WO2014115638A1 - メマンチンの製造プロセス - Google Patents

メマンチンの製造プロセス Download PDF

Info

Publication number
WO2014115638A1
WO2014115638A1 PCT/JP2014/050716 JP2014050716W WO2014115638A1 WO 2014115638 A1 WO2014115638 A1 WO 2014115638A1 JP 2014050716 W JP2014050716 W JP 2014050716W WO 2014115638 A1 WO2014115638 A1 WO 2014115638A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
dimethyladamantane
reaction
iii
dimethyl
Prior art date
Application number
PCT/JP2014/050716
Other languages
English (en)
French (fr)
Inventor
哲也 下
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201480005882.9A priority Critical patent/CN104936942A/zh
Priority to US14/762,566 priority patent/US9452971B2/en
Priority to EP14743873.3A priority patent/EP2949643A4/en
Priority to JP2014558542A priority patent/JP6094837B2/ja
Publication of WO2014115638A1 publication Critical patent/WO2014115638A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups

Definitions

  • the present invention relates to a method for producing 3,5-dimethyl-1-adamantanamine.
  • NMDA N-methyl-D-aspartic acid
  • the agent acts as a low-affinity anti-competitive, electrical-dependent antagonist for the NMDA receptor.
  • this drug is released from the NMDA receptor for transient high-concentration glutamate produced by physiological nerve excitation and does not affect normal neurotransmission or long-term potentiation (LTP) formation.
  • LTP long-term potentiation
  • this agent has a different mechanism of action from the acetylcholinesterase inhibitor, it can be used in combination with donepezil. Therefore, this drug may expand the range of Alzheimer's disease treatment.
  • Non-Patent Document 1 discloses a method of synthesizing 1-acetamido-3,5-dimethyladamantane by reacting 3,5-dimethyl-1-adamantanol with acetonitrile and trifluoroacetic acid.
  • Patent Document 1 discloses a method for synthesizing aminoadamantanes. This synthesis method includes the following steps.
  • A1 A step of brominating adamantanes to synthesize bromoadamantanes, followed by hydrolysis to synthesize and isolate adamantanols.
  • A2) A step of converting adamantanols to acetamide adamantanes.
  • A3) A step of deacetylating acetamidoadamantanes to obtain aminoadamantanes.
  • Patent Document 2 discloses a method of synthesizing 1-amidoadamantanes by reacting an adamantane with an organic nitrile compound, concentrated sulfuric acid and a carbocation compound in an organic solvent.
  • Patent Document 3 discloses a method for synthesizing memantine hydrochloride with improved stirring properties by using an organic acid as a solvent.
  • This synthesis method includes the following steps.
  • (B1) A step of reacting 1-halo-3,5-dimethyladamantane with nitrile and concentrated sulfuric acid in an organic acid.
  • (B2) A step of adding water to the reaction solution obtained in (b1) to obtain 1-acetamido-3,5-dimethyladamantane as crystals.
  • B3 A step of reacting the 1-acetamido-3,5-dimethyladamantane obtained in (b2) with a base in an alcohol.
  • (B4) A step of extracting the reaction liquid obtained in (b3) and then adding hydrochloric acid to obtain memantine hydrochloride by crystallization.
  • Patent Document 4 discloses a method of synthesizing memantine hydrochloride in one pot. This synthesis method includes the following steps.
  • (C1) A step of synthesizing 1-acetamido-3,5-dimethyladamantane by reacting 1,3-dimethyladamantane with acetonitrile and an acid.
  • (C2) A step of synthesizing memantine by reacting with a base in an alcohol solvent without isolating 1-acetamido-3,5-dimethyladamantane synthesized in (c1).
  • C3 A step of adding hydrochloric acid dissolved in an alcohol solvent to the memantine obtained in (c2).
  • (C4) A step of obtaining memantine hydrochloride by adding an ester solvent to the solution of (c3).
  • Patent Document 5 discloses a method for synthesizing memantine hydrochloride in one pot. This synthesis method includes the following steps. (D1) A step of reacting 1-halo-3,5-dimethyladamantane with phosphoric acid and nitrile. (D2) A step of synthesizing memantine hydrochloride without isolating 1-acetamido-3,5-dimethyladamantane obtained in (d1).
  • Patent Document 6 discloses a method for synthesizing memantine in one pot. This synthesis method includes the following steps.
  • (E1) A step of reacting 1-bromoadamantanes with acetamide and an inorganic acid in a solvent.
  • (E2) A step of extracting the 1-acetamidoadamantanes obtained in (e1) using an organic solvent.
  • (E3) A step of adding memantine by adding a base and diethylene glycol to the solution obtained in (e2) and reacting them.
  • Non-Patent Document 1 uses 5 mol equivalent of acetonitrile and 8 mol equivalent of trifluoroacetic acid to 3,5-dimethyl-1-adamantanol, and produces a large amount of waste.
  • Patent Document 1 uses 8 mol equivalent of harmful bromine with respect to adamantanes. Moreover, 14 mol equivalent acetonitrile and 28 mol equivalent concentrated sulfuric acid are used with respect to bromoadamantanes, and a large amount of waste is produced.
  • Patent Document 2 uses 27 mol equivalent of concentrated sulfuric acid with respect to adamantanes and produces a large amount of waste.
  • Patent Document 3 uses a harmful halogen in the synthesis of 1-halo-3,5-dimethyladamantane.
  • (b1) 15 mol equivalent of acetonitrile, 13 mol equivalent of concentrated sulfuric acid and 21 mol equivalent of acetic acid are used with respect to 1-halo-3,5-dimethyladamantane, and a large amount of waste is produced.
  • Patent Document 4 uses 12 mol equivalent of acetonitrile and 24 mol equivalent of concentrated sulfuric acid with respect to 1,3-dimethyladamantane in (c1), and produces a large amount of waste.
  • the 1-acetamido-3,5-dimethyladamantane obtained in (c1) is extracted with an organic solvent and then replaced with an alcohol solvent, the number of steps increases, which is inefficient.
  • Patent Document 5 uses a harmful halogen in the synthesis of 1-halo-3,5-dimethyladamantane.
  • (d1) 5 mol equivalent of acetonitrile and 4 mol equivalent of phosphoric acid are used with respect to 1-halo-3,5-dimethyladamantane, and a large amount of waste is produced. Since the 1-acetamido-3,5-dimethyladamantane obtained in (d1) is extracted with 1-butanol and then subjected to azeotropic dehydration, the number of steps increases and is inefficient.
  • Patent Document 6 uses a harmful halogen in the synthesis of 1-bromoadamantanes.
  • (e1) 6 mol equivalent of acetamide is used with respect to 1-bromoadamantanes, and a large amount of waste is produced. Since the 1-acetamidoadamantanes obtained in (e1) are extracted with toluene, the toluene is distilled off under reduced pressure and the solvent is replaced with diethylene glycol, which increases the number of steps and is inefficient.
  • the conventional methods for synthesizing memantine have the following problems 1) to 3). 1) Since excessive amounts of acid and nitrile are used in the synthesis of 1-amido-3,5-dimethyladamantane, a large amount of acid and nitrile-derived waste is produced. 2) Use harmful halogen when synthesizing 1-halo-3,5-dimethyladamantane. 3) Since 1-amido-3,5-dimethyladamantane is extracted with an organic solvent and then replaced with an alcohol solvent, the number of steps increases, which is inefficient.
  • the conventional methods for synthesizing memantine have the following problems 4) to 6).
  • a process for producing 3,5-dimethyl-1-adamantanamine comprising the following steps (i) to (iii): (I) a step of reacting 3,5-dimethyl-1-adamantanol with an acid and a nitrile in an organic solvent to obtain a reaction solution; (Ii) adding water to the reaction solution obtained in the step (i) to obtain 1-amido-3,5-dimethyladamantane; (Iii) A step of hydrolyzing the 1-amido-3,5-dimethyladamantane obtained in the step (ii) in the presence of an alcohol-containing solvent and an inorganic base.
  • the alcohol-containing solvent used in the step (iii) includes one or more alcohols selected from the group consisting of 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol [1] to [4 ]
  • [6] The production method according to any one of [1] to [5], wherein in the step (i), the molar ratio of the acid to 3,5-dimethyl-1-adamantanol is 1 to 10.
  • the step (i) the molar ratio of nitrile to 3,5-dimethyl-1-adamantanol is 1 to 10.
  • the step of synthesizing 1-halo-3,5-dimethyladamantane using harmful halogen is not included, and in the synthesis reaction of 1-amido-3,5-dimethyladamantane, an acid for adamantanes and By significantly reducing the amount of nitrile used, by-products are suppressed and the yield is improved, and acid and nitrile-derived wastes are greatly reduced, so that 1-amide-3,5-dimethyladamantane can be synthesized.
  • the yield of the reaction solution is improved by improving the stirring property of the reaction solution.
  • hydrolysis reaction can be performed without solvent replacement. Synthetic methods can be provided.
  • (i) 3,5-dimethyl-1-adamantanol (hereinafter sometimes abbreviated as DMAO) represented by the following formula 1 is organically treated.
  • step (i) 3,5-dimethyl-1-adamantanol and nitrile represented by the above formula 1 are dissolved in an organic solvent, and an acid is added to the resulting solution to carry out a reaction to obtain a reaction solution. Is preferred.
  • 1-amido-3,5-dimethyladamantane represented by the above formula 2 is produced by adding water to the reaction solution obtained in step (i) in step (ii) described later.
  • the 3,5-dimethyl-1-adamantanol used as a raw material can be industrially or available as a reagent without any limitation.
  • the production method is not particularly limited.
  • air oxidation of 1,3-dimethyladamantane is known.
  • 3,5-dimethyl-1-adamantanol is made from 1,3-dimethyladamantane as a raw material, Journal of the American Chemical Society; vol. 122; 30; (2000); p.
  • An example of acquiring according to the method described in 7390-7391 is given.
  • the raw material obtained by this production method the use of harmful halides can be avoided, which is preferable from the viewpoint of safety and environment.
  • the acid used in step (i) include, but are not limited to, for example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, or trifluoromethanesulfone.
  • An acid etc. are mentioned. A plurality of these acids may be used in combination.
  • the acid used in step (i) preferably includes one or more selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, trifluoroacetic acid and toluenesulfonic acid, and more preferably includes concentrated sulfuric acid. Use of such an acid is preferable because the reaction rate tends to be improved.
  • the molar ratio of the acid to 3,5-dimethyl-1-adamantanol is preferably 1 to 10, more preferably 2 to 5, and still more preferably 2 to 3.
  • step (i) when the amount of acid used is less than or equal to the above upper limit value, by-products are suppressed and the yield is improved, and acid-derived waste can be greatly reduced, and it is economical. Moreover, when the amount of acid used is equal to or more than the lower limit, the reaction proceeds sufficiently and tends to be completed.
  • R of the nitrile (RCN) used in step (i) may be any of hydrogen, an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group is preferably an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group
  • the aryl group has 6 to 10 carbon atoms such as a phenyl group.
  • the aralkyl group is preferably an aralkyl group having 7 to 12 carbon atoms such as a benzyl group.
  • nitrile used in step (i) are not particularly limited, and examples thereof include methane nitrile, acetonitrile, propionitrile, benzyl nitrile, and vinyl acetonitrile.
  • the nitrile used in step (i) preferably contains one or more nitriles selected from the group consisting of methane nitrile, acetonitrile and propionitrile, more preferably acetonitrile. By using such a nitrile, the amount of nitrile-derived waste can be reduced, which is preferable.
  • step (i) since the reaction of 3,5-dimethyl-1-adamantanol and nitrile is a stoichiometric reaction, the amount of nitrile used is 1 mol of 3,5-dimethyl-1-adamantanol. It is preferable to make it 1 mol equivalent or more.
  • the molar ratio of nitrile to 3,5-dimethyl-1-adamantanol is preferably 1 to 10, more preferably 1 to 4, and further preferably 1 to 2.
  • step (i) when the amount of nitrile used is less than or equal to the above upper limit, by-products are suppressed, yield is improved, and nitrile-derived waste can be reduced.
  • step (i) by using an organic solvent, it is possible to prevent the reaction solution from increasing in viscosity and stirring properties, and to remove heat.
  • an organic solvent an organic solvent that is separable from water, does not inhibit the reaction, and dissolves 3,5-dimethyl-1-adamantanol and 1-amido-3,5-dimethyladamantane is used without any limitation. it can.
  • the organic solvent used in step (i) excludes nitriles involved in the reaction of step (i).
  • organic solvent that can be used in step (i) include, but are not limited to, for example, halogenated aliphatic hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride; aliphatic hydrocarbons such as hexane and heptane Halogenated aromatic hydrocarbons such as chlorobenzene; Aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; Ethers such as diisopropyl ether and 1,4-dioxane; Ethyl acetate, propyl acetate and butyl acetate Esters such as dimethyl carbonate and the like.
  • halogenated aliphatic hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride
  • aliphatic hydrocarbons such as hexane and heptane
  • Halogenated aromatic hydrocarbons such as chlorobenzene
  • Aromatic hydrocarbons
  • the organic solvent used in step (i) is preferably at least one selected from aliphatic hydrocarbons, aromatic hydrocarbons and ethers.
  • the organic solvent used in step (i) is more preferably hydrophobic, and further preferably includes one or more organic solvents selected from the group consisting of aliphatic hydrocarbons and aromatic hydrocarbons.
  • the organic solvent used in step (i) is particularly preferably a high boiling point, and is easy to use as a mixed solvent with an alcohol solvent during the hydrolysis reaction of 1-amido-3,5-dimethyladamantane in step (iii) described later.
  • Aromatic hydrocarbons such as toluene and xylene.
  • step (i) when toluene is used as the organic solvent used in step (i), the yield of 1-amido-3,5-dimethyladamantane is improved, and further, solvent substitution is performed before the hydrolysis reaction in step (iii) described later.
  • the manufacturing process can be simplified.
  • the organic solvent may be used alone or in combination of two or more.
  • the amount of the organic solvent used is not particularly limited, but is preferably 1 to 50 times by weight, more preferably 1 to 20 times by weight with respect to 3,5-dimethyl-1-adamantanol. And more preferably 1 to 3 times by weight.
  • the use amount of the organic solvent within the above range, the yield per unit volume of the batch is sufficient and economical without the amount of the organic solvent being excessive, and the reaction is performed without the amount of the organic solvent being too small.
  • the stirring property and heat removal of the liquid are favorable, which is preferable.
  • the reaction temperature in step (i) is not particularly limited, but is preferably in the range of 0 ° C to 100 ° C, more preferably 0 ° C to 70 ° C. By setting the reaction temperature in step (i) within the above range, the temperature is not too high and by-products are suppressed, and the reaction rate is suitable without the temperature being too low.
  • reaction time in step (i) is also not particularly limited and is not generally determined because it varies depending on the amount of acid, nitrile and organic solvent used, but usually 2 to 24 hours is sufficient.
  • Step (ii) is a step in which 1-amido-3,5-dimethyladamantane is obtained by adding water to the reaction solution obtained in step (i).
  • the 1-amido-3,5-dimethyladamantane obtained in step (ii) is preferably a compound represented by the above formula 2.
  • R is synonymous with R of the above-mentioned nitrile (RCN).
  • the amount of water to be added is preferably 3 to 10 times by weight, more preferably 3 to 5 times by weight, and still more preferably the amount of acid used in step (i). 3 to 4 times by weight.
  • the amount of water to be in the above range the yield per unit volume of one batch is suitable and economical without excessive amount of water, and liquid separation without excessively small amount of water. It is preferable because of good properties.
  • Step (iii) is a step of hydrolyzing the 1-amido-3,5-dimethyladamantane obtained in step (ii) in the presence of an alcohol-containing solvent and an inorganic base.
  • step (iii) for example, an alcohol solvent is added to the reaction solution obtained in step (ii), and then the aqueous phase is separated to mix 1-amido-3,5-dimethyladamantane.
  • a solvent solution can be obtained.
  • an alcohol solvent is added to the obtained organic phase to thereby obtain 1-amido-3,5-dimethyl.
  • a mixed solvent solution of adamantane can be obtained.
  • memantine represented by the above formula 3 can be obtained.
  • 1-amido-3,5-dimethyladamantane represented by the above formula 2 isolated from the obtained organic phase is hydrolyzed in the presence of an inorganic base and an alcohol solvent.
  • the memantine represented by the above formula 3 can also be obtained. This hydrolysis reaction can be carried out by using an autoclave under pressure even when the alcohol-containing solvent used has a low boiling point.
  • the alcohol-containing solvent used in step (iii) is not particularly limited as long as it contains an alcohol solvent, but is preferably a mixed solvent of an organic solvent and an alcohol solvent used in step (i). With such an alcohol-containing solvent, it is not necessary to perform solvent substitution before the hydrolysis reaction in the step (iii), and the manufacturing process can be simplified.
  • alcohol solvent that can be used in step (iii) include, but are not limited to, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, C1-C10 monohydric alcohol solvents such as 2-pentanol, 1-hexanol, 1-heptanol, 1-octanol, cyclohexanol, 2-ethyl-1-hexanol; carbon numbers such as ethylene glycol and propylene glycol Examples thereof include 2 to 10 divalent alcohol solvents.
  • the alcohol solvent used in step (iii) is preferably a monovalent linear primary alcohol such as 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol.
  • the alcohol-containing solvent used in step (iii) is a mixed solvent of linear primary alcohol and toluene, the yield of memantine obtained by hydrolysis in step (iii) is dramatically improved.
  • the alcohol solvent may be used alone or in combination of two or more.
  • the amount of the alcohol solvent used is preferably 0.5 to 10 times by weight, more preferably 1.0 to 5 times the amount of the organic solvent used in the step (i). It is 0.0 weight times, more preferably 1.0 to 2.0 weight times.
  • step (iii) if the amount of alcohol solvent used is less than or equal to the above upper limit value, the yield per unit volume of one batch is increased, which is economical, and the amount of alcohol solvent used is greater than or equal to the above lower limit value. And the operability of the reaction solution tends to be good.
  • the number of the liquid separation operations is preferably 2 to 5 times, more preferably 2 to 3 times.
  • the inorganic base used in step (iii) include, but are not limited to, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like.
  • the inorganic base used in step (iii) is preferably sodium hydroxide or potassium hydroxide.
  • the amount of the inorganic base to be used is preferably 4 to 20 mol equivalent, more preferably 4 to 10 mol equivalent, relative to 1-amido-3,5-dimethyladamantane.
  • the reaction temperature in step (iii) is preferably in the range of 100 ° C. to 160 ° C., more preferably in the range of 120 ° C. to 140 ° C.
  • reaction time in step (iii) varies depending on the amount of inorganic base, organic solvent, and alcohol solvent used, and thus cannot be determined unconditionally, but is preferably 18 to 30 hours, more preferably 18 to 24 hours.
  • the amount of water added to the reaction solution obtained by the hydrolysis reaction in the step (iii) is preferably 0.5 to 10 times by weight, more preferably 0. It is 5 to 5.0 times by weight, and more preferably 0.5 to 2.0 times by weight.
  • the yield per unit volume of one batch is suitable and economical without excessive amount of water, and the amount of water is too small. Without any problem, the liquid separation property is good.
  • step (iv) the number of separation operations is 2 to 5 times, preferably 2 to 3 times. By setting it within this range, it is economical and sodium hydroxide can be sufficiently washed, which is preferable.
  • the production method of the present embodiment preferably includes a step (v) in which hydrochloric acid is added to the memantine solution obtained in the step (iv) to obtain memantine hydrochloride.
  • the method for isolating and purifying memantine hydrochloride obtained in the step (v) is not particularly limited and a known method is employed.
  • the memantine hydrochloride is isolated and purified by concentrating the solution containing memantine hydrochloride obtained in the step (v), followed by crystallization by adding a poor solvent, and filtering the precipitated crystals. Is preferred.
  • Example 1 To a 300 mL round bottom flask, 3,5-dimethyl-1-adamantanol: 10.00 g (55.5 mmol), acetonitrile: 4.55 g (110.9 mmol), and toluene: 25.00 g were added to obtain a mixture. It was. In addition, 3,5-dimethyl-1-adamantanol can be obtained from p. Of Journal of the American Chemical Society (vol. 122, 30, 2000). Prepared according to the method described in 7390-7391. Next, 97% concentrated sulfuric acid: 11.00 g (108.8 mmol) was dropped into the mixed solution in the flask over 23 minutes, and the resulting reaction solution was stirred at 21 ° C.
  • Example 2 To a test tube having an outer diameter of 30 mm, 3,5-dimethyl-1-adamantanol: 1.00 g (5.50 mmol), acetonitrile: 0.46 g (11.1 mmol), and mesitylene: 9.61 g were added, and the mixture was prepared. Obtained. Thereafter, 97% concentrated sulfuric acid: 1.12 g (11.1 mmol) was added dropwise to the mixed solution in the test tube, and the resulting reaction solution was stirred at 30 ° C. for 3 hours to continue the reaction.
  • Example 3 3,5-Dimethyl-1-adamantanol: 0.09 g (0.50 mmol), Acetonitrile: 0.25 g (6.0 mmol), and Toluene: 0.87 g were added to a test tube having an outer diameter of 15 mm. Obtained. Thereafter, 0.19 g (1.00 mmol) of paratoluenesulfonic acid was added to the mixed solution in the test tube, and the resulting reaction solution was stirred at 70 ° C. for 24 hours to continue the reaction.
  • reaction yield: 64%) a toluene solution containing 1-acetamido-3,5-dimethyladamantane (reaction yield: 64%).
  • sodium hydroxide (NaOH): 0.052 g and 1-hexanol: 0.82 g were added to the obtained solution, and the resulting reaction solution was stirred at 126 ° C. for 18 hours to give 1-acetamido- Hydrolysis of 3,5-dimethyladamantane was performed. Thereafter, the production of memantine was confirmed by GC in the reaction solution (reaction yield: 96%).
  • Example 4 to 11 A toluene solution containing 1-acetamido-3,5-dimethyladamantane obtained by the same method as in Example 1 was washed with water. Thereafter, 1-acetamido-3,5-dimethyladamantane (substrate): 0.28 g (1.3 mmol) and toluene: 0.69 g were fractionated from the above solution into a test tube having an outer diameter of 15 mm. A toluene solution containing -3,5-dimethyladamantane was obtained.
  • Example 12 to 20 1-acetamido-3,5-dimethyladamantane was isolated from a toluene solution containing 0.28 g (1.3 mmol) of 1-acetamido-3,5-dimethyladamantane obtained by the same method as in Example 1. .
  • a solvent having a weight ratio as shown in Table 2 was added to the obtained 1-acetamido-3,5-dimethyladamantane to obtain a solution.
  • Sodium hydroxide: 0.20 g (5.00 mmol) is added to the obtained solution: (2.77 g), and the resulting reaction solution is heated at the solution temperature shown in Table 2 and stirred for 24 hours.
  • Examples 21 to 42 and Comparative Examples 2 and 3 The aqueous phase was removed from the toluene solution containing 1-acetamido-3,5-dimethyladamantane obtained by the same method as in Example 1 to obtain an organic phase. Next, in a test tube having an outer diameter of 15 mm, an alcohol solvent or the like was added to the organic phase containing 1-acetamido-3,5-dimethyladamantane (substrate) so that the substrate concentration shown in Table 3 was obtained. A solution was obtained. As shown in Table 3, an inorganic base was added to the resulting solution to obtain a reaction solution.
  • the obtained reaction solution was refluxed at a reaction temperature as shown in Table 3 for 24 hours to hydrolyze 1-acetamido-3,5-dimethyladamantane. Thereafter, the reaction solution was analyzed using GC. The results are shown in Table 3.
  • Example 43 to 54 The aqueous phase was removed from the toluene solution containing 1-acetamido-3,5-dimethyladamantane obtained by the same method as in Example 1 to obtain an organic phase.
  • an alcohol solvent was added to the obtained organic phase containing 1-acetamido-3,5-dimethyladamantane (substrate) so that the substrate concentration shown in Table 4 was obtained.
  • an inorganic base was added to the resulting solution to obtain a reaction solution.
  • the obtained reaction solution was heated at a reaction temperature as shown in Table 3 for 24 hours to hydrolyze 1-acetamido-3,5-dimethyladamantane. Thereafter, the reaction solution was analyzed using GC. The results are shown in Table 4.
  • DMA-tol represents a compound represented by the following chemical formula.
  • the present invention is effective in the field of pharmaceuticals and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明の3,5-ジメチル-1-アダマンタンアミンの製造方法は、以下の工程(i)~(iii)を含む。 (i)3,5-ジメチル-1-アダマンタノールを有機溶媒中で酸及びニトリルと反応させて反応液を得る工程。 (ii)前記工程(i)で得られた反応液に水を加えて1-アミド-3,5-ジメチルアダマンタンを得る工程。 (iii)前記工程(ii)で得られた1-アミド-3,5-ジメチルアダマンタンをアルコール含有溶媒及び無機塩基の存在下で加水分解する工程。

Description

メマンチンの製造プロセス
 本発明は、3,5-ジメチル-1-アダマンタンアミンの製造方法に関する。
 3,5-ジメチル-1-アダマンタンアミン(以下「メマンチン」とも記す。)は、N-メチル-D-アスパラギン酸(以下「NMDA」とも記す。)拮抗剤であり、アルツハイマー型認知症治療剤として使用されている。本剤は、NMDA受容体に対する低親和性の反競合性電気依存性拮抗剤として作用する。具体的には、本剤は、生理学的な神経興奮により生じる一過性の高濃度グルタミン酸に対してはNMDA受容体から遊離し、正常な神経伝達や長期増強(LTP)形成に影響しないが、持続的な低濃度のグルタミン酸刺激に対しては、その神経興奮毒性に保護的に作用する。また、本剤は、アセチルコリンエステラーゼ阻害剤とは別の作用機序を持つことから、ドネペジルとの併用も可能である。そのため本剤はアルツハイマー型認知症治療の幅を広げる可能性がある。
 本剤を合成する方法としては、例えば、以下のとおり様々な方法が提案されている。
 非特許文献1は3,5-ジメチル-1-アダマンタノールをアセトニトリル及びトリフルオロ酢酸と反応させることにより、1-アセトアミド-3,5-ジメチルアダマンタンを合成する方法を開示する。
 特許文献1はアミノアダマンタン類の合成法を開示する。本合成法は以下の工程を含む。(a1)アダマンタン類を臭素化し、ブロモアダマンタン類を合成後、加水分解を行い、アダマンタノール類を合成、単離する工程。(a2)アダマンタノール類をアセトアミドアダマンタン類に変換する工程。(a3)アセトアミドアダマンタン類を脱アセチル化し、アミノアダマンタン類を取得する工程。
 特許文献2はアダマンタン類を有機ニトリル化合物、濃硫酸及びカルボカチオン化合物と有機溶媒中で反応させ、1-アミドアダマンタン類を合成する方法を開示する。
 特許文献3は溶媒に有機酸を用いることで攪拌性を改善したメマンチン塩酸塩の合成法を開示する。本合成法は以下の工程を含む。(b1)1-ハロ-3,5-ジメチルアダマンタンをニトリル及び濃硫酸と有機酸中で反応させる工程。(b2)(b1)で得た反応液に水を加え1-アセトアミド-3,5-ジメチルアダマンタンを結晶として得る工程。(b3)(b2)で得た1-アセトアミド-3,5-ジメチルアダマンタンを塩基とアルコール中で反応させる工程。(b4)(b3)で得た反応液を抽出後、塩酸を加え、メマンチン塩酸塩を晶析によって得る工程。
 特許文献4はメマンチン塩酸塩のワンポットでの合成法を開示する。本合成法は以下の工程を含む。(c1)1,3-ジメチルアダマンタンをアセトニトリル及び酸と反応させることにより1-アセトアミド-3,5-ジメチルアダマンタンを合成する工程。(c2)(c1)で合成した1-アセトアミド-3,5-ジメチルアダマンタンを単離することなく、アルコール溶媒中で塩基と反応させることによりメマンチンを合成する工程。(c3)(c2)で得たメマンチンにアルコール溶媒に溶解させた塩酸を加える工程。(c4)(c3)の溶液にエステル系溶媒を加えてメマンチン塩酸塩を取得する工程。
 特許文献5はメマンチン塩酸塩のワンポットでの合成法を開示する。本合成法は以下の工程を含む。(d1)1-ハロ-3,5-ジメチルアダマンタンをリン酸及びニトリルと反応させる工程。(d2)(d1)で得た1-アセトアミド-3,5-ジメチルアダマンタンを単離することなく、メマンチン塩酸塩を合成する工程。
 特許文献6はメマンチンのワンポットでの合成法を開示する。本合成法は以下の工程を含む。(e1)1-ブロモアダマンタン類をアセトアミド及び無機酸と溶媒中で反応させる工程。(e2)(e1)で得た1-アセトアミドアダマンタン類を有機溶媒を用いて抽出する工程。(e3)(e2)で得た溶液に塩基及びジエチレングリコールを加えて反応させメマンチンを得る工程。
国際公開第2005/062724号 特許第4118555号公報 中国特許第102432473号明細書 国際公開第2009/057140号 国際公開第2006/076562号 国際公開第2008/062472号
Plakhotnik, V. M.,Kovtun, V. Yu., Yashunskii, V. G., Zhurnal Organicheskoi Khimii (1982), 18(5), 1001-5.
 しかしながら、上記先行技術文献に記載の方法は、以下のような課題がある。
 非特許文献1に記載の方法は、3,5-ジメチル-1-アダマンタノールに対して5mol当量のアセトニトリル及び8mol当量のトリフルオロ酢酸を使用しており、大量の廃棄物を産生する。
 特許文献1に記載の方法は、有害な臭素をアダマンタン類に対して8mol当量用いている。また、ブロモアダマンタン類に対して14mol当量のアセトニトリル及び28mol当量の濃硫酸を使用しており、大量の廃棄物を産生する。
 特許文献2に記載の方法は、アダマンタン類に対して27mol当量の濃硫酸を使用しており、大量の廃棄物を産生する。
 特許文献3に記載の方法は、1-ハロ-3,5-ジメチルアダマンタンの合成において有害なハロゲンを用いている。また、(b1)において1-ハロ-3,5-ジメチルアダマンタンに対して15mol当量のアセトニトリル、13mol当量の濃硫酸及び21mol当量の酢酸を使用しており、大量の廃棄物を産生する。
 特許文献4に記載の方法は、(c1)において1,3-ジメチルアダマンタンに対して12mol当量のアセトニトリル及び24mol当量の濃硫酸を使用しており、大量の廃棄物を産生する。また、(c1)で得た1-アセトアミド-3,5-ジメチルアダマンタンを有機溶媒を用いて抽出後、アルコール溶媒へと溶媒置換を行っているため、工程が増加し非効率である。
 特許文献5に記載の方法は、1-ハロ-3,5-ジメチルアダマンタンの合成において有害なハロゲンを用いている。また、(d1)において1-ハロ-3,5-ジメチルアダマンタンに対して5mol当量のアセトニトリル及び4mol当量のリン酸を使用しており、大量の廃棄物を産生する。(d1)で得た1-アセトアミド-3,5-ジメチルアダマンタンを1-ブタノールを用いて抽出後、共沸脱水を行っているため、工程が増加し非効率である。
 特許文献6に記載の方法は、1-ブロモアダマンタン類の合成において有害なハロゲンを用いている。また、(e1)において1-ブロモアダマンタン類に対して6mol当量のアセトアミドを用いており、大量の廃棄物を産生する。(e1)で得た1-アセトアミドアダマンタン類をトルエンを用いて抽出後、トルエンを減圧留去しジエチレングリコールへ溶媒置換を行っているため、工程が増加し非効率である。
 以上のように従来のメマンチンの合成法は、以下1)~3)に示す課題がある。
1)1-アミド-3,5-ジメチルアダマンタン合成の際にアダマンタン類に対して過剰量の酸及びニトリルを用いるため、酸及びニトリル由来の大量の廃棄物を産生すること。
2)1-ハロ-3,5-ジメチルアダマンタンの合成を行う場合、有害なハロゲンを用いること。
3)1-アミド-3,5-ジメチルアダマンタンを有機溶媒で抽出後、アルコール溶媒へ溶媒置換を行うため工程数が増加し非効率であること。
 さらに、従来のメマンチンの合成法は、以下4)~6)に示す課題がある。
4)1-アミド-3,5-ジメチルアダマンタン合成の際にアダマンタン類に対して過剰量の酸及びニトリルを用いるため、副生成物が増加し、収率が低下すること。
5)1-アミド-3,5-ジメチルアダマンタン合成における反応熱以外に、ニトリル及び濃硫酸の反応熱、反応停止時の濃硫酸の水和熱などの発熱があるため工業的に実施する際は安全性に問題があること。
6)1-アミド-3,5-ジメチルアダマンタン合成の際に反応液の攪拌性が不良となることで反応速度が低下し、不純物が増加するため、収率が低下すること。
 このため、有害なハロゲンを用いる1-ハロ-3,5-ジメチルアダマンタンの合成工程を含まず、また、1-アミド-3,5-ジメチルアダマンタンの合成反応において、アダマンタン類に対する酸及びニトリルの使用量を低減することにより、副生成物を抑制し収率を向上させると共に酸及びニトリル由来の廃棄物を大幅に低減させ、1-アミド-3,5-ジメチルアダマンタンの合成反応における反応液の攪拌性を良好とすることにより収率を向上させ、1-アミド-3,5-ジメチルアダマンタンの合成反応後、加水分解反応を行う際に溶媒置換を行わない工業的に安全で経済的、効率的なメマンチンの合成法が望まれている。
 かかる実状に鑑み、本発明者らは、鋭意検討を行った結果、以下に示す特徴を有するメマンチンの製造方法を見出した。
1)1-アミド-3,5-ジメチルアダマンタンの合成反応において、3,5-ジメチル-1-アダマンタノールを基質とすることでアダマンタン類に対する酸及びニトリルの使用量を大幅に低減し、過剰量の試薬を用いることによる副生成物の生成を抑制できること、1-アミド-3,5-ジメチルアダマンタン合成反応時、反応停止時の除熱が容易となること、酸及びニトリル由来の廃棄物を大幅に低減し、コスト、環境への負荷の低減が可能となること。
2)1-アミド-3,5-ジメチルアダマンタンの合成反応を有機溶媒中で行うことにより、アダマンタン類の反応液への溶解性、反応性を損なうことなく、反応液の攪拌性が向上すること。
3)1-アミド-3,5-ジメチルアダマンタンの合成反応終了後、水を加えて反応を停止し、得られた1-アミド-3,5-ジメチルアダマンタンを含む溶液にアルコール溶媒及び無機塩基を加え1-アミド-3,5-ジメチルアダマンタンの加水分解を行うことで溶媒置換を行うことなくメマンチンを得ることができ、製造工程を簡略化できること。
 すなわち、本発明は、以下の通りである。
[1]
 以下の工程(i)~(iii)を含む3,5-ジメチル-1-アダマンタンアミンの製造方法:
(i)3,5-ジメチル-1-アダマンタノールを有機溶媒中で酸及びニトリルと反応させて反応液を得る工程、
(ii)前記工程(i)で得られた反応液に水を加えて1-アミド-3,5-ジメチルアダマンタンを得る工程、
(iii)前記工程(ii)で得られた1-アミド-3,5-ジメチルアダマンタンをアルコール含有溶媒及び無機塩基の存在下で加水分解する工程。
[2]
 前記工程(i)で用いる有機溶媒が疎水性である[1]記載の製造方法。
[3]
 前記工程(i)で用いる有機溶媒が、脂肪族炭化水素及び芳香族炭化水素からなる群より選ばれる1種以上の有機溶媒を含む[1]又は[2]記載の製造方法。
[4]
 前記工程(iii)で用いるアルコール含有溶媒が1価の直鎖1級アルコールから選ばれる1種以上のアルコールを含む[1]~[3]のいずれか記載の製造方法。
[5]
 前記工程(iii)で用いるアルコール含有溶媒が1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール及び1-オクタノールからなる群より選ばれる1種以上のアルコールを含む[1]~[4]のいずれか記載の製造方法。
[6]
 前記工程(i)において、3,5-ジメチル-1-アダマンタノールに対する酸のモル比が1~10である[1]~[5]のいずれか記載の製造方法。
[7]
 前記工程(i)において、3,5-ジメチル-1-アダマンタノールに対するニトリルのモル比が1~10である[1]~[6]のいずれか記載の製造方法。
[8]
 前記工程(i)で用いる酸が、硫酸、硝酸、リン酸、トリフルオロ酢酸及びトルエンスルホン酸からなる群より選ばれる1種以上の酸を含む[1]~[7]のいずれか記載の製造方法。
[9]
 前記工程(i)で用いる酸が濃硫酸を含む[1]~[8]のいずれか記載の製造方法。
[10]
 前記工程(i)で用いるニトリルが、メタンニトリル、アセトニトリル及びプロピオニトリルからなる群より選ばれる1種以上のニトリルを含む[1]~[9]のいずれか記載の製造方法。
[11]
 前記工程(iii)で用いる無機塩基が水酸化ナトリウムまたは水酸化カリウムを含む[1]~[10]のいずれか記載の製造方法。
 本発明によれば、有害なハロゲンを用いる1-ハロ-3,5-ジメチルアダマンタンの合成工程を含まず、また、1-アミド-3,5-ジメチルアダマンタンの合成反応において、アダマンタン類に対する酸及びニトリルの使用量を大幅に低減することにより、副生成物を抑制し収率を向上させると共に酸及びニトリル由来の廃棄物を大幅に低減させ、1-アミド-3,5-ジメチルアダマンタン合成時の反応液の攪拌性を良好とすることにより収率を向上させ、1-アミド-3,5-ジメチルアダマンタンの合成反応後、溶媒置換を行うことなく加水分解反応を行うことが可能であるメマンチンの合成法を提供することができる。
 以下、本発明の実施の形態(以下「本実施形態」とも記す。)について詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本実施形態は、例えば、下記反応式(A)で示される様に、(i)下記式1で示される3,5-ジメチル-1-アダマンタノール(以下、DMAOと略すことがある)を有機溶媒中で酸及びニトリルと反応させて反応液を得る工程と、(ii)前記工程(i)で得られた反応液に水を加えて下記式2で示される1-アミド-3,5-ジメチルアダマンタン(以下、AMDAと略すことがある)を得る工程と、(iii)前記工程(ii)で得られた1-アミド-3,5-ジメチルアダマンタンをアルコール含有溶媒及び無機塩基の存在下で加水分解する工程を含む下記式3で示される3,5-ジメチル-1-アダマンタンアミンの製造方法である。
Figure JPOXMLDOC01-appb-C000001
 <工程(i)>
 工程(i)では、上記式1で示される3,5-ジメチル-1-アダマンタノール及びニトリルを有機溶媒中に溶解させ、得られた溶液に酸を添加し反応を行って反応液を得ることが好ましい。次に、後述の工程(ii)において工程(i)で得られた反応液に水を加えることで、上記式2で示される1-アミド-3,5-ジメチルアダマンタンが生成する。
 原料として使用する3,5-ジメチル-1-アダマンタノールは工業的、あるいは試薬として入手可能なものが何ら制限なく使用できる。その製法としては、特に限定されないが、例えば1,3-ジメチルアダマンタンの空気酸化などが知られている。具体的には、特に限定されないが、例えば3,5-ジメチル-1-アダマンタノールは1,3-ジメチルアダマンタンを原料としてJournal of the American Chemical Society; vol. 122; 30; (2000); p.7390-7391に記載の方法に従い取得する例が挙げられる。本製法で得られる原料を使用することで、有害なハロゲン化物の使用を避けることができ、安全面、環境面からも好適である。
 工程(i)で使用する酸を具体的に例示すると、特に限定されないが、例えば、硫酸、硝酸、塩酸、リン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸又はトリフルオロメタンスルホン酸等が挙げられる。これらの酸は複数混合して用いても構わない。工程(i)で使用する酸としては、特に硫酸、硝酸、リン酸、トリフルオロ酢酸及びトルエンスルホン酸からなる群より選ばれる1種以上を含むことが好ましく、濃硫酸を含むことがより好ましい。このような酸を使用することにより、反応速度が向上する傾向にあり、好ましい。
 工程(i)において、3,5-ジメチル-1-アダマンタノールに対する酸のモル比は、好ましくは1~10であり、より好ましくは2~5であり、さらに好ましくは2~3である。工程(i)において、酸の使用量が前記上限値以下であると、副生成物が抑制され収率が向上すると共に酸由来の廃棄物を大幅に低減させることができ、かつ経済的であり、また、酸の使用量が前記下限値以上であると、反応が十分に進行し、完結する傾向にある。
 工程(i)で使用するニトリル(RCN)のRは、水素、アルキル基、アリール基又はアラルキル基のいずれかであれば構わない。具体的には、前記アルキル基としては、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基であることが好ましく、前記アリール基としてはフェニル基等の炭素数6~10のアリール基であることが好ましく、アラルキル基としては、ベンジル基等の炭素数7~12のアラルキル基であることが好ましい。
 工程(i)で使用するニトリルの具体例としては、特に限定されないが、例えば、メタンニトリル、アセトニトリル、プロピオニトリル、ベンジルニトリル、ビニルアセトニトリル等が挙げられる。工程(i)で使用するニトリルは、好ましくはメタンニトリル、アセトニトリル及びプロピオニトリルからなる群より選ばれる1種以上のニトリルを含み、より好ましくはアセトニトリルを含む。このようなニトリルを使用することにより、ニトリル由来の廃棄物の量を低減でき、好ましい。
 工程(i)において、3,5-ジメチル-1-アダマンタノールとニトリルとの反応は量論反応であるため、ニトリルの使用量としては、3,5-ジメチル-1-アダマンタノール1molに対して1mol当量以上とすることが好ましい。工程(i)において、3,5-ジメチル-1-アダマンタノールに対するニトリルのモル比は、好ましくは1~10であり、より好ましくは1~4であり、さらに好ましくは1~2である。工程(i)において、ニトリルの使用量が前記上限値以下であると、副生成物が抑制され収率が向上すると共にニトリル由来の廃棄物を低減させることができる。
 工程(i)では有機溶媒を用いることによって反応液の粘性の増大や攪拌性が不良となることを防ぐことが出来、また除熱をすることが可能である。該有機溶媒としては、水と分離可能であり、反応を阻害せず、3,5-ジメチル-1-アダマンタノール及び1-アミド-3,5-ジメチルアダマンタンを溶解させる有機溶媒が何ら制限なく使用できる。ただし、工程(i)に用いる有機溶媒としては、工程(i)の反応に関与するニトリルは除かれる。
 工程(i)で使用出来る有機溶媒を具体的に例示すると、特に限定されないが、例えば、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化脂肪族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;クロロベンゼン等のハロゲン化芳香族炭化水素類;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類;ジイソプロピルエーテル、1,4-ジオキサン等のエーテル類;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルカーボネート等のカーボネート類等が挙げられる。工程(i)で用いる有機溶媒としては、好ましくは、脂肪族炭化水素、芳香族炭化水素及びエーテル類から選ばれる1種以上である。工程(i)で用いる有機溶媒としては、疎水性であることがより好ましく、脂肪族炭化水素及び芳香族炭化水素からなる群より選ばれる1種以上の有機溶媒を含むことがさらに好ましい。工程(i)で用いる有機溶媒として特に好ましくは、高沸点であり、後述の工程(iii)の1-アミド-3,5-ジメチルアダマンタンの加水分解反応時にアルコール溶媒との混合溶媒として使用し易いトルエン、キシレン等の芳香族炭化水素類である。中でも、工程(i)で用いる有機溶媒としてトルエンを用いると、1-アミド-3,5-ジメチルアダマンタンの収率が向上し、さらに、後述の工程(iii)の加水分解反応の前に溶媒置換を行う必要が無く、製造工程を簡略化することができる。
 なお、工程(i)において、上記有機溶媒は、1種単独で用いてもよく、2種以上併用してもよい。
 工程(i)において、有機溶媒の使用量は、特に制限は無いが、好ましくは3,5-ジメチル-1-アダマンタノールに対して1~50重量倍であり、より好ましくは1~20重量倍であり、さらに好ましくは1~3重量倍である。有機溶媒の使用量を前記範囲とすることにより、有機溶媒の量が多過ぎることなく、1バッチの単位容積あたりの収量が十分で経済的であり、また有機溶媒の量が少なすぎることなく反応液の攪拌性、除熱が良好となって好ましい。
 工程(i)での反応温度としては、特に制限は無いが、好ましくは0℃~100℃、より好ましくは0℃~70℃の範囲である。工程(i)での反応温度を前記範囲とすることにより温度が高すぎることがなくなり副生成物が抑えられ、温度が低すぎることなく反応速度が好適である。
 工程(i)での反応時間も、特に制限は無く、酸、ニトリル、有機溶媒の使用量により異なるため一概には決められないが、通常2~24時間あれば十分である。
 <工程(ii)>
 工程(ii)は、前記工程(i)で得られた反応液に水を加えて1-アミド-3,5-ジメチルアダマンタンを得る工程である。工程(ii)で得られる1-アミド-3,5-ジメチルアダマンタンは、上記式2で示される化合物であることが好ましい。上記式2中、Rは、上述のニトリル(RCN)のRと同義である。
 工程(ii)において、加える水の量は、前記工程(i)における酸の使用量に対して、好ましくは3~10重量倍であり、より好ましくは3~5重量倍であり、さらに好ましくは3~4重量倍である。加える水の量を前記範囲とすることにより、水の量が多すぎることなく、1バッチの単位容積あたりの収量が好適となって経済的であり、また水の量が少なすぎることなく分液性が良好となり好ましい。
 <工程(iii)>
 工程(iii)は、前記工程(ii)で得られた1-アミド-3,5-ジメチルアダマンタンをアルコール含有溶媒及び無機塩基の存在下で加水分解する工程である。
 具体的には、(iii)工程において、例えば、前記工程(ii)で得られた反応液にアルコール溶媒を添加後、水相を分離することで1-アミド-3,5-ジメチルアダマンタンの混合溶媒溶液を得ることができる。また他の具体例としては、例えば、前記工程(ii)で得られた反応液の水相を分離後、得られた有機相にアルコール溶媒を添加することで1-アミド-3,5-ジメチルアダマンタンの混合溶媒溶液を得ることができる。
 その後、例えば、前記得られた混合溶媒溶液に無機塩基を加え1-アミド-3,5-ジメチルアダマンタンを加水分解させることにより、上記式3で示されるメマンチンを得ることができる。また他の具体例としては、例えば、上記得られた有機相から単離した上記式2で示される1-アミド-3,5-ジメチルアダマンタンを無機塩基及びアルコール溶媒存在下で加水分解させることにより、上記式3で示されるメマンチンを得ることもできる。本加水分解反応は用いるアルコール含有溶媒が低沸点の場合においてもオートクレーブを用いて加圧下で行うことにより実施が可能である。
 工程(iii)で用いるアルコール含有溶媒としては、アルコール溶媒を含んでいれば特に限定されないが、上記工程(i)で用いた有機溶媒とアルコール溶媒との混合溶媒であることが好ましい。このようなアルコール含有溶媒であると、工程(iii)の加水分解反応の前に溶媒置換を行う必要が無く、製造工程を簡略化することができる。
 工程(iii)で使用できるアルコール溶媒の種類を具体的に例示すると、特に限定されないが、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、シクロヘキサノール、2-エチル-1-ヘキサノール等の炭素数1~10の1価のアルコール溶媒;エチレングリコール、プロピレングリコール等の炭素数2~10の2価のアルコール溶媒等が挙げられる。工程(iii)で用いるアルコール溶媒は、好ましくは1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール等の1価の直鎖1級アルコールである。特に、工程(iii)で用いるアルコール含有溶媒が、直鎖1級アルコールとトルエンとの混合溶媒である場合、工程(iii)の加水分解により得られるメマンチンの収率が飛躍的に向上する。
 なお、工程(iii)において、上記アルコール溶媒は、1種単独で用いてもよく、2種以上併用してもよい。
 工程(iii)において、これらのアルコール溶媒の使用量は、前記工程(i)に用いた有機溶媒の使用量に対して、好ましくは0.5~10重量倍、より好ましくは1.0~5.0重量倍であり、さらに好ましくは1.0~2.0重量倍である。工程(iii)において、アルコール溶媒の使用量が前記上限値以下であると、1バッチの単位容積あたりの収量が大きくなり経済的であり、また、アルコール溶媒の使用量が前記下限値以上であると、反応液の操作性が良好となる傾向にある。
 工程(iii)において、有機相と水相とを分離する分液操作を行う場合、分液操作の回数は好ましくは2~5回、より好ましくは2~3回である。分液操作の回数を前記範囲とすることにより、経済的であり、酸を十分に洗浄することができ、好ましい。
 工程(iii)で用いる無機塩基を具体的に例示すると、特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどが挙げられる。工程(iii)で用いる無機塩基は、好ましくは、水酸化ナトリウム又は水酸化カリウムである。
 工程(iii)において、該無機塩基の使用量は、1-アミド-3,5-ジメチルアダマンタンに対して、好ましくは4~20mol当量であり、より好ましくは4~10mol当量である。無機塩基の使用量を前記範囲とすることにより、経済的であり、反応速度が好適となり好ましい。
 工程(iii)での反応温度としては、好ましくは100℃~160℃の範囲であり、より好ましくは120℃~140℃の範囲である。工程(iii)での反応温度を前記範囲とすることにより、温度が高過ぎることなく副生成物が抑えられ、温度が低すぎることなく反応速度が好適となり、好ましい。
 工程(iii)での反応時間は無機塩基、有機溶媒、アルコール溶媒の使用量により異なるため一概には決められないが、好ましくは18~30時間であり、より好ましくは18~24時間である。
 <その他の工程>
 次に本実施形態の製造方法は、前記工程(iii)の加水分解反応で得られた反応液に水を加えた後、分液操作により水相を分離してメマンチン溶液を得る工程(iv)を含むことが好ましい。
 工程(iv)において、前記工程(iii)の加水分解反応で得られた反応液に加える水の量は、該反応液に対して、好ましくは0.5~10重量倍、より好ましくは0.5~5.0重量倍であり、さらに好ましくは0.5~2.0重量倍である。工程(iv)において、水の使用量を前記範囲とすることにより、水の量が多すぎることなく、1バッチの単位容積あたりの収量が好適となり経済的であり、また水の量が少なすぎることなく分液性が良好となって好ましい。
 工程(iv)において、分液操作回数は、2~5回、好ましくは2~3回が好適である。この範囲とすることにより、経済的であり、また水酸化ナトリウムを十分洗浄することが出来て好ましい。
 本実施形態の製造方法は、上記工程(iv)において得られるメマンチン溶液に塩酸を添加し、メマンチン塩酸塩を得る工程(v)を含むことが好ましい。前記工程(v)で得られたメマンチン塩酸塩の単離精製方法としては、特に制限は無く公知の方法が採用される。例えば、前記工程(v)で得られたメマンチン塩酸塩を含む溶液を濃縮後に析出する結晶をろ過や遠心分離することにより、メマンチン塩酸塩を単離精製することも可能である。好ましくは、前記工程(v)で得られたメマンチン塩酸塩を含む溶液を濃縮後、貧溶媒を加え晶析を行い、析出する結晶を濾過することにより、メマンチン塩酸塩を単離精製することが好適である。
 次に、本発明を実施例および比較例により具体的に説明する。ただし、本発明はこれらの例によって制限されるものではない。
 反応追跡、メマンチン塩酸塩製品分析は以下に示す分析条件で行った。分析装置:SHIMADZU GC-2014、カラム:TC-1701(30m×0.25mmI.D.,0.50μm film)、キャリアーガス:He、1.61mL/分、注入口:180℃(split1:50)、検出器:FID、280℃、オーブン:80℃(5分)-20℃/分-280℃(5分)、注入量:1.0μL
 [実施例1]
 300mL丸底フラスコに、3,5-ジメチル-1-アダマンタノール:10.00g(55.5mmol)、アセトニトリル:4.55g(110.9mmol)、及びトルエン:25.00gを加えて混合液を得た。なお、3,5-ジメチル-1-アダマンタノールは、Journal of the American Chemical Society(vol.122、30、2000)のp.7390-7391に記載の方法に従い製造した。次に、前記フラスコ中の混合液に、97%濃硫酸:11.00g(108.8mmol)を23分かけて滴下し、得られた反応液を21℃で2時間攪拌して反応を継続した。反応液において、3,5-ジメチル-1-アダマンタノールの消失をガスクロマトグラフィー(GC)にて確認後、反応液に水:33.66gを加え反応を停止して、1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液(2相溶液)を得た。この2相溶液に1-ヘキサノール:25.01gを加えて分液操作を2回行い、2相溶液から水相を除去して、1-アセトアミド-3,5-ジメチルアダマンタンを含む溶液を得た。得られた溶液に水酸化ナトリウム:8.71g(217.75mmol)を加え、得られた反応液を126℃で18時間攪拌して1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。反応液において、1-アセトアミド-3,5-ジメチルアダマンタンの消失とメマンチンの生成とをGCで確認後、反応液に水:67.21gを加え反応を停止して、メマンチンを含む溶液を得た。その後、得られた溶液の分液操作を3回行い、該溶液から水相を分離してメマンチンを含む溶液を得た。得られたメマンチンを含む溶液に37%塩酸:5.61g(56.93mmol)を加えメマンチン塩酸塩を形成した。その後、メマンチン塩酸塩を含む溶液の濃縮を行った。濃縮後の溶液:56.10gに酢酸エチル:224.40gを加え、20℃で晶析を行った。析出した結晶を濾過後、酢酸エチル:40.00gで3回洗浄した。洗浄後、得られた結晶を60℃、6時間真空乾燥させ、メマンチン塩酸塩を無色の結晶として10.45g得た(収率:87.3%、GC純度:100.0%)。
 [実施例2]
 外径30mm試験管に、3,5-ジメチル-1-アダマンタノール:1.00g(5.50mmol)、アセトニトリル:0.46g(11.1mmol)、及びメシチレン:9.61gを加えて混合液を得た。その後、前記試験管中の混合液に、97%濃硫酸:1.12g(11.1mmol)を滴下し、得られた反応液を30℃で3時間攪拌して反応を継続した。その後、反応液に水:6.09gを加え反応を停止させ、反応液から水相を洗浄除去することで1-アセトアミド-3,5-ジメチルアダマンタンを含むメシチレン溶液を得た(反応収率:80.4%)。その後、得られた溶液に水酸化ナトリウム(NaOH):0.71g、及び1-ヘキサノール:9.61gを加え、得られた反応液を、130℃、18時間攪拌することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、該反応液において、メマンチンの生成をGCにて確認した(反応収率:96.2%)。
 [実施例3]
 外径15mm試験管に、3,5-ジメチル-1-アダマンタノール:0.09g(0.50mmol)、アセトニトリル:0.25g(6.0mmol)、及びトルエン:0.87gを加えて混合液を得た。その後、前記試験管中の混合液に、パラトルエンスルホン酸:0.19g(1.00mmol)を加え、得られた反応液を70℃で24時間攪拌して反応を継続した。その後、反応液に水:1.00gを加え反応を停止させ、反応液から水相を洗浄除去することで1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液を得た(反応収率:64%)。その後、得られた溶液に水酸化ナトリウム(NaOH):0.052g、及び1-ヘキサノール:0.82gを加え、得られた反応液を、126℃、18時間攪拌することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、該反応液において、メマンチンの生成をGCにて確認した(反応収率:96%)。
 [実施例4~11]
 実施例1と同様の方法によって得られた1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液を、水を用いて洗浄した。その後、外径15mm試験管に、前記溶液から、1-アセトアミド-3,5-ジメチルアダマンタン(基質):0.28g(1.3mmol)、及びトルエン:0.69gを分取し、1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液を得た。得られた溶液に、それぞれ水酸化ナトリウム:0.20g(5.0mmol)、及び表1に示す各アルコール溶媒:0.69gを加え、得られた反応液を溶媒還流条件で24時間攪拌することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、GCを用いて反応液の分析を行った。その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000002
 [実施例12~20]
 実施例1と同様の方法によって得られた1-アセトアミド-3,5-ジメチルアダマンタン:0.28g(1.3mmol)を含むトルエン溶液から、1-アセトアミド-3,5-ジメチルアダマンタンを単離した。外径15mm試験管において、得られた1-アセトアミド-3,5-ジメチルアダマンタンに、表2に示すような重量比の溶媒を加えて溶液を得た。得られた溶液:(2.77g)に水酸化ナトリウム:0.20g(5.00mmol)を添加して、得られた反応液を表2に示すような液温で加熱し、24時間攪拌することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、GCを用いて反応液の分析を行った。反応収率は標品を用いた絶対検量法により求めた。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
 [比較例1]
 外径15mm試験管に、3,5-ジメチル-1-アダマンタノール:0.090g(0.50mmol)、アセトニトリル:0.041g(1.00mmol)を加えて混合液を得た。その後、前記試験管中の混合液に、97%硫酸:0.10g(1.00mmol)を加え、得られた反応液を70℃で3時間攪拌したところ、反応物が固化し、攪拌困難となった。
 [実施例21~42並びに比較例2及び3]
 実施例1と同様の方法によって得られた1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液から水相を除去して有機相を得た。次に、外径15mm試験管において、得られた1-アセトアミド-3,5-ジメチルアダマンタン(基質)を含む有機相に、表3に示すような基質濃度となるようにアルコール溶媒等を加えて溶液を得た。得られた溶液に、表3に示すとおり無機塩基を添加して、反応液を得た。得られた反応液を表3に示すような反応温度で24時間還流することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、GCを用いて反応液の分析を行った。その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000004
 [実施例43~54]
 実施例1と同様の方法によって得られた1-アセトアミド-3,5-ジメチルアダマンタンを含むトルエン溶液から水相を除去して有機相を得た。次に、外径15mm試験管において、得られた1-アセトアミド-3,5-ジメチルアダマンタン(基質)を含む有機相に、表4に示すような基質濃度となるようにアルコール溶媒を加えて溶液を得た。得られた溶液に、表4に示すとおり無機塩基を添加して、反応液を得た。得られた反応液を表3に示すような反応温度で24時間加熱することにより、1-アセトアミド-3,5-ジメチルアダマンタンの加水分解を行った。その後、GCを用いて反応液の分析を行った。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000005
 [参考例1~3]
 外径15mm試験管に、3,5-ジメチル-1-アダマンタノール:0.09g(0.5mmol)、アセトニトリル:0.04g(1mmol)、及び、表5に示す種類の有機溶媒:1.0mLを加えて混合液を得た。なお、3,5-ジメチル-1-アダマンタノールは、Journal of the American Chemical Society(vol.122、30、2000)のp.7390-7391に記載の方法に従い製造した。次に、前記試験管中の混合液に、97%濃硫酸:0.1g(1mmol)を滴下し、得られた反応液を70℃で24時間攪拌して反応を継続した。その後、GCを用いて反応液の分析を行った。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000006
 [参考例4~33]
 外径15mm試験管に、3,5-ジメチル-1-アダマンタノールに対して、表6に示すとおりのモル当量でアセトニトリルを加え、さらに表6に示す重量倍で有機溶媒を加えて混合液を得た。なお、3,5-ジメチル-1-アダマンタノールは、Journal of the American Chemical Society(vol.122、30、2000)のp.7390-7391に記載の方法に従い製造した。次に、前記試験管中の混合液に、表6に示すとおりに硫酸を滴下し、得られた反応液を表6に示すとおりの反応温度及び反応時間で攪拌して反応を継続した。その後、GCを用いて反応液の分析を行った。その結果を表6に示した。
Figure JPOXMLDOC01-appb-T000007
 なお、表6中、DMA-tolは、下記化学式で表される化合物を示す。
Figure JPOXMLDOC01-appb-C000008
 本発明は、医薬品等の分野において有効である。

Claims (11)

  1.  以下の工程(i)~(iii)を含む3,5-ジメチル-1-アダマンタンアミンの製造方法:
    (i)3,5-ジメチル-1-アダマンタノールを有機溶媒中で酸及びニトリルと反応させて反応液を得る工程、
    (ii)前記工程(i)で得られた反応液に水を加えて1-アミド-3,5-ジメチルアダマンタンを得る工程、
    (iii)前記工程(ii)で得られた1-アミド-3,5-ジメチルアダマンタンをアルコール含有溶媒及び無機塩基の存在下で加水分解する工程。
  2.  前記工程(i)で用いる有機溶媒が疎水性である請求項1記載の製造方法。
  3.  前記工程(i)で用いる有機溶媒が、脂肪族炭化水素及び芳香族炭化水素からなる群より選ばれる1種以上の有機溶媒を含む請求項1又は2記載の製造方法。
  4.  前記工程(iii)で用いるアルコール含有溶媒が1価の直鎖1級アルコールから選ばれる1種以上のアルコールを含む請求項1~3のいずれか一項記載の製造方法。
  5.  前記工程(iii)で用いるアルコール含有溶媒が1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール及び1-オクタノールからなる群より選ばれる1種以上のアルコールを含む請求項1~4のいずれか一項記載の製造方法。
  6.  前記工程(i)において、3,5-ジメチル-1-アダマンタノールに対する酸のモル比が1~10である請求項1~5のいずれか一項記載の製造方法。
  7.  前記工程(i)において、3,5-ジメチル-1-アダマンタノールに対するニトリルのモル比が1~10である請求項1~6のいずれか一項記載の製造方法。
  8.  前記工程(i)で用いる酸が、硫酸、硝酸、リン酸、トリフルオロ酢酸及びトルエンスルホン酸からなる群より選ばれる1種以上の酸を含む請求項1~7のいずれか一項記載の製造方法。
  9.  前記工程(i)で用いる酸が濃硫酸を含む請求項1~8のいずれか一項記載の製造方法。
  10.  前記工程(i)で用いるニトリルが、メタンニトリル、アセトニトリル及びプロピオニトリルからなる群より選ばれる1種以上のニトリルを含む請求項1~9のいずれか一項記載の製造方法。
  11.  前記工程(iii)で用いる無機塩基が水酸化ナトリウムまたは水酸化カリウムを含む請求項1~10のいずれか一項記載の製造方法。
PCT/JP2014/050716 2013-01-23 2014-01-16 メマンチンの製造プロセス WO2014115638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480005882.9A CN104936942A (zh) 2013-01-23 2014-01-16 美金刚胺的制造工艺
US14/762,566 US9452971B2 (en) 2013-01-23 2014-01-16 Manufacturing process for memantine
EP14743873.3A EP2949643A4 (en) 2013-01-23 2014-01-16 PROCESS FOR THE PRODUCTION OF MEMANTINE
JP2014558542A JP6094837B2 (ja) 2013-01-23 2014-01-16 メマンチンの製造プロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010125 2013-01-23
JP2013-010125 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115638A1 true WO2014115638A1 (ja) 2014-07-31

Family

ID=51227430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050716 WO2014115638A1 (ja) 2013-01-23 2014-01-16 メマンチンの製造プロセス

Country Status (5)

Country Link
US (1) US9452971B2 (ja)
EP (1) EP2949643A4 (ja)
JP (1) JP6094837B2 (ja)
CN (1) CN104936942A (ja)
WO (1) WO2014115638A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341340A (zh) * 2020-09-30 2021-02-09 山东罗欣药业集团恒欣药业有限公司 一种治疗阿尔兹海默症药物的绿色高效制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073304A (zh) * 2022-06-28 2022-09-20 北京云鹏鹏程医药科技有限公司 一种盐酸美金刚的后处理制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062724A2 (en) 2003-12-31 2005-07-14 Sun Pharmaceutical Industries Limited Novel process for the preparation of aminoadamantane derivatives
WO2006076562A1 (en) 2005-01-11 2006-07-20 Teva Pharmaceutical Fine Chemicals S.R.L. Process for the preparation of 1-amino-3,5-dimethyladamantane hydrochloride
WO2007096124A1 (en) * 2006-02-21 2007-08-30 Hexal Ag Process for the preparation of adamantanamines
WO2008040560A1 (en) * 2006-10-05 2008-04-10 Krka, D.D., Novo Mesto Process for the preparation of memantine and its hydrochloric acid salt form
WO2008062472A2 (en) 2006-10-24 2008-05-29 Cadila Healthcare Limited Process for the preparation of memantine
JP4118555B2 (ja) 2001-12-13 2008-07-16 株式会社トクヤマ N−(アダマンチル)アミド化合物の製造方法
WO2009057140A2 (en) 2007-10-30 2009-05-07 Msn Laboratories Limited Improved process for memantine hydrochloride
WO2011078101A1 (ja) * 2009-12-22 2011-06-30 塩野義製薬株式会社 アダマンタンアミン誘導体
CN102432473A (zh) 2011-11-23 2012-05-02 广州博济医药生物技术股份有限公司 一种盐酸美金刚的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110288336A1 (en) * 2008-12-17 2011-11-24 Merz Pharma Gmbh & Co. Kgaa Method for producing memantine
JP2011051976A (ja) * 2009-08-07 2011-03-17 Idemitsu Kosan Co Ltd アダマンタン骨格を有するアミン類及び第4級アンモニウム塩の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118555B2 (ja) 2001-12-13 2008-07-16 株式会社トクヤマ N−(アダマンチル)アミド化合物の製造方法
WO2005062724A2 (en) 2003-12-31 2005-07-14 Sun Pharmaceutical Industries Limited Novel process for the preparation of aminoadamantane derivatives
WO2006076562A1 (en) 2005-01-11 2006-07-20 Teva Pharmaceutical Fine Chemicals S.R.L. Process for the preparation of 1-amino-3,5-dimethyladamantane hydrochloride
WO2007096124A1 (en) * 2006-02-21 2007-08-30 Hexal Ag Process for the preparation of adamantanamines
WO2008040560A1 (en) * 2006-10-05 2008-04-10 Krka, D.D., Novo Mesto Process for the preparation of memantine and its hydrochloric acid salt form
WO2008062472A2 (en) 2006-10-24 2008-05-29 Cadila Healthcare Limited Process for the preparation of memantine
WO2009057140A2 (en) 2007-10-30 2009-05-07 Msn Laboratories Limited Improved process for memantine hydrochloride
WO2011078101A1 (ja) * 2009-12-22 2011-06-30 塩野義製薬株式会社 アダマンタンアミン誘導体
CN102432473A (zh) 2011-11-23 2012-05-02 广州博济医药生物技术股份有限公司 一种盐酸美金刚的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 122, no. 30, 2000, pages 7390 - 7391
PLAKHOTNIK, V. M.; KOVTUN, V. YU.; YASHUNSKII, V. G., ZHURNAL ORGANICHESKOI KHIMII, vol. 18, no. 5, 1982, pages 1001 - 5
See also references of EP2949643A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341340A (zh) * 2020-09-30 2021-02-09 山东罗欣药业集团恒欣药业有限公司 一种治疗阿尔兹海默症药物的绿色高效制备方法
CN112341340B (zh) * 2020-09-30 2023-02-17 山东罗欣药业集团恒欣药业有限公司 一种治疗阿尔兹海默症药物的绿色高效制备方法

Also Published As

Publication number Publication date
US9452971B2 (en) 2016-09-27
JPWO2014115638A1 (ja) 2017-01-26
CN104936942A (zh) 2015-09-23
EP2949643A1 (en) 2015-12-02
US20150368183A1 (en) 2015-12-24
EP2949643A4 (en) 2016-09-07
JP6094837B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2009040367A1 (en) Process for the preparation of fluorine containing organic compound
JP6094837B2 (ja) メマンチンの製造プロセス
JP5848819B2 (ja) アダマンチル(メタ)アクリレートの製造方法
JP2015523993A (ja) アルキルフルオロアクリレートの製造方法
JP5246516B2 (ja) メチル−4−ホルミルベンゾエートとジメチルテレフタレートの単離方法
US6187967B1 (en) Process of producing adamantanols
JPWO2017150622A1 (ja) モノエーテル化体を含む溶液組成物の製造方法、溶液組成物、及び重合性化合物の製造方法
JP5071795B2 (ja) ベンゾオキサチイン化合物の製造方法
JP2015157786A (ja) 3−エチル−1−アダマンタンアミンの製造プロセス
JP4355489B2 (ja) 高純度2,2,2−トリフルオロエタノールの製造方法
CN101134715A (zh) 3-烷氧基-1-氯丙烷的制备方法
KR20120086012A (ko) 디메틸 테레프탈레이트 제조공정의 부산물로부터 p-클로로메틸벤조산 및 벤조산의 제조방법
JP2012144508A (ja) トリフェニレン誘導体の製造法
JP5878842B2 (ja) 2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン類の製造方法
JP2016108252A (ja) 1−アルコキシ−2−アルカノール化合物の製造方法
JP5843106B2 (ja) 4−置換ピペリジン−2−カルボニトリル類の製造方法及び4−置換ピペリジン−2−カルボン酸類鉱酸塩の製造方法
KR101521607B1 (ko) 메틸 4-포밀벤조에이트와 디메틸테레프탈레이트를 고수율로 분리회수하는 방법
JP3948176B2 (ja) カプロラクタムの製法
JP2011213620A (ja) 第1級アルキルブロマイドの製造方法
JP5882162B2 (ja) 2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン類の製造方法
JP5417087B2 (ja) グリシジルアクリレートの製造方法
JP2005320280A (ja) アダマンタンジオール類の製造方法
JPS62246540A (ja) アルコキシカルボン酸の製造方法
JP2007145821A (ja) 4−ヒドロキシ−2−アダマンタノン化合物の製造方法
JP2012051842A (ja) ニトロチオフェノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558542

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762566

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014743873

Country of ref document: EP