WO2014121669A1 - 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法 - Google Patents

用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法 Download PDF

Info

Publication number
WO2014121669A1
WO2014121669A1 PCT/CN2014/070228 CN2014070228W WO2014121669A1 WO 2014121669 A1 WO2014121669 A1 WO 2014121669A1 CN 2014070228 W CN2014070228 W CN 2014070228W WO 2014121669 A1 WO2014121669 A1 WO 2014121669A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
aconitase
gene
lysine
bacteria
Prior art date
Application number
PCT/CN2014/070228
Other languages
English (en)
French (fr)
Inventor
马吉银
温廷益
陈金龙
梁勇
刘树文
魏爱英
杨立鹏
任瑞
孟刚
赵春光
张芸
商秀玲
郭小炜
Original Assignee
宁夏伊品生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310050196.0A external-priority patent/CN103131738B/zh
Priority claimed from CN201310050144.3A external-priority patent/CN103146772B/zh
Priority to EP14748825.8A priority Critical patent/EP2824186B1/en
Priority to ES14748825.8T priority patent/ES2673582T3/es
Priority to DK14748825.8T priority patent/DK2824186T3/en
Priority to CN201480002118.6A priority patent/CN104619852B/zh
Application filed by 宁夏伊品生物科技股份有限公司 filed Critical 宁夏伊品生物科技股份有限公司
Priority to CA2900580A priority patent/CA2900580C/en
Priority to US14/384,370 priority patent/US20160002684A1/en
Priority to RU2015134995A priority patent/RU2792116C2/ru
Priority to JP2015556383A priority patent/JP6335196B2/ja
Priority to KR1020157024148A priority patent/KR102127181B1/ko
Publication of WO2014121669A1 publication Critical patent/WO2014121669A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01003Aconitate hydratase (4.2.1.3)

Definitions

  • the present invention is in the field of amino acid fermentation, and in particular, the present invention relates to a method for fermentative production of L-lysine, a method and application thereof, and bacteria and the like which can be used in such methods and applications.
  • Background technique
  • L-lysine-producing bacteria e.g., Escherichia coli and coryneform bacteria of the genus Corynebacterium
  • L-lysine-producing bacteria e.g., Escherichia coli and coryneform bacteria of the genus Corynebacterium
  • These bacteria may be bacteria isolated from nature, bacteria obtained by mutagenesis or genetic engineering, or both.
  • the focus of genetic engineering is mainly on genes such as pnt, dap, and ppc.
  • No aconitase is reported for L-lysine production (eg, aconite in E. coli).
  • Aconitase is an enzyme in the Krebs cycle that catalyzes a two-step chemical reaction, converting citric acid to aconitic acid and aconitic acid to isocitrate. It is currently known that in Escherichia, the acnA gene (the nucleotide sequence of which is shown in SEQ ID No: 1) encodes aconitase A, but may be due to its metabolism away from the final L-lysine product. Far, the intermediate metabolic branch is too much and complicated, but it has not attracted people's attention in L-lysine fermentation.
  • lysine-fermenting bacteria such as Corynebacterium glutamicum
  • aconitase enzymes mentioned in documents such as Chinese patents CN1289368 A and CN101631871 A are related to the fermentation of L-glutamic acid and do not teach the effect of aconitase on L-lysine fermentation.
  • the prior art either introduces a beneficial enzyme gene whose expression amount and/or enzyme activity is increased by increasing copying and/or site-directed mutagenesis, or by knocking out an unfavorable gene to cause the enzyme activity and/or expression amount to disappear.
  • the inventors have found that the aconitase gene and its regulatory elements cannot be simply increased or eliminated.
  • the non-expression of the acnA gene after knockout makes the growth of the bacteria difficult, and it is difficult to practically apply, so development A new method for engineering the aconitase gene and/or its regulatory elements to increase L-lysine production.
  • the technical problem to be solved by the present invention is to provide a new method for fermentative production of L-lysine and related methods, including a method for increasing the fermentation yield of L-lysine relative to unmodified bacteria, and the modified bacteria are fermented.
  • the present invention also provides polynucleotides, vectors, and/or bacteria and the like which can be used in the above methods.
  • the present invention provides a method of fermentatively producing L-lysine, which comprises:
  • the term "reconstruction” refers to a change in the corresponding modified object to achieve a certain effect.
  • Means for engineering genes or regulatory elements located on a chromosome include, but are not limited to, mutagenesis, site-directed mutagenesis, and/or homologous recombination, preferably the latter two.
  • the transformation of a gene or regulatory element located on a chromosome allows the nucleotide sequence of the gene or regulatory element to be added, deleted or replaced with one or more nucleotides.
  • the gene can be modified by Addgene's commercial pKOV plasmid system, or the pK18mob SaC B plasmid system can be used for transformation, and the unmodified bacterial chromosome
  • the acidase gene and/or its regulatory element modified into a new aconitase gene and/or its regulatory element capable of reducing the expression amount and/or enzymatic activity of the aconitase of the bacteria obtained by the transformation but not disappearing . Therefore, in the present context, it is preferred that the transformation is a modification by homologous recombination.
  • the inventors have found through long-term research that in the bacteria such as Escherichia coli and Corynebacterium, the expression of aconitase disappears. For example, by means of gene knockout, the growth of the bacteria itself is difficult, and even the acid cannot be produced. Therefore, the "reconstruction" of the present invention reduces the expression of aconitase of the bacteria obtained by the transformation with respect to the unmodified bacteria, but does not disappear, and preferably reduces the expression of aconitase A of the bacteria obtained by the transformation. 20% ⁇ 95%, more preferably 50 ⁇ 90, such as 65%, 70% or 80%.
  • the present invention also provides other applications or methods.
  • the present invention provides an improvement
  • a method of fermenting an amount of L-lysine which comprises:
  • L-lysine is an important metabolite of bacteria, and most bacteria are more or less capable of fermenting a certain amount of L-lysine.
  • L-lysine-producing bacteria are not suitable for the economical production of L-lysine, The method of Ming can still increase the fermentation of L-lysine, and it can still be used in places that are not sensitive to economic benefits.
  • the bacterium is a high-yield L-lysine-producing bacterium. The yield can be further increased by the method of the present invention.
  • aconitase gene on the bacterial chromosome and/or its regulatory elements in addition to engineering the aconitase gene on the bacterial chromosome and/or its regulatory elements, no further modifications may be made, such as even after modification of the regulatory elements of the aconitase gene.
  • the aconitase gene on the bacterial chromosome may not be engineered, and vice versa.
  • only one of the aconitase gene on the bacterial chromosome and its regulatory elements can be engineered.
  • the present invention provides the use of the bacterium obtained by the transformation in the fermentation production of L-lysine, wherein the transformation obtains an aconitase gene and/or a regulatory element thereof on the chromosomal chromosome of the bacterium.
  • the enzymatic activity and/or expression amount of the aconitase of the bacteria obtained by the transformation is reduced but does not disappear.
  • the modified bacteria can be used alone in the fermentation production of L-lysine, or can be mixed with other L-lysine-producing bacteria to produce L-lysine, or used in other ways to produce L-lysine.
  • bacteria is an unmodified or pre-engineered bacterium, and the aconitase gene of the chromosome and the regulatory elements before and after the locus of the gene are, unless otherwise defined (as defined by "reconstructed”). There is no aconitase gene and regulatory elements that reduce the enzymatic activity and/or expression of aconitase, such as the aconitase gene and regulatory elements in wild-type bacteria.
  • the present invention provides the use of the bacterium obtained by the transformation in increasing the fermentation amount of L-lysine, wherein the transformation is obtained by modifying the aconitase gene on the bacterial chromosome and/or Obtained by the regulatory element, and the enzymatic activity and/or expression level of the aconitase of the bacteria obtained by the transformation is reduced but does not disappear.
  • the bacterium may be an L-lysine-producing bacterium such as a bacterium belonging to the genus Escherichia or Corynebacterium.
  • the bacterium may be a bacterium belonging to the genus Escherichia, more preferably an Escherichia coli, such as a subsequent strain of the E. coli K-12 strain, including a W3110-derived strain; in another preferred aspect, the bacterium may be a rod A bacterium belonging to the genus Bacillus, more preferably a Corynebacterium glutamicum or a Corynebacterium sinensis.
  • the aconitase gene of the prior art L-lysine-producing bacteria especially bacteria of the genus Escherichia or Corynebacterium, such as Escherichia coli, Corynebacterium glutamicum or Corynebacterium sinensis
  • the regulatory elements before or after it have not been reported to have been modified, so basically have the wild-type aconitase gene and its regulatory elements before and after, basically can be modified by the method of the present invention, improve L- Lai The amount of fermentation of the acid.
  • the high-yield or low-yield L-lysine-producing bacteria can be modified by the method of the present invention to increase the fermentation amount of L-lysine.
  • the present invention provides a method of engineering a bacterium comprising modifying an aconitase gene on the bacterial chromosome and/or a regulatory element thereof, and modifying the aconitase enzyme of the obtained bacterium The activity and/or expression is reduced but does not disappear.
  • the bacteria obtained by the modification of the method of the fifth aspect of the invention can be used for fermentation production or production of L-lysine.
  • the present invention provides a bacterium obtained by the modification of the method of the fifth aspect of the invention.
  • the nucleotide sequence of many aconitase genes (acnA) in Escherichia bacteria is shown in SEQ ID No: 1
  • Corynebacterium bacteria e.g.
  • the nucleotide sequence of many aconitase genes in Corynebacterium glutamicum or Corynebacterium sinensis is shown in SEQ ID No: 2
  • the aconitase gene is modified to make the obtained bacteria
  • the enzymatic activity and/or expression level of the acid is reduced but does not disappear, and the amount of fermentation of L-lysine can be increased.
  • the nucleotide sequence of the aconitase gene is represented by SEQ ID No: 1 or 2.
  • the nucleotide sequence of the aconitase gene in the bacteria can also be obtained by means of sequencing and sequence identity comparison, thereby modifying according to the method of the present invention.
  • the preferred aconitase gene on the modified bacterial chromosome is to add, delete or replace one or more nucleotides to the nucleotide sequence of the aconitase gene, as long as the transformation can be obtained.
  • the enzymatic activity and/or expression level of the aconitase of the bacteria is reduced but does not disappear.
  • a nucleotide sequence outside the enzyme domain can be mutated.
  • a preferred engineered bacterial chromosome aconitase gene may be one or more nucleotides substituted for the nucleotide sequence of the aconitase gene.
  • the substitution comprises replacing the start codon of the aconitase gene, preferably with GTG.
  • a preferred augmented bacterial chromosome aconitase gene may also be one or more nucleotides deleted from the nucleotide sequence of the aconitase gene.
  • the deletion comprises deleting the nucleotide sequence of the aconitase gene, preferably deleting 1-120 nucleotides, more preferably deleting 1-90 nucleotides, most preferably deleting 90 nucleotides,
  • 90 nucleotides are deleted before the stop codon of the nucleotide sequence of the aconitase gene. This can be carried out for Escherichia coli, Corynebacterium glutamicum, and Corynebacterium Beijing.
  • a regulatory element refers to a polynucleotide located upstream or downstream of a gene (eg, an aconitase gene) and capable of regulating the transcription and/or expression of the gene, thereby affecting the expression of the gene, including non-coding sequences. And coding sequences.
  • the regulatory element can be a promoter, enhancer, repressor or other polynucleotide associated with transcription and/or expression regulation.
  • a preferred regulatory element can be a promoter.
  • the nucleotide sequence of the promoter is as shown in SEQ ID No: 4 or 6.
  • Preferred regulatory elements may also be repressor sequences, such as transcriptional repressor proteins.
  • the nucleotide sequence of the transcription repressor protein is set forth in SEQ ID No: 7.
  • a preferred regulatory element for the aconitase gene on the bacterial chromosome is the aconitase group.
  • the nucleotide sequence of the regulatory element is added, deleted or replaced with one or more nucleotides as long as the enzymatic activity and/or expression amount of the aconitase of the bacterium obtained by the transformation can be lowered without disappearing.
  • nucleotide sequences can be added to increase the distance between the promoter and the start codon of the gene, or to replace the originally existing promoter with a weak transcriptional promoter.
  • a preferred regulatory element for modifying the aconitase gene on the bacterial chromosome may be to replace one or more nucleotides of the promoter of the aconitase gene, such as a weak transcriptional promoter, More preferably, it is replaced with a nucleotide sequence as shown in SEQ ID No: 3 or 5.
  • a preferred regulatory element for modifying the aconitase gene on the bacterial chromosome may also be a nucleotide sequence of a transcriptional repressor protein of the aconitase gene, such as adding a new transcriptional repression
  • a transcriptional repressor protein can be added to a promoter (especially a strong transcriptional promoter) to increase its expression level, thereby more effectively inhibiting the transcription of the aconitase gene.
  • a nucleotide sequence as shown in SEQ ID Nos: 8 and 7 is added in series.
  • the present invention also provides an intermediate product which can be used in the above method, such as a polynucleotide and/or a carrier, and the like, and the like.
  • an intermediate product which can be used in the above method, such as a polynucleotide and/or a carrier, and the like, and the like.
  • the present invention provides a polynucleotide having a nucleotide sequence selected from
  • deletion of the nucleotide sequence as shown in SEQ ID No: 1 or 2 preferably deleting 1-120 nucleotides, more preferably deleting 1-90 nucleotides, most preferably deleting 90 nucleosides a nucleotide sequence obtained after the acid, such as a nucleotide sequence obtained by deleting 90 nucleotides before the stop codon of the nucleotide sequence shown as SEQ ID No: 1 or 2;
  • the invention provides a vector comprising the polynucleotide of the seventh aspect of the invention.
  • the invention provides the use of a polynucleotide of the seventh aspect of the invention and/or a vector of the eighth aspect of the invention in a method or use of the first, second, third and/or fourth aspects of the invention. That is, in the method or application of the first, second, third and/or four aspects of the invention, the present invention provides the polynucleotide of the seventh aspect of the invention and/or the vector of the eighth aspect of the invention.
  • the present invention provides the use of the polynucleotide of the seventh aspect of the invention and/or the vector of the eighth aspect of the invention for the preparation of the bacterium of the fifth aspect of the invention. That is, in the preparation of the bacterium of the fifth aspect of the invention, the use of the present The invention provides a polynucleotide of the seventh aspect of the invention and/or a vector of the eighth aspect of the invention.
  • the beneficial effects of the present invention are that it has opened up and practiced a new way of increasing the fermentation amount of L-lysine, which is applicable to both high-yield and low-yield L-lysine-producing bacteria, and a large number of high-yield L--
  • the chromosomal engineering sites of lysine bacteria have no conflicts, and the effect of increasing the yield can be observed, so that it can be used in the practice of bacterial fermentation to produce L-lysine, which is convenient for popularization and application.
  • the present invention will be described in detail below by way of specific examples. It is to be understood that the description is not intended to be limiting of the scope of the invention. Many variations and modifications of the invention will be apparent to those skilled in the ⁇ RTIgt;
  • coli K12 W3110 strain (available from NITE Biological Resource Center, NBRC)
  • the genomic chromosome was used as a template, and PCR amplification was performed with primers P1 and P2, P3 and P4, respectively, and two DNA fragments of 510 bp and 620 bp in length (named Upl and Downl fragments, respectively) were obtained.
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), 52. C is annealed for 30 s (seconds), and extended at 72 °C for 30 s (seconds) (30 cycles).
  • the primer sequence is as follows: P1: 5 '-CGCGGATCCGGAGTCGTCACCATTATGCC-S '
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 60 s (seconds) (30 cycles).
  • the Up-Downl and pKOV plasmids (purchased from Addgene), which were separated and purified by agarose gel electrophoresis, were double-digested with Bam Hi/Not I, separated and purified by agarose gel electrophoresis, and then ligated for obtaining.
  • the vector pKOV-Up-Downl, and the vector pKOV-Up-Downl was sent to the sequencing company for sequencing and identification, indicating that it contains the correct point mutation (AG) acnA gene fragment, and stored for later use.
  • the constructed pKOV-Up-Downl plasmid was separately electroporated into the L. lysine-low E. coli NRRL B-12185 strain (available from the Agricultural Research Service Culture Collection (NRRL); For the construction method, see US4346170A) and the high-yield L-lysine E. coli K12 W3110 ⁇ 3 strain (available from the Institute of Microbiology, Chinese Academy of Sciences, which is a lysine production engineering strain obtained by mutation of E.
  • coli K12 W3110) (Sequence confirmed that the wild type acnA gene (ie, 1333855 to 1336530 in Genbank accession number U00096.2 and its upstream and downstream elements) was retained on the chromosomes of the two strains, and cultured at LB at 30 °C, 100 rpm. After 2 h of resuscitation in the basal phase, the homologous recombination-positive monoclonal was selected according to the product guide of Addgene's pKOV plasmid. The start codon of the wild-type acnA gene on the chromosome was confirmed to be agglutinated from GTG to GTG.
  • Escherichia coli low/high-yield L-lysine mutated with acnA start codon, designated as YP-13633 and YP-13664, respectively.
  • Aconitase enzyme expression decreased the amount of about 75 to about 85% (slight differences in different media).
  • Aconitase activity reducing mutation aconitase 2
  • E. coli acnA gene stops the first 90 bp base of the codon to reduce aconitase activity.
  • the extracted wild-type E. coli K12 W3110 genomic chromosome was used as a template, and primers P5 and P6, P7 and P8 were used for PCR amplification to obtain two DNAs of 752 bp and 657 bp in length, respectively. Fragments (Up2 and Down2 clips).
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 30 s (seconds) (30 cycles).
  • the primer sequence is as follows:
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 60 s (seconds) (30 cycles).
  • the Up-Down2 and pKOV plasmids (purchased from Addgene), which were separated and purified by agarose gel electrophoresis, were digested with Bam Hi/Not I, separated and purified by agarose gel electrophoresis, and ligated to obtain for introduction.
  • the vector P KOV-Up-Down2, and the vector pKOV-Up-Down2 was sent to the sequencing company for sequencing and identification, which indicated that it contained the acnA gene fragment of the 90 bp base deletion before the stop codon, and was stored for use.
  • the constructed pKOV-Up-Down2 plasmid was electrotransformed into the low-yield L-lysine-containing E. coli NRRL B-12185 strain according to the product guide of Addgene's pKOV plasmid; the construction method can be found in US 4346170A) and the high yield L -E. coli K12 W3110 ⁇ 3 strain of lysine (sequence confirmed that both strains retain the wild-type acnA gene and its upstream and downstream elements on the chromosomes), and the homologous recombination-positive monoclonals were selected and confirmed by sequencing.
  • the 90 bp base of the stop codon of the wild-type acnA gene on the chromosome was deleted, and the low-protein/low-producing L-lysine Escherichia coli was obtained, respectively, which were named YP-13675 and YP-13699, respectively. .
  • the aconitase activity of the two strains obtained decreased by about 60-80% (slightly different in different media).
  • Corynebacterium pekinense which is similar to Corynebacterium glutamicum, is sometimes mistaken for Corynebacterium glutamicum.
  • CGMCC China General Microorganisms Collection and Management Center
  • the following primers P9 ⁇ P12 correspond to the above primers P4 ⁇ P8, and the amplified Up2 fragment is 542 bp, and the Down2 fragment is 527 bp. , the Up-Down2 fragment is about 1069 bp, wherein the primer sequences used are as follows;
  • the Up-Down2 fragment purified by agarose gel electrophoresis and the pK18mob SaC B plasmid (available from the American Type Culture Collection (ATCC)) were digested with Bam ffl/Sma1 and subjected to agarose gel electrophoresis. After isolation and purification, the recombinant vector pK18mobsacB-Up-P-Down lacking the 90 bp base before the stop codon of the acn gene was obtained. After sequencing and identification, the constructed pK18mobsacB-Up-Down2 plasmid was separately transformed into low-yield L. - Lysine of Corynebacterium sinensis AS1.299 strain, L-lysine-producing Corynebacterium glutamicum
  • the extracted wild-type E. coli K12 W3110 genomic chromosome was used as a template, and primers P13 and P14, P15 and P16 were respectively subjected to PCR amplification to obtain two DNAs of 580 bp and 618 bp in length, respectively. Fragments (named Up3 and Down3, respectively).
  • the plasmid containing the above weak transcription promoter was used as a template, and PCR amplification was carried out with P17 and P18 to obtain a weak transcription promoter fragment (designated P fragment) of 161 bp in length.
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and elongation at 72 °C for 30 s (seconds) (30 cycles).
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 60 s (seconds) (30 cycles).
  • Up-P and Down3 fragments isolated and purified by agarose gel electrophoresis were used as templates, and P13 and P16 were used as primers to amplify a fragment of about 1334 bp (named Up-P-down fragment) by Overlap PCR.
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 60 s (seconds) (30 cycles).
  • the constructed pKOV-Up-P-Down plasmid was electrotransformed into E. coli NRRL B-12185 strain with low L-lysine production and E. coli K12 W3110 ⁇ 3 strain with high L-lysine production (sequence confirmed by sequencing
  • the wild type acnA gene and its upstream and downstream elements are retained on the chromosomes of these two strains, cultured at LB at 30 °C, 100 rpm.
  • a homologous recombination-positive monoclonal was selected according to the product guide of Addgene's pKOV plasmid, and it was confirmed by sequencing that the upstream promoter of the wild-type acnA gene on the chromosome was replaced with a weak transcriptional promoter.
  • the aconitase of the two strains was tested in different media. The expression levels all decreased by 65 ⁇ 80%.
  • the genome of Corynebacterium sinensis AS1.299 (available from China General Microbial Culture Collection Management Center) was used as a template.
  • the following primers P19 ⁇ P24 correspond to the above primers P13 ⁇ P18, and the amplified Up3 fragment is 573 bp, Down3.
  • the fragment is 581 bp, the P fragment is 130 bp, and the Up-P-down fragment is about 1284 bp, wherein the primer sequences used are as follows;
  • the Up-P-down fragment and the pK18mob SaC B plasmid separated and purified by agarose gel electrophoresis were double-digested with Bam ffl/Eco RI, separated and purified by agarose gel electrophoresis, and ligated to obtain a promoter.
  • the recombinant vector pK18mobsacB-Up-P-Down was replaced and the sequence was correctly identified.
  • pKl 8mobsacB-Up-P-Down plasmid was electrotransformed into L. lysii strain AS1.299 with low L-lysine production, C.
  • Example 4 Adding the copy number of the aconitase gene transcription repressor-encoding gene acnR increases the copy number of the acn transcription repressor-encoding gene acnR to reduce the transcription level of the acn gene.
  • PCR amplification was performed with primers P25 and P26, P27 and P28, respectively, and two DNA fragments of 715 bp and 797 bp in length were obtained (named Up4, respectively).
  • PCR amplification with primers P29 and P30 gave a 567 bp acnR fragment (designated R fragment, the nucleotide sequence of which is shown in SEQ ID No: 7).
  • R fragment the nucleotide sequence of which is shown in SEQ ID No: 7
  • the expression plasmid pXMJ19 (available from Biovector Science Lab, Inc.) was used as a template, and PCR amplification was carried out by primers P31 and P32 to obtain a strong promoter P ⁇ of 164 bp in length (designated as P tac fragment, Its nucleotide sequence is shown as SEQ ID No: 8.
  • PCR was carried out as follows: denaturation at 94 °C for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 30 s (seconds) (30 cycles).
  • the R fragment and the P tac fragment separated and purified by agarose gel electrophoresis were mixed into a template, and the fragments of about 731 13 ⁇ 4) were amplified by Overlap PCR using P31 and P30 as primers (designated as 1 ⁇ -1 fragment);
  • the Up4 and P tac -R fragments isolated and purified by agarose gel electrophoresis were mixed into a template, and the fragment of about 1446 bp (named Up4-P tae -R fragment) was amplified by Overlap PCR using P25 and P30 as primers.
  • Up4-P tac -R and Down 4 fragments separated and purified by agarose gel electrophoresis were mixed into a template, and P25 and P28 were used as primers, and the length was amplified by Overlap PCR.
  • a fragment of approximately 2243 bp (designated as Up-P tac -R-Do W n fragment).
  • PCR was carried out as follows: 94 ° degeneration for 30 s (seconds), annealing at 52 °C for 30 s (seconds), and extension at 72 °C for 60 s (seconds) (30 cycles).
  • Up-P tae -RD 0wn and pK18mob SaC B plasmids separated and purified by agarose gel electrophoresis were double-digested with Bam HI/Eco RI, separated and purified by agarose gel electrophoresis, and then ligated.
  • the non-coding region of the chromosome was inserted into the extra copy of the acnR recombinant vector pK18mobsacB-Up-P tac -R-Down, and the vector pKl 8mobsacB-Up-P tac -R-Down was sent to the sequencing company for sequencing identification, indicating that it contained P The tac- acnR gene fragment was saved for later use.
  • the E. coli K12 W3110 A3 strain, the E. coli NRRL B-12185 strain and the E. coli strain constructed in Example 1-3 were respectively inoculated into 25 mL of the seed medium described in Table 1, 37. C, 220 rpm for 9 h. Then, a culture of 1 mL of the seed culture medium was inoculated into 25 mL of the fermentation medium described in Table 1, and cultured at 37 V, 220 rpm for 48 hours. When the culture was completed, the production of L-lysine was measured by HPLC.
  • Corynebacterium AS1.299 strain, ATCC13032 strain and AS1.563 strain and Corynebacterium strains constructed in Examples 2-4 were inoculated separately in 30 mL of the seed medium described in Table 2 at 30 V. Incubate at 220 rpm for 8 h. Then, a culture of 1 mL of the seed culture medium was inoculated into 30 mL of the fermentation medium described in Table 2, and cultured at 30 ° C, 220 rpm for 48 hours. When the culture was completed, the production of L-lysine was measured by HPLC. Table 2 Corynebacterium medium formula

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了发酵生产L-赖氨酸的方法,其包括改造细菌染色体上乌头酸酶基因和/或其调控元件,使其乌头酸酶的酶活性和/或表达量降低但不消失;和,用改造而得到的细菌发酵生产L-赖氨酸。另外,本发明还提供了由该方法衍生的方法和应用,以及可以用在这些方法和应用中的细菌等。

Description

用改变乌头酸酶基因和减其调控元件的细菌发酵生产 L-赖氨酸的方法
技术领域
本发明属于氨基酸发酵领域, 具体而言, 本发明涉及发酵生产 L-赖氨酸的方法及其 衍生的方法和应用, 和可以用在这些方法和应用中的细菌等。 背景技术
通过产 L-赖氨酸的细菌 (如, 埃希氏菌属的大肠杆菌和棒杆菌属的杆状细菌) 发酵 来生产 L-赖氨酸已经得到了产业化应用。 这些细菌, 可以是从自然界分离的细菌, 也可 以是通过诱变或基因工程改造获得的细菌, 或者两者兼而有之。 当前的文献报道中, 通 过基因工程改造的注意力主要集中在 pnt、 dap及 ppc等基因上, 未见为了 L-赖氨酸生产 而关注编码乌头酸酶 (如, 大肠杆菌中的乌头酸酶 A, 谷氨酸棒杆菌或北京棒杆菌中的 乌头酸酶) 的基因的调控元件。
乌头酸酶 (Aconitase) 是三羧酸循环中的一个酶, 该酶催化两步化学反应, 分别为 柠檬酸转化为乌头酸以及乌头酸转化为异柠檬酸。目前已知在埃希氏菌中, acnA基因(其 核苷酸序列如 SEQ ID No: 1所示)编码乌头酸酶 A, 但是可能是由于其代谢距离最终的 L-赖氨酸产物太远, 中间代谢分支太多且复杂, 而在 L-赖氨酸发酵中一直未引起人们的 重视。 至于其他赖氨酸发酵菌, 如谷氨酸棒杆菌等, 乌头酸酶对 L-赖氨酸发酵的影响更 没有报道。在诸如中国专利 CN1289368 A和 CN101631871 A等文献中提及的乌头酸酶都 与 L-谷氨酸的发酵相关, 没有教导乌头酸酶对 L-赖氨酸发酵的影响。
本发明人经过长期研究和实践, 尤其凭借了一些运气, 偶然发现乌头酸酶基因及其 调控元件的改造能够有助于提高 L-赖氨酸的产量。
另外,现有技术要么通过增加拷贝和 /或定点突变导入表达量和 /或酶活性提高的有益 的酶基因,要么通过敲除不利的基因以使之酶活性和 /或表达量消失。但是与之不同的是, 本发明人发现, 乌头酸酶基因及其调控元件不能简单地提高或敲除, 尤其是敲除后 acnA 基因的不表达使得细菌生长困难, 难以实际应用, 因此开发了新的改造乌头酸酶基因和 / 或其调控元件的方法, 以此来提高 L-赖氨酸的产量。
而且, 该方法与现有改造的大量高产 L-赖氨酸的细菌的染色体改造位点没有冲突, 可以叠加提高的效果, 从而在实践上可用于多种细菌发酵生产 L-赖氨酸。 发明内容 本发明要解决的技术问题在于提供新的发酵生产 L-赖氨酸的方法及其相关的方法, 包括相对于未改造细菌提高 L-赖氨酸的发酵生产量的方法, 改造的细菌在发酵生产 L-赖 氨酸中的应用, 改造的细菌在相对于未改造细菌提高 L-赖氨酸的发酵生产量的应用, 和 / 或, 改造细菌的方法等。 另外, 本发明还提供了可以用于上述方法中的多核苷酸、 载体 和 /或细菌等。
具体而言, 在第一方面, 本发明提供了发酵生产 L-赖氨酸的方法, 其包括:
( 1 ) 改造细菌染色体上乌头酸酶基因和 /或其调控元件, 使其乌头酸酶的酶活性和 /或表 达量降低但不消失; 和,
(2) 用步骤 (1 ) 改造而得到的细菌发酵生产 L-赖氨酸。
在本文中, 术语"改造"指的是是相应被改造的对象发生变化, 从而达到一定的效果。 改造位于染色体上的基因或调控元件的手段包括但是不限于, 诱变、 定点突变、 和 /或同 源重组, 优选是后两者。 改造位于染色体上的基因或调控元件使得该基因或调控元件的 核苷酸序列被添加、 缺失或替换一个或多个核苷酸。 这些技术手段广泛记载于分子生物 学和微生物学文献中, 有许多甚至已经商品化了。 在本发明的具体实施方式中, 根据同 源重组的原理, 可以采用 Addgene公司商品化的 pKOV质粒系统来进行改造, 也可以采 用 pK18mobSaCB质粒系统来进行改造,将未改造细菌染色体上的乌头酸酶基因和 /或其调 控元件, 改造成能够使改造获得的细菌的乌头酸酶的表达量和 /或酶活性降低但不消失的 新的乌头酸酶基因和 /或其调控元件。 因此, 在本文文中, 优选改造是通过同源重组进行 的改造。
本发明人经过长期研究发现,在大肠杆菌和棒状杆菌等细菌中,使得乌头酸酶的表达 量消失, 如采用基因敲除的手段, 将造成细菌本身生长困难, 甚至无法产酸。 因此, 本 发明的 "改造 "要相对于未改造的细菌, 使改造获得的细菌的乌头酸酶的表达量降低但不 消失, 优选使改造获得的细菌的乌头酸酶 A 的表达量降低 20%~95%, 更优选降低 50 ~90 , 如降低 65%、 70%或 80%等。
相应地, 本发明还提供了其他的应用或方法。例如, 在第二方面, 本发明提供了提高
L-赖氨酸的发酵量的方法, 其包括:
( 1 ) 改造细菌染色体上乌头酸酶基因和 /或其调控元件, 使其乌头酸酶的酶活性和 /或表 达量降低但不消失; 和,
(2) 用步骤 (1 ) 改造而得到的细菌发酵生产 L-赖氨酸。
L-赖氨酸作为细菌的重要代谢产物, 大多数细菌或多或少都能够发酵产生一定量的 L-赖氨酸。 尽管低产 L-赖氨酸的细菌不适合有经济效益地生产 L-赖氨酸, 但是通过本发 明的方法, 仍旧能提高 L-赖氨酸的发酵量, 仍旧可以供对经济效益不敏感的地方使用。 当然, 在本文中, 优选细菌是高产 L-赖氨酸的细菌。 通过本发明的方法, 可以进一步提 高其产量。 另外, 在本发明的方法或应用中, 除了改造细菌染色体上乌头酸酶基因和 /或 其调控元件以外, 可以不再进行其他改造, 如甚至在改造了乌头酸酶基因的调控元件之 后, 可以不改造细菌染色体上的乌头酸酶基因, 反之亦然。 例如, 尤其对于高产 L-赖氨 酸的细菌来说, 可以仅仅改造细菌染色体上乌头酸酶基因和其调控元件中的一个。
又如, 在第三方面, 本发明提供了改造获得的细菌在发酵生产 L-赖氨酸中的应用, 其中, 所述改造获得是改造细菌染色体上乌头酸酶基因和 /或其调控元件而获得, 而且使 改造获得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失。
改造获得的细菌可以单独应用于发酵生产 L-赖氨酸中, 也可以和其他产 L-赖氨酸的 细菌混合发酵生产 L-赖氨酸, 或者以其他方式应用于发酵生产 L-赖氨酸中。 在本文中, 如无特别限定 (如未以"改造获得"来限定), 术语"细菌"是未改造或改造前的细菌, 其染 色体的乌头酸酶基因及该基因座位前后的调控元件是没有使乌头酸酶的酶活性和 /或表 达量降低的乌头酸酶基因及调控元件, 如野生型细菌中的乌头酸酶基因及调控元件。
还如, 在第四方面, 本发明提供了改造获得的细菌在提高 L-赖氨酸的发酵量中的应 用, 其中, 所述改造获得是改造细菌染色体上乌头酸酶基因和 /或其调控元件而获得, 而 且使改造获得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失。
在本文中, 细菌可以是产 L-赖氨酸的细菌, 如埃希氏菌属或棒杆菌属的细菌。 在一 个优选的方面, 细菌可以是埃希氏菌属细菌, 更优选是大肠杆菌, 如大肠杆菌 K-12菌株 的后续菌株,包括 W3110衍生的菌株;在另一个优选的方面,细菌可以是棒杆菌属细菌, 更优选是谷氨酸棒杆菌或北京棒杆菌。 由于现有技术几乎没有在 L-赖氨酸生产 /发酵中关 注过细菌的乌头酸酶基因和 /或其调控元件, 改造的染色体的基因大多集中于 pnt、 dap及 ppc等基因座位上, 因此现有技术中的产 L-赖氨酸的细菌(尤其是埃希氏菌属或棒杆菌属 的细菌, 如大肠杆菌、 谷氨酸棒杆菌或北京棒杆菌) 的乌头酸酶基因和 /或其前后的调控 元件没有被报道改造过, 因此基本上都带有野生型的乌头酸酶基因及其前后的调控元件, 基本上都可以采用本发明的方法进行改造, 提高 L-赖氨酸的发酵量。 在本发明的具体实 施方式中, 无论高产还是低产 L-赖氨酸的细菌, 通过本发明的方法进行改造, 都能使得 L-赖氨酸的发酵量得到提高。
更本质地, 在第五方面, 本发明提供了改造细菌的方法, 其包括改造所述细菌染色体 上乌头酸酶基因和 /或其调控元件,使改造获得的细菌的乌头酸酶的酶活性和 /或表达量降 低但不消失。 本发明第五方面的方法改造而获得的细菌能够用于发酵生产或产生 L-赖氨酸。 因此, 在第六方面, 本发明提供了本发明第五方面的方法改造而获得的细菌。
经本发明人试验发现,埃希氏菌属细菌(如,大肠杆菌)中许多的乌头酸酶基因(acnA) 的核苷酸序列如 SEQ ID No: 1所示, 棒杆菌属细菌 (如, 谷氨酸棒杆菌或北京棒杆菌) 中许多的乌头酸酶基因的核苷酸序列如 SEQ ID No: 2所示,对这些乌头酸酶基因进行改 造, 使改造获得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失, 能够提高 L-赖氨 酸的发酵量。所以,在本发明的具体实施方式中,所述乌头酸酶基因的核苷酸序列如 SEQ ID No: 1或 2所示。 对于其他细菌, 通过测序和序列同一性比较等手段, 也能够获得细 菌中的乌头酸酶基因的核苷酸序列, 从而根据本发明的方法进行改造。
在本发明中,优选的改造细菌染色体上乌头酸酶基因是对所述乌头酸酶基因的核苷酸 序列进行添加、 缺失或替换一个或多个核苷酸, 只要能够使改造获得的细菌的乌头酸酶 的酶活性和 /或表达量降低但不消失即可。
根据本发明人的经验, 细菌经过长期进化, 提高其酶的活性和 /或表达量通常较为困 难, 可选的改造位点需要精细研究, 而降低其酶的活性和 /或表达量相对方便。 例如, 可 以突变酶结构域外的核苷酸序列。 在本发明中, 优选的改造细菌染色体上乌头酸酶基因 可以是对所述乌头酸酶基因的核苷酸序列进行替换一个或多个核苷酸。 例如, 替换包括 对所述乌头酸酶基因的起始密码子进行替换, 优选替换为 GTG。 这对于大肠杆菌、 谷氨 酸棒杆菌和北京棒杆菌等均可进行。 在本发明中, 优选的改造细菌染色体上乌头酸酶基 因也可以是对所述乌头酸酶基因的核苷酸序列进行缺失一个或多个核苷酸。 例如, 缺失 包括对所述乌头酸酶基因的核苷酸序列进行缺失, 优选缺失 1-120个核苷酸, 更优选缺 失 1-90个核苷酸, 最优选缺失 90个核苷酸, 如对所述乌头酸酶基因的核苷酸序列的终 止密码子前缺失 90个核苷酸。这对于大肠杆菌、谷氨酸棒杆菌和北京棒杆菌等均可进行。
在本文中, 调控元件指的是位于基因(如, 乌头酸酶基因)的上游或下游并能调控该 基因的转录和 /或表达从而影响该基因表达量的多核苷酸, 包括非编码序列和编码序列。 调控元件可以是基因的启动子、 增强子、 阻遏序列或其他与转录和 /或表达调控相关的多 核苷酸。 优选的调控元件可以是启动子。 在本发明的一个具体实施方式中, 所述启动子 的核苷酸序列如 SEQ ID No: 4或 6所示。优选的调控元件也可以是阻遏序列, 如转录阻 遏蛋白。 在本发明的一个具体实施方式中, 所述转录阻遏蛋白的核苷酸序列如 SEQ ID No: 7所示。 通过对启动子和 /或阻遏序列进行改造, 能够使改造获得的细菌的乌头酸酶 的酶活性和 /或表达量降低但不消失。
在本发明中,优选的改造细菌染色体上乌头酸酶基因的调控元件是对所述乌头酸酶基 因的调控元件的核苷酸序列进行添加、 缺失或替换一个或多个核苷酸, 只要能够使改造 获得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失即可。
根据本发明人的经验,细菌经过长期进化,提高其启动子或增强子的转录活性通常较 为困难, 可选的改造位点需要精细研究, 而降低其启动子或增强子的转录活性对方便。 例如, 可以添加一个或几个核苷酸序列以增加启动子和基因的起始密码子之间的距离, 或者用弱转录启动子替换原来存在的启动子。 在本发明中, 优选的改造细菌染色体上乌 头酸酶基因的调控元件可以是对所述乌头酸酶基因的启动子进行替换一个或多个核苷 酸, 如替换为弱转录启动子, 更优选替换为如 SEQ ID No: 3或 5所示的核苷酸序列。
另外,在本发明中,优选的改造细菌染色体上乌头酸酶基因的调控元件也可以是对所 述乌头酸酶基因的转录阻遏蛋白的核苷酸序列进行添加, 如添加新的转录阻遏蛋白的核 苷酸序列或者增加原有的转录阻遏蛋白的核苷酸序列的拷贝数。 转录阻遏蛋白可以添加 在启动子 (尤其是强转录启动子) 之后以增加其表达量, 从而更有效地抑制乌头酸酶基 因的转录。在本发明的具体实施方式中, 添加的是串联如 SEQ ID No: 8和 7所示的核苷 酸序列。
另外, 本发明还提供了可以用于上述方法中的中间产物, 如多核苷酸和 /或载体等物 质, 以及它们的应用等。 例如, 在第七方面, 本发明提供了多核苷酸, 其核苷酸序列选 自,
(a) 对如 SEQ ID No: 1所示的核苷酸序列的起始密码子进行替换 (优选替换为 GTG) 后获得的核苷酸序列;
(b) 对如 SEQ ID No: 1或 2所示的核苷酸序列进行缺失 (优选缺失 1-120个核苷酸, 更优选缺失 1-90个核苷酸,最优选缺失 90个核苷酸)后获得的核苷酸序列,如对如 SEQ ID No: 1或 2所示的核苷酸序列的终止密码子前缺失 90个核苷酸后获得的核苷酸序列; 和,
(c) 串联如 SEQ ID No: 8和 7所示的核苷酸序列。
在第八方面, 本发明提供了载体, 其包含本发明第七方面的多核苷酸。
在第九方面, 本发明提供了本发明第七方面的多核苷酸和 /或本发明第八方面的载体 在本发明第一、 二、 三和 /或四方面的方法或应用中的应用。 即在本发明第一、 二、 三和 /或四方面的方法或应用中,使用了本发明提供了本发明第七方面的多核苷酸和 /或本发明 第八方面的载体。
在第十方面, 本发明提供了本发明第七方面的多核苷酸和 /或本发明第八方面的载体 在制备本发明第五方面的细菌中的应用。 即在制备本发明第五方面的细菌中, 使用了本 发明提供了本发明第七方面的多核苷酸和 /或本发明第八方面的载体。 本发明的有益效果在于, 开辟并且实践证明了新的提高 L-赖氨酸的发酵量的方式, 对于高产和低产 L-赖氨酸的细菌都适用, 而且与现有改造的大量高产 L-赖氨酸的细菌的 染色体改造位点没有冲突, 观察到了可以叠加提高产量的效果, 从而在实践上可用于细 菌发酵生产 L-赖氨酸, 便于推广应用。 为了便于理解, 以下将通过具体的实施例对本发明进行详细地描述。需要特别指出的 是, 这些描述仅仅是示例性的描述, 并不构成对本发明范围的限制。 依据本说明书的论 述, 本发明的许多变化、 改变对所属领域技术人员来说都是显而易见的。
另外, 本发明引用了公开文献, 这些文献是为了更清楚地描述本发明, 它们的全文 内容均纳入本文进行参考, 就好像它们的全文已经在本文中重复叙述过一样。 具体实 式
以下通过实施例进一步说明本发明的内容。如未特别指明,实施例中所用的技术手段 为本领域技术人员所熟知的常规手段和市售的常用仪器、 试剂, 可参见 《分子克隆实验 指南 (第 3版)》 (科学出版社)、 《微生物学实验 (第 4版)》 (高等教育出版社) 以及相 应仪器和试剂的厂商说明书等参考。 实施例 1 替换乌头酸酶的起始密码子 ATG为 GTG 以抽提的野生型大肠杆菌 E. coli K12 W3110菌株 (可购自日本技术评价研究所生物 资源中心 (NITE Biological Resource Center, NBRC) ) 基因组染色体为模板, 以引物 P1和 P2、 P3和 P4分别进行 PCR扩增,获得长度分别为 510 bp和 620 bp的两条 DNA片段(分 别命名为 Upl和 Downl片段)。其中, PCR按如下方式进行: 94 °C变性 30 s (秒), 52 。C 退火 30 s (秒), 以及 72 °C延伸 30 s (秒) (30个循环)。 其中, 引物序列如下: P1: 5 '-CGCGGATCCGGAGTCGTCACCATTATGCC-S '
P2: 5 ' -TCTCGTAGGGTTC ACC ACACAGCTCCTCCTTAATGACAGG -3 '
P3: 5 '-CCJ'GTCATTAAGGAGGAGCTGTGTCGTCAACCCTACG AG A-3 '
P4: fy -ATTGCGGCCGC FCC ATTCACCGTCC']: GCA AT- 3 '
将上述两条 D N A片段经琼脂糖凝胶电泳分离纯化后, 再以上述两条 D N A片段混 合为模板, 以 P1 和 P4为引物, 通过 Overlap PCR扩增长约 1200 bp 的片段 (命名为 Up-Downl片段)。其中, PCR按如下方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 60 s (秒) (30个循环)。
将琼脂糖凝胶电泳分离纯化后的 Up-Downl和 pKOV质粒 (可购自 Addgene公司) 分别用 Bam Hi/Not I进行双酶切, 经琼脂糖凝胶电泳分离纯化后连接, 获得用于导入的 载体 pKOV-Up-Downl, 并将载体 pKOV-Up-Downl送测序公司进行测序鉴定, 表明其含 有正确点突变 (A-G) 的 acnA基因片段, 保存备用。
将构建好的 pKOV-Up-Downl质粒分别电转化入低产 L-赖氨酸的 E. coli NRRL B- 12185菌株 (可购自美国农业菌种保藏中心 ( Agricultural Research Service Culture Collection; NRRL); 其构建方法可参见 US4346170A) 和高产 L-赖氨酸的 E. coli K12 W3110 Δ3菌株 (可购自中科院微生物研究所, 其为经 E. coli K12 W3110诱变突变得到 的赖氨酸生产工程菌) (经测序确认这两个菌株染色体上均保留有野生型的 acnA基因 (即 Genbank登录号 U00096.2中的 1333855至 1336530位及其上下游元件), 于 30 °C、 100 rpm, 在 LB培养基中复苏 2 h后, 根据 Addgene公司的 pKOV质粒的商品指南, 挑 选出同源重组阳性的单克隆,经测序确认其染色体上的野生型 acnA基因的起始密码子由 ATG突变为 GTG, 分别得到 acnA起始密码子突变的 (低 /高产 L-赖氨酸) 大肠杆菌, 分 别被命名为 YP-13633和 YP-13664。 经检测, 获得的两个菌株的乌头酸酶表达量下降了 约 75~85% (在不同培养基中略有差异)。 实施例 2乌头酸酶基因序列突变降低乌头酸酶活性
( 1 ) 大肠杆菌的构建
缺失大肠杆菌 acnA基因终止密码子前 90 bp碱基以降低乌头酸酶活性。 具体而言, 以抽提的野生型大肠杆菌 E. coli K12 W3110基因组染色体为模板, 以引物 P5和 P6、 P7 和 P8分别进行 PCR扩增, 获得长度分别为 752 bp和 657 bp的两条 DNA片段 (Up2和 Down2片段)。 其中, PCR按如下方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 30 s (秒) (30个循环)。 其中, 引物序列如下:
P5: 5 ' -CGCGGATCCCGTCACACGATCCGATACCT-3 '
P6: 5 " -CGGCA AGCAAATAGTTGTTATACGACTTCCTGGCTACC AT -3'
P7: 5' -ATGGTAGCCAGGAAGTCGTATAACAACTATTTGCTTGCCG-3 '
P8: 5 ATTGCGGCCGC CATGGGGCGATTTCCTGATG- 3
将上述两条 D N A片段经琼脂糖凝胶电泳分离纯化后, 再以上述两条 D N A片段混 合为模板, 以 P5和 P8为引物, 通过 Overlap PCR扩增长约 1400 bp 的片段 (命名为 Up-Down2片段)。其中, PCR按如下方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 60 s (秒) (30个循环)。
将琼脂糖凝胶电泳分离纯化后的 Up-Down2和 pKOV质粒 (可购自 Addgene公司) 分别用 Bam Hi/Not I双酶切, 经琼脂糖凝胶电泳分离纯化后连接, 获得用于导入的载体 PKOV-Up-Down2, 并将载体 pKOV-Up-Down2送测序公司进行测序鉴定, 表明其含有终 止密码子前 90 bp碱基缺失的 acnA基因片段, 保存备用。
根据 Addgene公司的 pKOV质粒的商品指南, 将构建好的 pKOV-Up-Down2质粒分 别电转化入低产 L-赖氨酸的 E. coli NRRL B-12185菌株;其构建方法可参见 US4346170A) 和高产 L-赖氨酸的 E. coli K12 W3110 Δ3菌株 (经测序确认这两个菌株染色体上均保留 有野生型的 acnA基因及其上下游元件), 挑选出同源重组阳性的单克隆, 经测序确认其 染色体上的野生型 acnA基因的终止密码子前 90 bp碱基缺失, 分别得到 acnA酶活性降 低的 (低 /高产 L-赖氨酸) 大肠杆菌, 分别被命名为 YP-13675和 YP-13699。 经检测, 获 得的两个菌株的乌头酸酶酶活性下降了约 60~80% (在不同培养基中略有差异)。
(2) 棒状杆菌 (Corynebacterium) 的构建
缺失棒状杆菌 acn基因终止密码子前 90 bp碱基以降低乌头酸酶活性。构建过程基本 按照上述过程 (1 ) 相同的步骤, 所不同的是: 以北京棒杆菌 AS1.299 (Corynebacterium pekinense, 其与谷氨酸棒杆菌相似, 有时会被误认为是谷氨酸棒杆菌) (可购自中国普通 微生物菌种保藏管理中心(CGMCC) )的基因组为模板, 以下引物 P9~P12分别对应于上 述引物 P4~P8, 扩增出的 Up2片段为 542 bp, Down2片段为 527 bp, Up-Down2片段为 约 1069bp, 其中所用的引物序列如下;
P9: 5 ' -CGGGATCCTGCAGCTCAGTACTTGGAT-3 '
P10: 5 ' - AAAGTCTTCTAATTAC TTACTGCGTCGAACTCGACG-3 '
P11 : 5' -GTTCGACGCAGTAAGTAATTAGAAGACTTTTGAT-3 '
P12: 5' -TCCCCCGGGGAATACCGGGTCGGTGCG-3 '
然后将琼脂糖凝胶电泳分离纯化后的 Up-Down2片段和 pK18mobSaCB质粒(可购自 美国典型微生物保藏中心 (ATCC) ) 分别用 Bam ffl/Sma l双酶切, 经琼脂糖凝胶电泳分 离纯化后连接, 获得缺失 acn 基因终止密码子前的 90 bp 碱基的重组载体 pK18mobsacB-Up-P-Down, 测序鉴定正确后, 将构建好的 pK18mobsacB-Up-Down2质粒 分别电转化入低产 L-赖氨酸的北京棒杆菌 AS1.299菌株、 低产 L-赖氨酸的谷氨酸棒杆菌
( Corynebacterium glutamicum) ATCC 13032菌株 (可购自 ATCC)和高产 L-赖氨酸的北 京棒杆菌 AS1.563菌株(可购自中国普通微生物菌种保藏管理中心) (后两者经测序确认 其染色体上均保留有北京棒杆菌 AS1.299的 acn基因, 其基因的核苷酸序列如 SEQ ID NO: 2所示), 于 30 V、 120 rpm, 在 BHIS培养基中复苏 2 h, 然后选择出同源重组阳 性的单克隆, 经测序确认正确后, 分别得到 acn基因突变的 (低 /低 /高产 L-赖氨酸)棒状 杆菌, 分别被命名为 YP-14808 、 YP-14852和 YP-14837。 实施例 3用弱转录活性的启动子替换乌头酸酶基因的启动子
( 1 ) 大肠杆菌的构建
通过对 E. coli K12 W3110中 acnA上游序列分析, 我们提供了弱转录启动子(序列如 SEQ ID No: 3所示:),来替换 acnA基因 ORF上游野生型的启动子区域(序列如 SEQ ID No: 4所示), 以减弱野生型 acnA基因的强度。
具体而言, 以抽提的野生型大肠杆菌 E. coli K12 W3110基因组染色体为模板, 以引 物 P13和 P14、 P15和 P16分别进行 PCR扩增,获得长度分别为 580 bp和 618 bp的两条 DNA片段 (分别命名为 Up3和 Down3片段)。 以含有上述弱转录启动子的质粒为模板, 以 P17和 P18进行 PCR扩增,获得长度为 161 bp的弱转录启动子片段(命名为 P片段)。 其中, PCR按如下方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °〇延 伸 30 s (秒) (30个循环)。
将上述三条 D N A片段经琼脂糖凝胶电泳分离纯化后, 再以上述 Up3和 P片段混合 为模板, 以 P13和 P18为引物, 通过 Overlap PCR扩增长约 716 bp的片段 (命名为 Up-P 片段)。 其中, PCR按如下方式进行: 94 °C变性 30s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 60 s (秒) (30个循环)。
将琼脂糖凝胶电泳分离纯化后的 Up-P和 Down3片段为模板,以 P13和 P16为引物, 通过 Overlap PCR扩增长约 1334 bp的片段 (命名为 Up-P-down片段)。其中, PCR按如下 方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 60 s (秒) (30 个循环)。
上述所用的引物序列如下:
P13: 5 ' -CGCGGATCCGAAGAAATTGAGGTC ATGTT -3'
P14: 5'- GGTTTCTTAGACGTCGGATTCGTTTCGTTTCTGTTTCATT-3'
P15: 5'- ATCAGCAGGACGCACTGACCCATTAAGGAGGAGCTATGTCG -3'
P16: 5'- ATTGCGGCCGCTCCATTCACCGTCCTGCAATT -3' P18: 5'- CGACATAGCTCCTCCTTAATGGGTCAGTGCGTCCTGCTGAT -3' 将琼脂糖凝胶电泳分离纯化后的 Up-P-down片段和 pKOV质粒(可购自 Addgene公 司) 分别用 Bam Hi/Not I双酶切, 经琼脂糖凝胶电泳分离纯化后连接, 获得用于导入的 载体 pKOV-Up-P-Down, 并将载体 pKOV-Up-P-Down送测序公司进行测序鉴定, 表明其 含有正确的弱转录启动子序列, 保存备用。
将构建好的 pKOV-Up-P-Down 质粒分别电转化入低产 L-赖氨酸的 E. coli NRRL B-12185菌株和高产 L-赖氨酸的 E. coli K12 W3110 Δ3菌株(经测序确认这两个菌株染色 体上均保留有野生型的 acnA基因及其上下游元件 (其上游启动子如 Genbank 登录号 CP004009.1的第 2102518 至 2102713位), 于 30 °C、 100 rpm, 在 LB培养基中复苏 2 h 后, 根据 Addgene公司的 pKOV质粒的商品指南, 挑选出同源重组阳性的单克隆, 经测 序确认其染色体上的野生型 acnA基因的上游启动子被替换为弱转录启动子, 分别得到 acnA启动子突变的(低 /高产 L-赖氨酸)大肠杆菌,分别被命名为 YP-13627和 YP-13682。 经检测, 在不同培养基中, 这两个菌株的乌头酸酶的表达量均有 65~80%的下降。
(2) 棒状杆菌的构建
通过对棒状杆菌中 acn上游序列分析,我们提供了弱转录启动子 (序列如 SEQ ID No: 5所示),来替换棒状杆菌 acn基因 ORF上游 166 bp的野生型的启动子区域(序列如 SEQ ID No: 6所示)。 构建过程基本按照上述过程 (1 ) 相同的步骤, 所不同的是:
以北京棒杆菌 AS1.299 (可购自中国普通微生物菌种保藏管理中心) 的基因组为模 板,以下引物 P19~P24分别对应于上述引物 P13~P18,扩增出的 Up3片段为 573 bp, Down3 片段为 581 bp, P片段为 130 bp, Up-P-down片段为约 1284 bp, 其中所用的引物序列如 下;
P19: 5 ' -CGGGATCCGCCA AAGC AACC AACCCC -3'
P20: 5 '-CTTTTTAGTTTTCAACGGTCGGATTTGCTCGAAAT-3 '
P21 : 5'- GCCGAAAC AAAGTAGCCGAAGCAGACGCCGTCG -3'
P22: 5' -CGG AATTCTG ACCTGGTGG ACGATAC-3 '
P23: 5' -CGAGCAAATCCGACCGTTGAAAACTAAAAAGCTGG-3 '
P24: 5' -GCGTCTGCTTCGGCTACTTTGTTTCGGCCACCC-3 '
然后将琼脂糖凝胶电泳分离纯化后的 Up-P-down片段和 pK18mobSaCB质粒分别用 Bam ffl/Eco RI进行双酶切, 经琼脂糖凝胶电泳分离纯化后连接, 获得用于启动子替换的 重 组 载 体 pK18mobsacB-Up-P-Down , 测 序 鉴 定 正 确 后 , 将 构 建好 的 pKl 8mobsacB-Up-P-Down质粒分别电转化入低产 L-赖氨酸的北京棒杆菌 AS1.299菌株、 低产 L-赖氨酸的谷氨酸棒杆菌 ATCC 13032菌株和高产 L-赖氨酸的北京棒杆菌 AS1.563 菌株 (后两者经测序确认其染色体上均保留有北京棒杆菌 AS1.299的 acn基因及其上下 游元件), 于 30 V、 120 rpm, 在 BHIS培养基中复苏 2 h, 然后选择出同源重组阳性的 单克隆, 经测序确认正确后, 分别得到 acn启动子突变的 (低 /低 /高产 L-赖氨酸)棒状杆 菌, 分别被命名为 YP-14755 、 YP-14732和 YP-14780。 实施例 4添加乌头酸酶基因转录阻遏蛋白编码基因 acnR的拷贝数 增加 acn转录阻遏蛋白编码基因 acnR的拷贝数, 以降低 acn基因的转录水平。 具体 而言, 以北京棒杆菌 AS1.299的基因组为模板, 以引物 P25和 P26、 P27和 P28分别进行 PCR扩增,获得长度分别为 715 bp和 797 bp的两条 DNA片段(分别命名为 Up4和 Down4 片段); 以引物 P29和 P30进行 PCR扩增, 获得长度为 567 bp的 acnR片段 (命名为 R 片段,其核苷酸序列如 SEQ ID No: 7所示)。另夕卜,以表达质粒 pXMJ19 (可购自 Biovector Science Lab, Inc公司) 为模板, 由引物 P31和 P32进行 PCR扩增, 获得长度为 164 bp 的强启动子 P ^ (命名为 Ptac片段, 其核苷酸序列如 SEQ ID No: 8所示)。 其中, PCR按 如下方式进行: 94 °C变性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 30 s (秒) ( 30个循环)。
上述所用的引物序列如下:
P25 : 5 ' -CGGGATCCTTCGCAACCGATAGAGCA-3 '
P26: 5 ' -CACGAATTATGCAGAATAAGCCTTTAAGTAACAA-3 '
P27: 5 ' -TAAACGCGACTAAGCGTGACCATTAAAAGGCT-3 '
P28: 5 ' -CGGAATTCAAAAGCCTATTAAGTGTC-3 '
P29: 5 ' -TTCACACAGGAAAGTGTCCGTAGCGGCAGGCGA-3 '
P30: 5 ' -TTTAATGGTC ACGC TTAGTCGCGTTTACGGACAG-3 '
P31: 5 ' -TTAAAGGCTTATTCTGCATAATTCGTGTCGCTC-3 '
P32: 5 ' -GCCGCTACGGACACTTTCCTGTGTGAAATTGTTA-3 '
将琼脂糖凝胶电泳分离纯化后的 R片段和 Ptac片段混合为模板, 以 P31和 P30为引 物, 通过 Overlap PCR扩增长约 731 1¾)的片段(命名为1 ^-1 片段); 将琼脂糖凝胶电泳分 离纯化后的 Up4和 Ptac-R片段混合为模板, 以 P25和 P30为引物, 通过 Overlap PCR扩 增长约 1446 bp 的片段 (命名为 Up4-Ptae-R 片段); 将琼脂糖凝胶电泳分离纯化后的 Up4-Ptac-R和 Down4片段混合为模板, 以 P25和 P28为引物, 通过 Overlap PCR扩增长 约 2243 bp的片段(命名为Up-Ptac-R-DoWn片段)。 其中, PCR按如下方式进行: 94 °〇变 性 30 s (秒), 52 °C退火 30 s (秒), 以及 72 °C延伸 60 s (秒) (30个循环)。
然后将琼脂糖凝胶电泳分离纯化后的 Up-Ptae-R-D0wn和 pK18mobSaCB质粒分别用 Bam HI/Eco RI进行双酶切, 经琼脂糖凝胶电泳分离纯化后连接, 获得用于在染色体的非 编码区位点插入额外拷贝的 acnR的重组载体 pK18mobsacB-Up-Ptac-R-Down, 并将载体 pKl 8mobsacB-Up-Ptac-R-Down送测序公司进行测序鉴定,表明其含有 Ptac-acnR基因片段, 保存备用。
将构建好的 pK18mobsacB-Up-Ptae-R-DoWn质粒分别电转化入低产 L-赖氨酸的北京棒 杆菌 AS1.299菌株、 低产 L-赖氨酸的谷氨酸棒杆菌 ATCC 13032菌株和高产 L-赖氨酸的 北京棒杆菌 AS1.563菌株。 于 30 V、 120 rpm, 在 BHIS培养基中复苏 2 h, 然后选择出 同源重组阳性的单克隆, 经测序确认正确后, 分别得到染色体的非编码区位点插入了额 外拷贝的 acnR基因的 (低 /低 /高产 L-赖氨酸) 棒状杆菌, 分别被命名为 YP-14857 、 YP- 14896和 YP-14860。 实施例 5赖氨酸发酵魏
对于 E. coli的发酵, 将 E. coli K12 W3110 A3菌株、 E. coli NRRL B-12185菌株以及 实施例 1_3构建的 E. coli菌株分别接种在 25 mL表 1所述的种子培养基中, 于 37 。C、 220 rpm培养 9 h。 然后取 1 mL种子培养基的培养物接种在 25 mL表 1所述的发酵培养 基中, 于 37 V、 220 rpm培养培养 48 h。 当培养完成时, 通过 HPLC测定 L-赖氨酸的产 生。
表 1 E. coli培养基配方
种子培养基配方 发酵培养基配方
(成分) ( g/L) ( g/L)
葡萄糖 15 40
硫酸铵 4 10
磷酸二氢钾 3 1.6
七水硫酸镁 0.4 1
七水硫酸亚铁 0.01 0.03
一水硫酸锰 0.01 0.03
酵母提取物 2.0 4.0 碳酸钙 25
KOH pH 7.0 pH 7.0
L-酪氨酸 0.1
L-蛋氨酸 0.5
L-苏氨酸 0.1
L-异亮氨酸 0.05
对于棒状杆菌的发酵, 将棒状杆菌 AS1.299菌株、 ATCC13032菌株和 AS1.563菌株 以及实施例 2-4构建的棒状杆菌菌株分别接种在 30 mL表 2所述的种子培养基中, 于 30 V、 220 rpm培养 8 h。 然后取 1 mL种子培养基的培养物接种在 30 mL表 2所述的发 酵培养基中, 于 30°C、 220 rpm培养培养 48 h。 当培养完成时, 通过 HPLC测定 L-赖氨 酸的产生。 表 2棒状杆菌培养基配方
Figure imgf000015_0001
结果如表 3所示,无论对于大肠杆菌还是棒状杆菌,对相应菌株的乌头酸酶本身结构 进行突变 (如, 缺失或替换) 以降低该酶的活性, 或者对相应菌株的乌头酸酶基因的调 控元件进行改造 (如, 替换和插入) 以降低该酶的表达量, 都有助于 L-赖氨酸产量的提 高。 表 3 各种菌株的 L-赖氨酸产量
菌株 L-赖氨酸产量 (g/L) 产量提高比率 (%)
E. coli NRRL B-12185 1.5 -
YP-13633 2.1 40
ΥΡ-13675 1.8 20
ΥΡ- 13627 2.0 33
Ε. coli K12 W3110 Δ3 10.2 -
ΥΡ- 13664 16.1 57.8
ΥΡ-13699 12.5 22.5
ΥΡ-13682 14.1 38.2 棒状杆菌 AS 1.299 1.2 -
ΥΡ-14808 1.6 33
ΥΡ-14755 1.9 58
ΥΡ-14857 1.4 17 棒状杆菌 ATCC 13032 1.1 -
ΥΡ-14852 1.5 36
ΥΡ-14732 2.0 82
ΥΡ-14896 1.3 18 棒状杆菌 AS1.563 23.5 -
ΥΡ-14837 27.4 16.6
ΥΡ-14780 31.2 32.8
ΥΡ-14860 25.6 8.9

Claims

权利要求 1, 发酵生产 L-赖氨酸的方法或者提高 L-赖氨酸的发酵量的方法, 其包括:
( 1 ) 改造细菌染色体上乌头酸酶基因和 /或其调控元件, 使其乌头酸酶的酶活性和 / 或表达量降低但不消失; 和,
(2) 用步骤 (1 ) 改造而得到的细菌发酵生产 L-赖氨酸。
2,改造获得的细菌在发酵生产 L-赖氨酸或者提高 L-赖氨酸的发酵量中的应用,其中, 所述改造获得是改造细菌染色体上乌头酸酶基因和 /或其调控元件而获得, 而且使改造获 得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失。
3, 改造细菌的方法, 其包括改造所述细菌染色体上乌头酸酶基因和 /或其调控元件, 使改造获得的细菌的乌头酸酶的酶活性和 /或表达量降低但不消失。
4, 权利要求 1-3之任一所述的方法或应用, 其中, 改造细菌染色体上乌头酸酶基因 是对所述乌头酸酶基因的核苷酸序列进行添加、 缺失或替换一个或多个核苷酸。
5, 权利要求 4所述的方法或应用, 其中, 替换包括对所述乌头酸酶基因的起始密码 子进行替换, 优选替换为 GTG。
6, 权利要求 4所述的方法或应用, 其中, 缺失包括对所述乌头酸酶基因的核苷酸序 列进行缺失, 优选缺失 1-120个核苷酸, 更优选缺失 1-90个核苷酸, 最优选缺失 90个核 苷酸, 如对所述乌头酸酶基因的核苷酸序列的终止密码子前缺失 90个核苷酸。
7, 权利要求 1-6之任一所述的方法或应用, 其中, 所述乌头酸酶基因的核苷酸序列 如 SEQ ID No: 1或 2所示。
8, 权利要求 1-3之任一所述的方法或应用, 其中, 改造细菌染色体上乌头酸酶基因 的调控元件是对所述乌头酸酶基因的调控元件的核苷酸序列进行添加、 缺失或替换一个 或多个核苷酸。
9, 权利要求 8所述的方法或应用, 其中, 所述调控元件是启动子, 优选所述启动子 的核苷酸序列如 SEQ ID No: 4或 6所示。
10, 权利要求 8所述的方法或应用, 其中, 替换包括对所述乌头酸酶基因的启动子 的核苷酸序列进行替换, 优选替换为如 SEQ ID No: 3或 5所示的核苷酸序列。
11, 权利要求 8所述的方法或应用, 其中, 所述调控元件是转录阻遏蛋白, 优选所 述转录阻遏蛋白的核苷酸序列如 SEQ ID No: 7所示。
12, 权利要求 8所述的方法或应用, 其中, 添加包括对所述乌头酸酶基因的转录阻 遏蛋白的核苷酸序列进行添加, 优选添加串联如 SEQ ID No: 8和 7所示的核苷酸序列。 13, 权利要求 1-12之任一所述的方法或应用, 其中, 所述细菌是埃希氏菌属或棒杆 菌属细菌, 优选是大肠杆菌、 谷氨酸棒杆菌或北京棒杆菌。
14, 权利要求 3-13之任一所述的方法改造而得到的细菌。
15, 多核苷酸, 其核苷酸序列选自,
( a)对如 SEQ ID No: 1所示的核苷酸序列的起始密码子进行替换 (优选替换为 GTG) 后获得的核苷酸序列;
(b ) 对如 SEQ ID No: 1或 2所示的核苷酸序列进行缺失 (优选缺失 1-120个核苷 酸, 更优选缺失 1-90个核苷酸, 最优选缺失 90个核苷酸) 后获得的核苷酸序列, 如对 如 SEQ ID No : 1或 2所示的核苷酸序列的终止密码子前缺失 90个核苷酸后获得的核苷 酸序列; 和,
( c) 串联如 SEQ ID No: 8和 7所示的核苷酸序列。
16, 载体, 其包含权利要求 15所述的多核苷酸。
17,权利要求 15所述的多核苷酸和 /或权利要求 16所述的载体在权利要求 1-13之任 一所述的方法或应用中的应用。
18, 权利要求 15所述的多核苷酸和 /或权利要求 16所述的载体在制备权利要求 14 所述的细菌中的应用。
PCT/CN2014/070228 2013-02-08 2014-01-07 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法 WO2014121669A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020157024148A KR102127181B1 (ko) 2013-02-08 2014-01-07 아코니트산수화 효소 유전자와(또는) 그 조절요소를 개조한 세균 발효를 통한 l-리신 생산방법
JP2015556383A JP6335196B2 (ja) 2013-02-08 2014-01-07 アコニターゼ遺伝子および/またはその調節エレメントの改変により、l−リジンを生産する方法
ES14748825.8T ES2673582T3 (es) 2013-02-08 2014-01-07 Método de generación de L-lisina por medio de bacterias fermentadoras que poseen un gen de aconitasa y/o un elemento regulador modificado
DK14748825.8T DK2824186T3 (en) 2013-02-08 2014-01-07 L-light generation method using fermentation bacteria with modified aconitic gene and / or regulatory element
CN201480002118.6A CN104619852B (zh) 2013-02-08 2014-01-07 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法
EP14748825.8A EP2824186B1 (en) 2013-02-08 2014-01-07 L-lysine generation method by fermenting bacteria having modified aconitase gene and/or regulatory element
CA2900580A CA2900580C (en) 2013-02-08 2014-01-07 Method for producing l-lysine by modifying aconitase gene and/or regulatory elements thereof
US14/384,370 US20160002684A1 (en) 2013-02-08 2014-01-07 Method for Producing L-Lysine by Modifying Aconitase Gene and/or Regulatory Elements thereof
RU2015134995A RU2792116C2 (ru) 2013-02-08 2014-01-07 Способ получения L-лизина модифицированием гена аконитазы и/или его регуляторных элементов

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310050196.0 2013-02-08
CN201310050196.0A CN103131738B (zh) 2013-02-08 2013-02-08 用改变乌头酸酶调控元件的细菌发酵生产l-赖氨酸的方法
CN201310050144.3 2013-02-08
CN201310050144.3A CN103146772B (zh) 2013-02-08 2013-02-08 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-赖氨酸的方法

Publications (1)

Publication Number Publication Date
WO2014121669A1 true WO2014121669A1 (zh) 2014-08-14

Family

ID=51299239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070228 WO2014121669A1 (zh) 2013-02-08 2014-01-07 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法

Country Status (8)

Country Link
US (1) US20160002684A1 (zh)
EP (1) EP2824186B1 (zh)
JP (1) JP6335196B2 (zh)
KR (1) KR102127181B1 (zh)
CA (1) CA2900580C (zh)
DK (1) DK2824186T3 (zh)
ES (1) ES2673582T3 (zh)
WO (1) WO2014121669A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040469A1 (zh) 2016-09-01 2018-03-08 宁夏伊品生物科技股份有限公司 发酵生产l-赖氨酸的棒杆菌
CN110607313A (zh) * 2019-09-27 2019-12-24 内蒙古伊品生物科技有限公司 一种高产l-赖氨酸的重组菌株及其构建方法与应用
CN110846312A (zh) * 2019-09-29 2020-02-28 黑龙江伊品生物科技有限公司 一种sdaA基因的启动子核酸序列、含有该核酸序列的重组菌株及其应用
CN111909944A (zh) * 2020-06-08 2020-11-10 内蒙古伊品生物科技有限公司 一种lysC基因改造的重组菌株及其构建方法与应用
CN111979165A (zh) * 2020-08-07 2020-11-24 黑龙江伊品生物科技有限公司 一种产l-赖氨酸的重组菌株及其构建方法与应用
WO2021248890A1 (zh) 2020-06-08 2021-12-16 黑龙江伊品生物科技有限公司 产l-赖氨酸的重组菌株及其构建方法与应用
WO2021248902A1 (zh) 2020-06-08 2021-12-16 内蒙古伊品生物科技有限公司 产l-氨基酸的重组菌株及其构建方法与应用
WO2022027924A1 (zh) 2020-08-07 2022-02-10 宁夏伊品生物科技股份有限公司 一种产l-氨基酸的重组菌株及其构建方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
CN1289368A (zh) 1998-09-25 2001-03-28 味之素株式会社 构建产生氨基酸的细菌的方法,及通过发酵该经构建的产生氨基酸的细菌以制备氨基酸的方法
CN101631871A (zh) 2007-02-22 2010-01-20 味之素株式会社 L-氨基酸的生产方法
CN102191289A (zh) * 2011-03-18 2011-09-21 宁夏伊品生物科技股份有限公司 赖氨酸的发酵制备
CN103131738A (zh) * 2013-02-08 2013-06-05 宁夏伊品生物科技股份有限公司 用改变乌头酸酶调控元件的细菌发酵生产l-赖氨酸的方法
CN103146772A (zh) * 2013-02-08 2013-06-12 宁夏伊品生物科技股份有限公司 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-赖氨酸的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117152C (zh) * 1994-03-04 2003-08-06 味之素株式会社 生产l-赖氨酸的方法
DE19956686A1 (de) 1999-11-25 2001-05-31 Degussa Neue für die Gene sucC und sucD codierende Nukleotidsequenzen
US6897055B2 (en) * 1999-11-25 2005-05-24 Degussa Ag Nucleotide sequences coding for the genes sucC and sucD
WO2006116400A2 (en) * 2005-04-27 2006-11-02 Massachusetts Institute Of Technology Promoter engineering and genetic control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
CN1289368A (zh) 1998-09-25 2001-03-28 味之素株式会社 构建产生氨基酸的细菌的方法,及通过发酵该经构建的产生氨基酸的细菌以制备氨基酸的方法
CN101631871A (zh) 2007-02-22 2010-01-20 味之素株式会社 L-氨基酸的生产方法
CN102191289A (zh) * 2011-03-18 2011-09-21 宁夏伊品生物科技股份有限公司 赖氨酸的发酵制备
CN103131738A (zh) * 2013-02-08 2013-06-05 宁夏伊品生物科技股份有限公司 用改变乌头酸酶调控元件的细菌发酵生产l-赖氨酸的方法
CN103146772A (zh) * 2013-02-08 2013-06-12 宁夏伊品生物科技股份有限公司 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-赖氨酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Microbiology Experiments", HIGHER EDUCATION PRESS
"Molecular Cloning: A Laboratory Manual", SCIENCE PRESS

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040469A1 (zh) 2016-09-01 2018-03-08 宁夏伊品生物科技股份有限公司 发酵生产l-赖氨酸的棒杆菌
CN110607313A (zh) * 2019-09-27 2019-12-24 内蒙古伊品生物科技有限公司 一种高产l-赖氨酸的重组菌株及其构建方法与应用
CN110607313B (zh) * 2019-09-27 2021-06-22 内蒙古伊品生物科技有限公司 一种高产l-赖氨酸的重组菌株及其构建方法与应用
CN110846312A (zh) * 2019-09-29 2020-02-28 黑龙江伊品生物科技有限公司 一种sdaA基因的启动子核酸序列、含有该核酸序列的重组菌株及其应用
CN110846312B (zh) * 2019-09-29 2020-11-10 黑龙江伊品生物科技有限公司 一种sdaA基因的启动子核酸序列、含有该核酸序列的重组菌株及其应用
CN111909944A (zh) * 2020-06-08 2020-11-10 内蒙古伊品生物科技有限公司 一种lysC基因改造的重组菌株及其构建方法与应用
WO2021248890A1 (zh) 2020-06-08 2021-12-16 黑龙江伊品生物科技有限公司 产l-赖氨酸的重组菌株及其构建方法与应用
WO2021248902A1 (zh) 2020-06-08 2021-12-16 内蒙古伊品生物科技有限公司 产l-氨基酸的重组菌株及其构建方法与应用
CN111979165A (zh) * 2020-08-07 2020-11-24 黑龙江伊品生物科技有限公司 一种产l-赖氨酸的重组菌株及其构建方法与应用
CN111979165B (zh) * 2020-08-07 2021-05-07 黑龙江伊品生物科技有限公司 一种产l-赖氨酸的重组菌株及其构建方法与应用
WO2022027924A1 (zh) 2020-08-07 2022-02-10 宁夏伊品生物科技股份有限公司 一种产l-氨基酸的重组菌株及其构建方法与应用

Also Published As

Publication number Publication date
EP2824186A4 (en) 2015-11-25
JP2016506737A (ja) 2016-03-07
RU2015134995A3 (zh) 2019-03-28
CA2900580A1 (en) 2014-08-14
US20160002684A1 (en) 2016-01-07
EP2824186B1 (en) 2018-04-11
ES2673582T3 (es) 2018-06-22
KR20150115009A (ko) 2015-10-13
CA2900580C (en) 2022-05-31
KR102127181B1 (ko) 2020-06-30
JP6335196B2 (ja) 2018-05-30
RU2015134995A (ru) 2019-03-28
EP2824186A1 (en) 2015-01-14
DK2824186T3 (en) 2018-07-23

Similar Documents

Publication Publication Date Title
TWI694151B (zh) Atp磷酸核糖基轉移酶變體及使用該變體製造l-組胺酸之方法
WO2014121669A1 (zh) 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法
WO2019085445A1 (zh) 生产l-赖氨酸的重组菌、其构建方法以及l-赖氨酸的生产方法
JP2021500914A5 (zh)
JP2016506756A (ja) L−バリン産生能が向上した菌株及びこれを用いたl−バリンの産生方法
CN104619852A (zh) 用改变乌头酸酶基因和/或其调控元件的细菌发酵生产l-赖氨酸的方法
JP6463806B2 (ja) L−アルギニン産生能が向上したコリネバクテリウム属微生物およびこれを用いたl−アルギニンの産生方法
CN113201535A (zh) 谷氨酸脱氢酶基因启动子的突变体及其应用
US11905540B2 (en) Corynebacterium for producing L-lysine by fermentation
JP2019047790A (ja) L−アミノ酸を生産する微生物、及びそれを利用してl−アミノ酸を生産する方法
WO2008007914A1 (en) A nucleotide sequence of a mutant argf with increased activity and a method for producing l-arginine using a transformed cell containing the same
JP7350994B2 (ja) 新規なプロモーター及びそれを用いた標的物質生産方法
KR101687474B1 (ko) L-아르기닌 생산능이 향상된 코리네박테리움속 미생물 및 이를 이용한 l-아르기닌의 생산 방법
CN117264034B (zh) Bbd29_09715基因突变体及其在制备l-谷氨酸中的应用
US20110124059A1 (en) Method for production of l-glutamine
RU2792116C2 (ru) Способ получения L-лизина модифицированием гена аконитазы и/или его регуляторных элементов
WO2023142859A1 (zh) 修饰的棒状杆菌属微生物及其构建方法和应用
CN116334112A (zh) 氨基酸生产菌株的构建方法及其应用
JP2024515389A (ja) L-リシン生産能が向上したコリネバクテリウム・グルタミカム変異株及びそれを用いたl-リシンの生産方法
CN115449518A (zh) 基于mdh基因的具有启动子活性的多核苷酸及其用途
CN115873852A (zh) 重组核酸序列、基因工程菌及生产1,5-戊二胺的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14384370

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014748825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015556383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2900580

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015134995

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157024148

Country of ref document: KR

Kind code of ref document: A