WO2014117495A1 - 一种芯片封装结构及芯片封装方法 - Google Patents

一种芯片封装结构及芯片封装方法 Download PDF

Info

Publication number
WO2014117495A1
WO2014117495A1 PCT/CN2013/081054 CN2013081054W WO2014117495A1 WO 2014117495 A1 WO2014117495 A1 WO 2014117495A1 CN 2013081054 W CN2013081054 W CN 2013081054W WO 2014117495 A1 WO2014117495 A1 WO 2014117495A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
heat
heat dissipation
dissipation cover
main
Prior art date
Application number
PCT/CN2013/081054
Other languages
English (en)
French (fr)
Inventor
刘伟峰
丁丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13830196.5A priority Critical patent/EP2784810B1/en
Publication of WO2014117495A1 publication Critical patent/WO2014117495A1/zh
Priority to US14/457,935 priority patent/US9466597B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a chip package structure and a chip mounting method.
  • chip heat dissipation has become one of the bottlenecks of chip design.
  • chip heat dissipation in addition to using hardware (heat sink) to achieve chip heat dissipation, the design of the chip itself will have a significant impact on heat dissipation.
  • the heat generated by the chip itself except for a small part of the heat dissipation through the bottom carrier and the solder joint, the main heat is dissipated through the surface of the chip. Therefore, in today's chip package design, a heat dissipation cover is generally disposed on the chip.
  • the heat dissipation cover usually has two designs, one is to bond the heat dissipation cover to the chip and the carrier through a heat conductive material to form a sealed package structure;
  • the heat-dissipating cover is directly bonded to the chip with a heat-conducting material, and is not in contact with the carrier.
  • the chip in addition to heat-dissipating the chip on the chip, the chip can be directly exposed to the outside, and the heat sink directly dissipates heat through the contact between the heat-conducting material and the chip.
  • the chip contains both a master chip and a slave chip, the functions of these chips are different, so that the power consumption of the response is also different.
  • the main chip is mainly a logic operation chip and the power consumption is high, the relative heat dissipation requirement is relatively high, and the slave chip is generally a memory chip, and the power consumption is low, and the corresponding heat dissipation requirement is low,
  • the chip package structure with the heat dissipation cover cannot effectively dissipate heat to the chip, and the chip in the chip package structure without the heat dissipation cover has a high risk of chip breakage, and the chip is easily broken.
  • Embodiments of the present invention provide a chip package structure and a chip package method, which are capable of protecting a chip and effectively dissipating heat from the chip.
  • a chip package structure including: a carrier board, a chip, and a heat dissipation cover, among them:
  • the chip includes: at least one main chip disposed on the carrier board and at least one slave chip disposed on the carrier board;
  • the heat dissipation cover is adhered to the slave chip by a heat conductive material, and the heat dissipation cover covers the at least one slave chip; and the heat dissipation cover includes a heat dissipation window at a position corresponding to at least one of the master chips.
  • the chip package structure further includes: a heat sink, wherein:
  • the heat sink is bonded to the at least one main chip through a heat conductive material on each of the main chips at the heat dissipation window, and is bonded to the heat dissipation cover through a heat conductive material on the heat dissipation cover.
  • the heat dissipation cover includes a first package strip disposed on an edge of the heat dissipation cover and disposed on the side of the carrier board, and the first package strip is adhered The junction material is bonded to the carrier.
  • the heat dissipation cover further includes:
  • a second package strip disposed around the at least one main chip and disposed on the side of the carrier, the second package strip being bonded to the carrier by an adhesive material.
  • the heat sink further includes: a boss structure inside the heat dissipation window corresponding to the position of the main chip, each of the boss structures being bonded to the corresponding main chip by a heat conductive material on each of the main chips.
  • the chip package structure further includes the heat dissipation And a heat transfer sheet at a heat dissipation window between each of the main chips, each of the heat transfer sheets being bonded to the heat sink by a heat conductive material between the heat sink, each of the heat transfer The sheet is bonded to the corresponding main chip by a thermally conductive material between the corresponding main chip.
  • an area of the heat dissipation window is greater than or equal to an upper surface area of the corresponding main chip.
  • the heat conductive material is a heat dissipation interface material.
  • a chip packaging method including:
  • At least one of the carrier plates is coated with a layer of thermally conductive material to bond the heat dissipating cover to the at least one slave chip.
  • the packaging method further includes:
  • the packaging method further includes :
  • the packaging method further includes:
  • the packaging method further includes:
  • a heat conductive material is coated on each of the heat transfer sheets, and the heat sink is bonded to each of the heat transfer sheets.
  • the heat dissipation cover is bonded from the chip through the heat conductive material, and a heat dissipation window is opened at a position corresponding to the heat dissipation cover of each main chip, and the heat sink is passed through the heat dissipation window.
  • the main chip and the heat-conducting material on the heat-dissipating cover are bonded to each other, thereby protecting the chip and effectively dissipating heat from the chip.
  • FIG. 1 is a schematic cross-sectional view of a chip package structure according to an embodiment of the present invention.
  • FIG. 2a is a schematic top view of a chip package structure in a package process according to an embodiment of the present invention
  • FIG. 2b is a schematic view of the MM in the process of packaging the chip package structure shown in FIG. 2a;
  • 3a is a schematic structural diagram of another chip package structure packaging process according to an embodiment of the present invention.
  • FIG. 3b is a schematic view of the S S in the process of packaging the chip package structure shown in FIG. 3a;
  • FIG. 4 is a schematic structural view of a top view of a chip package structure in a package process according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional structural diagram of a heat dissipation cover structure according to an embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional view of another heat dissipation cover structure according to an embodiment of the present invention
  • FIG. 7 is a cross-sectional structural view of another chip package structure according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional structural view of still another chip package structure according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a chip encapsulation method according to an embodiment of the present invention
  • FIG. 10 is a schematic flowchart of another chip encapsulation method according to an embodiment of the present invention. Schematic diagram of a chip packaging method flow;
  • FIG. 12 is a schematic flow chart of another chip packaging method according to another embodiment of the present invention.
  • SIP Sys t em In a Package
  • the S IP structure is a distribution of at least one slave chip around a master chip.
  • the power consumption is different depending on the function.
  • the main chip is mainly a logic operation chip, and the power consumption is relatively high, so the relative heat dissipation requirement is relatively high
  • the slave chip is generally a memory chip, and the power consumption is low, so the corresponding heat dissipation requirement is low. Therefore, the existing design of the heat sink cover on the chip is not suitable for these chip package structures.
  • the embodiments of the present invention provide a chip package structure, which can have different designs for the heat dissipation cover according to different chips.
  • the chip package structure provided by the present invention comprises: a carrier board 1, a chip 2 and a heat dissipation cover 3, wherein:
  • the chip 2 described above includes: at least one master chip 21 disposed on the carrier board and at least one slave chip 22 disposed on the carrier board.
  • the mounting structure of the chip 1 on the carrier board mainly includes two types: a symmetric structure and an asymmetric structure, and the symmetric structure generally places the main chip 21 in the middle of the carrier board 1.
  • the other slave chip 22 is tiled around the main chip 21; the asymmetric structure generally has only one main chip 21 and one slave chip 22 on the carrier board 1, and the slave chip 22 is stacked by TSV (through silicon via) technology.
  • TSV through silicon via
  • the heat dissipation cover 3 is adhered to the slave chip 21 by the heat conductive material 5, and the heat dissipation cover 3 covers at least one slave chip 21; the position of the heat dissipation cover 3 corresponding to the at least one main chip 22 includes a heat dissipation window 31 (ie, the heat dissipation cover can be used) 3, the position of all the main chips 22 is opened with a heat dissipation window 31, and the heat dissipation cover 3 corresponding to one or several of the main chips 22 may be selected to open the heat dissipation window 31).
  • a heat dissipation window 31 ie, the heat dissipation cover can be used
  • the area of the heat dissipation window 31 is greater than or equal to the upper surface area of the corresponding main chip 21.
  • the heat dissipation window 31 is opened on the heat dissipation cover 3, that is, the heat dissipation efficiency of the high power consumption main chip 2 1 can be effectively improved, and the low power consumption slave chip 22 can be protected from the breakage of the chip 22 .
  • the heat dissipation cover 3 includes a first package strip 32 disposed on the edge of the heat dissipation cover 3 and disposed on the side of the carrier board 1.
  • the first package strip 32 is bonded to the carrier board 2 through the bonding material 6.
  • the heat dissipation cover 3 further includes: a second package strip 33 disposed around the at least one main chip 21 and disposed on the side of the carrier board 1, and the second package strip 33 is bonded to the carrier board 1 by the bonding material 6.
  • the structure of the heat dissipation cover 3 includes the following three types: one is a heat dissipation cover structure directly on the upper surface from the chip 11 through the heat conductive material 5; One is a heat dissipation cover structure composed of a heat dissipation cover 3 directly on the upper surface of the chip 22 and a first package strip 32 disposed on the side of the heat dissipation cover 3 and disposed on the side of the carrier plate 1 One is a heat dissipation cover 3 directly on the upper surface of the chip 11 through the heat conductive material 5, and a first package strip 32 disposed on the side of the heat dissipation cover 3 and disposed on the side of the carrier 1 and at least one A heat dissipation cover structure composed of a second package strip 33 disposed around the main chip and disposed on the carrier 1 side.
  • the chip package structure further includes: a heat sink 4, wherein:
  • the heat sink 4 passes through the heat dissipation window 31.
  • the heat conductive material 5 on each of the main chips 21 is bonded to at least one main chip 21, and is bonded to the heat dissipation cover 3 through the heat conductive material 5 on the heat dissipation cover 3.
  • the heat sink 4 further includes: a boss structure 41 located inside the heat dissipation window 31 corresponding to the position of each main chip 21, and each of the boss structures 41 passes through each of the main chips 21 respectively.
  • the upper thermal conductive material 5 is bonded to the corresponding main chip 21.
  • the chip package structure further includes a heat transfer sheet 42 located at the heat dissipation window 31 between the heat sink 4 and each of the main chips 21, and each heat transfer sheet 42 passes through the heat sink 4
  • the intermediate heat conductive material 5 is bonded to the heat sink 4, and each of the heat transfer sheets 42 is bonded to the corresponding main chip 21 by the heat conductive material 5 between the corresponding main chips 21.
  • the above-mentioned boss structure and the heat transfer sheet are both for avoiding a height difference between the main chip and the heat dissipation cover, and when the heat sink is mounted, a gap exists between the heat sink and the main chip, so that air enters, and the air is again It is a poor conductor of heat that hinders the transfer of heat from the main chip to the heat sink. Therefore, a bump structure or a heat sink is added between the main chip and the heat sink to eliminate the height difference between the main chip and the heat sink cover.
  • the heat sink 4 when the heat sink 4 further includes a boss structure 41 located inside the heat dissipation window 31 corresponding to the position of each of the main chips 21, the heat conductive material 5 on each of the main chips 21 is directly passed through. Corresponding main chip 2 1 is bonded; when the heat sink 4 does not include the above-mentioned boss structure 41, as shown in FIG. 9, the chip package structure further includes a heat dissipation window 31 between the heat sink 4 and each of the main chips 21. a heat transfer sheet 42 bonded to the corresponding main chip 2 1 by the heat conductive material 5 between the corresponding main chip 21, and through the heat conductive material 5 and the heat sink with the heat sink 4 4 bonding.
  • the heat conductive material 5 mentioned in the embodiment of the present invention is a heat dissipation interface material.
  • the heat dissipation interface material is generally a thermal silica gel.
  • the heat dissipating interface material can not only reduce the contact thermal resistance generated between the surface of the heat source and the contact surface of the heat sink member, but also fill the gap between the contact surfaces well, and extrude the air out of the contact surface, avoiding the Air (air is a poor conductor of heat) that blocks the transfer of heat between the contact surfaces.
  • the addition of the heat-dissipating interface material can make the contact between the contact surfaces more complete and truly face-to-face contact.
  • the heat-dissipating interface material is generally used as a binder to function as a device. Inter-bonding.
  • the heat dissipation cover is bonded on the chip through the heat conductive material, and a heat dissipation window is opened at a position corresponding to the heat dissipation cover of each main chip, and the heat sink passes through each main chip at the heat dissipation window.
  • the heat-conducting material on the heat-dissipating cover is bonded to each other, thereby protecting the chip and effectively dissipating heat from the chip.
  • the embodiment of the present invention specifically describes a chip packaging method. As shown in FIG. 9, the packaging method includes the following steps:
  • the specific bonding process is as follows: firstly, the heat conductive material is coated or placed on at least one slave chip, and the heat dissipation cover is bonded according to the orientation on the heat conductive material, and the heat conductive material needs to be cured after bonding the heat dissipation cover, and the curing temperature is generally At around 150C, the curing time is generally between thirty minutes and two hours.
  • the heat dissipation cover is prepared, and then the content in the subsequent step 101 is performed.
  • the heat dissipating cover manufacturing material includes: copper, copper alloy or A l S i C silicon carbide aluminum, wherein: when the heat dissipating cover is made of copper or copper alloy, Go to step a1. When the heat-dissipating cover is made of A l S i C silicon carbide, go to step bl.
  • a l take the corresponding size of the copper block, the copper block is milled into the shape of the corresponding heat sink cover; a 2, the heat dissipation window is milled at the position corresponding to the main chip that does not require the heat sink cover;
  • the milled heat sink cover is coated with a layer of nickel in the plating bath to protect the copper from oxidation.
  • step 101 further includes:
  • step 101 further includes:
  • the above bonding material is mainly used for bonding the heat dissipation cover and the carrier plate, and may be an epoxy resin adhesive, a low temperature glass or the like for bonding.
  • the chip packaging method further includes:
  • the heat sink when the heat sink is installed, not only the heat conductive material can be bonded, but also the heat sink can be mounted on the heat dissipation cover by mechanical fixing, such as by screws.
  • the chip packaging method provided by the embodiment of the invention bonds the heat dissipation cover from the chip through the heat conductive material, and opens a heat dissipation window at a position corresponding to the heat dissipation cover of each main chip, and passes the heat sink through each main chip at the heat dissipation window.
  • the heat-conducting material on the heat-dissipating cover is bonded to each other, thereby protecting the chip and effectively dissipating heat from the chip.
  • FIG. 11 Another chip packaging method provided by the present invention, as shown in FIG. 11, the packaging method steps are as follows:
  • the specific bonding process is as follows: firstly, the heat conductive material is coated or placed on at least one slave chip, and the heat dissipation cover is bonded according to the orientation on the heat conductive material, and the heat conductive material needs to be cured after bonding the heat dissipation cover, and the curing temperature is generally At around 150C, the curing time is generally between thirty minutes and two hours. And before the step 101 is performed, the heat dissipation cover is first made, and the manufacturing method of the heat dissipation cover is as described in the above embodiment, and details are not described herein again.
  • step 101 further includes a heat dissipation cover
  • step 201 further includes:
  • step 201 further includes:
  • the above bonding material is mainly used for bonding the heat dissipation cover and the carrier plate, and may be an epoxy resin adhesive, a low temperature glass or the like for bonding.
  • the chip packaging method further includes step 202 and step 203, wherein :
  • the steps 201 and 202 are not sequential, that is, the heat transfer sheet may be bonded first, or the heat dissipation cover may be bonded first.
  • the chip packaging method provided by the embodiment of the invention bonds the heat dissipation cover from the chip through the heat conductive material, and opens a heat dissipation window at a position corresponding to the heat dissipation cover of each main chip, and passes the heat sink through each main chip at the heat dissipation window.
  • the heat-conducting material on the heat-dissipating cover is bonded to each other, thereby protecting the chip and effectively dissipating heat from the chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

提供了一种芯片封装结构及芯片封装方法,涉及电子技术领域,既能够保护芯片,又能够对芯片进行有效的散热。该芯片封装结构包括:载板(1)、芯片和散热盖(3),其中,该芯片包括:至少一个设置在载板(1)上的主芯片(21)和至少一个设置在载板(1)上的从芯片(22);散热盖(3)通过导热材料(5)粘接在从芯片(22)上,该散热盖(3)覆盖至少一个从芯片(22);该散热盖(3)上对应至少一个主芯片(21)的位置上包括散热窗口。该芯片封装结构和芯片封装方法可应用于多芯片封装。

Description

一种芯片封装结构及芯片封装方法 本申请要求于 2013 年 1 月 31 日提交中国专利局、 申请号为 201310039004.6 , 发明名称为 "一种芯片封装结构及芯片封装方法" 的中国专 利申请优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域, 尤其涉及一种芯片封装结构及芯片封 装方法。
背景技术
现今, 芯片散热已经成为芯片设计的瓶颈之一, 对于芯片散热, 除了利用硬件 (散热器) 实现芯片散热外, 芯片本身的设计也会对散 热产生明显影响。 而芯片本身产生的热量, 除了少部分通过底部载板 以及焊点向外散热, 其主要热量是通过芯片表面散热的。 因此, 现今 芯片封装设计一般是在芯片上面加散热盖, 这种散热盖通常有两种设 计, 一种是将散热盖通过导热材料粘结在芯片和载板上, 形成密封封 装结构; 一种是直接将散热盖用导热材料粘接在芯片上, 不和载板接 触。 此外, 除了在芯片上面加散热盖对芯片进行散热, 还可以直接将 芯片棵露在外面, 散热器直接通过导热材料和芯片接触进行散热。
但是, 在多芯片封装设计中, 由于芯片中既包含主芯片又包含从 芯片, 而这些芯片的功能又不同使得响应的功耗也不同。 其中, 由于 主芯片主要是逻辑运算芯片, 功耗较高, 则相对的对散热的要求比较 高, 而从芯片一般是存储芯片, 功耗较低, 则相应的对散热的要求较 低, 因此, 加散热盖的芯片封装结构不能有效的对芯片进行散热, 而 不加散热盖的芯片封装结构中的芯片破裂风险很高, 芯片容易破裂。 发明内容
本发明的实施例提供一种芯片封装结构及芯片封装方法, 既能够 保护芯片, 又能够对芯片进行有效的散热。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种芯片封装结构, 包括: 载板、 芯片和散热盖, 其中:
所述芯片包括: 至少一个设置在所述载板上的主芯片和至少一个 设置在所述载板上的从芯片;
所述散热盖通过导热材料粘接在所述从芯片上, 所述散热盖覆盖 所述至少一个从芯片; 所述散热盖上对应至少一个所述主芯片的位置 上包括散热窗口。
在第一种可能的实现方式中, 根据第一方面, 所述芯片封装结构 还包括: 散热器, 其中:
所述散热器通过所述散热窗口处每个所述主芯片上的导热材料与 所述至少一个主芯片粘接, 通过所述散热盖上的导热材料与所述散热 盖粘接。
在第二种可能的实现方式中, 根据第一方面, 所述散热盖包括位 于所述散热盖四周的边缘且设置在所述载板侧的第一封装条, 所述第 一封装条通过粘结材料与所述载板粘接。
在第三种可能的实现方式中, 根据第二种可能的实现方式, 所述 散热盖还包括:
位于所述至少一个主芯片四周且设置在所述载板侧的第二封装 条, 所述第二封装条通过粘结材料与所述载板粘接。
在第四种可能的实现方式中, 结合第一方面或第一种可能的实现 方式或第二种可能的实现方式或第三种可能的实现方式, 所述散热器 还包括: 位于每个所述主芯片位置对应的散热窗口内部的凸台结构, 每个所述凸台结构分别通过每个所述主芯片上的导热材料与对应的所 述主芯片粘接。
在第五种可能的实现方式中, 结合第一方面或第一种可能的实现 方式或第二种可能的实现方式或第三种可能的实现方式, 所述芯片封 装结构还包括位于所述散热器和每个所述主芯片之间散热窗口处的传 热片, 每个所述传热片通过与所述散热器之间的导热材料与所述散热 器粘接, 每个所述传热片通过与对应的所述主芯片之间的导热材料与 对应的所述主芯片粘接。 在第六种可能的实现方式中, 结合第一方面或第一种可能的实现 方式或第二种可能的实现方式或第三种可能的实现方式或第四种可能 的实现方式或第五种可能的实现方式, 所述散热窗口的面积大于或等 于对应的所述主芯片的上表面积。
在第七种可能的实现方式中, 根据第六种可能的实现方式中, 所 述导热材料为散热界面材料。
第二方面, 提供一种芯片封装方法, 包括:
在载板的至少一个从芯片上涂覆一层导热材料,将散热盖粘接在 所述至少一个从芯片上。
在第一种可能的实现方式中, 根据第二方面, 所述封装方法还包 括:
在所述散热盖和所述载板的至少一个主芯片上涂覆一层导热材 料, 将所述散热器粘接在所述载板的至少一个主芯片上, 将所述散热 器粘接在所述散热盖上。
在第二种可能的实现方式中, 根据第二方面, 若所述散热盖包括 位于所述散热盖四周的边缘且设置在所述载板侧的第一封装条时, 所 述封装方法还包括:
在所述载板上所述第一封装条对应的位置上涂覆一层粘结材料, 将所述散热盖上的第一封装条粘接在所述载板上。
在第三种可能的实现方式中, 根据第二种可能的实现方式中, 若 所述散热盖还包括位于所述至少一个主芯片四周且设置在所述载板侧 的第二封装条时, 所述封装方法还包括:
在所述载板上所述第二封装条对应的位置上涂覆一层粘结材料, 将所述散热盖上的第二封装条粘接在所述载板上。
在第四种可能的实现方式中, 结合第二方面或第一种可能的实现 方式或第二种可能的实现方式或第三种可能的实现方式, 若所述芯片 封装结构还包括位于所述散热器和每个所述主芯片之间散热窗口处的 传热片时, 所述封装方法还包括:
在载板的每个主芯片上涂覆一层导热材料, 将所述传热片粘接在 每个所述主芯片上;
在每个所述传热片上涂覆一层导热材料, 将所述散热器粘接在每 个所述传热片上。
本发明实施例提供的芯片封装结构及封装方法, 在从芯片上通过 导热材料粘接散热盖, 并在每个主芯片对应散热盖的位置上开个散热 窗口, 将散热器通过散热窗口处每个主芯片和散热盖上的导热材料相 互粘接, 从而既能够保护芯片, 又能够对芯片进行有效的散热。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1 为本发明的实施例提供的一种芯片封装结构的剖面结构示意 图;
图 2 a为本发明的实施例提供的一种芯片封装结构封装过程中的俯 视结构示意图;
图 2 b为图 2 a所示的芯片封装结构封装过程中的 MM, 剖面结构示 意图;
图 3 a为本发明的实施例提供的另一种芯片封装结构封装过程中的 结构示意图;
图 3b为图 3a所示的芯片封装结构封装过程中的 S S, 剖面结构示 意图;
图 4 为本发明的实施例提供的一种芯片封装结构封装过程中的俯 视的结构示意图;
图 5为本发明的实施例提供的一种散热盖结构的剖面结构示意图; 图 6 为本发明的实施例提供的另一种散热盖结构的剖面结构示意 图;
图 7 为本发明的实施例提供的另一种芯片封装结构的剖面结构示 意图;
图 8 为本发明的实施例提供的再一种芯片封装结构的剖面结构示 意图;
图 9为本发明的实施例提供的一种芯片封装方法流程示意图; 图 10为本发明的实施例提供的另一种芯片封装方法流程示意图; 图 1 1 为本发明的另一实施例提供的一种芯片封装方法流程示意 图;
图 12为本发明的另一实施例提供的另一种芯片封装方法流程示意 图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
现有的多芯片封装设计, 如系统集成封装 ( Sys t em In a Package , 简称 S IP ) , —般是将电子系统所需要的多个芯片或者器件集成在一个 封装内, 而典型的多芯片 S IP 结构是一个主芯片周围分布至少一个从 芯片, 对于这些芯片来说, 功能不同使得其响应的功耗也不同。 其中, 主芯片主要是逻辑运算芯片, 功耗较高, 因此相对的对散热的要求比 较高, 而从芯片一般是存储芯片, 功耗较低, 因此相应的对散热的要 求较低。 因此, 现有的在芯片上加散热盖的设计都不适合这些芯片封 装结构。 而本发明的实施例提供一种芯片封装结构, 能够根据芯片的 不同, 对散热盖有不同的设计。 如图 1 所示, 本发明提供的芯片封装 结构包括: 载板 1、 芯片 2和散热盖 3 , 其中:
上述芯片 2包括: 至少一个设置在载板上的主芯片 21和至少一个 设置在载板上的从芯片 22。 其中, 如图 2a、 2b、 3a、 3b所示, 芯片 1在载板上的安置结构主 要包括两种: 对称结构和非对称结构, 对称结构一般是将主芯片 21放 置在载板 1 的中间位置, 其他从芯片 22平铺在主芯片 21周围; 非对 称结构一般载板 1 上只有一个主芯片 21和一个从芯片 22 , 从芯片 22 是通过 TSV (硅通孔)技术堆叠在一起的存储芯片, 对于这种将存储芯 片堆叠在一起的结构功耗更小, 但相对应的这种结构更脆弱, 需要散 热盖提供相应的保护。
散热盖 3通过导热材料 5粘接在从芯片 21上, 该散热盖 3覆盖至 少一个从芯片 21 ; 该散热盖 3上对应至少一个主芯片 22的位置包括散 热窗口 31 (即可以将该散热盖 3上对应所有主芯片 22的位置都开有散 热窗口 31 ,也可以选择其中一个或几个主芯片 22对应的散热盖 3位置 开散热窗口 31 ) 。
可选的, 该散热窗口 31 的面积大于或等于对应的主芯片 21 的上 表面积。 这样在散热盖 3上开散热窗口 31 , 即能够有效提高高功耗的 主芯片 2 1 的散热效率, 又能够对低功耗的从芯片 22提供保护, 避免 从芯片 22的破裂。
进一步可选的, 上述的散热盖 3 包括位于散热盖 3 四周的边缘且 设置在载板 1侧的第一封装条 32 , 该第一封装条 32通过粘结材料 6与 载板 2粘接。
进一步可选的, 散热盖 3还包括: 位于至少一个主芯片 21四周且 设置在载板 1侧的第二封装条 33 , 该第二封装条 33通过粘结材料 6与 载板 1粘接。
具体的, 参照图 1、 4、 5、 6所示, 散热盖 3的结构包括以下三种: 一种是在从芯片 11上通过导热材料 5直接在上表面上加的一层散热盖 结构; 一种是在从芯片 22上通过导热材料 5直接在上表面上加的一层 散热盖 3及位于散热盖 3四周的边缘且设置在载板 1侧的第一封装条 32组成的散热盖结构; 一种是在从芯片 11上通过导热材料 5直接在上 表面上加的一层散热盖 3 及位于散热盖 3 四周的边缘且设置在载板 1 侧的第一封装条 32及位于至少一个主芯片四周且设置在载板 1侧的第 二封装条 33组成的散热盖结构。 进一步可选的, 如图 7、 8所示, 该芯片封装结构还包括: 散热器 4 , 其中:
散热器 4通过散热窗口处 31每个主芯片 2 1上的导热材料 5与至 少一个主芯片 21粘接,通过散热盖 3上的导热材料 5与散热盖 3粘接。
进一步可选的, 如图 7 所示, 该散热器 4还包括: 位于每个主芯 片 21位置对应的散热窗口 31 内部的凸台结构 41 ,每个凸台结构 41分 别通过每个主芯片 21上的导热材料 5与对应的主芯片 21粘接。
进一步可选的, 如图 8 所示, 芯片封装结构还包括位于散热器 4 和每个主芯片 21之间散热窗口 31处的传热片 42 ,每个传热片 42通过 与散热器 4之间的导热材料 5与散热器 4粘接, 每个传热片 42通过与 对应的主芯片 21之间的导热材料 5与对应的主芯片 21粘接。
其中, 上述的凸台结构和传热片都是为了避免由于主芯片与散热 盖有高度落差, 在安装散热器时, 而使得散热器与主芯片之间存在空 隙, 使得空气进入, 而空气又是热量的不良导体, 会阻碍热量从主芯 片向散热器的传递。 因此, 在主芯片与散热器中间加上凸台结构或散 热片消除主芯片与散热盖之间的高度落差。
具体的, 参照图 7、 8所示, 当散热器 4还包括位于每个主芯片 21 位置对应的散热窗口 31 内部的凸台结构 41 时, 直接通过每个主芯片 21上的导热材料 5与对应的主芯片 2 1粘接; 当散热器 4不包括上述的 凸台结构 41 时, 参照图 9所示, 该芯片封装结构还包括位于散热器 4 和每个主芯片 21之间散热窗口 31处的传热片 42 ,该传热片 42通过与 对应的主芯片 21之间的导热材料 5与对应的主芯片 2 1 粘接, 并通过 与散热器 4之间的导热材料 5与散热器 4粘接。
可选的, 本发明的实施例中提到的导热材料 5 为散热界面材料。 该散热界面材料一般为导热硅胶。 这种散热界面材料不仅能够减少热 源表面与散热器件接触面之间产生的接触热阻, 还能很好的填充接触 面之间的空隙, 将空气挤出接触面, 避免由于接触面之间的空气 (空 气是热的不良导体) , 阻碍热量在接触面之间的传递。 而且有了散热 界面材料的补充还可以使接触面之间的接触更充分, 真正做到面对面 的接触。 除此之外, 该散热界面材料一般还作为粘合剂, 起到器件之 间的粘合作用。
本发明实施例提供的芯片封装结构, 在从芯片上通过导热材料粘 接散热盖, 并在每个主芯片对应散热盖的位置上开个散热窗口, 将散 热器通过散热窗口处每个主芯片和散热盖上的导热材料相互粘接, 从 而既能够保护芯片, 又能够对芯片进行有效的散热。
本发明的实施例具体的描述了一种芯片封装方法, 如图 9 所示, 该封装方法包括如下步骤:
101、 在载板的至少一个从芯片上涂覆一层导热材料, 将散热盖粘 接在至少一个从芯片上.
具体的粘接过程为: 首先将导热材料涂覆或者放置在至少一个从 芯片上, 并在导热材料上根据取向粘接散热盖, 粘接好散热盖之后就 需要固化导热材料, 且一般固化温度在 150C左右, 固化时间一般在在 三十分钟到两个小时。
其中, 在进行步骤 101 之前要先制作出散热盖, 再进行后续步骤 101中的内容。 在制作散热盖之前首先要确定散热盖制作的材料, 该散 热盖制作材料包括: 铜、 铜合金或 A l S i C 碳化硅铝, 其中: 当散热盖 制作的材料为铜或铜合金时, 转到步骤 a l , 当散热盖制作的材料为 A l S i C碳化硅铝时, 转到步骤 bl。
具体的, 散热盖的制作流程:
a l、 取相应尺寸大小的铜块, 将铜块铣成对应的散热盖的形状; a 2、 在主芯片对应的不需要散热盖的位置铣出散热窗口;
a 3、 将铣好的散热盖在电镀池中镀上一层镍层, 保护铜不被氧化。 或者,
釆用浇铸的方法制作散热盖, 具体步骤;
bl、 根据散热盖的形状和尺寸制作出与散热盖相同的模具; b2、 将铝和 S i C 碳化硅的混合物在高温的环境下浇注再模具中, 然后冷却到室温, 取出散热盖。
进一步可选的, 若步骤 101 中的散热盖还包括位于散热盖四周的 边缘且设置在载板侧的第一封装条时, 步骤 1 01还包括:
101 a , 在载板上第一封装条对应的位置上涂覆一层粘结材料, 将 散热盖上的第一封装条粘接在载板上。
进一步可选的, 若步骤 101 中的散热盖还包括位于至少一个主芯 片四周且设置在载板侧的第二封装条时, 步骤 101还包括:
101 b , 在载板上第二封装条对应的位置上涂覆一层粘结材料, 将 散热盖上的第二封装条粘接在载板上。
其中, 上述的粘结材料主要是用于将散热盖与载版粘结在一起, 可以为环氧树脂粘结剂, 低温玻璃等用于粘结的材料。
可选的, 如图 10所示, 该芯片封装方法还包括:
102、 在散热盖和载板的至少一个主芯片上涂覆一层导热材料, 将 散热器粘接在载板的至少一个主芯片上, 将散热器粘接在散热盖上。
具体的, 在安装散热器时不仅可以通过导热材料进行粘接, 还可 以通过机械固定的方式将散热器安装在散热盖上, 如通过螺钉安装。
本发明实施例提供的芯片封装方法, 在从芯片上通过导热材料粘 接散热盖, 并在每个主芯片对应散热盖的位置上开个散热窗口, 将散 热器通过散热窗口处每个主芯片和散热盖上的导热材料相互粘接, 从 而既能够保护芯片, 又能够对芯片进行有效的散热。
本发明提供的另一种芯片封装方法, 如图 11所示, 该封装方法步 骤如下:
201、 在载板的至少一个从芯片上涂覆一层导热材料,将散热盖粘 接在至少一个从芯片上。
具体的粘接过程为: 首先将导热材料涂覆或者放置在至少一个从 芯片上, 并在导热材料上根据取向粘接散热盖, 粘接好散热盖之后就 需要固化导热材料, 且一般固化温度在 150C左右, 固化时间一般在在 三十分钟到两个小时。 且在进行步骤 101之前首先要制先作出散热盖, 而散热盖的制作方法如上述实施例所述, 这里不再赘述。
进一步可选的, 若步骤 101 中的散热盖还包括位于散热盖四周的 边缘且设置在载板侧的第一封装条时, 步骤 2 01还包括:
201 a , 在载板上第一封装条对应的位置上涂覆一层粘结材料, 将 散热盖上的第一封装条粘接在载板上。
进一步可选的, 若步骤 201 中的散热盖还包括位于至少一个主芯 片四周且设置在载板侧的第二封装条时, 步骤 201还包括:
201 b , 在载板上第二封装条对应的位置上涂覆一层粘结材料, 将 散热盖上的第二封装条粘接在载板上。
其中, 上述的粘结材料主要是用于将散热盖与载版粘结在一起, 可以为环氧树脂粘结剂, 低温玻璃等用于粘结的材料。
可选的, 如图 1 2所示, 若芯片封装结构还包括位于散热器和每个 主芯片之间散热窗口处的传热片时, 该芯片封装方法还包括步骤 202 和步骤 2 03 , 其中:
202、 在载板的每个主芯片上涂覆一层导热材料, 将传热片粘接在 每个主芯片上。
此外, 由于主芯片与散热盖之间有散热窗口, 因此步骤 201 与步 骤 202 并没有先后顺序, 即可以先进行传热片的粘接, 也可以先进行 散热盖的粘接。
203、 在每个传热片上和散热盖上涂覆一层导热材料, 将散热器粘 接在每个传热片和散热盖。
本发明实施例提供的芯片封装方法, 在从芯片上通过导热材料粘 接散热盖, 并在每个主芯片对应散热盖的位置上开个散热窗口, 将散 热器通过散热窗口处每个主芯片和散热盖上的导热材料相互粘接, 从 而既能够保护芯片, 又能够对芯片进行有效的散热。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发 明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种芯片封装结构, 其特征在于, 包括: 载板、 芯片和散热盖, 其中:
所述芯片包括: 至少一个设置在所述载板上的主芯片和至少一个 设置在所述载板上的从芯片;
所述散热盖通过导热材料粘接在所述从芯片上, 所述散热盖覆盖 所述至少一个从芯片; 所述散热盖上对应至少一个所述主芯片的位置 上包括散热窗口。
2、 根据权利要求 1所述的芯片封装结构, 其特征在于, 所述芯片 封装结构还包括: 散热器, 其中:
所述散热器通过所述散热窗口处每个所述主芯片上的导热材料与 所述至少一个主芯片粘接, 通过所述散热盖上的导热材料与所述散热 盖粘接。
3、 根据权利要求 1所述的芯片封装结构, 其特征在于, 所述散热 盖包括位于所述散热盖四周的边缘且设置在所述载板侧的第一封装 条, 所述第一封装条通过粘结材料与所述载板粘接。
4、 根据权利要求 3所述的芯片封装结构, 其特征在于, 所述散热 盖还包括:
位于所述至少一个主芯片四周且设置在所述载板侧的第二封装 条, 所述第二封装条通过粘结材料与所述载板粘接。
5、 根据权利要求 1~4任一项所述的芯片封装结构, 其特征在于, 所述散热器还包括: 位于每个所述主芯片位置对应的散热窗口内部的 凸台结构, 每个所述凸台结构分别通过每个所述主芯片上的导热材料 与对应的所述主芯片粘接。
6、 根据权利要求 1~4任一项所述的芯片封装结构, 其特征在于, 所述芯片封装结构还包括位于所述散热器和每个所述主芯片之间散热 窗口处的传热片, 每个所述传热片通过与所述散热器之间的导热材料 与所述散热器粘接, 每个所述传热片通过与对应的所述主芯片之间的 导热材料与对应的所述主芯片粘接。
7、 根据权利要求 1~6任一项所述的芯片封装结构, 其特征在于, 所述散热窗口的面积大于或等于对应的所述主芯片的上表面积。
8、 根据权利要求 7所述的芯片封装结构, 其特征在于, 所述导热 材料为散热界面材料。
9、 一种芯片封装方法, 其特征在于, 包括:
在载板的至少一个从芯片上涂覆一层导热材料, 将散热盖粘接在 所述至少一个从芯片上。
1 0、 根据权利要求 9 所述的芯片封装方法, 其特征在于, 所述封 装方法还包括:
在所述散热盖和所述载板的至少一个主芯片上涂覆一层导热材 料, 将所述散热器粘接在所述载板的至少一个主芯片上, 将所述散热 器粘接在所述散热盖上。
1 1、 根据权利要求 9 所述的芯片封装方法, 其特征在于, 若所述 散热盖包括位于所述散热盖四周的边缘且设置在所述载板侧的第一封 装条时, 所述封装方法还包括:
在所述载板上所述第一封装条对应的位置上涂覆一层粘结材料, 将所述散热盖上的第一封装条粘接在所述载板上。
1 2、 根据权利要求 1 1所述的芯片封装方法, 其特征在于, 若所述 散热盖还包括位于所述至少一个主芯片四周且设置在所述载板侧的第 二封装条时, 所述封装方法还包括:
在所述载板上所述第二封装条对应的位置上涂覆一层粘结材料, 将所述散热盖上的第二封装条粘接在所述载板上。
1 3、根据权利要求 9~1 2任一项所述的芯片封装方法,其特征在于, 若所述芯片封装结构还包括位于所述散热器和每个所述主芯片之间散 热窗口处的传热片时, 所述封装方法还包括:
在载板的每个主芯片上涂覆一层导热材料, 将所述传热片粘接在 每个所述主芯片上; 在每个所述传热片上涂 ^ 层导热材料, 将所述散热器粘接在每 个所述传热片上。
PCT/CN2013/081054 2013-01-31 2013-08-08 一种芯片封装结构及芯片封装方法 WO2014117495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13830196.5A EP2784810B1 (en) 2013-01-31 2013-08-08 Chip packaging structure and chip packaging method
US14/457,935 US9466597B2 (en) 2013-01-31 2014-08-12 Chip package structure and chip packaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310039004.6 2013-01-31
CN201310039004.6A CN103117275B (zh) 2013-01-31 2013-01-31 一种芯片封装结构及芯片封装方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/457,935 Continuation US9466597B2 (en) 2013-01-31 2014-08-12 Chip package structure and chip packaging method

Publications (1)

Publication Number Publication Date
WO2014117495A1 true WO2014117495A1 (zh) 2014-08-07

Family

ID=48415606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081054 WO2014117495A1 (zh) 2013-01-31 2013-08-08 一种芯片封装结构及芯片封装方法

Country Status (4)

Country Link
US (1) US9466597B2 (zh)
EP (1) EP2784810B1 (zh)
CN (1) CN103117275B (zh)
WO (1) WO2014117495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841458B (zh) * 2023-07-25 2024-05-01 頎邦科技股份有限公司 具有散熱罩之晶片構造製造方法及其構造

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117275B (zh) * 2013-01-31 2015-08-19 华为技术有限公司 一种芯片封装结构及芯片封装方法
CN104185356B (zh) * 2013-05-24 2017-09-29 华为技术有限公司 光模块散热系统
JP2016225413A (ja) * 2015-05-28 2016-12-28 株式会社ジェイテクト 半導体モジュール
US9831153B1 (en) * 2016-12-09 2017-11-28 Metal Industries Research & Development Centre Heat dissipating device
CN108511404B (zh) * 2017-02-28 2020-03-10 华为技术有限公司 芯片封装系统
US10643920B1 (en) * 2017-03-24 2020-05-05 Juniper Networks, Inc. Lid for semiconductor electronic package
US10775576B2 (en) * 2018-03-01 2020-09-15 Ayar Labs, Inc. Thermal management system for multi-chip-module and associated methods
US20210321527A1 (en) * 2018-05-18 2021-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Power Supply Device and Printed Circuit Board Device Comprising Same
CN108762442B (zh) * 2018-05-24 2020-04-28 华为技术有限公司 散热装置及其制造方法、服务器
CN109830465B (zh) * 2018-12-12 2024-05-14 南方科技大学 一种芯片封装结构及芯片封装方法
CN110379781B (zh) * 2019-06-05 2021-05-11 苏州通富超威半导体有限公司 Bga产品的使用方法
KR102704716B1 (ko) 2020-02-26 2024-09-10 삼성전자주식회사 반도체 패키지 및 그의 제조 방법
CN114981963A (zh) * 2020-03-31 2022-08-30 华为技术有限公司 系统级封装及电子设备
CN212517170U (zh) * 2020-05-30 2021-02-09 华为技术有限公司 一种芯片封装结构及电子设备
WO2022041010A1 (zh) * 2020-08-26 2022-03-03 华为技术有限公司 一种芯片封装结构、电子设备
US11670563B2 (en) * 2021-06-24 2023-06-06 STATS ChipPAC Pte. Ltd. Thermally enhanced FCBGA package
CN114937660A (zh) * 2022-04-21 2022-08-23 盛合晶微半导体(江阴)有限公司 一种电子封装结构
CN115332187A (zh) * 2022-10-14 2022-11-11 北京华封集芯电子有限公司 一种基于中介层的封装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255646A1 (en) * 2003-06-30 2005-11-17 Intel Corporation Heatsink device and method
CN101110397A (zh) * 2006-07-18 2008-01-23 日月光半导体制造股份有限公司 芯片封装结构
CN101276795A (zh) * 2008-04-21 2008-10-01 日月光半导体制造股份有限公司 半导体封装构造
CN101379612A (zh) * 2006-02-24 2009-03-04 富士通株式会社 半导体装置
CN103117275A (zh) * 2013-01-31 2013-05-22 华为技术有限公司 一种芯片封装结构及芯片封装方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611671B2 (ja) * 1994-07-26 1997-05-21 日本電気株式会社 半導体装置
US5587882A (en) * 1995-08-30 1996-12-24 Hewlett-Packard Company Thermal interface for a heat sink and a plurality of integrated circuits mounted on a substrate
US7031162B2 (en) * 2003-09-26 2006-04-18 International Business Machines Corporation Method and structure for cooling a dual chip module with one high power chip
US7598958B1 (en) * 2004-11-17 2009-10-06 Nvidia Corporation Multi-chip graphics processing unit apparatus, system, and method
US7254034B2 (en) * 2004-12-15 2007-08-07 Lucent Technologies Inc. Thermal management for shielded circuit packs
JP2008218669A (ja) * 2007-03-02 2008-09-18 Nec Electronics Corp 半導体装置
JP2012028484A (ja) * 2010-07-22 2012-02-09 Panasonic Corp モジュールと、その製造方法
JP5779042B2 (ja) * 2011-08-18 2015-09-16 新光電気工業株式会社 半導体装置
US9076754B2 (en) * 2013-08-02 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC packages with heat sinks attached to heat dissipating rings
US9263394B2 (en) * 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9368479B2 (en) * 2014-03-07 2016-06-14 Invensas Corporation Thermal vias disposed in a substrate proximate to a well thereof
FR3023059B1 (fr) * 2014-06-25 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit integre comportant un dissipateur de chaleur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255646A1 (en) * 2003-06-30 2005-11-17 Intel Corporation Heatsink device and method
CN101379612A (zh) * 2006-02-24 2009-03-04 富士通株式会社 半导体装置
CN101110397A (zh) * 2006-07-18 2008-01-23 日月光半导体制造股份有限公司 芯片封装结构
CN101276795A (zh) * 2008-04-21 2008-10-01 日月光半导体制造股份有限公司 半导体封装构造
CN103117275A (zh) * 2013-01-31 2013-05-22 华为技术有限公司 一种芯片封装结构及芯片封装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784810A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841458B (zh) * 2023-07-25 2024-05-01 頎邦科技股份有限公司 具有散熱罩之晶片構造製造方法及其構造

Also Published As

Publication number Publication date
US9466597B2 (en) 2016-10-11
EP2784810A1 (en) 2014-10-01
EP2784810B1 (en) 2019-04-10
CN103117275B (zh) 2015-08-19
CN103117275A (zh) 2013-05-22
US20140346661A1 (en) 2014-11-27
EP2784810A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2014117495A1 (zh) 一种芯片封装结构及芯片封装方法
US10297523B2 (en) Power module and method for manufacturing the same
US20030205368A1 (en) Adhesive to attach a cooling device to a thermal interface
US20060214286A1 (en) Integrated circuit thermal management method and apparatus
TWI637680B (zh) 散熱結構及其製作方法及電子設備
TWI508238B (zh) 晶片散熱系統
US8716830B2 (en) Thermally efficient integrated circuit package
TW200845329A (en) Heat-dissipating type semiconductor package
TWI603441B (zh) 功率模組及其製造方法
CN102569223B (zh) 一种功率器件绝缘散热结构及电路板、电源设备
EP3792969A1 (en) Semiconductor package having liquid-cooling lid
WO2018233672A1 (zh) 一种芯片封装结构
CN104134633A (zh) 大功率芯片柔性基板封装结构及封装工艺
JP2011238643A (ja) パワー半導体モジュール
TWI702887B (zh) 軟性線路板結構
TW201636562A (zh) 功率模組及其熱界面結構
JPS60137041A (ja) 樹脂封止形半導体装置
TWI761864B (zh) 散熱式晶片級封裝結構
JP2011199110A (ja) パワー半導体装置及びその製造方法
TW202021069A (zh) Igbt模組散熱結構改良
KR20150089618A (ko) 절연성이 향상된 방열기판
JP2005243803A (ja) 放熱器付きコンデンサ基板
TWI726567B (zh) 發光元件散熱結構及其製作方法
WO2013127329A1 (zh) 一种用于光伏蜂窝组件模块的光伏接线盒
JP2011514663A5 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013830196

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE