WO2016104116A1 - 燃料噴射弁制御装置 - Google Patents

燃料噴射弁制御装置 Download PDF

Info

Publication number
WO2016104116A1
WO2016104116A1 PCT/JP2015/084229 JP2015084229W WO2016104116A1 WO 2016104116 A1 WO2016104116 A1 WO 2016104116A1 JP 2015084229 W JP2015084229 W JP 2015084229W WO 2016104116 A1 WO2016104116 A1 WO 2016104116A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve
time
control device
valve body
Prior art date
Application number
PCT/JP2015/084229
Other languages
English (en)
French (fr)
Inventor
青野 俊宏
安部 元幸
豊原 正裕
修 向原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201580070044.4A priority Critical patent/CN107110052B/zh
Priority to EP15872685.1A priority patent/EP3239503B1/en
Priority to US15/534,084 priority patent/US10247125B2/en
Publication of WO2016104116A1 publication Critical patent/WO2016104116A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other

Definitions

  • the present invention relates to a fuel injection valve control device.
  • Patent Document 1 a fuel injection valve control device capable of suppressing variations in the injection amount characteristic of each fuel injection device.
  • the characteristic curve of the injection amount characteristic of the fuel injection valve control device is divided into three regions, that is, a partial stroke region, a transition region, and a full stroke region. And in patent document 1, while a partial stroke area
  • the fuel injection valve control apparatus disclosed in Patent Document 1 proposes to use only a partial stroke region and a full stroke region by masking the transition region of the characteristic curve.
  • the fuel injection valve control device disclosed in Patent Document 1 since the variation due to the bounce that can actually occur in the region from the transition region to the full stroke region is not recognized, the fuel injection valve control device disclosed in Patent Document 1 includes a plurality of fuel injection devices. It is difficult to suppress variations in the injection quantity characteristics over a wide range.
  • an object of the present invention is to provide a fuel injection valve control device that can satisfactorily suppress variation in the injection amount with respect to the drive pulse width for each of a plurality of fuel injection devices.
  • the present invention relates to a fuel injection valve control device that controls a plurality of fuel injection devices each including a valve body and a solenoid that opens the valve body, and applies a boosted voltage to the solenoid to cut it off, after a predetermined time.
  • the holding current is applied, and the predetermined time and the holding current are corrected for each fuel injection device based on operating characteristics of each fuel injection device.
  • the present invention it is possible to suppress variation in the injection amount with respect to the drive pulse width for each of the plurality of fuel injection devices in a wide range.
  • FIG. The time chart of control of the fuel injection device by a fuel injection valve control device, and the figure which shows the injection quantity characteristic of a fuel injection device.
  • FIG. 5 is a diagram illustrating a fuel injection valve control device according to a second embodiment.
  • FIG. 1 shows an internal combustion engine equipped with a fuel injection device controlled by a fuel injection valve control device according to this embodiment.
  • the internal combustion engine takes air and fuel into the cylinder 106, ignites and explodes the air-fuel mixture with the spark plug 121, and reciprocates the piston 122. This reciprocating motion is converted into a rotational motion of the crankshaft by a link mechanism including the connecting rod 123 and the like, and becomes a driving force for moving the automobile.
  • the air is filtered by the air cleaner 101, the flow rate is adjusted by the throttle 103, and flows into the cylinder 106 through the collector 104 and the intake port 105.
  • the fuel in the fuel tank 111 is sent to the low pressure pipe 113 by the low pressure pump 112, the fuel in the low pressure pipe 113 is sent to the high pressure pipe 115 by the high pressure pump 114, and the fuel in the high pressure pipe 115 is kept at a high pressure. It is.
  • a fuel injection device 116 is attached to the high-pressure pipe 115, and a current is passed through a solenoid in the fuel injection device 116 to open the valve body, and fuel is injected while the valve body is open.
  • FIG. 2 shows the structure of the fuel injection device.
  • a member constituting the outside of the fuel injection device is a housing 201.
  • a core 202 is fixed to the housing 201.
  • a solenoid 203 is arranged so as to go around the central axis of the fuel injection device.
  • the fuel injection device is provided with a valve body 204 that moves up and down.
  • An anchor 205 is arranged so as to make a round around the valve body 204.
  • a set spring 207 that pushes the valve body 204 in the direction of the valve seat 206 is disposed on the valve body 204.
  • a spring adjuster 208 is fixed to the housing 201 at the upper part of the set spring 207, and the spring force is adjusted by the vertical position thereof.
  • the inside of the housing 201 is filled with fuel.
  • the anchor 205 is attracted to the solenoid 203, and the lower end of the valve body 204 is separated from the valve seat 206.
  • Fuel is injected from the injection hole 209 opened in the valve seat 206 that has been removed.
  • a zero spring 210 is disposed between the anchor 205 and the housing 201, and returns the anchor 205 to the initial position by the balance of the spring after fuel injection.
  • the fuel injection device having such a configuration is controlled by the fuel injection valve control device shown in FIG.
  • the fuel injection valve control device drives the solenoid 203 using the electric power from the battery 311.
  • This fuel injection valve control apparatus includes a booster circuit 310 that boosts the voltage of the battery 311, a capacitor 309 that stores the boosted voltage, and a switch that turns ON / OFF between the boosted voltage Vboost and the VH terminal 350 of the solenoid.
  • a switch 302 for turning on and off between the battery voltage Vbat and the solenoid VH terminal 350, a switch 303 for turning on and off between the solenoid VL terminal 351 and the ground voltage GND, and between the switch and GND
  • a shunt resistor 304 that is arranged and generates a voltage proportional to the current, a diode 308 that flows current only in a direction from the VL terminal to the capacitor 309 and the booster circuit 310, and a diode 305 that flows current only from the GND to the VH terminal And comprising.
  • a Zener diode is disposed between the VL terminal 351 and the diode 308 so that the capacitor 309 is easily refluxed by increasing the voltage of the circulating current. It is sometimes done.
  • the booster circuit 310 boosts the battery voltage Vbat, usually 12 to 14 V, to the boosted voltage Vboost, and the boosted voltage Vboost is, for example, 65V.
  • the boosted voltage Vboost is set to a voltage higher than the battery voltage Vbat in order to quickly open the valve body 204 against the force pressed by the set spring 207. Further, since the battery voltage Vbat only needs to be able to maintain the valve open state, there is no problem even if the voltage is lower than the boost voltage Vboost.
  • the fuel injection valve control device includes reference memories 321, 322, and 323 that store parameters for controlling the solenoid driving current, and switch control means 312 that turns on and off the three switches based on the current measured by the resistors.
  • the reference memory 321 stores the time Tp for applying the boosted voltage Vboost
  • the reference memory 322 stores the gap time T2 from when the boosted voltage Vboost is cut off until the next battery voltage is applied
  • the reference memory 323 is The holding current Ih that flows by switching the voltage is stored.
  • the switch control means 312 turns on the switch 303 and the switch 301 in synchronization with this rise (time t1). Then, the voltage Vboost boosted by the booster circuit 310 is applied between the terminals of the solenoid 203, and current gradually starts to flow through the solenoid 203. The current gradually increases, and accordingly, the magnetic field generated by the solenoid 203 also increases.
  • the anchor 205 starts to move toward the core 202 (time t2).
  • time t2 There is a slight gap from the initial position of the anchor 205 balanced by the force of the zero spring 210 to the projection of the valve body 204.
  • the valve body 204 Begins to be lifted by the anchor 205.
  • fuel starts to flow out from the nozzle hole 209 (time t3).
  • the switch 303 and the switch 301 are turned off.
  • the voltage application time Tp is normally set shorter than the time for the anchor 205 to reach the core 202. This is because the momentum when the anchor 205 collides with the core 202 is not increased more than necessary.
  • the switch 301 may be turned off and the switch 303 may be kept on to make the voltage zero. Further, it is not necessary to apply a reverse voltage in the entire range from time t4 to t5. For example, the reverse voltage may be applied once at time t4 and then set to 0 until time t5.
  • the switch 302 and the switch 303 are turned on, the battery voltage Vbat is applied to the solenoid 203, and the holding current Ih is supplied. Thereby, the state in which the valve body 204 and the anchor 205 are in contact with the core 202 is maintained. At this time, the current flowing through the solenoid 203 from the voltage generated in the shunt resistor 304 is measured so that the current value of the holding current Ih becomes a constant current value on average, and the switch 302 is turned on and off.
  • the switches 302 and 303 are turned off (time t6). Then, the current is rapidly attenuated, the magnetic attractive force is attenuated, and the valve body 204 and the anchor 205 are pushed by the force of the set spring 207 to start moving toward the valve seat 206. At this time, since the current flows through the capacitor 309 while the current is attenuated, a reverse voltage is applied to the solenoid 203, and when the current converges to 0, the voltage approaches 0. Eventually, the valve body 204 reaches the valve seat 206, and the outflow of fuel from the nozzle hole stops (time t7).
  • valve body 204 and the valve seat 206 are slightly elastic, the valve body 204 continues to move in the direction of the valve seat 206 even after the valve body 204 reaches the valve seat 206, but eventually the valve body 204 and the valve seat 206 206 begins to restore.
  • the anchor 205 moves away from the valve body 204 and continues to move in the direction of the valve seat 206 due to inertia (time t8).
  • time t8 inertia
  • the anchor 205 was applied with the force of the set spring 207 and the fuel pressure through the valve body 204.
  • the anchor 205 and the valve body 204 are separated so that these forces are not applied. . Therefore, the acceleration of the anchor 205 decreases rapidly.
  • the back electromotive force generated in the solenoid 203 changes due to the movement of the anchor 205, and an inflection point occurs in the voltage of the solenoid 203.
  • the anchor 205 continues to move in the direction of the valve seat 206 due to inertia even after the anchor 205 is separated from the valve body 204, but the zero spring 210 is gradually compressed and eventually begins to expand. Then, the anchor 205 starts to move toward the core 202, the zero spring 210 extends, and the anchor 205 is returned to the initial position.
  • the fuel injection device is controlled to inject an amount of fuel corresponding to the given drive pulse width Ti. It is desirable for the amount of air taken into the internal combustion engine and the amount of fuel to be in a certain ratio in order for the exhaust catalyst to act efficiently. Therefore, the drive pulse width Ti is set to a value proportional to the value Qa / Neng / ⁇ obtained by dividing the air amount Qa measured by the air flow sensor by the engine speed Neng and Qa / Neng divided by the target air-fuel ratio ⁇ .
  • FIG. 4 shows an example of three fuel injection devices INJ A, B, and C having different injection amount characteristics.
  • Each fuel injection device A, B, and C has an elastic force of the set spring 207 in order, standard, It is weak.
  • the valve lifts of the fuel injection devices INJ A, B, and C The injection amount characteristics are as shown by a solid line, a long broken line, and a short broken line in FIG.
  • the valve body When applying the boost voltage, the valve body is rapidly lifted by a strong magnetic force, so the difference in elastic force of the set spring does not affect the lift amount of the valve body so much.
  • the magnetic force for lifting the valve body is not as strong as when the boosted voltage is applied. Therefore, the influence of the difference in elastic force of the set spring on the lift amount of the valve body becomes significant.
  • the injection amount characteristic of the fuel injection device is expressed with the horizontal axis as the drive pulse width and the vertical axis as the injection amount.
  • the drive pulse width corresponds to the time when the drive pulse is applied.
  • This injection amount indicates the integrated flow rate over the entire period from opening to closing when a drive pulse is applied for a certain period of time. Therefore, for example, if a drive pulse is applied for a time Ty from time tx to a certain time ty, the injection amount includes not only the cumulative flow that has flowed from the valve closing until a certain time ty but also the drive pulse at the time ty.
  • the flow rate up to the time when the valve is actually closed after the application of is finished is also included.
  • the amount of lift of the valve body does not vary so much, but the injection amount varies reflecting the variation of the lift amount of the valve body during the subsequent gap time T2.
  • the injection amount is not affected and a flat portion appears. .
  • the boosted voltage application time Tp, the gap time T2, and the holding current Ih are corrected in the fuel injection valve control device.
  • the voltage application time Tp, the gap time T2, and the holding current Ih are set according to the set spring force Fsp. If the set spring force Fsp is known, the set spring force Fsp is It is inputted in advance to the fuel injection valve control device.
  • the fuel injection valve control apparatus according to this embodiment includes voltage application time correction means 341. The effect of correction by the voltage application time correction means 341 will be described with reference to FIG. FIG.
  • the boosted voltage application time correction means 341 corrects the voltage application time Tp to a voltage application time TpC shorter than the standard value in the fuel injector C having a small set spring force Fsp as shown in the upper diagram of FIG. Further, the voltage application time to the fuel injection device A having a large spring force Fsp is corrected to a voltage application time TpA that is larger than the standard value.
  • the peak valve lift times are aligned as shown in the center of FIG. Further, the injection amount characteristic with respect to the drive pulse width Ti is as shown in the lower diagram of FIG.
  • the fuel injection valve control device includes gap time correction means 342 that corrects the gap time T2 from when the voltage Vboost is cut off until the next battery voltage is applied.
  • the effect of correction by the gap time correction means 342 will be described with reference to FIG.
  • FIG. 6 is an explanatory diagram when the gap time T2 is further changed for each of the fuel injection devices A, B, and C in the state where the voltage application time Tp has already been corrected by the voltage application time correction means 341 described above. .
  • the fuel injection valve control device delays the holding current application time t5 to the time t5C for the fuel injection valve C having a weak set spring force Fsp (that is, from the boost voltage application end time t4).
  • the gap time T2 until the holding current application time t5 is T2C).
  • the fuel injection valve control device advances the holding current application time t5 to time t5A with respect to the fuel injection valve A having a strong set spring force Fsp (that is, the gap time T2 is increased). T2A). Thereby, the rise of the timing suction force is accelerated, and the timing at which the valve body 204 starts to rise again is accelerated.
  • the fuel injection valve control apparatus includes a holding current correction unit 343 that corrects the holding current Ih. The effect of correction by the holding current correction means 343 will be described with reference to FIG.
  • FIG. 7 shows that the holding current Ih is further changed to the fuel injection devices A, B, in the state where the boosted voltage application time Tp and the gap time T2 have already been corrected by the voltage application time correction means 341 and the gap time correction means 342 described above. It is explanatory drawing at the time of changing for every C.
  • FIG. 7 shows that the holding current Ih is further changed to the fuel injection devices A, B, in the state where the boosted voltage application time Tp and the gap time T2 have already been corrected by the voltage application time correction means 341 and the gap time correction means 342 described above. It is explanatory drawing at the time of changing for every C.
  • the fuel injection valve control device corrects the holding current Ih of the fuel injection valve A having a large set spring force Fsp to a large holding current value IhA and holds the fuel injection valve C having a small spring force, as shown in the upper diagram of FIG.
  • the current Ih is corrected to a small holding current value IhC.
  • the rising speed (that is, the inclination) of the valve body 204 from when the valve body 204 starts to rise to the full lift is aligned.
  • the injection amount characteristics with respect to the drive pulse width Ti at this time are as shown in the lower diagram of FIG.
  • the shape of the injection amount characteristic is almost a straight line, and it can be considered that the inclination of the straight line is uniform.
  • the valve behavior can be made uniform by correcting the voltage application time Tp, the gap time T2, and the holding current Ih, thereby making it possible to make the injection amount characteristics uniform.
  • FIG. 4 is compared with FIG. 7, the height of the peak of the valve behavior, the timing of the trough that falls temporarily, and the inclination when the valve lifts again after falling temporarily are aligned.
  • the range in which the fuel injection device can be used can be expanded to the lower limit value Qmin line of the injection amount characteristic, as shown in the lower diagram of FIG.
  • the set spring force is input in advance in correcting the voltage application time Tp, the gap time T2, and the holding current Ih.
  • the control device performs correction based on the valve behavior when the fuel injection device is actually operated.
  • the fuel injection valve control apparatus includes a drive voltage second-order differentiation means 331, a current second-order differentiation means 332, and a current / voltage There are provided a peak means detection 333 and 334 for searching for a timing and a value at which the second-order differential value takes an extreme value.
  • the valve behavior of the fuel injection device is as shown in the lower diagram of FIG.
  • the waveform obtained by second-order differentiation of the drive current is as shown by the broken line in the upper diagram of FIG. 9, and it can be seen that the peak of the second-order differential value corresponds to the valve opening completion timing.
  • the waveform obtained by second-order differentiation of the drive voltage is as shown by the broken line in the middle diagram of FIG. 9, and it can be seen that the peak of the second-order differentiation value corresponds to the valve closing completion timing.
  • valve lift waveform is different from that of FIG. 4 and the like in order to cause the anchor 205 to collide with the core 202 when the valve is opened. This is because a large back electromotive force is generated when valve opening is completed, and it is easy to detect the second-order differential value.
  • the fuel injection device can be said to be able to estimate the set spring force from the valve closing completion timing or the valve opening completion timing because if the set spring force is strong, the valve closing is completed earlier and the valve opening completion is delayed. Can do. Therefore, the correction means may store the spring force in some storage means in advance, or may detect the valve closing completion timing and the valve opening completion timing and obtain the correction value from the detection result using a map or the like.
  • the extreme value of the second derivative of voltage and current is proportional to the speed at which the valve collides with the valve seat when the valve is closed and the speed at which the anchor collides with the stopper when the valve is opened. If the extreme value of is large, it can be estimated that the spring force is accordingly large, and if the extreme value of the second derivative of the current is large, it can be estimated that the spring force is small.
  • the fuel injection valve control apparatus corrects the voltage application time Tp, the gap time T2, and the holding current Ih based on the detection results of the peak detection means 333 and 334.
  • the fuel injection valve control apparatus corrects the voltage application time Tp, the gap time T2, and the holding current Ih
  • this embodiment corrects the gap time T2 and the holding current Ih. Is.
  • the flow rate for the drive pulse width Ti is not uniform.
  • the gap time T2 as shown in FIG. 10
  • the timing at which the valve body 204 starts to rise again is aligned at time t12.
  • the holding current Ih is corrected, as shown in FIG. 11, the rising speed (that is, the inclination) of the valve body 204 from when the valve body 204 starts to rise to the full lift is aligned. In this way, the tendency of the flow rate change with respect to the drive pulse width Ti of each fuel injection device can be made uniform.
  • the set spring force is used to determine the characteristics of the fuel injection device.
  • the present invention is not limited to this, and the operation of the valve body when the same operation is given.
  • the characteristics of the fuel injection device may be determined based on time variations.
  • An example of the operation time of the valve body is the valve opening time from the valve opening to the valve closing. In this case, after opening the valve body, it is preferable to use the valve opening time when the valve is closed from the intermediate lift state without full lift. In this way, it is possible to accurately detect variations caused by the elastic force of the set spring, particularly excluding the tolerance of the housing.
  • the operation time of the valve body there is a method using the valve closing time.
  • the time from when the drive voltage or drive current is turned OFF to when the valve element is actually seated is detected. This is because it is suitable to detect the valve closing time to detect variation in the elastic force of the set spring because the elastic force of the set spring is the most dominant when closing the valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 本発明は、複数の燃料噴射装置ごとに駆動パルス幅に対する噴射量がばらつくのを良好に抑えることができる燃料噴射弁制御装置を提供することを目的とする。 本発明は、弁体と、該弁体を開弁させるソレノイドとを備える複数の燃料噴射装置を制御する燃料噴射弁制御装置において、前記ソレノイドに電圧を印加してから、所定の時間を空けて、保持電流を印加するように構成され、前記各燃料噴射装置の動作特性に基づいて、前記所定の時間と前記保持電流とを前記燃料噴射装置毎に補正することを特徴とする。

Description

燃料噴射弁制御装置
 本発明は、燃料噴射弁制御装置に関する。
 従来、燃料噴射装置ごとの噴射量特性のばらつきを抑えることが可能な燃料噴射弁制御装置が提案されている(例えば、特許文献1等)。
 特許文献1によれば、燃料噴射弁制御装置の噴射量特性の特性曲線は三つの領域、即ち、部分ストローク領域、移行領域、フルストローク領域に分けられるとしている。そして、特許文献1では、部分ストローク領域とフルストローク領域とは線形である一方、特に移行領域において調量精度が低減し、同じ構造の噴射弁の種々のサンプル間のばらつきが著しく増大してしまうとしている。
 これを解決するために、特許文献1の燃料噴射弁制御装置では、特性曲線の移行領域をマスキングして、部分ストローク領域とフルストローク領域のみを使用することを提案している。
特表2012-527564号公報 国際公開第2013/191267号公報
 しかしながら、実際には、特許文献1における移行領域にのみばらつき発生するわけではなく、移行領域からフルストローク領域にかけての領域においても、弁体がフルストロークに達した際のバウンド等により,噴射量特性にばらつきが発生している。
 このように、特許文献1では移行領域からフルストローク領域にかけての領域において実際に発生し得るバウンドによるばらつきが認識されていないため、特許文献1の燃料噴射弁制御装置では、複数の燃料噴射装置ごとの噴射量特性のばらつきを広い範囲で抑えることが困難である。
 そこで、本発明は、複数の燃料噴射装置ごとに駆動パルス幅に対する噴射量がばらつくのを良好に抑えることができる燃料噴射弁制御装置を提供することを目的とする。
 本発明は、弁体と、該弁体を開弁させるソレノイドとを備える複数の燃料噴射装置を制御する燃料噴射弁制御装置において、前記ソレノイドに昇圧電圧を印加して打ち切り、所定の時間の後、保持電流を印加するように構成され、前記各燃料噴射装置の動作特性に基づいて、前記所定の時間と前記保持電流とを前記燃料噴射装置毎に補正することを特徴とする。
 本発明によれば、複数の燃料噴射装置ごとに駆動パルス幅に対する噴射量がばらつくのを広い範囲で抑えることができる。
燃料噴射装置が設けられる内燃機関を示す図。 燃料噴射装置を示す図。 実施例1に係る燃料噴射弁制御装置を示す図。 燃料噴射弁制御装置による燃料噴射装置の制御のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 昇圧電圧印加時間を補正する場合のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 昇圧電圧印加時間と隙間時間とを補正する場合のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 実施例1に従って、昇圧電圧印加時間と隙間時間と保持電流とを補正する場合のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 実施例2に係る燃料噴射弁制御装置を示す図。 燃料噴射弁制御装置による制御のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 隙間時間を補正する場合のタイムチャート及び燃料噴射装置の噴射量特性を示す図。 実施例3に従って、隙間時間と保持電流とを補正する場合のタイムチャート及び燃料噴射装置の噴射量特性を示す図。
 以下、本発明の実施形態に係る燃料噴射弁制御装置について、図面を用いて説明する。
 図1は、本実施例に係る燃料噴射弁制御装置で制御される燃料噴射装置が装着される内燃機関を示す。
 内燃機関は、シリンダ106内に空気と燃料を取り込み、これらの混合気に点火プラグ121で着火し爆発させ、ピストン122を往復運動させる。この往復運動は、コネクティングロッド123等からなるリンク機構でクランク軸の回転運動に変換され、自動車を動かす駆動力となる。
 空気は、エアクリーナ101で濾過され、スロットル103で流量を調整され、コレクタ104、吸気ポート105を経て、シリンダ106に流入する。エアクリーナ101とスロットル103の間には、エアフローセンサ102があり、内燃機関が取り込む空気の量が計測される。
 一方で、燃料タンク内111の燃料は、低圧ポンプ112で低圧配管113に送られ、低圧配管113の燃料は高圧ポンプ114で高圧配管115に送られ、高圧配管115内の燃料は高圧に保たれる。高圧配管115には燃料噴射装置116が取り付けられ、燃料噴射装置116内のソレノイドに電流を流すことで、弁体が開き、弁体が開いている間は燃料が噴射される。
 図2は、燃料噴射装置の構造を示す。燃料噴射装置の外側を構成する部材はハウジング201であり、ハウジング201にはコア202が固定されており、さらにはソレノイド203が燃料噴射装置の中心軸を一周するように配置されている。燃料噴射装置には、上下に動く弁体204が備えられている。弁体204の周りを一周するようにアンカー205が配置されている。弁体204の上部には、弁体204を弁座206方向に押すセットスプリング207が配置される。セットスプリング207の上部には、スプリングアジャスタ208がハウジング201に固定されており、その上下の位置によってスプリング力を調整する。運転時には、ハウジング201の内部は燃料で満たされており、ソレノイド203に電流が流れるとアンカー205がソレノイド203に引き寄せられ、弁体204の下端が弁座206から離れ、それまで弁体204によってふさがれていた弁座206にあけられた噴孔209から燃料が噴射される。また、アンカー205とハウジング201の間にはゼロスプリング210が配され、燃料噴射後にアンカー205をバネの釣り合いによって初期位置に戻す。
 このような構成の燃料噴射装置は、図3に示す燃料噴射弁制御装置により制御される。燃料噴射弁制御装置は、バッテリ311からの電力を用いてソレノイド203を駆動する。この燃料噴射弁制御装置は、バッテリ311の電圧を昇圧する昇圧回路310と、昇圧された電圧を保存するコンデンサ309と、昇圧された電圧VboostとソレノイドのVH端子350の間をON-OFFするスイッチ301と、バッテリ電圧VbatとソレノイドのVH端子350の間をON-OFFをするスイッチ302と、ソレノイドのVL端子351と接地電圧GNDの間をON-OFFするスイッチ303と、スイッチとGNDの間に配置されて電流に比例した電圧を発生するシャント抵抗304と、VL端子からコンデンサ309と昇圧回路310の間に向かう方向にのみ電流を流すダイオード308と、GNDからVH端子にのみ電流を流すダイオード305と、を備える。なお、図示していないが、VL端子351とダイオード308との間にはツェナーダイオードが配置されており、還流する電流の電圧を上昇させることで、コンデンサ309に対して還流が起こりやすいように構成されていることもある。
 前記昇圧回路310は、通常12~14Vのバッテリ電圧Vbatを昇圧電圧Vboostに昇圧するものであり、昇圧電圧Vboostは、例えば65Vである。昇圧電圧Vboostは、弁体204がセットスプリング207により押し付けられる力に打ちかって急速に開弁させるため、バッテリ電圧Vbatより高い電圧に設定されている。また、バッテリ電圧Vbatは、開弁状態を維持することができればよいため、昇圧電圧Vboostより低い電圧でも問題ない。
 また、燃料噴射弁制御装置は、ソレノイド駆動電流を制御するパラメタを記憶する基準メモリ321、322、323と、抵抗器によって計測される電流に基づいて3つのスイッチをON-OFFするスイッチ制御手段312とを備える。基準メモリ321は、昇圧電圧Vboostを印加する時間Tpを記憶し、基準メモリ322は、昇圧電圧Vboostを打ち切ってから次にバッテリー電圧を与えるまでの隙間時間T2を記憶し、基準メモリ323は、バッテリー電圧をスイッチングすることで流す保持電流Ihを記憶する。
 次に、燃料噴射弁制御装置を用いた燃料噴射装置の制御の概要について、図4を用いて説明する。なお、図4の下図には、燃料噴射装置の噴射量特性が駆動パルス幅Tiと流量との関係で示されている。
 図示しないECUから燃料噴射弁制御装置3に駆動パルスTiが送られると、この立ち上がりに同期し、スイッチ制御手段312は、スイッチ303とスイッチ301をONにする(時刻t1)。すると、ソレノイド203の端子間には昇圧回路310で昇圧された電圧Vboostが印加され、ソレノイド203に電流が次第に流れ始める。電流は次第に大きくなり、これに伴ってソレノイド203が発生する磁界も大きくなる。
 磁界によって図2に示すアンカー205をコア202に引き付ける磁気吸引力大きくなるに従い、アンカー205はコア202方向に動き出す(時刻t2)。ゼロスプリング210の力によってつりあっていたアンカー205の初期位置から、弁体204の突起まではわずかに隙間があり、この隙間をアンカー205が移動して弁体204の突起に突き当たると、弁体204はアンカー205により持ち上げられ始める。このとき、噴孔209から燃料が流れ出し始める(時刻t3)。
 昇圧電圧Vboostを印加する昇圧電圧印加時間Tpが経過すると(時刻t4)、スイッチ303とスイッチ301はOFFにされる。電圧印加時間Tpは、通常、アンカー205がコア202に到達する時間よりも短く設定される。これはアンカー205がコア202に衝突するときの勢いを必要以上に大きくしないためである。
 時刻t4において、スイッチ303と301がOFFにされると、今までスイッチ303を通ってGNDに流れ込んでいた電流がダイオード308を通ってコンデンサ309に流れ込み、ソレノイド203のLOW側端子351の電圧VLのほうがHI側端子350の電圧VHより高くなる。これにより、ソレノイド203には逆電圧がかかる。このように逆電圧をかけることによって、アンカー205がコア202から斥力を受けるため、弁体204をより速く制動することができる。この状態を、時刻t4から隙間時間T2とが経過する時刻t5まで維持する。但し、逆電圧をかけることは必須ではなく、スイッチ301をOFFに、スイッチ303はONに保って電圧を0にするものであってもよい。また、時刻t4~t5の全範囲で逆電圧をかける必要はなく、例えば一旦時刻t4で逆電圧をかけ、その後時刻t5までの間に電圧を0にするものであってもよい。
 時刻t5となると、スイッチ302とスイッチ303をONにして、ソレノイド203にバッテリーの電圧Vbatを印加し、保持電流Ihを流す。これにより、弁体204とアンカー205がコア202に接触している状態を保持する。このとき、保持電流Ihの電流値が平均して一定の電流値となるように、シャント抵抗304に生じる電圧からソレノイド203に流れる電流を計測し、スイッチ302をON-OFFする。
 駆動パルスの立下りに同期して、スイッチ302と303がOFFになる(時刻t6)。すると、電流は急速に減衰し、磁気吸引力は減衰し、弁体204とアンカー205はセットスプリング207力に押されて弁座206方向へ移動を開始する。またこのとき、電流が減衰する間、電流がコンデンサ309に流れるので、ソレノイド203には逆電圧がかかり、電流が0に収束すると電圧は0に近づく。やがて、弁体204は弁座206に達し、噴孔からの燃料の流出が止まる(時刻t7)。
 弁体204と弁座206には僅かながら弾性があるので、弁体204が弁座206に達した後も弁体204は弁座206の方向に移動を続けるが、やがて弁体204と弁座206が復元し始める。このときアンカー205は弁体204から離れて慣性で弁座206方向に移動を継続する(時刻t8)。時刻t8までは、アンカー205には弁体204を通してセットスプリング207力と燃圧の力がかかっていたが、時刻t8以降は、アンカー205と弁体204が離れることにより、これらの力はかからなくなる。そのため、アンカー205の加速度は急激に減少する。アンカー205の加速度が変化すると、アンカー205の動きによりソレノイド203に発生する逆起電力が変化し、ソレノイド203の電圧に変曲点が発生する。アンカー205は弁体204から離れた後も、慣性により弁座206方向に移動を続けるが、ゼロスプリング210が徐々に圧縮され、やがて伸びに転じる。するとアンカー205はコア202方向に移動を開始し、ゼロスプリング210は伸張し、アンカー205は初期位置に戻される。
 このようなメカニズムで、燃料噴射装置は制御され、与えられる駆動パルス幅Tiに応じた量の燃料を噴射する。内燃機関に取り込まれる空気の量と、燃料の量は、一定の比率であることが、排気触媒を効率よく作用させるために望ましい。そのため、駆動パルス幅Tiは、エアフローセンサで計測される空気量Qaをエンジン回転数Nengで割った値Qa/Nengを目標空燃比λで割った値Qa/Neng/λに比例した値に設定される。
 ところで、一つのエンジンに対して設けられる複数の燃料噴射装置には、個体ばらつきがあり、それぞれの動作特性が異なる。従って、同じ駆動パルス幅Tiを加えても、各気筒に取り付けられた燃料噴射装置から噴射される燃料の量はばらつき、空燃比が濃い気筒と薄い気筒が発生する。このようなばらつきは、部品の公差や、各燃料噴射装置が置かれる環境の違いや、セットスプリングの弾性力の違いなど種々の要因によって生じると考えられるが、その中でも主な要因は、セットスプリングの弾性力の違いによって弁挙動がばらつくことであると考えられる。
 図4では、噴射量特性の異なる3つの燃料噴射装置INJ A、B、Cの例を示しており、各燃料噴射装置A、B、Cは、セットスプリング207の弾性力が順に強、標準、弱となっている。この3つの燃料噴射弁A、B、Cに対して、特にばらつきを考慮することなく同一の昇圧電圧、保持電流を与えた場合には、各燃料噴射装置INJ A、B、Cの弁リフト及び噴射量特性は、それぞれ図4の実線、長破線、短破線のようになる。
 なお、昇圧電圧を印加する際には、強い磁力によって弁体は急激に持ち上げられるため、セットスプリングの弾性力の違いはさほど弁体のリフト量に影響を与えない。一方で、昇圧電圧印加後は、弁体を持ち上げる磁力が昇圧電圧印加時ほど強くないため、セットスプリングの弾性力の違いが弁体のリフト量に与える影響が顕著になる。
 次に、特にばらつきが生じる場面の一つである時刻t4以降について説明する。このとき、ソレノイド203が発生する磁気吸引力Fmagは徐々に低下する。Fmagがセットスプリング207の力Fspと弁座206に向かう方向に作用する燃圧Fpfの和より小さくなると、弁は上昇から下降に転じる。このタイミングはセットスプリング力Fspと燃圧Fpfの大きさに依存するので、セットスプリング力Fspの大きいものは早く上昇から下降に転じ(t10A)、Fspの小さいものは遅く転じる(t10C)。駆動電流を打ち切ることで上昇から下降に転じた弁は再びt5で電流を加えるまで下降を続ける。
 T2経過、即ち、時刻t5となると保持電流Ihが流される。これにより、ある時刻t12A、B、Cで再び磁気吸引力がセットスプリング力Fsp+Fpfを超える。このタイミングは、各燃料噴射装置A、B、Cのセットスプリング力Fspが大きいほど遅く(時刻t12A)、小さいほど早い(時刻t12C)。これらの各時刻t12A、B、Cで弁体204は再び上昇を始める。
 また、弁の上昇する速度は、Ihによる時期吸引力がFsp+Fpfに打ち勝った分に伴って大きくなるので、Ihが同じならセットスプリング力Fspが小さいほど上昇速度は速く、セットスプリング力Fspが大きいほど上昇速度は遅い。
 次に、各燃料噴射装置INJ A、B、Cの噴射量特性について、図4の最下図を用いて説明する。
 ここで、燃料噴射装置の噴射量特性のグラフについて説明する。燃料噴射装置の噴射量特性は、横軸を駆動パルス幅とし、縦軸を噴射量として表わされる。駆動パルス幅は、駆動パルスを印加した時間に対応する。この噴射量は、ある時間に亘って駆動パルスを印加した場合における、開弁から閉弁までの全期間の積分流量を示すものである。従って、例えば時刻txからある時刻tyまで時間Tyに亘って駆動パルスを印加したとすると、噴射量には、閉弁からある時刻tyまでに流れた累計流量だけでなく、前記時刻tyで駆動パルスの印加を終了した後に実際に弁が閉弁する時刻までの流量も含まれる。このため、昇圧電圧の印加期間Tp中は弁体のリフト量がさほどばらつかないにも関わらず、その後の隙間時間T2中の弁体のリフト量のばらつきを反映して、噴射量としてはばらつくことになり、また、隙間時間T2中では、いつ駆動パルス印加を終了しても、全てのスイッチ301~303がOFFとなっているため、噴射量には影響を与えず、平坦部が出現する。
 電圧印加時間Tp経過後の弁体204のリフト量が大きいと、噴射量特性の平坦部も高くなり、時刻t5から時刻t13までの弁リフト増加の傾きが急であると、フルリフト(時刻t13A、B、C)に至るまでの噴射量特性の傾きが急になる。このように、同一の昇圧電圧、保持電流を与えても、各燃料噴射装置A、B、Cの噴射量特性が大きくばらつくことが確認されている。
 次に、本実施例に係る燃料噴射弁制御装置によって噴射量特性を揃える方法を説明する。具体的には、燃料噴射弁制御装置において、昇圧電圧印加時間Tp、隙間時間T2、保持電流Ihを補正する。なお、これら電圧印加時間Tp、隙間時間T2、保持電流Ihは、セットスプリング力Fspに応じて設定されるものであり、セットスプリング力Fspが判明している場合には、このセットスプリング力Fspが予め燃料噴射弁制御装置に入力される。
<電圧印加時間Tpの補正>
 本実施例に係る燃料噴射弁制御装置は、図3に示すように、電圧印加時間補正手段341を備える。この電圧印加時間補正手段341による補正の効果を図5に基づいて説明する。なお、図5は、電圧印加時間Tpのみを燃料噴射装置A、B、Cごとに変えた場合の説明図である。昇圧電圧印加時間補正手段341は、図5の上図のように、セットスプリング力Fspが小さい燃料噴射弁Cでは、電圧印加時間Tpを標準値より短い電圧印加時間TpCに補正する。また、スプリング力Fspが大きい燃料噴射装置Aへの電圧印加時間は、標準値より大きい電圧印加時間TpAに補正する。この電圧印加時間補正手段341により、弁リフトのピークの時刻が図5の中央の図のように揃う。また、駆動パルス幅Tiに対する噴射量特性は図5の下図のようになり、噴射量特性の平坦部が揃う。
<隙間時間T2の補正>
 本実施例に係る燃料噴射弁制御装置は、図3に示すように、電圧Vboostを打ち切ってから次にバッテリー電圧を与えるまでの隙間時間T2を補正する隙間時間補正手段342を備える。この隙間時間補正手段342による補正の効果を図6に基づいて説明する。なお、図6は、上述した電圧印加時間補正手段341によって既に電圧印加時間Tpが補正された状態において、さらに隙間時間T2を燃料噴射装置A、B、Cごとに変えた場合の説明図である。
 燃料噴射弁制御装置は、図6の上図に示すように、セットスプリング力Fspの弱い燃料噴射弁Cに対し、保持電流印加時刻t5を時刻t5Cに遅らせる(即ち、昇圧電圧印加終了時刻t4から保持電流印加時刻t5までの隙間時間T2をT2Cとする)。これにより、磁気吸引力の立ち上がりを遅くし、弁リフトが再び上昇に転じるタイミングを遅くする。
 また、燃料噴射弁制御装置は、同じく図6の上図に示すように、セットスプリング力Fspの強い燃料噴射弁Aに対し、保持電流印加時刻t5を時刻t5Aに早める(即ち、隙間時間T2をT2Aとする)。これにより、時期吸引力の立ち上がりを早くし、弁体204が再び上昇に転じるタイミングを早くする。
 この隙間時間補正手段342により、すべての燃料噴射装置A、B、Cの弁体204が上昇に転じるタイミングが図6の中央の図のように揃う。また、駆動パルス幅Tiに対する噴射量特性は図6の下図のようになり、噴射量特性において平坦部から流量が増加する領域までの噴射量特性が揃う。
<保持電流Ihの補正>
 本実施例に係る燃料噴射弁制御装置は、図3に示すように、保持電流Ihを補正する保持電流補正手段343を備える。この保持電流補正手段343による補正の効果を図7に基づいて説明する。なお、図7は、上述した電圧印加時間補正手段341及び隙間時間補正手段342によって既に昇圧電圧印加時間Tp及び隙間時間T2が補正された状態において、さらに保持電流Ihを燃料噴射装置A、B、Cごとに変えた場合の説明図である。
 燃料噴射弁制御装置は、図7の上図のように、セットスプリング力Fspの大きい燃料噴射弁Aの保持電流Ihを大きな保持電流値IhAに補正し、スプリング力の小さい燃料噴射弁Cの保持電流Ihを小さな保持電流値IhCに補正する。すると、図7の中図に示すように、弁体204が上昇に転じてからフルリフトに至るまでの弁体204の上昇速度(即ち、傾き)が揃う。また、このときの駆動パルス幅Tiに対する噴射量特性は、図7の下図のようになり、形状が揃う。また、この噴射量特性の形状はほぼ直線となり、直線の傾きも揃っているとみなすことができる。
 このように、燃料噴射弁制御装置において、電圧印加時間Tp、隙間時間T2、保持電流Ihを補正することで弁挙動を揃え、これによって噴射量特性を揃えることができる。図4と図7とを比較すると、弁挙動のピークの高さ、一時的に落ち込む谷のタイミング、一時的に落ち込んだ後に再び弁がリフトする際の傾きが揃っている。
 本実施例に係る燃料噴射弁制御装置によれば、図7の下図に示すように、噴射量特性の下限値Qmin線まで燃料噴射装置が利用可能な範囲を拡大することができる。
 実施例1に係る燃料噴射弁制御装置では、電圧印加時間Tp、隙間時間T2、保持電流Ihを補正するに当たって、予めセットスプリング力が入力されるものであったが、本実施例の燃料噴射弁制御装置では、燃料噴射装置を実際に動作させたときの弁挙動に基づいて補正を行う。
 本実施例に係る燃料噴射弁制御装置は、図8のように、ソレノイド203の駆動電圧、電流を2階微分する駆動電圧2階微分手段331、電流2階微分手段332と、電流・電圧の2階微分値が極値をとるタイミングと値を探索するピーク手段検出333、334を備える。
 燃料噴射装置を図9の上図のような電流及び図9の中図のような駆動電圧で駆動すると、燃料噴射装置の弁挙動は図9の下図のようになる。また、駆動電流を2階微分した波形は図9の上図の破線で示すようでなり、この2階微分値のピークが開弁完了タイミングに対応することが分かる。また、駆動電圧を2階微分した波形は図9の中図の破線で示すようでなり、2階微分値のピークが閉弁完了タイミングに対応することが分かる。
 なお、図9の例では、開弁時にアンカー205をコア202に敢えて衝突させるようにするため、弁リフトの波形が図4等と異なる。これは、敢えてぶつけることによって、開弁完了時に大きな逆起電力を発生させ、2階微分値を検出しやすくするためである。
 燃料噴射装置一般に言えることは、セットスプリング力が強いと、閉弁完了は早くなり、開弁完了は遅くなるので、閉弁完了タイミング、ないしは、開弁完了タイミングから、セットスプリング力を推定することができる。したがって、補正手段はスプリング力を予め何らかの記憶手段に記憶していてもよく、閉弁完了タイミング、開弁完了タイミングを検知して検知結果からマップ等を用いて補正値を求めてもよい。
 また、電圧、電流の2階微分値の極値は、閉弁時の弁が弁座に衝突する速度、開弁完了時のアンカーがストッパーに衝突する速度に比例するため、電圧の2階微分の極値が大きければスプリング力はそれに伴って大きいと推測できるし、電流の2階微分の極値が大きければ、スプリング力は小さいと推測できる。
 したがって、本実施例に係る燃料噴射弁制御装置は、ピーク検出手段333、334の検出結果に基づいて電圧印加時間Tp、隙間時間T2、保持電流Ihを補正する。
 上記実施例に係る燃料噴射弁制御装置は、電圧印加時間Tpと隙間時間T2と保持電流Ihとを補正するものであったが、本実施例は、隙間時間T2と保持電流Ihとを補正するものである。
 まず、実施例では、電圧印加時間Tpを補正しないため、駆動パルス幅Tiに対する流量は揃わない。しかし、隙間時間T2を補正することで、図10に示すとおり、弁体204が再び上昇を始めるタイミングが時刻t12に揃う。その結果として,図10の下図のように,噴射量特性の水平部から再び流量が増えるタイミングが揃う.さらに、保持電流Ihとを補正すれば、図11に示すとおり、弁体204が上昇に転じてからフルリフトに至るまでの弁体204の上昇速度(即ち、傾き)が揃う。このようにして、各燃料噴射装置の駆動パルス幅Tiに対する流量変化の傾向を揃えることができる。
 Qminより噴射量が多い部分では、INJ B,Cの流量特性はINJAの流量特性と並行なので,このとき,INJ Cの駆動パルスをΔTc,INJ Bの駆動パルスをΔTbのばせば,最小流量をフルリフトからQminまで引き下げられる.
 なお、本発明に係る燃料噴射弁制御装置は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。
 例えば、上記実施形態では、燃料噴射装置の特性を決定するのに当たって、セットスプリング力を利用するものであったが、これに限定されるものではなく、同じ動作を与えた場合の弁体の動作時間のばらつきに基づいて燃料噴射装置の特性を決定するものであってもよい。弁体の動作時間の一例は、開弁から閉弁するまでの開弁時間である。この場合には、弁体を開弁させた後、フルリフトさせることなく、中間リフトの状態から閉弁させた場合の開弁時間を利用することが好ましい。このようにすれば、特にハウジングの公差などを除外して、セットスプリングの弾性力に起因するばらつきを的確に検知することができる。また、弁体の動作時間の他の例として、閉弁時間を利用する方法もある。この場合には、駆動電圧又は駆動電流をOFFにしてから実際に弁体が着座するまでの時間を検知する。これは、閉弁の際に最も支配的なのがセットスプリングの弾性力であるため、セットスプリングの弾性力のばらつきを検出するのに閉弁時間を検知するのが適しているからである。
101…エアクリーナ、102…エアフローセンサ、103…スロットル、104…コレクタ、105…吸気ポート、106…シリンダ、111…燃料タンク、112…低圧ポンプ、113…低圧配管、114…高圧ポンプ、115…高圧配管、116…燃料噴射装置、121…点火プラグ、122…ピストン、123…コネクティングロッド、201…ハウジング、202…コア、203…ソレノイド、204…弁体、205…アンカー、206…弁座、207…セットスプリング、208…スプリングアジャスタ、209…噴孔、301…スイッチ、302…スイッチ、303…スイッチ、304…シャント抵抗、305…ダイオード、306…ダイオード、307…ダイオード、308…ダイオード、309…コンデンサ、310…昇圧回路、311…バッテリ、312…スイッチ制御手段、321…基準メモリ、322…基準メモリ、323…基準メモリ、341…補正手段、342…補正手段、343…補正手段、331…微分手段、332…微分手段、333…ピーク探索手段、334…ピーク探索手段

Claims (6)

  1.  弁体と、該弁体を開弁させるソレノイドとを備える複数の燃料噴射装置を制御する燃料噴射弁制御装置において、
     前記ソレノイドに昇圧電圧を印加してこれを打ち切り、所定の時間後、保持電流を印加するように構成され、
     前記各燃料噴射装置の動作特性に基づいて、前記所定の時間と前記保持電流とを前記燃料噴射装置毎に補正することを特徴とする燃料噴射弁制御装置。
  2.  前記各燃料噴射装置の動作特性に基づいて、最初の昇圧電圧の印加時間を前記燃料噴射装置毎に補正することを特徴とする請求項1に記載の燃料噴射弁制御装置。
  3.  前記燃料噴射装置の動作特性は、前記弁体の開弁及び閉弁の少なくともいずれか一方のタイミングであることを特徴とする請求項1に記載の燃料噴射弁制御装置。
  4.  前記燃料噴射装置の開弁時及び閉弁時の少なくともいずれか一方の時点における電圧又は電流の変化に基づいて、前記燃料噴射装置の動作特性を検出することを特徴とする請求項3に記載の燃料噴射弁制御装置。
  5.  弁体と、該弁体を開弁させるソレノイドとを備える複数の燃料噴射装置を制御する燃料噴射弁制御装置において、
     前記ソレノイドに昇圧電圧を印加してから打ち切り、所定の時間後、保持電流を印加するように構成され、
     前記各燃料噴射装置のうち、前記弁体の閉弁タイミングが早い燃料噴射装置は、遅い燃料噴射装置よりも、前記所定の時間が短く、前記保持電流値が大きくなるように制御することを特徴とする燃料噴射弁制御装置。
  6.  弁体と、該弁体を弁座に押し付ける弾性体と、前記弁体を前記弾性体の押し付け力に抗して開弁させるソレノイドとを備える複数の燃料噴射装置を制御する燃料噴射弁制御装置において、
     前記ソレノイドに昇圧電圧を印加してから打ち切り、所定の時間の後、保持電流を印加するように構成され、
     前記各燃料噴射装置のうち、前記弾性体の弾性が大きい燃料噴射装置は、小さい燃料噴射装置よりも、前記所定の時間が短く、前記保持電流値が大きくなるように制御することを特徴とする燃料噴射弁制御装置。
PCT/JP2015/084229 2014-12-25 2015-12-07 燃料噴射弁制御装置 WO2016104116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580070044.4A CN107110052B (zh) 2014-12-25 2015-12-07 燃料喷射阀控制装置
EP15872685.1A EP3239503B1 (en) 2014-12-25 2015-12-07 Fuel injection valve control device
US15/534,084 US10247125B2 (en) 2014-12-25 2015-12-07 Fuel injection valve control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-261539 2014-12-25
JP2014261539A JP6511266B2 (ja) 2014-12-25 2014-12-25 燃料噴射弁制御装置

Publications (1)

Publication Number Publication Date
WO2016104116A1 true WO2016104116A1 (ja) 2016-06-30

Family

ID=56150146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084229 WO2016104116A1 (ja) 2014-12-25 2015-12-07 燃料噴射弁制御装置

Country Status (5)

Country Link
US (1) US10247125B2 (ja)
EP (1) EP3239503B1 (ja)
JP (1) JP6511266B2 (ja)
CN (1) CN107110052B (ja)
WO (1) WO2016104116A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774772B2 (en) * 2015-10-20 2020-09-15 Hitachi Automotive Systems, Ltd. Vehicle control device
JP6464076B2 (ja) * 2015-11-17 2019-02-06 ヤンマー株式会社 燃料噴射ポンプ
WO2017191170A1 (de) * 2016-05-03 2017-11-09 Continental Automotive Gmbh Verfahren zum betreiben eines kraftstoffinjektors mit leerhub
DE102016219891B3 (de) * 2016-10-12 2018-02-08 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag
JP2018084171A (ja) * 2016-11-22 2018-05-31 株式会社デンソー 燃料噴射制御装置
WO2020129631A1 (ja) * 2018-12-19 2020-06-25 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP7177486B2 (ja) * 2019-03-25 2022-11-24 日立Astemo株式会社 燃料噴射装置の制御装置
FR3094408B1 (fr) * 2019-03-26 2021-03-05 Continental Automotive Procédé de commande d’un injecteur de carburant haute pression
CN114729615B (zh) * 2019-11-21 2023-08-08 日立安斯泰莫株式会社 燃料喷射控制装置
JP2022026130A (ja) * 2020-07-30 2022-02-10 日立Astemo株式会社 制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191267A1 (ja) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
WO2014123004A1 (ja) * 2013-02-08 2014-08-14 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2014190160A (ja) * 2013-03-26 2014-10-06 Hitachi Automotive Systems Ltd 燃料噴射弁の制御装置
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224258B4 (de) * 2002-05-31 2007-02-01 Robert Bosch Gmbh Verfahren zur Begrenzung des maximalen Einspritzdruckes an magnetgesteuerten, nockengetriebenen Einspritzkomponenten
JP4691523B2 (ja) * 2007-05-09 2011-06-01 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の制御回路
US7945374B2 (en) * 2008-12-05 2011-05-17 Delphi Technologies, Inc. Method and apparatus for characterizing fuel injector performance to reduce variability in fuel injection
DE102009003214A1 (de) 2009-05-19 2010-11-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzventils einer Brennkraftmaschine und Steuergerät für eine Brennkraftmaschine
JP5698938B2 (ja) * 2010-08-31 2015-04-08 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置及び燃料噴射システム
JP5492806B2 (ja) * 2011-02-25 2014-05-14 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の駆動装置
DE102011087418B4 (de) * 2011-11-30 2015-03-26 Continental Automotive Gmbh Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
US9115678B2 (en) * 2012-08-09 2015-08-25 Ford Global Technologies, Llc Magnetized fuel injector valve and valve seat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191267A1 (ja) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
WO2014123004A1 (ja) * 2013-02-08 2014-08-14 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2014190160A (ja) * 2013-03-26 2014-10-06 Hitachi Automotive Systems Ltd 燃料噴射弁の制御装置
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置

Also Published As

Publication number Publication date
EP3239503A4 (en) 2018-08-22
US20170335787A1 (en) 2017-11-23
JP6511266B2 (ja) 2019-05-15
EP3239503A1 (en) 2017-11-01
CN107110052B (zh) 2020-03-03
JP2016121610A (ja) 2016-07-07
CN107110052A (zh) 2017-08-29
EP3239503B1 (en) 2021-06-02
US10247125B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2016104116A1 (ja) 燃料噴射弁制御装置
JP6677792B2 (ja) 燃料噴射装置の駆動装置
US9970376B2 (en) Fuel injection controller and fuel injection system
JP6581420B2 (ja) 燃料噴射装置の制御装置
JP6457908B2 (ja) 制御装置及び燃料噴射システム
WO2017077877A1 (ja) 燃料噴射装置の制御装置
JP6723115B2 (ja) 燃料噴射装置の制御装置
RU2651266C2 (ru) Способ и устройство для управления регулирующим расход клапаном
JP2015172346A (ja) 制御装置
CN113167185B (zh) 燃料喷射控制装置
JP7303764B2 (ja) 高圧燃料ポンプの制御装置
JP7213627B2 (ja) 内燃機関制御装置
JP6893159B2 (ja) 内燃機関の燃料制御装置
JP7139223B2 (ja) 燃料噴射装置の制御装置
CN116368294A (zh) 燃料喷射控制装置
JP2016191341A (ja) ポンプ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872685

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872685

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE