複しない複数の電磁弁の情報をIC230に入力する場合、各電磁弁の波形情報をマルチプレクサなどにより時間で分割して入力してもよい。ここで、I2をI3に近い値に設定することにより、Rinj ×I = VB = Vinj となることからインダクタンス成分に印加される電圧が小さくなる。自然、dI/dtが抑制されることとなり安定した電流を通電することができる。電流が安定していると、磁性材自身の磁気飽和によるインダクタンス変化を抑制することができる。つまり、開弁動作に伴うインダクタンス変化および、開弁動作に伴う磁性材の磁気飽和によるインダクタンス変化を明確に捉える事ができる。
 また、時刻t3からt5の期間中は、FET(Mid)201のオンオフ制御を行わずに、100%デデューティのPWM制御を行っている。これは、FET(Mid)201のオンオフ制御によりスイッチノイズが発生して、電磁弁300開弁完了のタイミングを判定する妨げになるからである。このように構成することで、開弁検知を行うためにFET(Hi)211のオフ後もFET(Mid)201のオンオフ制御を行わない期間を設け、この期間中に電磁弁電流をモニタすることにより、FET(Mid)201がスイッチングしていないときのみに開弁完了を判定できる。これにより、
スイッチングノイズの影響を排除して開弁完了タイミングを判定することができる。なお、時刻t3からt5の期間中必ずしもFET(Mid)201に100%デューティーのオン制御を行う必要はなく、電磁弁の動作上必要な電流値に通電制御するために必要なディーティー比でオンオフ制御してもよい。この際、FET(Mid)201をスイッチングするタイミングはマイコン240またはIC230で認識できるため、さらにFET(Mid)201をスイッチングするタイミングではマスク処理して開弁完了を判定しないようにしてもよい。これにより、時刻t3からt5の期間中で、100%デューティーの制御を行わないときでも、FET(Mid)201がオフしていないときのみに開弁完了を判定できるので、スイッチノイズによる誤判定を防止できる。
 時刻t5で噴射パルスが印加終了し、FET(Hi)211、FET(Mid)201、FET(Lo)221はオフ状態になると、電磁弁電流が回生用ダイオードを介して回生されるため、電磁弁は-VHの電圧にクランプされる。
時刻t6に電磁弁電流が0[A]に減少すると、回生電流も0[A]となることから-VHのクランプ状態も終了し電磁弁の両端はオープン状態となる。時刻t6以降では、電磁弁の固定コアに流れる渦電流による誘導起電力が電磁弁の両端に発生するが、0[V]に向かって徐々に減少する。電磁弁電流が打ち切られたことにより磁気吸引力が減少し、スプリングにより付勢され、時刻t7に電磁弁が閉弁する。
 なお、開弁完了、閉弁完了のタイミングは、加速度計によっても検出可能であり、図4の加速度計の出力のような波形を示すことから、確認が可能である。加速度計の出力は,開弁完了タイミングでは,固定コア301と可動子304が衝突する際の振動を検出しており,閉弁完了タイミングでは,弁体305とノズルホルダ306が衝突する際の振動を検出している。
 なお、本実施例では図2に示す簡略化した電磁弁を例にして説明したが、コイルと磁性材から構成される電磁弁においては原理的に同様の現象が発生するため、例えば上述のように弁体がノズルホルダから離間する前に磁気吸引力により可動子が開弁方向へ予備動作を行うような、更に複雑な構成の電磁弁を使用してもよい。
 また、昇圧回路により昇圧した電圧VHを印加することで電流を増加させていることから、燃料圧力の高い内燃機関における高速開弁に対応した検知が可能である。
 また、時刻t2から時刻t3の間に-VHの電圧を印加して電流を低減しているが、電流を低減させる方法はこの限りではない。例えばフリーホイールダイオード223を用いたフリーホイール状態で電流を低減しても開弁完了タイミングの検知は可能である。
 また、時刻t3においてFET(Mid)201をオンさせた直後、電磁弁電流はI3に向かって急激に増加するが、これは電磁弁コイル電流の変化に伴う磁束変化を打ち消すように固定コア301に発生した渦電流の影響を受けたものと考えられる。開弁動作に伴うものではなく、誤検知要因となるため、開弁完了タイミングの検知はt3より少し遅れたタイミングから開始するのがよい。
 また、本実施例では一つの電磁弁について説明したが、複数の電磁弁であっても同様の効果を得ることができる。
 また、時刻t3~時刻t5の期間にVB変動があった場合には電磁弁電流が変動するため、開弁検知の際にはVB電圧が安定している必要がある。このため、マイコンを使用して、VBをモニタしてVBが安定している時の検知データを選別して有効判定するなどの方法を取ると良い。
 また、本実施例の燃料噴射装置は、燃料噴射装置として単独の使用に限るものではなく、エンジンコントロールユニット(ECU)や、筒内噴射ガソリンエンジン等の内燃機関に搭載されてもよいものとする。
 以上説明したように、本実施例の燃料噴射装置によれば、次のような効果を得ることができる。時刻t3(または時刻t3より遅れた時刻)~時刻t5の期間に検知期間を設けることで、開弁動作に伴うインダクタンス変化によるインダクタンス変化を明確に捉える事ができ、電流により開弁タイミングを検知可能である。昇圧回路により昇圧した電圧VHを印加することで電流を増加させていることから、燃料圧力の高い内燃機関における高速開弁に対応した検知が可能である。
 以下に、図面により本発明の第2の実施形態について図5、図6を用いて詳細に説明する。図5は実施例1における図1相当図であり、また、図6は実施例1における図3相当図であり、第一の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 図5に示す電磁弁駆動回路200はフィルタ回路2510、微分器2520が付与されている点が異なっている。実施例1ではIC230でシャント抵抗(Lo)224で検出した電磁弁の電流をIC230内で処理し開弁の判定を行っていたが、IC230とは別にフィルタ回路2510と微分器2520を設けることにより、IC230に特別な機能が不要となり、ICの開発期間および開発コストを低減できる。
 図6に示す電磁弁端子間電圧と電磁弁駆動電流と電流1階微分値と変位量は、開弁完了タイミングの波形を拡大したものであり、スプリング強度と寸法の個体ばらつきを有する電磁弁個体A、個体B、個体Cの波形を示している点が異なっている。
電流1階微分値は微分器2520の出力であり、個体A 、個体B、個体C各々の開弁完了時刻t4A、t4B、t4Cと、電磁弁電流が下に凸になり電流1階微分値が負から正に変化する際のゼロクロス時刻と一致する。即ち電流の一階微分値を以って開弁完了を判定することができる。
 なお、微分器を更に追加して2階微分してもよく、この場合にはt4A、t4B、t4Cでピークを持つこととなり、同様に開弁完了タイミングを判定することができる。
 以下に、図面により本発明の第3の実施形態について図1、図7を用いて詳細に説明する。図1は実施例1で説明済みであり、また、図7は実施例1における図4相当図であり、第一の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 図7に示す動作波形は、時刻t5以降における、FET201,211,221の制御が異なっている。時刻t6からFET(Mid)201をオンオフして電磁弁にパルス状の電圧を複数回印加することにより、I3より低いI4の電流を保持しているところが異なっている。I4の電流は、例えば電磁弁300の開弁を維持するのに最低限必要な電流値に設定される。I3より低いI4の電流を通電することにより、I3で通電し続けた場合に比べ電磁弁の発熱を抑制しながら噴射パルスに相当する期間電磁弁300の開弁を維持し、燃料噴射時間(噴射量)を制御することが可能となる。また、I3より低いI4の電流を通電することにより、時刻t8で噴射パルスを終了した後、より早期に電流を遮断でき、電流遮断後に固定コアに流れる渦電流も低減できることから、より高速に閉弁可能となり噴射量の制御精度を向上できる。一方で、時刻t3~t5の期間においては、時刻t5から時刻t8の期間に比べてFET(Mid)201をオンオフしない(またはオンオフ制御する回数が少ない)ため、開弁検知を行う期間のスイッチノイズを低減することができる。
 なお、第3の実施例によれば時刻t5から時刻t6の期間にはFET(Lo)221をオン状態、FET(Mid)201をオフ状態として、フリーホイールダイオード223にフリーホイール電流を通電しながら電流を減衰させているが、FET(Lo)221をオフ状態、FET(Mid)201をオフ状態と
して、電流回生用ダイオード222に通電して電磁弁に-VHを印加することで電流を減衰させてもよい。
 以下に、図面により本発明の第4の実施形態について図8を用いて詳細に説明する。図8は実施例3における図7相当図であり、第4の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 図8に示す動作波形は、対応が必要な最も高燃料圧力且つ高スプリング力の条件におけるリフト量および電流波形、加速度計の出力を追加した点が異なっている。一般的に、燃料圧力が高くなるほど、またスプリング力が大きくなるほど、開弁完了のタイミングは遅くなる。このため高圧燃料且つ高スプリング力の条件では時刻t4より遅い時刻t4’に開弁完了する。ここで、時刻t4’は時刻t3から時刻t5の間存在しているため、時刻t4’において電磁弁電流には下に凸の電流が発生し、開弁を検知することが可能である。
 本実施例では時刻t5の設定方法として、電磁弁の特性劣化による起こり得る開弁の遅延を考慮しながら、対応が必要な燃料圧力の範囲、及びスプリング力のばらつき範囲の中で最も開弁完了タイミングが遅くなる条件、即ち高燃料圧力・高スプリング力の条件における開弁完了タイミングt4’が、VB電圧を直流的に印加(スイッチノイズを低減)している開弁検知期間t3からt5の範囲に入るよう、t5を設定している。これにより、開弁が遅い条件における、開弁完了の不検出を避けることができ、より確実な開弁完了検知が可能となる。
 なお、高燃料圧力、高スプリング力の条件では、閉弁する方向に力が働くため、閉弁するタイミング時刻t7’は時刻t7より早いタイミングとなる。
 以下に、図面により本発明の第5の実施形態について図9を用いて詳細に説明する。図9は実施例3における図7相当図であり、第3の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 第5の実施形態は、電磁弁の特性が劣化等により変化して、開弁完了タイミングがt3からt5の期間に検知されなくなった場合の動作について説明する。
 図9に示す開弁完了タイミングが時刻t4”となり、時刻t3より早期である点が異なっている。また、図7と同様の電圧印加条件でFET211、201、221を駆動した場合の電磁弁電流を灰色の実線で示す。図7の電圧印加条件においては開弁完了タイミングt4”が時刻t3より早いタイミングであるので、t3からt5のスイッチノイズを低減している期間において開弁を検知することができない。そして、昇圧電圧印加による通電電流増大または通電電流の減少をしているt3以前のタイミングでは、電流変化が大きいため、誘電起電力による電流変化を捉えられず開弁完了を検知することが困難となる。
 このような場合には、第5の実施形態のように、電磁弁電流のピーク電流I1をI1’に低減し、I2に到達する時刻t2をt2’に早期化させる。これにより、VBを印加する時刻t3を、時刻t4”より早いタイミングである時刻t3’に早期化できる。この動作により、電磁弁の特性が劣化等により変化して開弁完了タイミングが早期化した場合でも、確実に開弁完了を検知することができる。
 なお、I1をI1’に低減する方法としては、電流設定値をI1からI1’に変化させてもよいし、FET(Hi)211のパルス印加時間を低減してもよい。(電流値で制御してもよいし時間で制御してもよい)
 実施例4および実施例5の制御方法によれば、開弁検知期間t3~t5の期間に開弁完了するように制御できるので、エンジンの運転状態の変化や経年劣化などで開弁完了タイミングが変わっても、確実に開弁完了タイミングを検知できる。
 以下に、図面により本発明の第6の実施形態について図10を用いて詳細に説明する。図10は実施例3における図7相当図であり、第3の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 図10には昇圧コイルに流れる電流波形を追加している点が異なる。この昇圧コイル電流は、t3~t5の期間は電流を流さず、昇圧動作を停止している。
昇圧回路250は10[A]程度の大電流を高周波で昇圧FET253をスイッチングするため、VB電圧の変動やスイッチノイズの要因となる。t3~t5の期間中のVB電圧の変動により、電磁弁電流が変動するためこれを抑制する必要がある。また、スイッチング時のリンギングのような高周波成分を含むノイズは、回路素子の寄生容量を介して伝搬しうるため、誤検知の要因になる。
 このため、これまでの実施例に加え、開弁検知を行うt3~t5の期間においては昇圧回路の動作を停止することにより、より正確に開弁完了タイミングを検知することが可能となる。
 以下に、図面により本発明の第7の実施形態について図11と図12を用いて詳細に説明する。
 図11は、実施例3における図7相当図であり第3の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
 図7におけるt3~t5の期間のVB印加および、その期間の開弁完了検知を行わない点で異なっている。これを通常駆動モードとする。なお、第1~第6の実施形態のように、t3~t5の期間にVBを印加して開弁完了を検知するモードを、検知駆動モードとする。通常駆動モードでは、t3~t5の期間を設定する必要が無く噴射パルス幅を自由に設定可能であるため、検知駆動モードに比べ噴射パルスを短くでき最小噴射量をより低減可能である。
 図12に自動車の運転状態と、燃料噴射装置の噴射駆動モードの切替えテーブルを示す。自動車のアイドル期間の一部の期間に検知駆動モードとし、走行時には通常駆動モードとすることで、燃費改善や排気ガスをクリーンにすることができる。
 また、VB電圧が所定の電圧範囲内にあるときに、検知駆動モードを実行することが望ましく、検知駆動モードにおいて開弁完了をより正確に検知できる。
 また、燃料圧力が所定の圧力範囲にあるときに、検知駆動モードを実行することが望ましく、検知駆動モードにおいて開弁完了をより正確に検知できる。例えば、燃料噴射装置上流の燃料圧力の変動周期よりも開弁完了を検知する期間が短いように設定すればよい。さらに、電磁弁の個体差により生ずる電磁弁の可動子の動作時間の遅れよりも長い期間に開弁完了を検知する期間を設定することが望ましい。
 また、検知動作モードを実行する際には、エアコンなどの車載機器の負荷を停止することが望ましく、これによりVB変動を抑制でき、検知駆動モードにおいて開弁完了をより正確に検知できる。
 また、通常駆動モードに検知駆動モードの検知情報を反映して、開弁電流のIpeakの値を変化させてもよい。即ち、開弁完了タイミングが早い電磁弁のIpeakを低減し、開弁完了タイミングの遅い電磁弁のIpeakを増加させることで、噴射パルスの印加開始から開弁タイミングが等しくなるようにしてもよい。これにより電磁弁ごとの噴射量ばらつきが低減するため、燃費改善や排気ガスをクリーンにすることができる。
 以下に、図面により本発明の第7の実施形態について図13を用いて詳細に説明する。
 図13は、通常駆動モードにおける個体A、B、C、の電磁弁電流波形と弁体の変位量を示している。個体Aはスプリング力が弱く開弁し易い個体、個体Bはスプリング力が中程度で平均的な開弁し易さの個体、個体Cはスプリング力が強く開弁しにくい個体である。検知駆動モードにより各個体の開弁タイミングが既にわかっているため、全個体の開弁タイミングが同じ時刻topenとなるよう、それぞれの個体のピーク電流を増減する、噴射パルス幅を補正するといったフィードバックが可能である。具体的には、噴射パルス開始を個体Aには時刻tPAにIpeakAのピーク電流を印加し、個体Bには時刻tPBにIpeakAより大きいIpeakBのピーク電流を印加し、個体Cには時刻tPCにIpeakBより大きいIpeakCのピーク電流を印加する。これにより個体A、B、Cの開弁完了するタイミングを時刻topenに揃えることができ、個体ごとのばらつきを低減できることから燃料噴射量の高精度化が可能である。
 なお、検知駆動モードにより得た噴射装置各個体の開弁タイミング情報は、可動子が個体コアに衝突するように燃料噴射装置をフルリフト制御する場合だけでなく、可動子が個体コアに衝突しないリフト量に目標リフトを設定するいわゆる中間リフト制御にも適用可能である。特に中間リフトの領域では、各気筒の燃料噴射装置に同じ噴射パルスを供給しても、燃料噴射装置の寸法公差の影響によって生じる個体差によって、燃料噴射装置のリフト量が異なるため、噴射量の個体ばらつきが大きくなるため、検知駆動モードにより得た情報に基づき補正を行なうことが望ましい。
 100・・・バッテリ
 200・・・電磁弁駆動回路
 300・・・電磁弁
 250・・・昇圧回路
 211・・・FET(Hi)
 212・・・逆流防止用ダイオード(Hi)
 213・・・電流測定用のシャント抵抗(Hi)
 201・・・FET(Mid)
 202・・・逆流防止用ダイオード(Mid)
 203・・・電流測定用のシャント抵抗(Mid)
 221・・・FET(Lo)
 224・・・シャント抵抗(Lo)
 223・・・フリーホイールダイオード
 222・・・電流回生用ダイオード
 251・・・入力側コンデンサ
 252・・・昇圧コイル
 253・・・昇圧FET
 254・・・昇圧チョッパ
 255・・・出力コンデンサ
 230・・・IC
 240・・・マイコン
 301・・・固定コア
 302・・・スプリング
 303・・・コイル
 304・・・可動子
 305・・・弁体
 306・・・ノズルホルダ

Claims (18)

  1.  第1のスイッチ素子をオンすることで電磁弁の両端間へ第1の電圧を印加し、第2のスイッチ素子をオンすることで前記電磁弁の両端間へ前記第1の電圧よりも低い第2の電圧を印加して前記電磁弁を開閉駆動する電磁弁駆動装置において、
     前記第1のスイッチ素子をオンして前記電磁弁の通電電流が第1の電流値に増加した後、前記第1のスイッチ素子をオフかつ前記第2のスイッチ素子をオンして前記第1の電流値よりも小さい電流を所定期間通電し、前記所定期間中かつ前記第2のスイッチ素子がオフしていないときに、前記電磁弁の通電電流に基づいて前記電磁弁が制御目標リフト量に達したことを検知する燃料噴射装置の駆動装置。
  2.  請求項1に記載の燃料噴射装置の駆動装置において、
     前記電磁弁が制御目標リフト量に達するタイミングが前記所定期間中となるように制御することを特徴とする燃料噴射装置の駆動装置。
  3.  請求項1に記載の燃料噴射装置の駆動装置において、
     前記所定期間経過後に、前記所定期間中の前記電磁弁の通電電流よりも低い電流を前記電磁弁に通電し、前記電磁弁の開弁を保持する開弁保持期間を有することを特徴とする燃料噴射装置の駆動装置。
  4.  請求項1に記載の燃料噴射装置の駆動装置において、
    前記第2の電圧を昇圧して前記第1の電圧を生成する昇圧回路を備え、
    前記所定期間中は前記昇圧回路の動作を停止することを特徴とする燃料噴射装置の駆動装置。
  5.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
     前記電磁弁の両端間に前記第2のスイッチ素子をオンするパルスを2回以上出力し、前記パルスのうち少なくとも1つのパルスは他のパルスより長いパルス幅の検知パルスであり、前記検知パルスの出力中に、前記電磁弁が制御目標リフト量に達したことを検知する燃料噴射装置の駆動装置。
  6.  請求項5に記載の燃料噴射装置の駆動装置において、
    前記検知パルスは前記電磁弁通電期間中の最初のパルスであることを特徴とする燃料噴射装置の駆動装置。
  7.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
     前記第1のスイッチ素子をオンして前記電磁弁の通電電流が第1の電流値に増加した後、前記所定期間の前に前記電磁弁の両端間に負の電圧を印加することを特徴とする燃料噴射装置の駆動装置。
  8.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
    前記電磁弁の通電電流に基づいて前記電磁弁が制御目標リフト量に達したことを検知するタイミングは、前記第2のスイッチ素子がデューティ100%でONしているときであることを特徴とする燃料噴射装置の駆動装置。
  9.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
    前記所定期間は、前記燃料噴射装置上流の燃料圧力が所定の範囲内であり、前記電磁弁の個体差により生ずる前記電磁弁の動作時間の遅れよりも長い期間であることを特徴とする燃料噴射装置の駆動装置。
  10.  請求項2記載の燃料噴射装置の駆動装置において、
     前記所定の期間に前記電磁弁が制御目標リフト量に達したことを検知できないときに、前記第1の電流値を低減して前記所定期間の開始タイミングを早期化することを特徴とする燃料噴射装置の駆動装置。
  11.  請求項2記載の燃料噴射装置の駆動装置において、
     前記所定の期間に前記電磁弁が制御目標リフト量に達したことを検知できないときに、前記所定期間を延長することを特徴とする燃料噴射装置の駆動装置。
  12.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
     前記電磁弁に通電される電流は、前記所定期間の少なくとも一部の期間において前記第2の電圧を前記電磁弁の電気抵抗で除した値に略近接することを特徴とする燃料噴射装置の駆動装置。
  13.  請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
     前記所定期間を設ける検知駆動モードと前記所定期間を設けずに前記電磁弁を通電する駆動モードとを有し、前記検知駆動モードと前記駆動モードを切替える機能と前記検知駆動モードで検知した情報に基づき前記駆動モードの通電波形を補正する機能とを有することを特徴とする燃料噴射装置の駆動装置。
  14.  請求項13に記載の燃料噴射装置において、
     内燃機関のアイドル時の少なくとも一部の期間を前記検知駆動モードとすることを特徴とする燃料噴射装置の駆動装置。
  15. 請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
    燃料圧力をモニタする機能を備え、前記燃料圧力が所定の圧力範囲にあるときの少なくとも一部の期間に検知駆動モードとすることを特徴とする燃料噴射装置の駆動装置。
  16. 請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
    前記第2の電圧は車載バッテリから供給される電圧であり、前記車載バッテリの電圧が所定の変動幅にあるときの少なくとも一部の期間に前記検知駆動モードとすることを特徴とする燃料噴射装置の駆動装置。
  17. 請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
     前記検知駆動モードの期間には、前記車載バッテリの電圧変動を引き起こす負荷を停止することを特徴とする燃料噴射装置の駆動装置。
  18. 請求項2から4いずれか一項に記載の燃料噴射装置の駆動装置において、
    前記燃料噴射装置の電磁弁に通電した電流の情報を含む信号を微分する回路を少なくとも1つ備えることを特徴とする燃料噴射装置の駆動装置。
PCT/JP2014/051434 2013-02-08 2014-01-24 燃料噴射装置の駆動装置 WO2014123004A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14749644.2A EP2955365B1 (en) 2013-02-08 2014-01-24 Drive device for fuel injection device
US14/766,253 US9714626B2 (en) 2013-02-08 2014-01-24 Drive device for fuel injection device
CN201480007767.5A CN104968926B (zh) 2013-02-08 2014-01-24 燃料喷射装置的驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013022807A JP5975899B2 (ja) 2013-02-08 2013-02-08 燃料噴射装置の駆動装置
JP2013-022807 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123004A1 true WO2014123004A1 (ja) 2014-08-14

Family

ID=51299601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051434 WO2014123004A1 (ja) 2013-02-08 2014-01-24 燃料噴射装置の駆動装置

Country Status (5)

Country Link
US (1) US9714626B2 (ja)
EP (1) EP2955365B1 (ja)
JP (1) JP5975899B2 (ja)
CN (1) CN104968926B (ja)
WO (1) WO2014123004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104116A1 (ja) * 2014-12-25 2016-06-30 日立オートモティブシステムズ株式会社 燃料噴射弁制御装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169404B2 (ja) * 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP6233080B2 (ja) * 2014-02-10 2017-11-22 株式会社デンソー 燃料噴射制御装置
GB2534172A (en) * 2015-01-15 2016-07-20 Gm Global Tech Operations Llc Method of energizing a solenoidal fuel injector for an internal combustion engine
EP3258092B1 (en) * 2015-02-09 2020-05-13 Hitachi Automotive Systems, Ltd. Control device for fuel injection valve
JP6483495B2 (ja) * 2015-03-26 2019-03-13 本田技研工業株式会社 燃料噴射弁用の昇圧制御装置
JP6263811B2 (ja) * 2015-05-15 2018-01-24 株式会社ケーヒン 燃料噴射制御装置
CN107709750B (zh) * 2015-07-09 2020-03-24 日立汽车系统株式会社 燃料喷射装置的控制装置
JP2017106354A (ja) 2015-12-08 2017-06-15 株式会社デンソー 制御装置
JP6877093B2 (ja) 2016-05-31 2021-05-26 日立Astemo株式会社 高圧燃料供給ポンプの制御装置、及び高圧燃料供給ポンプ
US10210977B2 (en) * 2016-06-03 2019-02-19 Lam Research Corporation Valve operation booster
JP2018048721A (ja) * 2016-09-23 2018-03-29 株式会社デンソーテン 制御装置および制御方法
DE102016219890B3 (de) * 2016-10-12 2017-08-03 Continental Automotive Gmbh Verfahren und Steuereinrichtung zum Steuern eines Schaltventils
JP6856387B2 (ja) * 2017-01-20 2021-04-07 日立Astemo株式会社 燃料噴射装置の駆動装置
US10823102B2 (en) 2017-04-14 2020-11-03 Hitachi Automotive Systems, Ltd. Control device for fuel injection valve
JP6614201B2 (ja) * 2017-05-19 2019-12-04 株式会社デンソー 燃料噴射制御装置
JP6538117B2 (ja) * 2017-06-28 2019-07-03 日立オートモティブシステムズ株式会社 電磁弁の制御装置及び電磁弁動作の検知方法
DE102017215017A1 (de) * 2017-08-28 2019-02-28 Hitachi Automotive Systems, Ltd. Verfahren und Einrichtung zum Betreiben eines elektromagnetisch betätigten Ventils eines Kraftstoffeinspritzers
SE541214C2 (en) 2017-09-22 2019-05-07 Scania Cv Ab A system and a method for adapting control of a reducing agent dosing unit
JP7067233B2 (ja) * 2018-04-20 2022-05-16 株式会社デンソー 噴射制御装置
US11215133B2 (en) 2018-04-27 2022-01-04 Hitachi Astemo, Ltd. Fuel injection control apparatus
US11193442B2 (en) 2018-05-23 2021-12-07 Hitachi Astemo, Ltd. Fuel injection control device
DE112019002301T5 (de) 2018-07-20 2021-02-18 Hitachi Automotive Systems, Ltd. Kraftstoffeinspritzungs-Steuervorrichtung
JP7316030B2 (ja) * 2018-08-29 2023-07-27 株式会社デンソー 噴射制御装置
CN109469554B (zh) * 2018-09-01 2022-01-14 哈尔滨工程大学 一种多模式燃料喷射执行器驱动电路
JP6987035B2 (ja) * 2018-09-27 2021-12-22 日立Astemo株式会社 電磁弁駆動装置
FR3088974B1 (fr) * 2018-11-28 2021-01-29 Rehau Entreprise Sarl Patte de clipsage a elasticite amelioree
CN109541349B (zh) * 2018-11-29 2021-05-14 一汽解放汽车有限公司 比例电磁阀在线性能检测方法和比例电磁阀在线性能检测装置
DE112019005184T5 (de) * 2018-12-19 2021-07-01 Hitachi Astemo, Ltd. Kraftstoffeinspritz-steuervorrichtung
DE112020002137T5 (de) 2019-05-24 2022-01-20 Hitachi Astemo, Ltd. Vorrichtung zur steuerung der kraftstoffinjektion und verfahren zur steuerung der kraftstoffinjektion
JP7435380B2 (ja) * 2020-09-18 2024-02-21 株式会社デンソー 噴射制御装置
DE102020213203A1 (de) 2020-10-20 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Schaltzeitpunkts eines Magnetventils
RU2746964C1 (ru) * 2020-10-26 2021-04-22 Акционерное общество "Корпорация "Московский институт теплотехники" (АО "Корпорация "МИТ") Способ диагностики состояния якоря электромагнита и устройство для его осуществления
US11313338B1 (en) * 2020-11-20 2022-04-26 Caterpillar Inc. Method and system for monitoring injector valves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211538A (ja) * 1982-06-03 1983-12-09 Aisan Ind Co Ltd 電磁式燃料噴射装置の駆動方法
JPH04287850A (ja) 1991-03-18 1992-10-13 Kokusan Denki Co Ltd 電磁式燃料噴射弁の駆動方法及び駆動装置
JP2001221121A (ja) 2000-02-08 2001-08-17 Hitachi Ltd 電磁式燃料噴射装置及びこれを搭載した内燃機関
JP3529577B2 (ja) * 1997-02-14 2004-05-24 本田技研工業株式会社 燃料噴射弁制御装置
JP2009036196A (ja) * 2007-06-28 2009-02-19 Woodward Governor Co ソレノイド弁用制御装置
WO2012029507A1 (ja) * 2010-08-31 2012-03-08 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843138A1 (de) * 1988-12-22 1990-06-28 Bosch Gmbh Robert Verfahren zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans
JPH11148439A (ja) * 1997-06-26 1999-06-02 Hitachi Ltd 電磁式燃料噴射弁及びその燃料噴射方法
JP3527862B2 (ja) * 1999-04-08 2004-05-17 株式会社日立製作所 燃料噴射装置及び内燃機関
DE10014228A1 (de) * 2000-03-22 2001-09-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Kraftstoffeinspritzventils
FR2813642B1 (fr) * 2000-09-04 2002-12-20 Siemens Automotive Sa Procede de commande de la quantite de carburant injecte dans un moteur a combustion interne a injection directe
JP4037632B2 (ja) * 2001-09-28 2008-01-23 株式会社日立製作所 燃料噴射装置を備えた内燃機関の制御装置
JP5055050B2 (ja) * 2006-10-10 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP4691523B2 (ja) * 2007-05-09 2011-06-01 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の制御回路
JP5053868B2 (ja) * 2008-01-07 2012-10-24 日立オートモティブシステムズ株式会社 燃料噴射制御装置
EP2083159A1 (en) * 2008-01-28 2009-07-29 GM Global Technology Operations, Inc. A method for driving solenoid-actuated fuel injectors of internal combustion engines
JP4965490B2 (ja) * 2008-03-26 2012-07-04 株式会社ショーワ 油圧緩衝器
DE102009032521B4 (de) * 2009-07-10 2016-03-31 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
DE102009047453A1 (de) * 2009-12-03 2011-06-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
DE102011005672B4 (de) * 2011-03-17 2019-07-11 Continental Automotive Gmbh Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
JP5358621B2 (ja) * 2011-06-20 2013-12-04 日立オートモティブシステムズ株式会社 燃料噴射装置
JP6169404B2 (ja) * 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
WO2015015541A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置および燃料噴射システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211538A (ja) * 1982-06-03 1983-12-09 Aisan Ind Co Ltd 電磁式燃料噴射装置の駆動方法
JPH04287850A (ja) 1991-03-18 1992-10-13 Kokusan Denki Co Ltd 電磁式燃料噴射弁の駆動方法及び駆動装置
JP3529577B2 (ja) * 1997-02-14 2004-05-24 本田技研工業株式会社 燃料噴射弁制御装置
JP2001221121A (ja) 2000-02-08 2001-08-17 Hitachi Ltd 電磁式燃料噴射装置及びこれを搭載した内燃機関
JP2009036196A (ja) * 2007-06-28 2009-02-19 Woodward Governor Co ソレノイド弁用制御装置
WO2012029507A1 (ja) * 2010-08-31 2012-03-08 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104116A1 (ja) * 2014-12-25 2016-06-30 日立オートモティブシステムズ株式会社 燃料噴射弁制御装置
CN107110052A (zh) * 2014-12-25 2017-08-29 日立汽车系统株式会社 燃料喷射阀控制装置
US10247125B2 (en) 2014-12-25 2019-04-02 Hitachi Automotive Systems, Ltd. Fuel injection valve control device
CN107110052B (zh) * 2014-12-25 2020-03-03 日立汽车系统株式会社 燃料喷射阀控制装置

Also Published As

Publication number Publication date
EP2955365A4 (en) 2016-08-24
US20150377176A1 (en) 2015-12-31
US9714626B2 (en) 2017-07-25
EP2955365B1 (en) 2018-07-18
EP2955365A1 (en) 2015-12-16
JP5975899B2 (ja) 2016-08-23
CN104968926A (zh) 2015-10-07
CN104968926B (zh) 2017-11-24
JP2014152697A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5975899B2 (ja) 燃料噴射装置の駆動装置
JP6383760B2 (ja) 内燃機関の制御装置
JP6007331B2 (ja) 燃料噴射装置の駆動装置および燃料噴射システム
JP6130280B2 (ja) 燃料噴射装置の駆動装置
JP5492806B2 (ja) 電磁式燃料噴射弁の駆動装置
JP5358621B2 (ja) 燃料噴射装置
JP6381970B2 (ja) 燃料噴射装置の駆動装置
CN109642533B (zh) 燃料喷射装置的控制装置
JP5875559B2 (ja) 燃料噴射装置の駆動回路
JP2018084240A (ja) 燃料噴射装置の駆動装置および燃料噴射システム
JP6294422B2 (ja) 燃料噴射装置の駆動装置および燃料噴射システム
JP6797224B2 (ja) 燃料噴射装置の駆動装置および燃料噴射システム
JP2017122462A (ja) 燃料噴射装置の駆動装置
JP5865409B2 (ja) 電磁式燃料噴射弁の駆動装置
JP2021134726A (ja) 電子制御装置
JP6670893B2 (ja) 燃料噴射装置の駆動装置
Molnar et al. Hardware Difficulties and Improvements for High Pressure Fuel Pump Solenoid Valve Noise Cancellation
JP2017008888A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766253

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014749644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE