WO2014115206A1 - 組織透明化方法、組織透明化試薬及び組織観察方法 - Google Patents

組織透明化方法、組織透明化試薬及び組織観察方法 Download PDF

Info

Publication number
WO2014115206A1
WO2014115206A1 PCT/JP2013/006811 JP2013006811W WO2014115206A1 WO 2014115206 A1 WO2014115206 A1 WO 2014115206A1 JP 2013006811 W JP2013006811 W JP 2013006811W WO 2014115206 A1 WO2014115206 A1 WO 2014115206A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
thiodiethanol
glycerol
procedure
solvent
Prior art date
Application number
PCT/JP2013/006811
Other languages
English (en)
French (fr)
Inventor
小野寺 宏
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to JP2014558293A priority Critical patent/JP6325461B2/ja
Priority to US14/764,060 priority patent/US20160011086A1/en
Priority to CN201380071465.XA priority patent/CN104956201B/zh
Priority to EP13872734.2A priority patent/EP2950077B1/en
Publication of WO2014115206A1 publication Critical patent/WO2014115206A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms

Definitions

  • the present invention relates to a tissue clearing method, a tissue clearing reagent, and a tissue observation method. More specifically, the present invention relates to a tissue transparency method and the like that can make a tissue transparent easily and safely without causing the change.
  • the internal tissue of an organ has been observed by mechanically slicing a fixed and embedded organ (or an organ piece) to prepare a tissue section and observing it with an optical microscope.
  • it has become possible to obtain an observation image of an internal tissue by optically “cutting” an organ using a confocal laser microscope or a multiphoton excitation microscope.
  • the above-described mechanical method requires a lot of continuous tissue sections and the accumulation of those fluorescence images, which is very labor intensive. .
  • the optical method since light is scattered inside the organ, there is a problem that the acquisition of a fluorescence image becomes difficult as the site to be observed becomes deeper from the organ surface (observation depth limit).
  • the observation depth limit is generally about 0.15 mm with a confocal laser microscope and about 4 mm at maximum with a two-photon excitation microscope.
  • the thickness of the surface cortex is about 1 mm. Therefore, in order to observe the hippocampus and thalamus inside the cortex, the observation depth limit is several millimeters. It is necessary to spread.
  • Non-Patent Document 1 reports that the brain and spinal cord were made transparent by a technique using tetrahydrofuran.
  • Patent Document 1 and Non-Patent Document 2 describe that the brain can be made transparent by a technique using high-concentration urea (Scale method).
  • Non-Patent Document 4 describes that tissue such as dragonfly thoracic ganglion and squid skin can be made transparent to a thickness of about 0.6 mm using 2,2′-thiodiethanol.
  • Non-Patent Document 5 preceding this describes the use of 2,2′-thiodiethanol as an encapsulating agent.
  • Non-Patent Document 1 Although the transparency method described in Non-Patent Document 1 is excellent in transparency, it is necessary to use an organic solvent containing dichloromethane that is suspected of carcinogenicity. There's a problem. In addition, due to the process of dehydrating the fixed organ and the effect of the clearing reagent itself, there is a problem that the organ hardens or the fluorescent signal of the fluorescent protein labeled in the organ disappears or attenuates.
  • Non-Patent Document 2 since the transparency method (Scale method) disclosed in Non-Patent Document 2 can use a water-soluble reagent that does not require dehydration of biological material, the above-described problem of the method described in Non-Patent Document 1 is eliminated. It can be solved.
  • the Scale method requires a long time (about two weeks) for the treatment for transparency, and the degree of transparency is insufficient.
  • the thickness of the tissue that can be made transparent is only about 0.6 mm, and the observation depth is insufficient (see Non-Patent Document 4).
  • 2,2′-thiodiethanol was used at a high concentration of 80 to 85% or more, some fluorescent proteins such as GFP lost or attenuated the fluorescent signal (see Non-Patent Document 5). .
  • the present invention provides a technique capable of sufficiently transparentizing various organs without causing a change by a simple operation without using a toxic or dangerous organic solvent. Main purpose.
  • the present invention provides a tissue clearing method including a procedure of immersing a tissue in a water-soluble solvent having a refractive index of 1.4 to 1.7.
  • a mixture of 2,2′-thiodiethanol, glycerol, and a nonionic organic iodine compound aqueous solution is preferably used as the water-soluble solvent.
  • the volume ratios of 2,2′-thiodiethanol, glycerol and aqueous solution of nonionic organic iodine compound having an iodine content of 40% in the aqueous solvent are 10 to 50%, 1 to 20% and 10 to 70%, respectively. It is said.
  • aqueous solvent a mixed solution of 2,2′-thiodiethanol and a nonionic organic iodine compound aqueous solution may be used.
  • the volume ratio of the aqueous solution of 2,2′-thiodiethanol and nonionic organic iodine compound having an iodine content of 40% in the aqueous solvent is set to 20 to 80% and 80 to 20%.
  • a mixed liquid of 2,2′-thiodiethanol and glycerol may be used as the aqueous solvent.
  • the volume ratio of 2,2′-thiodiethanol and glycerol in the aqueous solvent is 70 to 95% and 5 to 30%.
  • the aqueous solvent contains 2,2'-thiodiethanol and a nonionic organic iodine compound It is preferable to use a mixed solution of an aqueous solution or a solution obtained by adding glycerol thereto.
  • the water-soluble solvent can further contain an aqueous sucrose solution depending on the target organ.
  • the present invention also provides a tissue clearing reagent comprising a water-soluble solvent having a refractive index of 1.4 to 1.7.
  • the tissue clearing reagent includes a water-soluble solvent containing 2,2′-thiodiethanol and at least one of glycerol and a nonionic organic iodine compound.
  • the tissue clearing reagent is more preferably a mixed solution of 2,2′-thiodiethanol and a nonionic organic iodine compound aqueous solution or a mixed solution of 2,2′-thiodiethanol and glycerol, depending on the target organ.
  • tissue clearing reagent may further contain an aqueous sucrose solution depending on the target organ.
  • the present invention also provides a tissue observation method including a clearing procedure in which the tissue is immersed in a water-soluble solvent having a refractive index of 1.4 to 1.7.
  • the tissue observation method includes a labeling procedure for fluorescently labeling the tissue, the clearing procedure for immersing the tissue after fluorescent labeling in the solvent, and the fluorescent labeling in the tissue after clearing A detection procedure for detecting fluorescence emitted from.
  • the tissue observation method includes the clearing procedure for immersing the tissue in the solvent, a labeling procedure for fluorescently labeling the tissue after clearing, and the fluorescent labeling in the tissue after clearing and fluorescent labeling. Detecting procedures for detecting the emitted fluorescence. In this tissue observation method, observation with a fluorescence microscope, a fluorescent stereomicroscope, a confocal microscope, or a multiphoton microscope can be suitably employed in the detection procedure.
  • tissue is used synonymously with “organ” and broadly means living tissue.
  • tissue or organ
  • tissue is particularly limited to brain, spinal cord, liver, spleen, kidney, lung, heart, blood vessel, skin, subcutaneous tissue, intestine, adipose tissue, lymph node, muscle, tendon and cancer. Included without.
  • the bone can be a target of the tissue clearing method and the like according to the present invention as long as it is a bone in which calcification has not progressed, such as a fetal or neonatal bone.
  • the present invention provides a technique capable of sufficiently transparentizing various organs without causing a change by a simple operation without using a toxic or dangerous organic solvent.
  • FIG. 5 is a drawing-substituting photograph showing a fluorescence image obtained by transparentizing a rat spinal cord labeled with a nerve axon. It is a drawing substitute photograph which shows the rat injury spinal cord which became transparent. It is a drawing substitute photograph which shows the three-dimensional fluorescence image of the rat injury spinal cord which became transparent.
  • FIG. 5 is a drawing-substituting photograph showing a Nissl-stained image of a transparent rat brain. It is a drawing substitute photograph which shows the transparent rat individual
  • FIG. 3 is a drawing-substituting photograph showing a cancer that has been cleared by a tissue clearing reagent containing a nonionic organic iodine compound. It is a drawing substitute photograph which shows the mouse brain which became transparent. It is a drawing-substituting photograph showing a fluorescent image obtained by transparentizing a mouse brain fluorescently labeled with a cerebral blood vessel. It is a drawing substitute photograph which shows the result of immersing a rat brain in a thiodiethanol single solution for comparison.
  • the tissue clearing method and the tissue observation method according to the present invention include a clearing procedure for immersing the tissue in a water-soluble solvent (tissue clearing reagent) having a refractive index of 1.4 to 1.7. To do.
  • the refractive index of the water-soluble solvent is more preferably 1.50 to 1.52.
  • the target organ is not particularly limited, but it is the brain, spinal cord, liver, spleen, kidney, lung, heart, blood vessel, skin, subcutaneous tissue. Intestines, adipose tissue, lymph nodes, muscles, tendons and cancer, and bones.
  • thiodiethanol 2,2′-thiodiethanol
  • a tissue having a thickness of 1 mm or more, specifically, a thickness of about 1 mm to 2 cm is used. It was revealed for the first time that even organizations can be transparent.
  • tissue clearing reagent The refractive index of the water-soluble solvent (hereinafter also referred to as “tissue clearing reagent”) can be appropriately set within the above numerical range according to the target organ.
  • tissue clearing reagent satisfying the above refractive index, mixing of thiodiethanol (refractive index 1.52) and nonionic organic iodine compound aqueous solution (refractive index of about 1.51 of aqueous solution with 40% iodine content) Liquid, or a mixed liquid of thiodiethanol and glycerol (refractive index: 1.474), more preferably a mixed liquid of thiodiethanol, glycerol, and a nonionic organic iodine compound aqueous solution.
  • the tissue clearing reagent may further contain an aqueous sucrose solution as desired according to the target organ.
  • the volume ratio of the thiodiethanol, glycerol, and the nonionic organic iodine compound aqueous solution having an iodine content of 40% in the aqueous solvent is 10 to 50 respectively. %, 1-20% and 10-70%.
  • the volume ratio of the thiodiethanol and the nonionic organic iodine compound aqueous solution having an iodine content of 40% in the aqueous solvent is 20 to 80%, 80%. ⁇ 20%. Furthermore, when a mixed solution of thiodiethanol and glycerol is used, the volume ratio of thiodiethanol and glycerol in the aqueous solvent is 70 to 95% and 5 to 30%.
  • the addition volume of one or more of thiodiethanol, glycerol, and nonionic organic iodine compound aqueous solution may be reduced according to the addition volume of the sucrose aqueous solution.
  • the volume ratio of thiodiethanol, glycerol, nonionic organic iodine compound aqueous solution and sucrose aqueous solution in the tissue clearing reagent can be adjusted in a wide range depending on the degree of transparency desired for the target organ.
  • the transparency of the organ can be further increased by increasing the volume of thiodiethanol.
  • the target organ is the lung
  • the tissue clearing reagent may be a mixed solution of thiodiethanol and a nonionic organic iodine compound aqueous solution, but in order to obtain a high degree of transparency and high retention of fluorescent protein fluorescence signals, Most preferably, a reagent obtained by adding glycerol to an aqueous solution of thiodiethanol and a nonionic organic iodine compound is used.
  • a mixed solution of thiodiethanol and glycerol is used as a tissue clearing reagent, fluorescent protein can be added even under conditions of a relatively high thiodiethanol concentration (volume ratio higher than 80%) by adding glycerol. It becomes possible to make the organ transparent while suppressing the disappearance or attenuation of the fluorescence signal.
  • nonionic organic iodine having a refractive index corresponding to the refractive index range (1.4 to 1.7) (refractive index of about 1.51 of an aqueous solution having an iodine content of 40%).
  • the amount of thiodiethanol used can be reduced to about 10 to 50%, preferably about 20 to 50%.
  • the fluorescent signal of the fluorescent protein can be kept at a good level even after the clearing.
  • the volume ratio is preferably 10 to 80%.
  • the iodine content (mass / volume%) can be calculated from the mass ratio of iodine atoms to the total mass of the nonionic organic iodine compound and the concentration (mass / volume%) of the nonionic organic iodine compound in the aqueous solution.
  • the iodine content of nonionic organic iodine compound aqueous solution can be changed suitably, and is not restricted to 40%.
  • the volume ratio of the nonionic organic iodine compound aqueous solution in the tissue clearing reagent can also be appropriately adjusted according to the iodine content.
  • Nonionic organic iodine compound for example, a nonionic iodine contrast agent obtained by imparting hydrophilicity to an organic compound containing iodine atoms at a high concentration can be used.
  • Nonionic iodinated contrast agents include diatrizoic acid, amidotrizoic acid, ioxagric acid, ioxirane, iotalamic acid, iotroxic acid meglumine, iotrolan, iopanoic acid, iopamidol, iopromide, iohexol, iomeprol, iopodate sodium, metrizoic acid, iodamide, Conventionally known contrast agents such as iodoxamic acid and iodized poppy oil fatty acid ethyl ester can be mentioned.
  • the volume ratio of a 30% sucrose aqueous solution is preferably 2 to 10%.
  • sucrose aqueous solution By adding a sucrose aqueous solution, the transparency of the tissue clearing reagent can be improved and the transparency of the organ can be increased. The reason for this is not limited by logic, but it is presumed that the addition of sucrose can prevent cell membranes and cytoplasm turbidity due to excessive tissue fixation.
  • a suitable example of the composition of the tissue clearing reagent is a mixed solution in which the volume ratio of the aqueous solution of thiodiethanol, glycerol and nonionic organic iodine compound having an iodine content of 40% is 45: 5: 50.
  • Dimethyl sulfoxide may be added to the tissue clearing reagent.
  • DMSO contributes to increasing the transparency of the organ by improving the penetration of the tissue clearing reagent.
  • concentration of DMSO added is, for example, 0.1 to 10%.
  • any one or more of thiodiethanol, glycerol, nonionic organic iodine compound aqueous solution and sucrose aqueous solution may be reduced according to the DMSO addition volume.
  • the water-soluble solvent satisfying the refractive index of 1.4 to 1.7 in addition to the mixed solvent described above, polyhydric alcohols, polyhydric alcohol derivatives, nitrogen-containing solvents, alcohols, sulfur-containing solvents, and these In some cases, a mixed solvent or the like can be used. In addition, other monosaccharides and / or polysaccharides other than sucrose may be added to the water-soluble solvent, but sucrose is considered preferable from the viewpoint of high solubility in water.
  • the organ is clarified by immersing it in a tissue clarification reagent for a predetermined time.
  • the immersion is preferably performed at about 4 to 60 ° C., particularly preferably at about 20 to 42 ° C.
  • an aqueous solution having a concentration of about 30% is preferably used as the sucrose aqueous solution.
  • the immersion time varies depending on the target organ, but is, for example, 24 hours to 6 days. As an example, when the target organ is a brain, spinal cord, heart, skin, or muscle, immersion is performed for about 4 to 6 days. Further, when the target organ is liver, kidney, lung, blood vessel, lymph node or cancer, immersion for 24 hours to 3 days is preferable.
  • immersion in a pretreatment solution with a reduced volume ratio of thiodiethanol may be performed.
  • the pretreatment solution a plurality of solutions having different thiodiethanol volume ratios may be used.
  • the organs are immersed for a predetermined time in order from the pretreatment solution having a smaller thiodiethanol volume ratio.
  • a treatment solution containing sucrose may be used in the previous step, and finally a treatment solution not containing sucrose may be used, which is effective when precipitation of sucrose becomes a problem. is there.
  • Such multi-stage (two or more stages) pretreatment is particularly effective when a mixed solution of thiodiethanol and glycerol and, if necessary, a sucrose aqueous solution is used as a final solution. This is not always necessary when using a mixed solution containing a nonionic organic iodine compound aqueous solution as the solution.
  • the brain When using a tissue clarification reagent containing a nonionic organic iodine compound aqueous solution, the brain can be clarified in about 3 to 4 days and all other tissues except bones can be clarified in about 2 days by one-step pretreatment.
  • Organic iodine compound aqueous solution: 45: 5: 50 solution is used.
  • the pretreatment liquid is immersed, for example, at 4 ° C. to 25 ° C. for 24 hours, and the final solution is immersed, for example, at 4 ° C. to 25 ° C. for 24 to 48 hours.
  • tissue transparency method a sufficient degree of organ transparency can be obtained in a shorter operation than in the conventional method.
  • tissue clearing method an organ can be cleared by immersion in a water-soluble solvent without using a toxic or dangerous organic solvent (see Examples described later). Therefore, the tissue clearing method according to the present invention is free from the problems of flammability of organic solvents and the difficulty of waste liquid management, and has high safety.
  • the tissue clearing method according to the present invention since no organic solvent is used, the fluorescence signal of the fluorescent protein labeled in the organ disappears due to the process of dehydrating the fixed organ or the effect of the tissue clearing reagent itself. The fluorescence of almost all the fluorescent labels is retained without being attenuated. Furthermore, in the tissue clearing method according to the present invention, an effect of preventing the deterioration (discoloration) of the fluorescent protein by glycerol added in the water-soluble solvent can be obtained.
  • an immobilization procedure using a conventionally known histopathological technique may be performed before the above-described tissue clearing procedure.
  • the organ was perfused and fixed with a formalin solution (10% neutral formalin solution, 4% paraformaldehyde buffer solution), and then the organ was removed, and the solution was further removed for about 24 hours or more.
  • a dipping technique can be employed.
  • the tissue observation method it is possible to detect the fluorescence emitted from the fluorescent label in the cleared tissue by performing the above-described transparentization procedure after fluorescently labeling the tissue.
  • the tissue clearing method according to the present invention can retain the fluorescence of almost all the fluorescent labels and can prevent the deterioration (fading) of the fluorescent protein. Therefore, by the multiple staining using a plurality of fluorescent labels. It is also suitable for tissue observation.
  • the labeling procedure includes a method of expressing a fluorescent protein in a tissue (for example, nerve fiber) by gene transfer, a method of injecting a fluorescent protein or fluorescent dye into an organ (for example, a blood vessel), and an antibody labeled with the fluorescent protein or fluorescent dye to a cell. It can be performed by a conventionally known method such as a method of combining.
  • the fluorescent dye refers to a low molecular compound (for example, fluorescein) having a smaller molecular weight than a fluorescent protein such as GFP.
  • Conventionally known substances can be used for the fluorescent protein and the fluorescent dye.
  • the detection procedure of the fluorescence emitted from the fluorescent label in the tissue after clarification is not particularly limited, and a conventionally known fluorescence detection means such as observation with a fluorescence microscope, a fluorescence stereomicroscope, a confocal microscope, or a multiphoton microscope is used. Can be done. According to the tissue clearing method according to the present invention, high transparency of the organ can be achieved, so that the observation depth limit by the confocal microscope or the multiphoton microscope can be extended to several millimeters.
  • tissue observation method various organs can be transparentized without hardening, swelling, and weakening by the tissue transparency procedure (see Examples described later). Therefore, unlike conventional methods such as the Scale method, observation can be performed while maintaining the state of the extracted organ. Moreover, since the organ can be sliced easily with a knife or the like after the transparentization, the tissue staining can be performed after the transparentization for observation.
  • the tissue observation method according to the present invention since the fluorescence signal of the fluorescent protein labeled in the organ does not disappear or attenuate, high-accuracy fluorescence observation is possible.
  • the tissue observation method according to the present invention is effective when observing deep organs with very weak excitation energy using a multiphoton microscope.
  • the tissue after the transparency is fluorescently labeled, and fluorescence emitted from the fluorescent label in the cleared tissue may be detected. Is possible.
  • the tissue clearing method according to the present invention can be made transparent without excessively swelling or weakening the organ, the transparent organ can be sliced. For this reason, if the organ piece sliced after clearing is stained by an immunohistochemical technique using a fluorescently labeled antibody, the tissue after clearing can be fluorescently labeled.
  • the transparent organ or organ piece can be subjected to conventionally known histopathological staining using various staining solutions.
  • an organ in the tissue clearing method according to the present invention, can be made transparent while retaining fat, so that fat staining such as Sudan III staining, Oil Red staining, and Sudan Black staining can also be performed.
  • the organ is excised and clarified, and the clarified tissue is further fluorescently labeled by immunostaining and emitted from two or more fluorescent labels in the clarified tissue.
  • Applications such as detecting the fluorescence emitted are also possible.
  • FIG. 1B A indicates the result obtained by the Scale method described in Non-Patent Document 2.
  • the spinal cord could be made transparent with higher transparency than the Scale method (A).
  • the Scale method (A) has a problem that the spinal cord swells twice, whereas the tissue transparency method (B) according to the present invention does not cause such a problem.
  • Example 2 Clarification of rat brain> Rat brain (tissue thickness 6 mm) was fixed and clarified by the procedure described in Example 1.
  • FIG. 2B A indicates the result obtained by the Scale method described in Non-Patent Document 2.
  • the brain can be made transparent with higher transparency than the Scale method (A).
  • the scale method (A) has a problem that the brain is significantly swollen and easily collapses when pressed with a finger, whereas the tissue clearing method (B) according to the present invention is swollen and weakened. Did not occur.
  • Example 3 Fluorescence observation of rat spinal cord> Transgenic rats expressing the fluorescent protein VENUS in nerve axons were created.
  • Non-patent document 3 ("Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter.” PLoS ONE, 2009, Vol.4, No.11, e7679) The method was used. The spinal cord fixed and transparentized by the procedure described in Example 1 was observed with a confocal microscope (Zeiss, LSA-700).
  • the acquired fluorescence image is shown in FIG. 3A.
  • B is an enlarged image of a region surrounded by a dotted line in A.
  • Example 4 Observation of rat injured spinal cord> The spinal cord was damaged by half-cutting the dorsal side of the 12th thoracic spinal cord of the above-described transgenic rat with sharp scissors, and then the wound was closed. After 4 weeks, the spinal cord was fixed and cleared by the procedure described in Example 1. The clear spinal cord was observed with a multiphoton excitation microscope (Nikon, A1MP).
  • FIG. 4 In the spinal cord after transparency, as shown in FIG. 4, it was possible to see through the site damaged from the outside.
  • the damaged part is visually colored brown by hemosiderin.
  • the acquired three-dimensional fluorescence image is shown in FIG. In the image, green indicates a signal from a nerve axon, and blue indicates a second harmonic generation ( ⁇ ⁇ SHG) signal. Fluorescence due to SHG from collagen is observed at the damaged site, and it is confirmed that collagen is grown and fibrosis occurs at the same site.
  • mice Observation of mouse encephalomyelitis> Experimental encephalomyelitis was induced in mice.
  • the mouse ridge was subcutaneously injected with an inflammation-inducing MOG peptide emulsion, and after 30 days, it was fixed by perfusion with 4% paraformaldehyde buffer, and then the cerebral spinal cord was excised and further immersed and fixed in the same solution for 24 hours.
  • the cerebral spinal cord after transparency was observed with a multiphoton excitation microscope.
  • FIG. 6 shows the spinal cord (A) and the brain (B) after the transparency.
  • the final degree of organ transparency was deliberately suppressed by using a water-soluble solvent containing thiodiethanol and glycerol as tissue clearing reagents and no sucrose aqueous solution.
  • FIG. 6B the lesion can be confirmed as a cloudy part in the brain stem.
  • FIG. 7 shows the acquired three-dimensional fluorescence image. In the image, red is a blood vessel, and green is a fluorescent image of bone marrow-derived cells.
  • the fluorescent labeling of blood vessels was performed by injecting tomato lectin conjugated with a fluorescent reagent into the blood vessels of animals.
  • fluorescent labeling of bone marrow-derived cells was performed using a fluorescently labeled anti-F4 / 80 antibody.
  • FIG. 8A shows the lung after clearing.
  • B is an image obtained by reversing the gradation of the image of A.
  • the bronchi can be seen through from the outside in the lung after the transparency.
  • FIG. 9 shows a three-dimensional image of the acquired alveolar blood vessel.
  • Example 7 Observation of cancer> Human lung cancer cells into which GFP had been introduced were transplanted subcutaneously into nude mice, and after 60 days, cancer tissues (5 mm square) were excised and fixed by immersion in 4% paraformaldehyde buffer for 24 hours. Clarification was performed by the procedure described in Example 1. The cleared cancer was observed with a multiphoton excitation microscope.
  • FIG. 10 shows the cancer after clearing.
  • a three-dimensional fluorescence image of cancer is shown in FIG. 11A.
  • FIG. 11B is a fluorescence observation image of cancer that has been made transparent by the Scale method.
  • the observation depth limit was about 100 ⁇ m, tumor blood vessels could not be depicted, and the distribution of tumor cells (green in the image) was unclear.
  • the tissue clearing method (A) according to the present invention the observation depth limit was 1000 ⁇ m or more, tumor blood vessels (red in the image) could be drawn, and the distribution of tumor cells was also confirmed. It was also found that the fluorescence signal of GFP was well retained.
  • Example 8 Clarification of rat heart and mouse liver>
  • the results are shown in FIGS.
  • the arrow in FIG. 12 indicates the aorta.
  • the arrow in FIG. 13 indicates the portal vein.
  • Example 9 Dyeing after clearing> The rat brain clarified in Example 2 was sliced and subjected to immunostaining, fat staining, nuclear staining, and Nissl staining for glial fibrillary acidic protein (GFAP).
  • GFAP glial fibrillary acidic protein
  • Immunostaining was performed using a commercially available detection kit using an anti-GFAP antibody, an enzyme (peroxidase) and a dye (diaminobenzidine tetrahydrochloride). Sudan III was used for fat staining. DAPI was used for nuclear staining. Toluidine blue was used for Nissl staining.
  • FIGS. FIG. 14 shows immunostained images of cerebellar Bergmann glia cells that are positive for GFAP
  • FIG. 15 shows the results of fat staining
  • FIG. 16 shows nuclear staining
  • FIG. 17 shows the results of Nissl staining.
  • an excellent deep part drawing property is realized by the transparency. It can also be confirmed that the target cerebellar white matter, cell nucleus, and nerve cell are stained in fat staining, nuclear staining, and Nissl staining, respectively.
  • Example 11 Examination of organic iodine compound> Human lung cancer cells transfected with GFP were transplanted subcutaneously into nude mice and allowed to grow for 4 weeks. Tomato lectin bound with a fluorescent reagent was injected into the blood vessel of the animal and then fixed by perfusion with 4% paraformaldehyde buffer. The cancer tissue was excised and fixed by immersion in 4% paraformaldehyde buffer for 24 hours.
  • thiodiethanol: glycerol: iomeprol 50: 5: 45
  • A shows cancer tissue after fixation with 4% paraformaldehyde buffer.
  • the blood vessel fluorescently labeled with tomato lectin in the cancer tissue after clarification was observed with a multiphoton excitation microscope.
  • the inside could not be observed at all because of the connective tissue coating on the surface of the cancer tissue.
  • the observation depth limit was about 800 ⁇ m.
  • the cancer tissue after clearing shown in B it was possible to visualize tumor blood vessels exceeding the detection limit of about 1800 ⁇ m of the microscope, and attenuation of the fluorescence signal from GFP of the cancer cells was not observed.
  • Example 13 Fluorescence observation of mouse brain blood vessel> EGFP was expressed in mouse brain blood vessels using a retroviral vector expressing EGFP. The brain that had been fixed and cleared in the same manner as in Example 12 was observed with a confocal microscope (Zeiss, LSA-700).
  • the acquired fluorescent image is shown in FIG.
  • cerebral blood vessels fluorescently labeled with EGFP could be observed with high accuracy.
  • FIG. A shows the brain after fixation with 4% paraformaldehyde buffer.
  • B shows the brain immersed in the thiodiethanol single solution.
  • tissue clearing method According to the tissue clearing method according to the present invention, various organs can be sufficiently transparent without causing a change by a simple operation without using a toxic or dangerous organic solvent. Therefore, the tissue clearing method according to the present invention can be used for observing the internal tissue of an organ in various fields such as pathological analysis, evaluation of drug efficacy, screening for cancer metastasis, and the like without performing complicated tissue section preparation. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 有毒なあるいは危険な有機溶媒を用いることなく簡便な操作によって、種々の臓器をその変化を引き起こすことなく十分に透明化できる技術として、2,2´-チオジエタノールと、グリセロール及び非イオン性有機ヨウ素化合物の少なくとも一方と、を含む水溶性溶媒中に組織を浸漬する手順を含む組織透明化方法を提供する。この組織透明化方法において、前記水溶性溶媒には、好ましくは2,2´-チオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合溶媒が用いられる。

Description

組織透明化方法、組織透明化試薬及び組織観察方法
 本発明は、組織透明化方法、組織透明化試薬及び組織観察方法に関する。より詳しくは、組織をその変化を引き起こすことなく、簡便かつ安全に透明化できる組織透明化方法等に関する。
 近年、形質転換技術及び遺伝子導入技術の進展に伴い、様々な臓器において特定の細胞のみを蛍光タンパク質で標識し観察することが行われている。例えば、脳内の種々の神経回路を選択的に蛍光標識し、蛍光を指標に3次元的に神経回路を可視化し再構築する試みがなされてきている。
 従来、臓器の内部組織の観察は、固定、包埋した臓器(あるいは臓器片)を機械的に薄切して組織切片を作成し、光学顕微鏡下で観察することにより行われてきた。また、近年では、共焦点レーザー顕微鏡や多光子励起顕微鏡を用いて臓器を光学的に「切る」ことにより、内部組織の観察像を得られるようになっている。
 神経回路等の組織構造を3次元的に観察する場合、上述の機械的手法では、連続的な組織切片を多数作成し、それらの蛍光画像を積み上げていくことが必要となり、非常な労力を伴う。一方、光学的手法では、光が臓器内部で散乱するため、観察する部位が臓器表面から深くなるにつれて蛍光画像の取得が困難となる問題(観察深度限界)がある。
 観察深度限界は、一般に、共焦点レーザー顕微鏡で0.15mm程度、二光子励起顕微鏡で最大4mm程度とされている。例えば研究に汎用されるマウスの脳の場合、表層の皮質の厚さが約1mmであるので、皮質よりも脳の内側にある海馬や視床を観察するためには、観察深度限界を数ミリメートルまで広げる必要がある。
 そこで、臓器内部での光の散乱を抑制して観察深度限界を広げるための技術として、臓器を透明化する技術が検討されてきている。例えば、非特許文献1には、テトラヒドロフランを用いた手法によって脳脊髄を透明化したことが報告されている。また、特許文献1及び非特許文献2には、高濃度の尿素を用いた手法(Scale法)によって脳を透明化できたことが記載されている。
 非特許文献4には、2,2´-チオジエタノールを用いてトンボの胸部神経節やイカの皮膚などの組織を0.6mm程度の厚さまで透明化できたことが記載されている。また、これに先行する非特許文献5には、2,2´-チオジエタノールを封入剤に用いることが記載されている。
特表2013-522590号
 非特許文献1に記載される透明化手法は、透明化度に優れるが、発癌性が疑われるジクロロメタンを含む有機溶媒を使用する必要があり、有機溶媒の易燃性や廃液管理の困難さの問題がある。また、固定した臓器を脱水する過程や透明化試薬そのものの影響で、臓器が硬化したり、臓器中に標識された蛍光タンパク質の蛍光シグナルが消失又は減衰したりする問題があった。
 一方、非特許文献2に開示される透明化手法(Scale法)は、生体材料の脱水を必要としない水溶性試薬を用いることができるため、非特許文献1に記載される手法の上記問題を解決し得るものである。しかしながら、Scale法では、透明化のための処理に長期間(2週間程度)を要し、透明化度も不十分である。また、臓器が過度に膨化し、かつ脆弱化するという問題があった。
 また、従来の2,2´-チオジエタノールを用いる方法では、透明化が可能な組織の厚さは0.6mm程度に過ぎず、観察深度が不十分であった(非特許文献4参照)。加えて、2,2´-チオジエタノールを80~85%以上の高濃度で用いると、GFPなどの一部の蛍光タンパク質では、蛍光シグナルの消失又は減衰が生じていた(非特許文献5参照)。
 これらの従来技術における課題に鑑み、本発明は、有毒なあるいは危険な有機溶媒を用いることなく簡便な操作によって、種々の臓器をその変化を引き起こすことなく十分に透明化できる技術を提供することを主な目的とする。
 本発明は、屈折率が1.4~1.7である水溶性溶媒中に組織を浸漬する手順を含む組織透明化方法を提供する。
 この組織透明化方法において、前記水溶性溶媒には、2,2´-チオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合液が好適に用いられる。この場合、水性溶媒中の2,2´-チオジエタノール、グリセロール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比は、それぞれ10~50%、1~20%及び10~70%とされる。
 また、前記水性溶媒として、2,2´-チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液を用いることもできる。この場合、水性溶媒中の2,2´-チオジエタノール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比は、20~80%、80~20%とされる。
 さらに、前記水性溶媒として、2,2´-チオジエタノールとグリセロールとの混合液を用いてもよい。この場合、水性溶媒中の2,2´-チオジエタノール及びグリセロールの容量比は、70~95%、5~30%とされる。
 水性溶媒中の2,2´-チオジエタノールの濃度を抑制して蛍光タンパク質の蛍光シグナルの消失又は減衰を防止するため、水性溶媒には、2,2´-チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液あるいはこれにグリセロールを加えたものを用いることが好ましい。
 加えて、前記水溶性溶媒は、対象とする臓器に応じて、さらにスクロース水溶液を含むことができる。
 また、本発明は、屈折率が1.4~1.7である水溶性溶媒を含んでなる組織透明化試薬を提供する。組織透明化試薬は、2,2´-チオジエタノールと、グリセロール及び非イオン性有機ヨウ素化合物の少なくとも一方と、を含む水溶性溶媒を含む。組織透明化試薬は、対象とする臓器に応じて、2,2´-チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液、あるいは2,2´-チオジエタノールとグリセロールとの混合液、より好ましくは2,2´-チオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合液とされる。
 また、組織透明化試薬は、対象とする臓器に応じて、さらにスクロース水溶液を含んでいてもよい。
 さらに、本発明は、屈折率が1.4~1.7である水溶性溶媒中に組織を浸漬する透明化手順を含む組織観察方法をも提供する。
 この組織観察方法は、具体的には、前記組織を蛍光標識する標識手順と、蛍光標識後の前記組織を前記溶媒中に浸漬する前記透明化手順と、透明化後の組織中の前記蛍光標識から発せられる蛍光を検出する検出手順と、を含むことができる。
 また、この組織観察方法は、前記組織を前記溶媒中に浸漬する前記透明化手順と、透明化後の組織を蛍光標識する標識手順と、透明化及び蛍光標識後の組織中の前記蛍光標識から発せられる蛍光を検出する検出手順と、を含むことができる。
 この組織観察方法では、前記検出手順において、蛍光顕微鏡、蛍光実体顕微鏡、共焦点顕微鏡又は多光子顕微鏡による観察を好適に採用できる。
 本発明において、「組織」の用語は、「臓器」と同義に用いるものとし、生体組織を広く意味する。「組織(あるいは臓器)」には、脳、脊髄、肝臓、脾臓、腎臓、肺、心臓、血管、皮膚、皮下組織、腸、脂肪組織、リンパ節、筋肉、腱及び癌などが、特に限定されることなく、含まれる。また、骨も、胎仔又は新生仔の骨のように、カルシウム沈着が進んでいない骨であれば本発明に係る組織透明化方法等の対象とできる。
 本発明により、有毒なあるいは危険な有機溶媒を用いることなく簡便な操作によって、種々の臓器をその変化を引き起こすことなく十分に透明化できる技術が提供される。
透明化したラット脊髄を示す図面代用写真である。(A)は従来方法、(B)は本発明に係る方法により透明化した脊髄を示す。 透明化したラット脳を示す図面代用写真である。(A)は従来方法、(B)は本発明に係る方法により透明化した脳を示す。 神経軸索を蛍光標識したラット脊髄を透明化し、取得した蛍光画像を示す図面代用写真である。 透明化したラット損傷脊髄を示す図面代用写真である。 透明化したラット損傷脊髄の3次元蛍光画像を示す図面代用写真である。 透明化したマウス脊髄(A)と脳(B)の炎症部位の観察像を示す図面代用写真である。 透明化したマウス炎症脳の3次元蛍光画像を示す図面代用写真である。 透明化マウス肺の炎症部位の観察像を示す図面代用写真(A)とその階調反転写真(B)である。 透明化したマウス炎症肺の肺胞血管の3次元構築像を示す図面代用写真である。 透明化した癌を示す図面代用写真である。 透明化した癌の3次元蛍光画像を示す図面代用写真である。(A)は本発明に係る方法、(B)は従来方法により透明化した癌を示す。 透明化したラット心臓を示す図面代用写真である。 透明化したマウス肝臓を示す図面代用写真である。 透明化したラット脳の免疫染色像を示す図面代用写真である。 透明化したラット脳の脂肪染色像を示す図面代用写真である。 透明化したラット脳の核染色像を示す図面代用写真である。 透明化したラット脳のニッスル染色像を示す図面代用写真である。 透明化したラット個体を示す図面代用写真である。 非イオン性有機ヨウ素化合物を含む組織透明化試薬により透明化した癌を示す図面代用写真である。 透明化したマウス脳を示す図面代用写真である。 脳血管を蛍光標識したマウス脳を透明化し、取得した蛍光画像を示す図面代用写真である。 比較のためチオジエタノール単独溶液にラット脳を浸漬した結果を示す図面代用写真である。
 以下、本発明に係る組織透明化方法、及び該組織透明化方法を一手順として含む組織観察方法を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
(1)組織透明化手順(組織透明化方法)
 本発明に係る組織透明化方法及び組織観察方法は、屈折率が1.4~1.7である水溶性溶媒(組織透明化試薬)中に組織を浸漬する透明化手順を含むことを特徴とする。水溶性溶媒の屈折率は、より好ましくは1.50~1.52とされる。
[対象臓器]
 本発明に係る組織透明化方法及び組織観察方法において、対象とする臓器(あるいは臓器片)は、特に限定されないが、脳、脊髄、肝臓、脾臓、腎臓、肺、心臓、血管、皮膚、皮下組織、腸、脂肪組織、リンパ節、筋肉、腱及び癌、並びに骨などとされる。本発明では、2,2´-チオジエタノール(以下、単に「チオジエタノール」と称する)にグリセロールを組み合わせて用いることで、1mm以上の厚さの組織、具体的には1mm~2cm程度の厚みの組織であっても、透明化できることが初めて明らかにされた。
[組織透明化試薬]
 水溶性溶媒(以下、「組織透明化試薬」とも称する)の屈折率は、対象臓器に応じて上記数値範囲内で適宜設定され得る。上記屈折率を満たす組織透明化試薬の好適な例として、チオジエタノール(屈折率1.52)と非イオン性有機ヨウ素化合物水溶液(ヨウ素含有量40%の水溶液の屈折率約1.51)の混合液、あるいはチオジエタノールとグリセロール(屈折率1.474)との混合液が挙げられ、より好ましくはチオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合液が挙げられる。また、組織透明化試薬は、対象とする臓器に応じて所望により、さらにスクロース水溶液を含んでいてもよい。
 チオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合液の場合、水性溶媒中のチオジエタノール、グリセロール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比は、それぞれ10~50%、1~20%及び10~70%とされる。
 また、チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液を用いる場合、水性溶媒中のチオジエタノール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比は、20~80%、80~20%とされる。
 さらに、チオジエタノールとグリセロールとの混合液を用いる場合、水性溶媒中のチオジエタノール及びグリセロールの容量比は、70~95%、5~30%とされる。
 スクロース水溶液を添加する場合には、スクロース水溶液の添加容量に応じて、チオジエタノール、グリセロール及び非イオン性有機ヨウ素化合物水溶液のいずれか1以上の添加容量を減らせばよい。
 組織透明化試薬中のチオジエタノール、グリセロール、非イオン性有機ヨウ素化合物水溶液及びスクロース水溶液の容量比は、対象臓器に関して所望される透明化度の程度に応じ幅広い範囲で調整され得る。
 組織透明化試薬中において、チオジエタノールの容量を増加させることで、臓器の透明化度をより高めることもできる。例えば、対象臓器を肺とする場合、チオジエタノール:グリセロール=70:30の混合溶媒を用いると、太い気管支を完全に透明化されないようにして視認可能なまま残すことができる。一方、チオジエタノール:グリセロール=85:15の混合溶媒を用いると、気管支の透明化度を高めて、肺全体を十分に透明化できる。
 上述の通り、組織透明化試薬は、チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液を用いてもよいが、高い透明化度及び蛍光タンパク質の蛍光シグナルの高い保持性を得るためには、チオジエタノールと非イオン性有機ヨウ素化合物水溶液にグリセロールを加えた試薬を用いることが最も好ましい。また、組織透明化試薬としてチオジエタノールとグリセロールとの混合液を用いる場合には、グリセロールを加えることで比較的高いチオジエタノール濃度(80%よりも高い容量比)の条件であっても、蛍光タンパク質の蛍光シグナルの消失又は減衰を抑制しながら、臓器を透明化することが可能となる。
 また、組織透明化試薬中に、上記屈折率範囲(1.4~1.7)に該当する屈折率(ヨウ素含有量40%の水溶液の屈折率約1.51)を有する非イオン性有機ヨウ素化合物水溶液を加えることで、チオジエタノールの使用量を10~50%程度、好ましくは20~50%程度に減らすことができる。これによって、透明化後も蛍光タンパク質の蛍光シグナルを良好なレベルに保つことができる。
 組織透明化試薬中に非イオン性有機ヨウ素化合物を添加する場合、例えばヨウ素含有量40%の水溶液の場合、容量比で10~80%が好ましい。ヨウ素含有量(質量/体積%)は、非イオン性有機ヨウ素化合物の全体質量に占めるヨウ素原子の質量比と、水溶液中の非イオン性有機ヨウ素化合物の濃度(質量/体積%)とから算出できる。なお、非イオン性有機ヨウ素化合物水溶液のヨウ素含有量は適宜変更可能であり、40%に限られない。組織透明化試薬中の非イオン性有機ヨウ素化合物水溶液の容量比も、ヨウ素含有量に応じて適宜調整され得る。
 非イオン性有機ヨウ素化合物としては、例えばヨウ素原子を高濃度で含有する有機化合物に親水性を付与した非イオン性ヨード造影剤を用いることができる。非イオン性ヨード造影剤には、ジアトリゾ酸、アミドトリゾ酸、イオキサグル酸、イオキシラン、イオタラム酸、イオトロクス酸メグルミン、イオトロラン、イオパノ酸、イオパミドール、イオプロミド、イオヘキソール、イオメプロール、イオポダートナトリウム、メトリゾ酸、ヨーダミド、ヨードキサム酸、ヨード化ケシ油脂肪酸エチルエステル等の従来公知の造影剤が挙げられる。
 組織透明化試薬中にスクロースを添加する場合、30%スクロース水溶液の容量比で2~10%が好ましい。スクロース水溶液を加えることで、組織透明化試薬の浸透度を向上させて臓器の透明化度を高めることができる。この要因としては、何ら論理に拘束されるわけではないが、スクロースを添加することで、組織の過度の固定による細胞膜や細胞質の混濁を防止できるものと推定される。
 組織透明試薬の組成の好適な例として、チオジエタノール、グリセロール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比が45:5:50である混合液が挙げられる。
 組織透明化試薬には、ヂメチルスルフォキシド(DMSO)を添加してもよい。DMSOは、組織透明化試薬の浸透度を向上させて臓器の透明化度を高めることに寄与する。DMSOの添加濃度は、例えば0.1~10%とされる。DMSOを添加する場合には、DMSOの添加容量に応じて、チオジエタノール、グリセロール、非イオン性有機ヨウ素化合物水溶液及びスクロース水溶液のいずれか1以上の添加容量を減らせばよい。
 なお、屈折率1.4~1.7を満たす水溶性溶媒として、上述した混合溶媒以外にも、多価アルコール類、多価アルコール類誘導体、含窒素溶媒、アルコール類、含硫黄溶媒及びこれらの混合溶媒などを使用できる場合もある。また、スクロース以外の他の単糖類及び/又は多糖類を水溶性溶媒中に添加できる場合もあるが、水中への溶解度の高さの観点からはスクロースが好ましいと考えられる。
[浸漬]
 臓器は組織透明化試薬中に所定時間浸漬することにより透明化される。浸漬は4~60℃程度にて行うことが好ましく、20~42℃程度にて行うことが特に好ましい。試薬を室温以上に加温することで、試薬の粘性が低下し、臓器内への浸透度が向上する。低温度下でのスクロースの析出を防止するため、スクロース水溶液には30%程度の濃度の水溶液を用いることが好ましい。浸漬する時間は対象臓器によって異なるが、例えば24時間~6日間である。一例として、対象臓器が脳、脊髄、心臓、皮膚又は筋肉である場合、4~6日程度の浸漬が行われる。また、対象臓器が肝臓、腎臓、肺、血管、リンパ節又は癌である場合、24時間~3日間の浸漬が好ましい。
 臓器を組織透明化試薬中に浸漬する際には、チオジエタノール、グリセロール及び/又は非イオン性有機ヨウ素化合物水溶液、並びに必要に応じてスクロース水溶液を上記容量比で混合した最終溶液への浸漬の前段手順として、チオジエタノールの容量比を小さくした前処理溶液への浸漬を行ってもよい。
 前処理溶液は、チオジエタノールの容量比の異なる複数の溶液を用いてもよく、この場合、チオジエタノールの容量比がより少ない前処理溶液から順に臓器を一定時間ずつ浸漬していく。段階的な浸漬を行う場合、前段手順ではスクロースを含む処理溶液を用い、最終的にはスクロースを含まない処理溶液を用いてもよく、これはスクロースの析出が問題となるような場合に有効である。なお、このような多段階(2段階以上)での前処理は、組織透明化試薬としてチオジエタノール及びグリセロール並びに必要に応じてスクロース水溶液の混合液を最終溶液とする場合に特に有効であり、最終溶液として非イオン性有機ヨウ素化合物水溶液を含む混合液を用いる場合は必ずしも必要とはならない。 
 非イオン性有機ヨウ素化合物水溶液を含まない組織透明化試薬を用いる場合の多段階前処理の一例として、対象臓器を脳又は脊髄とする場合、チオジエタノール:グリセロール:30%スクロース=20:40:40の溶液、50:40:10の溶液、70:25:5の溶液の各前処理溶液に順にそれぞれ24時間ずつ浸漬した後、最終溶液(90:5:5)への浸漬(24時間)を行う。また、他の臓器では、例えばチオジエタノール:グリセロール=20:80の溶液、50:50の溶液、70:30の溶液の各前処理溶液に順にそれぞれ24時間ずつ浸漬した後、最終溶液(85:15)への浸漬(24時間)を行う。
 非イオン性有機ヨウ素化合物水溶液を含む組織透明化試薬を用いる場合には一段階の前処理によって、脳を3~4日間程度で、骨を除く他の全ての組織を2日間程度で透明化できる。この場合、例えば前処理液にチオジエタノール:グリセロール:30%スクロース=20:40:40の溶液を用い、最終溶液(組織透明化試薬)にチオジエタノール:グリセロール:ヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液:=45:5:50の溶液を用いる。前処理液には例えば4℃~25℃で24時間、最終溶液には例えば4℃~25℃で24~48時間浸漬を行う。
 本発明に係る組織透明化方法では、従来手法に比べて短時間の操作で十分な臓器の透明化度が得られる。また、本発明に係る組織透明化方法では、有毒なあるいは危険な有機溶媒を使用することなく、水溶性溶媒中への浸漬により臓器を透明化できる(後述する実施例参照)。このため、本発明に係る組織透明化方法は、有機溶媒の易燃性や廃液管理の困難さの問題がなく、安全性が高い。
 さらに、本発明に係る組織透明化方法では、有機溶媒を使用しないため、固定した臓器を脱水する過程や組織透明化試薬そのものの影響で、臓器中に標識された蛍光タンパク質の蛍光シグナルが消失又は減衰したりすることがなく、ほぼすべての蛍光標識の蛍光が保持される。さらに、本発明に係る組織透明化方法では、水溶性溶媒中に添加されたグリセロールによって蛍光タンパク質の劣化(退色)を防止する効果も得られる。
(2)固定化手順
 本発明に係る組織透明化方法及び組織観察方法では、上述の組織透明化手順の前に、従来公知の病理組織学的手法による固定化手順を行ってもよい。また、固定化手順には、必要に応じて従来公知の脱脂処理等を組み合わせてもよい。
 固定化手順には、フォルマリン溶液(10%中性フォルマリン溶液、4%パラフォルムアルデヒド緩衝液)で臓器を灌流固定した後に臓器を摘出し、さらに同溶液に24時間程度又はそれ以上の時間浸漬する手法を採用できる。あるいは、灌流固定を行うことなく摘出した臓器を、フォルマリン溶液に48時間程度又はそれ以上の時間浸漬する手法も採用できる。固定化後フォルマリン雰囲気を除去し、組織透明化手順を行うことが好ましい。
(3)標識手順・検出手順
[透明化前の蛍光標識]
 本発明に係る組織観察方法では、組織を蛍光標識した後に、上述の透明化手順を行って、透明化された組織中の蛍光標識から発せられる蛍光を検出することが可能である。上述のように、本発明に係る組織透明化方法は、ほぼすべての蛍光標識の蛍光を保持でき、かつ、蛍光タンパク質の劣化(退色)を防止できるため、複数の蛍光標識を用いた多重染色による組織観察にも好適である。
 標識手順は、遺伝子導入により組織(例えば神経線維)に蛍光タンパク質を発現させる手法、蛍光タンパク質又は蛍光色素を臓器(例えば血管)中に注入する手法、蛍光タンパク質又は蛍光色素を標識した抗体を細胞に結合させる手法等の従来公知の手法によって行うことができる。なお、ここで、蛍光色素とは、GFP等の蛍光タンパク質よりも分子量の小さい低分子化合物(例えばフルオレセイン等)を指すものとする。蛍光タンパク質及び蛍光色素には従来公知の物質を使用できる。
 透明化後の組織中の蛍光標識から発せられる蛍光の検出手順も、蛍光顕微鏡、蛍光実体顕微鏡、共焦点顕微鏡又は多光子顕微鏡による観察などの従来公知の蛍光検出手段を特に限定されることなく用いて行うことができる。本発明に係る組織透明化方法によれば臓器の高い透明度を達成できるため、共焦点顕微鏡又は多光子顕微鏡による観察深度限界を数ミリメートルまで広げることが可能である。
 本発明に係る組織観察方法では、組織透明化手順により種々の臓器を硬化、膨化及び脆弱化させることなく透明化できる(後述する実施例参照)。従って、Scale法等の従来手法と異なり、摘出された臓器の状態を維持したまま観察を行うことが可能である。また、透明化後もナイフ等で簡単に臓器を薄切できるため、透明化後に組織染色を行って観察を行うこともできる。
 さらに、本発明に係る組織観察方法では、上述したように、臓器中に標識された蛍光タンパク質の蛍光シグナルが消失又は減衰したりすることがないため、高精度な蛍光観察が可能である。特に、本発明に係る組織観察方法は、多光子顕微鏡を用いて非常に弱い励起エネルギーで臓器深部の観察を行う際に効果を発揮する。
[透明化後の蛍光標識]
 また、本発明に係る組織観察方法では、上述の透明化手順を行った後に、透明化後の組織を蛍光標識して、透明化された組織中の蛍光標識から発せられる蛍光を検出することも可能である。
 本発明に係る組織透明化方法は、臓器を過度に膨化させたり、脆弱化させたりするとなく透明化できるため、透明化後の臓器は薄切が可能である。このため、透明化後に薄切した臓器片を、蛍光標識抗体を用いた免疫組織化学的手法により染色すれば、透明化後の組織を蛍光標識できる。
 また、透明化後の臓器あるいは臓器片は、各種染色液を用いて、従来公知の病理組織学的染色を行うこともできる。特に、本発明に係る組織透明化方法では、脂肪を保持させたまま臓器を透明化できるため、ズダンIII染色やオイルレッド染色、ズダンブラック染色などの脂肪染色を行うことも可能である。
 さらに、遺伝子導入により組織を蛍光標識した後、臓器を摘出して透明化を行い、透明化後の組織をさらに免疫染色によって蛍光標識し、透明化された組織中の2以上の蛍光標識から発せられる蛍光を検出するといった応用も可能である。
<実施例1:ラット脊髄の透明化>
 4%パラフォルムアルデヒド緩衝液で灌流固定した後にラット脊髄を摘出し、さらに同溶液に24時間浸漬して固定した。固定後の脊髄(径3mm)を、チオジエタノール:グリセロール:スクロース=20:40:40の溶液、50:40:10の溶液、70:25:5の溶液の各前処理溶液に順にそれぞれ24時間ずつ浸漬した後、90:5:5の最終溶液に24時間浸漬して透明化した。
 結果を図1Bに示す。なお、Aは、非特許文献2記載のScale法による結果を示す。本発明に係る組織透明化方法(B)では、Scale法(A)に比して透明度高く脊髄を透明化できた。また、Scale法(A)では、脊髄が2倍に膨化してしまう問題があったのに対して、本発明に係る組織透明化方法(B)ではこのような問題は生じなかった。
<実施例2:ラット脳の透明化>
 ラット脳(組織厚6mm)を実施例1に記載の手順で固定し透明化した。
 結果を図2Bに示す。なお、Aは、非特許文献2記載のScale法による結果を示す。本発明に係る組織透明化方法(B)では、Scale法(A)に比して透明度高く脳を透明化できた。また、Scale法(A)では、脳が顕著に膨張し、指で押圧すると容易に崩れてしまう問題があったのに対して、本発明に係る組織透明化方法(B)では膨化及び脆弱化は生じなかった。
<実施例3:ラット脊髄の蛍光観察>
 神経軸索に蛍光タンパク質VENUSを発現するトランスジェニックラットを作成した。トランスジェニックラットの作成は、非特許文献3("Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter." PLoS ONE, 2009, Vol.4, No.11, e7679)記載の手法により行った。実施例1に記載の手順で固定し透明化した脊髄を共焦点顕微鏡(Zeiss, LSA-700)により観察した。
 取得された蛍光画像を図3Aに示す。Bは、A中の点線で囲った領域の拡大画像である。本発明に係る組織観察方法によれば、神経軸索を高精度に観察することが可能であった。また、比較的高いチオジエタノール濃度(容量比90%)の条件であっても、蛍光タンパク質の蛍光シグナルの消失又は減衰を抑制できた。
<実施例4:ラット損傷脊髄の観察>
 上述のトランスジェニックラットの第12胸髄の背側を鋭利なハサミで半切して脊髄を損壊した後、傷口を閉じた。4週間後に、実施例1に記載の手順で脊髄を固定し透明化した。透明化後の脊髄を多光子励起顕微鏡(Nikon, A1MP)により観察した。
 透明化後の脊髄では、図4に示すように、外部から損壊された部位を透視することが可能となった。損壊部位は、ヘモジデリンによる着色で茶色く視認される。取得された3次元蛍光画像を図5に示す。画像中、緑は神経軸索からのシグナル、青は第二高調波発生(Second harmonic generation: SHG)のシグナルを示す。コラーゲンからのSHGによる蛍光が損壊部位で観察され、同部位でコラーゲンが増生し線維化が生じていることが確認される。
<実施例5:マウス脳脊髄炎の観察>
 マウスに実験的脳脊髄炎を誘起した。マウス尾根部に炎症誘起MOGペプチドエマルジョンを皮下注射し、30日後に4%パラフォルムアルデヒド緩衝液で灌流固定した後に脳脊髄を摘出し、さらに同溶液に24時間浸漬して固定した。固定後の脳脊髄を、チオジエタノール:グリセロール=20:80の溶液、50:50の溶液、70:30の溶液の各前処理溶液に順にそれぞれ24時間ずつ浸漬した後、90:10の最終溶液に24時間浸漬して透明化した。透明化後の脳脊髄を多光子励起顕微鏡により観察した。
 図6に透明化後の脊髄(A)と脳(B)を示す。本実施例では、組織透明化試薬としてチオジエタノール及びグリセロールを含み、スクロース水溶液を含まない水溶性溶媒を用いることで最終的な臓器の透明化度を敢えて抑制した。これにより、図6(B)に示されるように、病変を脳幹内の混濁した部位として確認することができている。また、図7には、取得された3次元蛍光画像を示す。画像中、赤は血管、緑は骨髄由来細胞の蛍光像である。血管の蛍光標識は、蛍光試薬を結合したトマトレクチンを動物の血管に注入することによって実施した。また、骨髄由来細胞の蛍光標識は、蛍光標識した抗F4/80抗体を用いて行った。
<実施例6:マウス肺の観察>
 実施例1に記載の手順でマウス肺(下葉、縦:横:厚み=7mm:5mm:5mm)を固定し透明化した。透明化後の肺を多光子励起顕微鏡により観察し、肺胞血管の3次元構造を構築した。
 透明化後の肺を図8Aに示す。Bは、Aの画像を階調反転させた画像である。透明化後の肺では、図8に示すように、外部から気管支を透視することが可能となった。また、図9には、取得された肺胞血管の3次元画像を示す。
<実施例7:癌の観察>
 GFPを遺伝子導入したヒト肺癌細胞をヌードマウスの皮下に移植し、60日後に癌組織(5mm角)を摘出し、4%パラフォルムアルデヒド緩衝液に24時間浸漬して固定した。実施例1に記載の手順により透明化を行った。透明化後の癌を多光子励起顕微鏡により観察した。
 透明化後の癌を図10に示す。また、癌の3次元蛍光画像を図11Aに示す。なお、図11Bは、Scale法により透明化を行った癌の蛍光観察像である。Scale法(B)による観察では、観察深度限界が100μm程度であり、腫瘍血管は描出不能で、腫瘍細胞(画像中、緑)の分布は不明瞭であった。一方、本発明に係る組織透明化方法(A)による観察では、観察深度限界が1000μm以上であり、腫瘍血管(画像中、赤)が描出可能で、腫瘍細胞の分布も確認された。また、GFPの蛍光シグナルもよく保持されていることが分かった。
<実施例8:ラット心臓・マウス肝臓の透明化>
 ラットの心臓(1.2cm角)及びマウスの肝臓(縦:横:厚み=1cm:1cm:6mm)を実施例1に記載の手順で固定し透明化した。結果を図12、図13に示す。図12中矢印は、大動脈を示す。図13中矢印は、門脈を示す。
<実施例9:透明化後の染色>
 実施例2で透明化したラット脳を薄切し、グリア細胞線維性酸性タンパク質(GFAP)に対する免疫染色、脂肪染色、核染色及びニッスル染色を行った。
 免疫染色は、抗GFAP抗体と、酵素(パーオキシダーゼ)と色素(ジアミノベンジジンテトラヒドロクロライド)を利用した市販の検出キットを用いて行った。脂肪染色にはズダンIIIを用いた。核染色にはDAPIを用いた。ニッスル染色にはトルイジンブルーを用いた。
 結果を図14~図17に示す。図14はGFAP陽性を示す小脳バーグマングリア細胞の免疫染色像を示し、図15は脂肪染色、図16は核染色、図17はニッスル染色の結果を示す。図14では、透明化によって優れた深部描出性が実現されている。また、脂肪染色、核染色及びニッスル染色においても、それぞれ目的とする小脳白質、細胞核及び神経細胞が染色されているのが確認できる。
<実施例10:ラット個体の透明化>
 4日齢のラット個体を前処理液(チオジエタノール:30%スクロース=20:80)に4℃で24時間、最終溶液(チオジエタノール:グリセロール:30%スクロース=90:5:5)に4℃で48時間浸漬して透明化した。結果を図18に示す。ラット個体を丸ごと透明化できていることが確認される。
<実施例11:有機ヨウ素化合物の検討>
 GFPを遺伝子導入したヒト肺癌細胞をヌードマウスの皮下に移植し、4週間成長させた。蛍光試薬を結合したトマトレクチンを動物の血管に注入した後、4%パラフォルムアルデヒド緩衝液で灌流固定した。癌組織を摘出し、4%パラフォルムアルデヒド緩衝液に24時間浸漬して固定した。
 固定後の癌組織を、前処理液(チオジエタノール:30%スクロース=20:80)に4℃で24時間、最終溶液(チオジエタノール:グリセロール:イオメプロール=50:5:45)に4℃で24時間浸漬して透明化した。結果を図19Bに示す。なお、イオメプロールには、エーザイ社のイオメロン(登録商標)を用いた。イオメロン(登録商標)400は、ヨウ素含有量40%であり、屈折率は1.51である。
 Aは、4%パラフォルムアルデヒド緩衝液で固定後の癌組織を示す。Cは、前処理液(チオジエタノール:30%スクロース=20:80)に4℃で24時間、最終溶液(チオジエタノール:グリセロール=90:10)に4℃で24時間浸漬して透明化した癌組織を示す。有機ヨウ素化合物を用いたBで最も高い透明度が得られた。
 透明化後の癌組織においてトマトレクチンにより蛍光標識された血管を多光子励起顕微鏡により観察した。Aに示した固定後の癌組織では、癌組織表面の結合織被膜のため内部は全く観察できなかった。Cに示した透明化後の癌組織では、観察深度限界は約800μmであった。Bに示した透明化後の癌組織では、顕微鏡の検出限界である約1800μmを超えて腫瘍血管の描出が可能であり、癌細胞のGFPからの蛍光シグナルの減弱もみられなかった。この結果ら、非イオン性有機ヨウ素化合物水溶液を加えた最終溶液を用いることによって、高い透明化度が得られることが明らかになり、チオジエタノールの使用量を抑えてGFPの蛍光シグナルをより良好に保持できることが示された。
<実施例12:マウス脳の透明化2>
 4%パラフォルムアルデヒド緩衝液で灌流固定した後にマウス脳を摘出し、さらに同溶液に24時間浸漬して固定した。固定後の脳(組織厚6mm)を、チオジエタノール:イオメプロール=50:50の溶液に25℃で48時間浸漬した。結果を図20Aに示す。
 また、固定後の脳を、チオジエタノール:イオメプロール:グリセロール=50:44.5:5.5の溶液に20℃で48時間浸漬した。結果を図20Bに示す。
 図に示すように、イオメプロールを用いることで、チオジエタノールの容量比を50%に抑制しながら、脳を透明化することができた。また、グリセロールを加えた場合(B)には、加えない場合(A)に比して、透明化度は顕著に向上した。同様の手順により、胃、腎臓、子宮についても透明化できた(図示省略)。
<実施例13:マウス脳血管の蛍光観察>
 EGFPを発現するレトロウイルスベクターを用いてマウスの脳血管にEGFPを発現させた。実施例12と同様の手順で固定し透明化した脳を共焦点顕微鏡(Zeiss, LSA-700)により観察した。
 取得された蛍光画像を図21に示す。イオメプロールを用いた場合、EGFPにより蛍光標識された脳血管を高精度に観察することが可能であった。
<比較例:チオジエタノール単独溶液の検討>
 4%パラフォルムアルデヒド緩衝液で灌流固定した後にラット脳を摘出し、さらに同溶液に24時間浸漬して固定した。固定後の脳(組織厚4mm)を、チオジエタノールに3日間浸漬した。
 結果を図22に示す。Aは、4%パラフォルムアルデヒド緩衝液で固定後の脳を示す。Bは、チオジエタノール単独溶液に浸漬した脳を示す。Cは、前処理液(チオジエタノール:30%スクロース=20:80)に4℃で24時間、最終溶液(チオジエタノール:グリセロール=90:10)に4℃で48時間浸漬して透明化した脳を示す。チオジエタノール単独溶液への浸漬では、厚い脳組織を透明化することはできなかった。
 本発明に係る組織透明化方法によれば、有毒なあるいは危険な有機溶媒を用いることなく簡便な操作によって、種々の臓器をその変化を引き起こすことなく十分に透明化できる。従って、本発明に係る組織透明化方法は、病態解析や薬効評価、癌転移スクリーニングなどの種々の分野において、手間のかかる組織切片作成を行うことなく臓器の内部組織を観察するために用いられ得る。

Claims (13)

  1.  2,2´-チオジエタノールと、グリセロール及び非イオン性有機ヨウ素化合物の少なくとも一方と、を含む水溶性溶媒中に組織を浸漬する手順を含む組織透明化方法。
  2.  前記溶媒が、2,2´-チオジエタノールとグリセロールと非イオン性有機ヨウ素化合物水溶液との混合液であり、2,2´-チオジエタノール、グリセロール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比がそれぞれ10~50%、1~20%及び10~70%である請求項1記載の組織透明化方法。
  3.  前記溶媒が、2,2´-チオジエタノールと非イオン性有機ヨウ素化合物水溶液の混合液であり、2,2´-チオジエタノール及びヨウ素含有量40%の非イオン性有機ヨウ素化合物水溶液の容量比が20~80%、80~20%である請求項1記載の組織透明化方法。
  4.  前記溶媒が、2,2´-チオジエタノールとグリセロールとの混合液であり、2,2´-チオジエタノール及びグリセロールの容量比が70~95%、5~30%である請求項1記載の組織透明化方法。
  5.  前記溶媒が、さらにスクロース水溶液を含む請求項1記載の組織透明化方法。
  6.  前記溶媒の屈折率が、1.4~1.7である請求項1~5のいずれか一項に記載の組織透明化方法。
  7.  前記組織が、脳、脊髄、肝臓、肺、心臓、血管及び癌からなる群より選択される一以上である請求項1~6のいずれか一項に記載の組織透明化方法。
  8.  前記組織が1mm以上の厚さを有する請求項7記載の組織透明化方法。
  9.  2,2´-チオジエタノールと、グリセロール及び非イオン性有機ヨウ素化合物の少なくとも一方と、を含む水溶性溶媒からなる組織透明化試薬。
  10.  2,2´-チオジエタノールと、グリセロール及び非イオン性有機ヨウ素化合物の少なくとも一方と、を含む水溶性溶媒中に組織を浸漬する透明化手順を含む組織観察方法。
  11.  前記組織を蛍光標識する標識手順と、
    蛍光標識後の前記組織を前記溶媒中に浸漬する前記透明化手順と、
    透明化後の組織中の前記蛍光標識から発せられる蛍光を検出する検出手順と、を含む請求項10記載の組織観察方法。
  12.  前記組織を前記溶媒中に浸漬する前記透明化手順と、
    透明化後の組織を蛍光標識する標識手順と、
    透明化及び蛍光標識後の組織中の前記蛍光標識から発せられる蛍光を検出する検出手順と、を含む請求項10記載の組織観察方法。
  13.  前記検出手順において、前記蛍光を蛍光顕微鏡、蛍光実体顕微鏡、共焦点顕微鏡又は多光子顕微鏡により観察する請求項11又は12記載の組織観察方法。
PCT/JP2013/006811 2013-01-28 2013-11-20 組織透明化方法、組織透明化試薬及び組織観察方法 WO2014115206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014558293A JP6325461B2 (ja) 2013-01-28 2013-11-20 組織透明化方法、組織透明化試薬及び組織観察方法
US14/764,060 US20160011086A1 (en) 2013-01-28 2013-11-20 Method for rendering tissue transparent, reagent for rendering tissue transparent, and tissue observation method
CN201380071465.XA CN104956201B (zh) 2013-01-28 2013-11-20 组织透明化方法、组织透明化试剂及组织观察方法
EP13872734.2A EP2950077B1 (en) 2013-01-28 2013-11-20 Method for rendering tissue transparent, reagent for rendering tissue transparent, and tissue observation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013012889 2013-01-28
JP2013-012889 2013-01-28
JPPCT/JP2013/004369 2013-07-17
JP2013004369 2013-07-17

Publications (1)

Publication Number Publication Date
WO2014115206A1 true WO2014115206A1 (ja) 2014-07-31

Family

ID=51227027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006811 WO2014115206A1 (ja) 2013-01-28 2013-11-20 組織透明化方法、組織透明化試薬及び組織観察方法

Country Status (5)

Country Link
US (1) US20160011086A1 (ja)
EP (1) EP2950077B1 (ja)
JP (1) JP6325461B2 (ja)
CN (1) CN104956201B (ja)
WO (1) WO2014115206A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030164A1 (ja) * 2013-08-30 2015-03-05 オリンパス株式会社 生体透明化剤
WO2016147812A1 (ja) * 2015-03-18 2016-09-22 国立研究開発法人理化学研究所 生物材料の観察方法および透明化方法
CN107132101A (zh) * 2017-03-28 2017-09-05 中国科学院深圳先进技术研究院 一种组织光透明剂及其制备方法和应用
JPWO2016103425A1 (ja) * 2014-12-25 2017-10-05 オリンパス株式会社 生体観察装置および生体観察方法
WO2017188264A1 (ja) * 2016-04-28 2017-11-02 国立研究開発法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
WO2018008136A1 (ja) * 2016-07-07 2018-01-11 オリンパス株式会社 画像処理装置および画像処理装置の作動方法
JP2018063216A (ja) * 2016-10-14 2018-04-19 株式会社ファンケル 皮膚内部構造評価方法
KR20180060494A (ko) * 2016-11-29 2018-06-07 박순현 생체 조직 투명화용 조성물 및 이를 이용한 생체 조직 투명화 방법
WO2019094753A1 (en) * 2017-11-09 2019-05-16 Case Western Reserve University Lipid-preserving refractive index matching for prolonged imaging depth for transparent tissue sample and composition
WO2019180874A1 (ja) * 2018-03-22 2019-09-26 オリンパス株式会社 生体組織透明化材料
CN110763661A (zh) * 2018-07-25 2020-02-07 中国科学院合肥物质科学研究院 处理液组合物、试剂盒和生物器官透明化同时进行免疫标记的方法
JP2020034297A (ja) * 2018-08-27 2020-03-05 学校法人東京理科大学 生体試料の透明化方法及び生体試料透明化剤
WO2021015196A1 (ja) * 2019-07-22 2021-01-28 国立大学法人 東京大学 生体組織の処理方法及び処理用組成物
WO2021060373A1 (ja) * 2019-09-24 2021-04-01 国立大学法人大阪大学 細胞適合性組織透明化組成物
JP2021512330A (ja) * 2018-02-05 2021-05-13 コリア リサーチ インスティテュート オブ ケミカル テクノロジー スフェロイドを透明化するための組成物、これを使用するスフェロイドを透明化するための方法、およびこれを備えるキット
WO2021182121A1 (ja) * 2020-03-13 2021-09-16 学校法人慈恵大学 バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法
WO2021238893A1 (en) * 2020-05-25 2021-12-02 The Chinese University Of Hong Kong Efficient and effective tissue clearing agents and their compositions
WO2024162288A1 (ja) * 2023-01-31 2024-08-08 国立研究開発法人理化学研究所 光学観察用の構造及びその作成方法、試料の観察方法、顕微鏡観察用のマウント液

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170160170A1 (en) * 2014-07-07 2017-06-08 Chih-Yung Lin Aqueous tissue clearing solution and uses thereof
CN107621462B (zh) * 2016-07-13 2020-03-31 王志伟 一种组织透明化液sut及其制备和应用
CN106323708B (zh) * 2016-07-29 2019-04-30 浙江大学 一种透明化试剂、生物组织透明化成像方法及其应用
WO2018113723A1 (en) * 2016-12-22 2018-06-28 The University Of Hong Kong Compositions and methods for clearing tissue
CN109406768B (zh) * 2018-11-06 2023-01-24 扬州大学 一种观察微小组织内细胞立体分布及统计细胞数目的方法
CN114402060A (zh) * 2019-07-08 2022-04-26 香港大学 用于组织透明化的组合物和方法
CN110596096B (zh) * 2019-07-08 2022-10-25 深圳技术大学 透明化试剂及其在生物组织材料光学成像中的应用、活体皮肤组织透明化成像方法
CN111610078B (zh) * 2020-07-03 2021-12-14 中国科学技术大学 生物组织透明化试剂及生物组织透明化方法
CN117147250B (zh) * 2023-08-16 2024-06-04 四川大学 一种实验用小型哺乳动物牙齿透明化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187900A (ja) * 1997-08-01 1999-07-13 Canon Inc プローブの固相へのスポッティング方法、プローブアレイとその製造方法、及びそれを用いた標的物質の検出方法、標的物質の構造の特定化方法
US6472216B1 (en) * 2001-07-24 2002-10-29 Ann-Shyn Chiang Aqueous tissue clearing solution
JP2007051957A (ja) * 2005-08-18 2007-03-01 Shimadzu Corp 生体組織の直接質量分析法
WO2011111876A1 (en) * 2010-03-12 2011-09-15 Riken Clearing reagent for biological material, and use thereof
WO2012147965A1 (ja) * 2011-04-28 2012-11-01 独立行政法人理化学研究所 生物材料を透明化する方法、及びその利用
WO2012161143A1 (ja) * 2011-05-20 2012-11-29 独立行政法人理化学研究所 生物材料用透明化試薬、及びその利用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219575B1 (en) * 1998-10-23 2001-04-17 Babak Nemati Method and apparatus to enhance optical transparency of biological tissues
JP3486609B2 (ja) * 2000-12-15 2004-01-13 キヤノン株式会社 インク、インクジェット記録方法、記録ユニット、インクカートリッジ及びインクジェット記録装置
GB2377757B (en) * 2001-07-19 2004-11-17 Ann-Shyn Chiang An aqueous tissue clearing solution
CN101251449A (zh) * 2008-04-10 2008-08-27 山东大学 一种医学组织切片染色方法
CN102749231B (zh) * 2011-10-14 2014-07-09 华中科技大学 骨组织光透明剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187900A (ja) * 1997-08-01 1999-07-13 Canon Inc プローブの固相へのスポッティング方法、プローブアレイとその製造方法、及びそれを用いた標的物質の検出方法、標的物質の構造の特定化方法
US6472216B1 (en) * 2001-07-24 2002-10-29 Ann-Shyn Chiang Aqueous tissue clearing solution
JP2007051957A (ja) * 2005-08-18 2007-03-01 Shimadzu Corp 生体組織の直接質量分析法
WO2011111876A1 (en) * 2010-03-12 2011-09-15 Riken Clearing reagent for biological material, and use thereof
JP2013522590A (ja) 2010-03-12 2013-06-13 独立行政法人理化学研究所 生物材料用透明化試薬、及びその利用
WO2012147965A1 (ja) * 2011-04-28 2012-11-01 独立行政法人理化学研究所 生物材料を透明化する方法、及びその利用
WO2012161143A1 (ja) * 2011-05-20 2012-11-29 独立行政法人理化学研究所 生物材料用透明化試薬、及びその利用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"2,2'-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy", MICROSCOPY RESEARCH AND TECHNIQUE, vol. 70, 2007, pages 1 - 9
"Labeling and confocal imaging of neurons in thick invertebrate tissue samples", 2013, COLD SPRING HARBOR PROTOCOL
"Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain", NATURE NEUROSCIENCE, vol. 14, no. 11, 2011, pages 1481 - 1488
"Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury", NATURE MEDICINE, vol. 18, no. 1, 2011, pages 166 - 71
"Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter", PLOS ONE, vol. 4, no. 11, 2009, pages E7679
APPLETON P.L. ET AL.: "Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy", J MICROSC, vol. 234, no. 2, May 2009 (2009-05-01), pages 196 - 204, XP055276873 *
MARTIN B D ET AL.: "Hydroxylated secondary dopants for surface resistance enhancement in transparent poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) thin films", SYNTH MET, vol. 142, no. 1-3, 13 April 2004 (2004-04-13), pages 187 - 193, XP002357393 *
P.T.GONZALEZ-BELLIDO ET AL.: "Labeling amd confocal imaging of neurons in thick inverterbrate tissue samples", COLD SPRING HARB PROTOC, September 2012 (2012-09-01), pages 970 - 983, XP055276872 *
PHILBERT S. TSAI: "Correlations of Neuronal and Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and Vessels", THE JOURNAL OF NEUROSCIENCE, vol. 29, no. 46, 2009, pages 14553 - 14570, XP055182778 *
SMITH WA ET AL.: "Subgross breast pathology in the twenty-first century.", VIRCHOWS ARCH, vol. 460, no. 5, May 2012 (2012-05-01), pages 489 - 495, XP035054553 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030164A1 (ja) * 2013-08-30 2015-03-05 オリンパス株式会社 生体透明化剤
JPWO2016103425A1 (ja) * 2014-12-25 2017-10-05 オリンパス株式会社 生体観察装置および生体観察方法
WO2016147812A1 (ja) * 2015-03-18 2016-09-22 国立研究開発法人理化学研究所 生物材料の観察方法および透明化方法
JPWO2016147812A1 (ja) * 2015-03-18 2017-12-28 国立研究開発法人理化学研究所 生物材料の観察方法および透明化方法
US20180031452A1 (en) * 2015-03-18 2018-02-01 Riken Method for observing biological material and clearing method
JPWO2017188264A1 (ja) * 2016-04-28 2019-04-11 国立研究開発法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
US11656159B2 (en) 2016-04-28 2023-05-23 Riken Composition for preparing biological material having excellent light transmissivity and use of composition
WO2017188264A1 (ja) * 2016-04-28 2017-11-02 国立研究開発法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
WO2018008136A1 (ja) * 2016-07-07 2018-01-11 オリンパス株式会社 画像処理装置および画像処理装置の作動方法
US10921252B2 (en) 2016-07-07 2021-02-16 Olympus Corporation Image processing apparatus and method of operating image processing apparatus
JP2018063216A (ja) * 2016-10-14 2018-04-19 株式会社ファンケル 皮膚内部構造評価方法
KR20180060494A (ko) * 2016-11-29 2018-06-07 박순현 생체 조직 투명화용 조성물 및 이를 이용한 생체 조직 투명화 방법
KR101866249B1 (ko) * 2016-11-29 2018-06-12 박순현 생체 조직 투명화용 조성물 및 이를 이용한 생체 조직 투명화 방법
US11726012B2 (en) 2016-11-29 2023-08-15 Binaree, Inc. Composition for biotissue clearing and biotissue clearing method using same
CN107132101B (zh) * 2017-03-28 2019-10-11 中国科学院深圳先进技术研究院 一种组织光透明剂及其制备方法和应用
CN107132101A (zh) * 2017-03-28 2017-09-05 中国科学院深圳先进技术研究院 一种组织光透明剂及其制备方法和应用
AU2018364670B2 (en) * 2017-11-09 2020-06-11 Case Western Reserve University Lipid-preserving refractive index matching for prolonged imaging depth for transparent tissue sample and composition
WO2019094753A1 (en) * 2017-11-09 2019-05-16 Case Western Reserve University Lipid-preserving refractive index matching for prolonged imaging depth for transparent tissue sample and composition
JP2021512330A (ja) * 2018-02-05 2021-05-13 コリア リサーチ インスティテュート オブ ケミカル テクノロジー スフェロイドを透明化するための組成物、これを使用するスフェロイドを透明化するための方法、およびこれを備えるキット
US11365213B2 (en) 2018-02-05 2022-06-21 Korea Research Institute Of Chemical Technology Composition for clearing spheroids, method for clearing spheroids using same, and kit comprising same
JP7053860B2 (ja) 2018-02-05 2022-04-12 コリア リサーチ インスティテュート オブ ケミカル テクノロジー スフェロイドを透明化するための組成物、これを使用するスフェロイドを透明化するための方法、およびこれを備えるキット
WO2019180874A1 (ja) * 2018-03-22 2019-09-26 オリンパス株式会社 生体組織透明化材料
CN110763661B (zh) * 2018-07-25 2022-03-22 中国科学院合肥物质科学研究院 处理液组合物、试剂盒和生物器官透明化同时进行免疫标记的方法
CN110763661A (zh) * 2018-07-25 2020-02-07 中国科学院合肥物质科学研究院 处理液组合物、试剂盒和生物器官透明化同时进行免疫标记的方法
JP7106114B2 (ja) 2018-08-27 2022-07-26 学校法人東京理科大学 生体試料の透明化方法及び生体試料透明化剤
JP2020034297A (ja) * 2018-08-27 2020-03-05 学校法人東京理科大学 生体試料の透明化方法及び生体試料透明化剤
WO2021015196A1 (ja) * 2019-07-22 2021-01-28 国立大学法人 東京大学 生体組織の処理方法及び処理用組成物
WO2021060373A1 (ja) * 2019-09-24 2021-04-01 国立大学法人大阪大学 細胞適合性組織透明化組成物
WO2021182121A1 (ja) * 2020-03-13 2021-09-16 学校法人慈恵大学 バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法
WO2021238893A1 (en) * 2020-05-25 2021-12-02 The Chinese University Of Hong Kong Efficient and effective tissue clearing agents and their compositions
WO2024162288A1 (ja) * 2023-01-31 2024-08-08 国立研究開発法人理化学研究所 光学観察用の構造及びその作成方法、試料の観察方法、顕微鏡観察用のマウント液

Also Published As

Publication number Publication date
EP2950077A4 (en) 2016-11-02
JP6325461B2 (ja) 2018-05-16
EP2950077A1 (en) 2015-12-02
US20160011086A1 (en) 2016-01-14
JPWO2014115206A1 (ja) 2017-01-19
CN104956201B (zh) 2018-08-28
CN104956201A (zh) 2015-09-30
EP2950077B1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6325461B2 (ja) 組織透明化方法、組織透明化試薬及び組織観察方法
Azaripour et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue
US11035763B2 (en) Kit for producing cleared biological specimens and method for producing cleared biological specimens
US9778155B2 (en) Methods for phenotyping of intact whole tissues
JP2024019174A (ja) 大型組織の標識、透明化及びイメージングのための方法
EP3550029B1 (en) Composition for biotissue clearing and biotissue clearing method using same
Williams et al. A novel optical tissue clearing protocol for mouse skeletal muscle to visualize endplates in their tissue context
CN104568553B (zh) 一种组织光透明剂及其应用
KR102296381B1 (ko) 생체 조직 투명화용 조성물 및 이를 이용한 생체 조직 투명화 방법
CN107132101A (zh) 一种组织光透明剂及其制备方法和应用
WO2021015196A1 (ja) 生体組織の処理方法及び処理用組成物
DE102007003873A1 (de) Verfahren zur Fluoreszenzfärbung von Gewebe
KR102141496B1 (ko) 투명화된 거대조직의 면역염색용 조성물 및 이를 이용한 투명화된 거대 생체 조직의 면역염색 방법
JP7411223B2 (ja) 被検体の透明化方法および透明化された被検体の製造方法
CN114149693B (zh) 一种用于血管网络标记成像的染料工作液、其制备和应用
TWI695846B (zh) 固化式組織澄清方法與組合物
RU2429462C2 (ru) Способ оптического просветления образцов биологических тканей
KR102354092B1 (ko) 스페로이드 투명화용 조성물, 이를 이용한 스페로이드 투명화 방법 및 이를 포함하는 키트
Montoro et al. Comparison of tissue processing methods for microvascular visualization in axolotls
RU2494681C1 (ru) Способ оценки кровоснабжения левой половины толстого кишечника в эксперименте
Heimel et al. Research Article Iodine-Enhanced Micro-CT Imaging of Soft Tissue on the Example of Peripheral Nerve Regeneration
Matryba et al. Progress in ex situ tissue optical clearing–shifting immuno-oncology to the third dimension
Grafflin et al. Autofluorescence of teleostean kidneys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558293

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013872734

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14764060

Country of ref document: US