WO2021182121A1 - バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法 - Google Patents

バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法 Download PDF

Info

Publication number
WO2021182121A1
WO2021182121A1 PCT/JP2021/007149 JP2021007149W WO2021182121A1 WO 2021182121 A1 WO2021182121 A1 WO 2021182121A1 JP 2021007149 W JP2021007149 W JP 2021007149W WO 2021182121 A1 WO2021182121 A1 WO 2021182121A1
Authority
WO
WIPO (PCT)
Prior art keywords
biofilm
clearing reagent
ray contrast
reagent according
clearing
Prior art date
Application number
PCT/JP2021/007149
Other languages
English (en)
French (fr)
Inventor
真也 杉本
雄樹 金城
Original Assignee
学校法人慈恵大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慈恵大学 filed Critical 学校法人慈恵大学
Priority to JP2022505907A priority Critical patent/JPWO2021182121A1/ja
Publication of WO2021182121A1 publication Critical patent/WO2021182121A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the present invention relates to a biofilm clearing reagent and a method for observing a biofilm using the clearing reagent.
  • a biofilm is a structure consisting of a matrix of polysaccharides and the like secreted by bacteria outside the cells and an aggregate of bacteria. When bacteria adhere and proliferate, they form a matrix-covered state, that is, they form a biofilm and show resistance to drugs, and they also easily escape from the defense mechanism of the living body, which makes treatment difficult.
  • Staphylococcus aureus is the causative agent of surgical site infections, bloodstream infections, respiratory infections, urinary tract infections, etc. in easily infected patients at medical institutions, and it becomes intractable depending on the infected site and sometimes causes death.
  • MRSA methicillin-resistant Staphylococcus aureus
  • the entry route of methicillin-resistant Staphylococcus aureus (MRSA) which is considered to be the causative agent of nosocomial infections, is said to be 48% by indwelling blood catheter and 14% by indwelling urinary tract catheter, which is intractable. At the same time as it becomes severe, it becomes a problem that it becomes severe.
  • biofilm infections In Staphylococcus aureus, airborne bacteria attach to and proliferate on the surface of catheters, etc., produce an extracellular matrix, and the biofilm matures. Eventually, airborne bacteria are released from the biofilm and the infection spreads. In recent years, biofilm-related infectious diseases (biofilm infections) have been increasing with the treatment using artificial medical materials such as central venous catheters and artificial joints.
  • Non-Patent Documents 1 and 2 Although research on biofilms so far has been conducted at the laboratory level, what kind of bacterial species the biofilms at the site of infection are composed of, and how they relate to the site of collection and clinical findings. At present, important clinical data such as whether or not it has sex has not been obtained (Non-Patent Documents 1 and 2).
  • Biofilms differ in properties not only at the bacterial species but also at the strain level, and accurate evaluation of the components that make up the extracellular matrix (ECM) of individual biofilms is an understanding of the molecular mechanism of biofilm formation. It is considered to be important for planning flexible biofilm infectious disease countermeasures according to each property (Non-Patent Documents 3, 4, 5, 6, 7).
  • Non-Patent Document 8 The three-dimensional structure of a biofilm is generally observed using a confocal laser scanning microscope (Non-Patent Document 8). However, it is difficult to observe the three-dimensional structure of biofilms with a thickness of more than 20 micrometers by fluorescence microscope observation.
  • Yoshimitsu Mizunoe, Shinya Sugimoto, Tadayuki Iwase Mechanism of elimination of Staphylococcus aureus by indigenous bacteria. Respiratory Medicine. 26 (1): 49-52, 2014 Yoshimitsu Mizunoe, Shinya Sugimoto, Kenichi Okuda: Prospects for controlling biofilm infectious diseases. Journal of the Society of Livestock Infectious Diseases. 5 (4): 113-120. 2016 Yoshimitsu Mizunoe, Akio Chiba, Tadayuki Iwase, Shinya Sugimoto: Separation and analysis of biofilm extracellular matrix. Area of chemotherapy.
  • the present invention has been made in view of the above problems, and provides a biofilm clearing reagent that enables observation of a three-dimensional structure by instantly clearing even a thick biofilm.
  • the purpose is.
  • Another object of the present invention is to provide a method for observing a biofilm using the clearing reagent.
  • the biofilm clearing reagent according to the present invention is characterized by having an X-ray contrast medium.
  • the method for observing a biofilm according to the present invention is characterized in that the biofilm is made transparent by allowing an X-ray contrast agent to act on the biofilm to be observed.
  • biofilm even a thick biofilm can be instantly made transparent, so that the three-dimensional structure of the biofilm can be easily observed.
  • film transparent it is possible to observe the biofilm during the formation process as well as after the formation.
  • FIG. 1 It is a photographic figure which shows the transparency of MRSA biofilm when iohexol is used. It is a photographic diagram showing the localization of protein in MRSA biofilm when iohexol is used, of which (A) is a photographic diagram showing the localization of SasG protein, and (B) is a photographic diagram showing the localization of MRSA cells. In the figure, (C) is a superposition of (A) and (B). It is a photographic diagram showing the localization of sugar in MRSA biofilm when iohexol is used, of which (A) is a photographic diagram showing the localization of complex sugar on the cell membrane, and (B) is the locality of MRSA cells.
  • (C) is a superposition of (A) and (B). It is a photographic figure which shows the transparency of MRSA biofilm when Iobelsol is used, of which (A) is a low-magnification image and (B) is a high-magnification image. It is a photographic figure which shows the transparency of an Escherichia coli biofilm when iohexol is used. It is a photograph showing the transparency of the biofilm of the fungus (Candida albicans) when iodixanol is used, of which (A) is a water plan taken from the upper part of the culture dish, and (B) is a cross-sectional view taken from the XZ plane. be.
  • the biofilm clearing reagent according to the present invention has an X-ray contrast agent.
  • the X-ray contrast medium is used to add contrast during X-ray photography, but the present inventor has newly added that the biofilm can be instantly made transparent by acting the X-ray contrast medium on the biofilm. It was found as a finding, and the present invention was completed based on such a fact.
  • the main factor that hinders transparency is the scattering of visible light, but by acting the clearing reagent of the present invention on the biofilm, the scattering of visible light on the biofilm can be suppressed. That is, it is considered that the constituent components of the biofilm are microbial cells, polysaccharides, DNA, and proteins, and the clearing reagent of the present invention (refractive index is around 1.4) is allowed to act to cause the main scattering.
  • the refractive index of the microbial cells (about 1.4) in the causative component can be matched with the refractive index of the solution, which can suppress the scattering of visible light.
  • the transparency of the biofilm can be 75 to 99%, preferably 80 to 90% in terms of transmittance.
  • the transmittance of MRSA biofilm can be instantly increased to 80 to 90%.
  • the X-ray contrast agent is preferably an iodine-containing X-ray contrast agent.
  • the iodine-containing X-ray contrast agent contains a compound having a triiodobenzene ring structure. It is classified into ionic and non-ionic according to the type of group (side chain) having water solubility, and further classified into monomer type and dimer type according to the number of benzene rings in one molecule.
  • the iodine-containing X-ray contrast medium is not particularly limited, but is, for example, iohexol, ioversol, iopamidol, iomeprol, iotorolan, ioxylan, iodixanol, ioxagluic acid or sodium iotalamate, and is preferably iohexol.
  • Iodine-containing X-ray contrast media can be used in combination, and in that case, it is preferable to combine iodine-containing X-ray contrast media having significantly different molecular weights. For example, by combining iopamiron having a molecular weight of 777.1 and iotrolan having a molecular weight of 1626.2, it is possible to penetrate an iodine-containing X-ray contrast medium deep into a biofilm having a complicated component.
  • the origin of the biofilm that is the target of the clearing reagent of the present invention is not particularly limited, but it is preferably used for those formed by Staphylococcus bacteria belonging to Gram-positive cocci.
  • the clearing reagent of the present invention preferably clears biofilms derived from Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Staphylococcus saprophytic (S. saprophyticus). Is preferably used for.
  • Staphylococcus aureus is preferably used for clearing biofilms derived from MRSA, MSSA and vancomycin-resistant Staphylococcus aureus (VRSA).
  • the origin of the biofilm that is the target of the clearing reagent of the present invention is also preferably used for those formed by Gram-negative bacteria.
  • the clearing reagent of the present invention is preferably Escherichia coli, Enterobacter cloacae, Salmonella enterica, and Pseudomonas aeruginosa. ), Pseudomonas syringae, Klebsiella pneumoniae, or Acinetobacter baumannii, which is preferably used for clearing biofilms.
  • the origin of the biofilm that is the subject of the clearing reagent of the present invention is also preferably used for those formed by Candida fungi.
  • the clearing reagent of the present invention is preferably Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, or Candida parapsilosis among Candida fungi. -Used to make biofilms derived from Candida tropicalis transparent.
  • the origin of the biofilm that is the target of the clearing reagent of the present invention is also preferably used for those formed by Bacillus bacteria.
  • the clearing reagent of the present invention preferably for clearing a biofilm derived from Bacillus bacterium, Bacillus cereus, Bacillus megaterium or Bacillus brevis. used.
  • the thickness of the biofilm in which the clearing reagent of the present invention is used is not particularly limited, but is, for example, 10 ⁇ m to 550 ⁇ m, preferably 20 ⁇ m to 450 ⁇ m, and more preferably 30 ⁇ m to 350 ⁇ m.
  • the clearing reagent of the present invention can also contain additional components such as a pH adjuster, a buffer solution, and an osmotic pressure adjuster.
  • additional components such as a pH adjuster, a buffer solution, and an osmotic pressure adjuster.
  • the buffer solution include PBS buffer solution, HEPES buffer solution, Tris buffer solution and the like.
  • the pH of the clearing reagent of the present invention is determined from the viewpoint of rapidly clearing the biofilm and not impairing the structure of the biofilm, and is not particularly limited, for example, pH 4.5 to 7.0, preferably pH 5. It is .0 to 6.5, more preferably pH 5.5 to 6.0.
  • the pH adjuster include phosphoric acid, citric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, pyrophosphate, sulfuric acid, nitrate, acetic acid, glycolic acid, boric acid, lactic acid, silicic acid, phosphonic acid and tartaric acid. , Succinic acid, malic acid, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, ammonia and the like.
  • the concentration of the X-ray contrast medium in the clearing reagent according to the present invention is not particularly limited, but can be, for example, 100 to 800 mg / mL, preferably 200 to 600 mg / mL.
  • the method of using the biofilm according to the present invention includes a step of allowing the clearing reagent of the present invention to act on the target biofilm. Acting the clearing reagent on the biofilm means infiltrating the clearing reagent into the biofilm.
  • the method for allowing the clearing reagent of the present invention to act on the biofilm is not particularly limited.
  • the clearing reagent of the present invention is dropped onto the biofilm and the clearing reagent of the present invention is impregnated with the biofilm. There is a way to make it.
  • the biofilm can be made transparent, for example, 1 minute to 120 minutes, preferably 2 minutes to 60 minutes, and more preferably 3 minutes to 10 minutes.
  • the temperature at which the clearing reagent of the present invention is dropped is not particularly limited, but is, for example, 20 ° C to 40 ° C, preferably 25 ° C to 30 ° C.
  • Example 1 An attempt was made to make MRSA biofilm transparent using iohexol as an X-ray contrast agent. The experiment proceeded according to the following procedure.
  • MRSA methicillin-resistant Staphylococcus aureus
  • BHI Brain Heart Infusion
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • FilmTracer TM FM TM 1-43 Green Biofilm Cell Stain (manufactured by Life Technology) diluted in PBS buffer to a final concentration of 5 ⁇ g / mL was added to the biofilm and stained at room temperature for 30 minutes.
  • the stain solution was removed, and iohexol solutions having concentrations of 0 wt% (that is, iohexol was not added), 28 wt%, 35 wt%, 56 wt%, and 70 wt% were added.
  • the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880 (manufactured by Carl Zeiss).
  • the lens portion of the confocal laser scanning microscope was applied to the bottom side of the culture dish, and observation was attempted from the bottom side of the culture dish toward the opening side.
  • FIG. 1 is a photographic diagram showing the transparency of MRSA biofilm using iohexol.
  • the upper part of FIG. 1 is a horizontal plan view taken from the upper part of the culture dish, and the lower part of FIG. 1 shows a cross-sectional view of the biofilm in the XZ plane.
  • the MRSA biofilm has an opaque portion, so that the bottom side of the culture dish can be seen, but the upper part of the culture dish (that is, the part on the opening side of the culture dish). I can't see.
  • the MRSA biofilm has almost no opaque areas and clearing is promoted from the bottom side of the culture dish to the opening side of the culture dish. Was there.
  • Example 2 Iohexol was used as an X-ray contrast medium to make MRSA biofilm transparent, and in the transparent MRSA biofilm, we attempted to visualize the localization of SasG, which is an essential protein for promoting biofilm formation. The experiment proceeded according to the following procedure.
  • MRSA methicillin-resistant Staphylococcus aureus
  • the culture solution was removed, a prefix solution (4% paraformaldehyde, PBS) was added to the biofilm formed on the glass surface, and the film was fixed at room temperature for 30 minutes.
  • a prefix solution 4% paraformaldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • the biofilm was immersed in 1 mL of blocking buffer (3% BSA, 0.05% Triton X100, 1% goat serum, PBS) and incubated at room temperature for 30 minutes.
  • blocking buffer 3% BSA, 0.05% Triton X100, 1% goat serum, PBS
  • the blocking buffer was removed.
  • the primary antibody solution was removed, and the biofilm was washed 3 times with 1 mL of blocking buffer.
  • the secondary antibody solution was removed, and the biofilm was washed 3 times with 1 mL of PBS.
  • a fixative 1% glutaraldehyde, 4% paraformaldehyde, PBS was added and fixed at room temperature for 10 minutes.
  • the stain solution was removed, a 56 wt% iohexol solution was added, and the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880.
  • FIG. 2 (A) is a photographic diagram showing the localization of SasG protein. SasG promotes biofilm formation by anchoring to the cell wall, and SasG contributes to biofilm stabilization by binding to extracellular DNA.
  • FIG. 2B is a photographic diagram showing the localization of MRSA cells.
  • Figure 2 (C) is a superposition of (A) and (B).
  • Example 3 Iohexol was used as an X-ray contrast medium to make the MRSA biofilm transparent, and in the transparent MRSA biofilm, we attempted to visualize the localization of sugars on the cell surface. The experiment proceeded according to the following procedure.
  • MRSA methicillin-resistant Staphylococcus aureus
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • Alexa 647 labeled Wheat Germ Agglutinin (Alexa 647-WGA) (manufactured by Life Technology) diluted in PBS buffer to a final concentration of 5 ⁇ g / mL was added to the biofilm and stained at room temperature for 16 hours or more.
  • the stain solution was removed.
  • the stain solution was removed, a 56 wt% iohexol solution was added, and the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880.
  • FIG. 3 (A) is a photographic diagram showing the localization of complex sugars (that is, N-acetylglucosamine and N-acetylneuramic acid) on the cell surface.
  • Wheat germ agglutinin (WGA) is one of the lectins, and by conjugating to Alexa Fluor® dye, wheat germ agglutinin detects complex sugars on the cell membrane.
  • FIG. 3 (B) is a photographic diagram showing the localization of MRSA cells.
  • Figure 3 (C) is a superposition of (A) and (B).
  • Example 4 In Example 1, iohexol was used as an X-ray contrast medium to attempt to make the MRSA biofilm transparent, but in Example 4, iohexol was used to try to make the MRSA biofilm transparent. The experiment proceeded according to the following procedure.
  • MRSA methicillin-resistant Staphylococcus aureus
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • the staining solution was removed, a 74 wt% Optiley (generic name Ioversole) solution (Optilei 350, manufactured by Gerve Japan Co., Ltd.) was added, and the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880.
  • Optiley generic name Ioversole
  • FIG. 4 is a photographic view showing the transparency of MRSA biofilm using Ioversol, of which (A) is a low-magnification image and (B) is a high-magnification image.
  • FIGS. 4 (A) and 4 (B) even when Iobelsol was used, the MRSA biofilm had almost no opaque portion and transparency was promoted.
  • examples are shown herein for iohexol and iovelsol, biofilm clearing even with other X-ray contrast agents iopamidol, iomeprol, iotorolan, ioxylan, iodixanol, ioxaglic acid or sodium iotalamate. Is possible.
  • Example 5 In Example 1, iohexol was used as an X-ray contrast agent to make the MRSA biofilm transparent, but in Example 5, iohexol was used to make the Escherichia coli biofilm transparent. The experiment proceeded according to the following procedure.
  • Escherichia coli K-12 strain was applied to 2 mL of LB medium and cultured at 37 ° C with shaking overnight.
  • YESCA medium 1% casamino acids, 0.1% yeast extract
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • the stain solution was removed, a 56 wt% iohexol solution was added, and the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880.
  • FIG. 5 is a photographic diagram showing the transparency of an Escherichia coli biofilm using iohexol. As shown in FIG. 5, transparency was also promoted for the Escherichia coli biofilm. Although examples of MRSA biofilms and Escherichia coli biofilms are shown herein, clearing is possible even with biofilms derived from other Gram-positive or Gram-negative bacteria.
  • Example 6 An attempt was made to clear a biofilm of a fungus (Candida albicans) using an X-ray contrast agent, iodixanol. The experiment proceeded according to the following procedure.
  • Candida albicans standard strain (SC5314) was applied to 2 mL of YPD plate medium (1% yeast extract, 2% peptone, 2% glucose, 2% agar) and cultured at 25 ° C for 3 days.
  • YPD plate medium 1% yeast extract, 2% peptone, 2% glucose, 2% agar
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, 4% paraformaldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, 4% paraformaldehyde, PBS
  • the fixative was removed and washed 3 times with sterile water.
  • FilmTracer TM FM TM 1-43 Green Biofilm Cell Stain (manufactured by Life Technology) diluted in sterile water to a final concentration of 5 ⁇ g / mL was added to the biofilm and stained at room temperature for 30 minutes.
  • the stain solution was removed, and 0 wt% (that is, no iodixanol was added), 30 wt%, 45 wt%, and 60 wt% iodixanol solutions were added.
  • the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880 (manufactured by Carl Zeiss).
  • the lens portion of the confocal laser scanning microscope was applied to the bottom side of the culture dish, and observation was attempted from the bottom side of the culture dish toward the opening side.
  • FIG. 6 is a photographic diagram showing the transparency of a Candida albicans biofilm using iodixanol.
  • FIG. 6A is a horizontal plan view taken from the upper part of the culture dish, and
  • FIG. 6B shows a cross-sectional view of the biofilm in the XZ plane.
  • the Candida albicans biofilm has an opaque portion, so that the bottom side of the culture dish can be seen, but the upper part of the culture dish (that is, the portion on the opening side of the culture dish). ) Is invisible.
  • Example 7 An attempt was made to make a biofilm of Bacillus subtilis transparent using iohexol, an X-ray contrast agent. The experiment proceeded according to the following procedure.
  • Bacillus subtilis JKBS01 strain was applied to 2 mL of Tryptic Soy Broth (TSB) medium and cultured with shaking at 37 ° C overnight.
  • TLB Tryptic Soy Broth
  • the culture solution was removed, a fixing solution (1% glutaraldehyde, PBS) was added to the biofilm formed on the glass surface, and the mixture was fixed at room temperature for 30 minutes.
  • a fixing solution 1% glutaraldehyde, PBS
  • the fixative was removed and washed 3 times with PBS buffer.
  • the stain solution was removed, a 56 wt% iohexol solution was added, and the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880.
  • FIG. 7 is a photographic view showing a Bacillus subtilis biofilm transparentized using iohexol, of which (A) is a low-magnification image and (B) is a high-magnification image.
  • FIGS. 7 (A) and 7 (B) a Bacillus subtilis biofilm having a thickness of about 90 ⁇ m could be observed.
  • Example 8 A biofilm of Staphylococcus epidermidis was clarified alive using an X-ray contrast agent, iodixanol, and live cell imaging was performed. The experiment proceeded according to the following procedure.
  • Staphylococcus epidermidis SE21 strain was applied to 2 mL of BHI medium and cultured at 37 ° C overnight.
  • the preculture solution (3 ⁇ L) was added to BHIG medium (3 mL) containing a 30 wt% iodixanol solution and 10 ⁇ M thioflavin T.
  • the three-dimensional structure of the biofilm was observed using a confocal laser scanning microscope LSM880 (manufactured by Carl Zeiss) every 30 minutes while standing still culturing at 37 ° C for 18 hours.
  • the lens portion of the confocal laser scanning microscope was applied to the bottom side of the culture dish, and observation was attempted from the bottom side of the culture dish toward the opening side.
  • FIG. 8 is a photographic diagram observing the formation process of Staphylococcus epidermidis biofilm using iodixanol. Each figure shows the shooting time.
  • the formation process of Staphylococcus epidermidis biofilm could be observed while the bacteria were alive.
  • the microcolonies indicated by the arrows are formed in the initial process of biofilm formation. After that, it can be seen that a thick biofilm is formed by the bacteria adhering to and multiplying in the peripheral part and rising.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

厚みのあるバイオフィルムであっても細胞の生理状態の変化を引き起こすことなく瞬時に透明化することで三次元構造の観察を可能とするバイオフィルムの透明化試薬を提供する。X線造影剤を有する。X線造影剤はヨウ素含有X線造影剤であり、例えばイオヘキソール、イオベルソール、イオパミドール、イオメプロール、イオトロラン、イオキシラン、イオジキサノール、イオキサグル酸又はイオタラム酸ナトリウムである。好ましくはイオヘキソールである。MRSAバイオフィルムを瞬時に透明化できる。

Description

バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法
 本発明は、バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法に関する。
 バイオフィルムとは、細菌が菌体外に分泌する多糖類等のマトリクスと菌の集合体から成る構造物である。細菌が付着・増殖すると、マトリクスに覆われた状態、即ちバイオフィルムを形成して薬剤に抵抗性を示し、また生体の防御機構からも逃れやすくなるために治療が困難になる。
 黄色ブドウ球菌(Staphylococcus aureus)は、医療機関では主に易感染患者において手術部位感染、血流感染、呼吸器感染、尿路感染等の起因菌となり、感染部位によっては難治性となって時に死因となる場合もある。特に、院内感染の原因菌とされるメチシリン耐性黄色ブドウ球菌(methicillin-resistant Staphylococcus aureus:MRSA)の進入経路は、48%が血液留置カテーテル、14%が尿路カテーテル留置によるといわれており、難治化すると同時に、重症化することが問題となる。
 黄色ブドウ球菌では、浮遊細菌がカテーテル等の表面に付着・増殖し、菌体外マトリクスを産生し、バイオフィルムが成熟する。やがてバイオフィルムから浮遊細菌が遊離し感染が拡大する。近年、中心静脈カテーテルや人工関節等の人工医療材料を用いた治療に伴い、バイオフィルムに関連した感染症(バイオフィルム感染症)が増加している。
 これまでのバイオフィルムに関する研究は、実験室レベルで行われているものの、感染部位におけるバイオフィルムがどのような細菌種で構成されているのか、またそれらが採取部位や臨床所見とどのような関連性を持つか等、臨床における重要な基礎的データが得られていないのが現状である(非特許文献1,2)。
 バイオフィルムは菌種のみならず菌株レベルで性質が異なり、個々のバイオフィルムの細胞外マトリクス(ECM, extracellular matrix)を構成する成分を正確に評価することは、バイオフィルム形成の分子メカニズムの理解とそれぞれの性質に合わせた柔軟なバイオフィルム感染症対策の立案に重要であると考えられる(非特許文献3,4,5,6,7)。
 バイオフィルムの三次元構造観察は、共焦点レーザー蛍光顕微鏡を用いた観察が一般的である(非特許文献8)。しかしながら蛍光顕微鏡観察では厚みが20マイクロメートルを超えるバイオフィルムの三次元構造を観察するのは困難である。
水之江義充, 杉本真也, 岩瀬忠行: 常在細菌による黄色ブドウ球菌排除メカニズム. 呼吸器内科. 26(1):49-52, 2014 水之江義充, 杉本真也, 奥田賢一: バイオフィルム感染症制圧に向けての展望. 家畜感染症学会誌.5(4): 113-120. 2016 水之江義充, 千葉明生, 岩瀬忠行, 杉本真也: バイオフィルム細胞外マトリクスの分離・解析.化学療法の領域. 31(11): 2158-2165, 2015 Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, Mizunoe Y: Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep. 8(1): 2254, 2018 Sugimoto S, Okuda K, Miyakawa R, Sato M, Arita-Morioka K, Chiba A, Yamanaka K, Ogura T, Mizunoe Y, Sato C: Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy. Sci Rep. 6: 25889, 2016 Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y: A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability.Microb Biotechnol. 8(3): 392-403, 2015. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y: Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol. 195(8): 1645-55, 2013. Yawata, Y., H. Uchiyama, and N. Nomura. 2010. Visualizingthe effects of biofilm structures on the influx of fluorescent material using combined confocal reflection and fluorescent microscopy. Microbe. Environ. doi: 10.1264/jsme2.ME09169
 本発明はかかる問題点に鑑みてなされたものであって、厚みのあるバイオフィルムであっても瞬時に透明化することで三次元構造の観察を可能とするバイオフィルムの透明化試薬を提供することを目的とする。またその透明化試薬を使用するバイオフィルムの観察方法を提供することを目的とする。
 本発明にかかるバイオフィルムの透明化試薬は、X線造影剤を有することを特徴とする。
 本発明にかかるバイオフィルムの観察方法は、観察対象のバイオフィルムにX線造影剤を作用させることで前記バイオフィルムを透明化することを特徴とする。
 本発明によれば、厚みのあるバイオフィルムであっても瞬時に透明化を促進させることができるのでバイオフィルムの三次元構造の観察が容易となる。また透明化させることで、形成後はもちろん形成過程のバイオフィルムの観察も可能となる。
イオヘキソールを使用した場合におけるMRSAバイオフィルムの透明化を示す写真図である。 イオヘキソールを使用した場合におけるMRSAバイオフィルムにおけるタンパク質の局在を示す写真図であり、そのうち(A)はSasGタンパク質の局在を示す写真図であり、(B)はMRSA細胞の局在を示す写真図であり、(C)は(A)と(B)との重ね合わせである。 イオヘキソールを使用した場合におけるMRSAバイオフィルムにおける糖の局在を示す写真図であり、そのうち(A)は細胞膜上の複合糖質の局在を示す写真図であり、(B)はMRSA細胞の局在を示す写真図であり、(C)は(A)と(B)との重ね合わせである。 イオベルソールを使用した場合におけるMRSAバイオフィルムの透明化を示す写真図であり、そのうち(A)は低倍率像であり(B)は高倍率像である。 イオヘキソールを使用した場合における大腸菌バイオフィルムの透明化を示す写真図である。 イオジキサノールを使用した場合における真菌(Candida albicans)のバイオフィルムの透明化を示す写真であり、そのうち(A)は培養皿の上部から撮影した水平面図であり、(B)はXZ平面による断面図である。 イオヘキソールを使用した場合における枯草菌(Bacillus subtilis)のバイオフィルムの透明化を示す写真であり、そのうち(A)は低倍率像であり、(B)は高倍率像である。 イオジキサノールを使用した場合において、固定剤を使用せず生きたまま表皮ブドウ球菌(Staphylococcus epidermidis)のバイオフィルムを透明化させた写真である。
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。
 本発明にかかるバイオフィルムの透明化試薬は、X線造影剤を有する。X線造影剤はX線撮影の際にコントラストをつけるために使用されるものであるが、本発明者はX線造影剤をバイオフィルムに作用させることにより瞬時にバイオフィルムを透明化できることを新知見として見出し、かかる事実に基づいて本発明を完成させた。
 透明化を妨げる主要因は可視光の散乱であるが、本発明の透明化試薬をバイオフィルムに作用させることにより、バイオフィルムの可視光の散乱を抑制することができる。即ち、バイオフィルムの構成成分は、微生物細胞、多糖、DNA、タンパク質によりなっていると考えられており、本発明の透明化試薬(屈折率が1.4前後)を作用させることで、散乱の主な原因である構成成分中の微生物細胞の屈折率(約1.4)と溶液の屈折率を合わせることができ、これにより可視光の散乱を抑制できる。
 本発明の透明化試薬を使用した場合バイオフィルムの透明化は透過率において75~99%好ましくは80~90%とすることができる。例えば本発明の透明化試薬においてX線造影剤としてイオヘキソールを使用した場合MRSAのバイオフィルムならば瞬時に透過率を80~90%とすることができる。
 X線造影剤は、ヨウ素含有X線造影剤であることが好ましい。ヨウ素含有X線造影剤はトリヨードベンゼン環構造を備える化合物を含有する。水溶性をもたせる基(側鎖)のタイプにより、イオン性と非イオン性に分類され、さらに1分子中のベンゼン環の数によりモノマー型とダイマー型に分類される。
 ヨウ素含有X線造影剤は、特に限定されるものではないが、例えばイオヘキソール、イオベルソール、イオパミドール、イオメプロール、イオトロラン、イオキシラン、イオジキサノール、イオキサグル酸又はイオタラム酸ナトリウムであり、好ましくはイオヘキソールである。
 ヨウ素含有X線造影剤は組み合わせて使用することも可能であり、その場合は分子量が大きく異なるヨウ素含有X線造影剤を組み合わせることが好ましい。例えば分子量777.1のイオパミロンと分子量1626.2のイオトロランとを組み合わせることで複雑な構成成分のバイオフィルムの深部までヨウ素含有X線造影剤を浸透させることが可能である。
 本発明の透明化試薬の対象となるバイオフィルムの由来は、特に限定されるものではないが、グラム陽性球菌に属するブドウ球菌属細菌(Staphylococcus)により形成されるものに対して好ましく使用される。
 本発明の透明化試薬は、ブドウ球菌属のうち好ましくは、黄色ブドウ球菌(S. aureus)、表皮ブドウ球菌(S. epidermidis)や腐性ブドウ球菌(S. saprophyticus)由来のバイオフィルムの透明化に好ましく使用される。
 そして黄色ブドウ球菌のうち更にはMRSA、MSSAやバンコマイシン耐性黄色ブドウ球菌(vancomycin-resistant Staphylococcus aureus:VRSA)由来のバイオフィルムの透明化に好ましく使用される。
 また本発明の透明化試薬の対象となるバイオフィルムの由来は、グラム陰性菌により形成されるものに対しても好ましく使用される。
 本発明の透明化試薬は、グラム陰性菌のうち好ましくは、エシェリヒア・コリ(大腸菌)(Escherichia coli)、エンテロバクター・クロアカ(Enterobacter cloacae)、サルモネラ・エンテリカ(Salmonella enterica)、緑膿菌(Pseudomonas aeruginosa)、シュードモナス・シリンガエ(Pseudomonas syringae)、肺炎桿菌(Klebsiella pneumoniae)、又は、アシネトバクター・バウマンニ(Acinetobacter baumannii)由来のバイオフィルムの透明化に好ましく使用される。
 また本発明の透明化試薬の対象となるバイオフィルムの由来は、カンジダ属真菌により形成されるものに対しても好ましく使用される。
 本発明の透明化試薬は、カンジダ属真菌のうち好ましくは、カンジダ・アルビカンス(Candida albicans)、カンジダ・グラブラータ(Candida glabrata)、カンジダ・クルーセイ(Candida krusei)、カンジダ・パラプシローシス(Candida parapsilosis)、又はカンジダ・トロピカリス(Candida tropicalis)由来のバイオフィルムの透明化に使用される。
 また本発明の透明化試薬の対象となるバイオフィルムの由来は、バチルス属細菌により形成されるものに対しても好ましく使用される。
 本発明の透明化試薬は、バチルス属細菌のうち好ましくは、枯草菌、バチルス・セレウス(Bacillus cereus)、バチルス・メガテリウム(Bacillus megaterium)又はバチルス・ブレビス(Bacillus brevis)由来のバイオフィルムの透明化に使用される。
 本発明の透明化試薬が使用されるバイオフィルムの厚さは、特に限定されるものではないが、例えば10μm~550μmであり、好ましくは20μm~450μmであり、より好ましくは30μm~350μmである。
 本発明の透明化試薬は、pH調整剤、緩衝液、浸透圧調整剤等の更なる成分を含有していることも可能である。緩衝液としては、例えば、PBS緩衝液、HEPES緩衝液、Tris緩衝液などが挙げられる。
 本発明の透明化試薬のpHはバイオフィルムを迅速に透明化させる観点とバイオフィルムの構造を損なわせない観点から決定され、特に限定されるものではないが例えばpH4.5~7.0、好ましくはpH5.0~6.5、より好ましくはpH5.5~6.0である。pH調整剤としては、例えば、リン酸、クエン酸、塩酸、臭化水素酸、ヨウ化水素酸、ピロリン酸、硫酸、硝酸、酢酸、グリコール酸、ホウ酸、乳酸、ケイ酸、ホスホン酸、酒石酸、コハク酸、リンゴ酸、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げられる。
 本発明にかかる透明化試薬におけるX線造影剤の濃度は、特に限定されるものではないが例えば100~800mg/mL、好ましくは200~600mg/mLとすることが可能である。
 本発明にかかるバイオフィルムの使用方法は、本発明の透明化試薬を対象となるバイオフィルムに作用させる工程を含む。透明化試薬をバイオフィルムに作用させるとは透明化試薬をバイオフィルムに浸潤させること意味する。
 本発明の透明化試薬をバイオフィルムに作用させる方法は、特に限定されるものではないが、例えば、バイオフィルムに本発明の透明化試薬を滴下させて本発明の透明化試薬にバイオフィルムを含浸させる方法が挙げられる。
 含浸させる時間は短い場合でもバイオフィルムを透明化させることが可能であり、例えば1分~120分、好ましくは2分~60分、より好ましくは3分~10分である。なお、本発明の透明化試薬を滴下させる温度は、特に限定されるものではないが、例えば20℃~40℃であり、好ましくは25℃~30℃である。
 観察対象のバイオフィルムを固定液で固定してバイオフィルムを透明化することも可能であり、また固定液を使用することなくバイオフィルムを生きたまま透明化させ、形成後はもちろん形成過程のバイオフィルムの観察も可能である。
 (1)実施例1
 X線造影剤としてイオヘキソールを使用してMRSAバイオフィルムの透明化を試みた。下記手順にて実験を進めた。
 メチシリン耐性黄色ブドウ球菌(MRSA)臨床分離株MR23を2 mLのBrain Heart Infusion(BHI)培地(BD社製)に接種し、37℃で一晩振とう培養した。
 前培養液を2 mLの1%グルコース含有BHI(BHIG)培地に2μL添加した。
 全ての菌液をガラス底培養皿(松浪硝子社製)に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stain(Life Technology社製)をバイオフィルムに添加し、室温で30分染色した。
 染色液を除き、0wt%(即ちイオヘキソールを不添加)、28wt%、35wt%、56wt%及び70wt%の各濃度のイオヘキソール溶液を添加した。
 各濃度のイオヘキソール溶液を添加して5分後に共焦点レーザー顕微鏡LSM880(Carl Zeiss社製)を用いてバイオフィルムの三次元構造を観察した。共焦点レーザー顕微鏡のレンズ部分は培養皿の底部側に当て、培養皿の底部側から開口部側方向へ観察を試みた。
 図1はイオヘキソールを使用するMRSAバイオフィルムの透明化を示す写真図である。図1上部は培養皿の上部から撮影した水平面図であり、図1下部はXZ平面によるバイオフィルムの断面図を示す。
 図1に示されるように、イオヘキソール不添加の場合は、MRSAバイオフィルムは不透明な部分があるため培養皿の底部側は見えるものの培養皿の上の部分(即ち培養皿の開口部側の部分)は見えない。
 しかしながらイオヘキソールが28wt%、35wt%、56wt%及び70wt%の各濃度の場合は、MRSAバイオフィルムは不透明な部分がほとんどなくなり、培養皿の底部側から培養皿の開口部側まで透明化が促進されていた。
 (2)実施例2
 X線造影剤としてイオヘキソールを使用してMRSAバイオフィルムを透明化し、更に透明になったMRSAバイオフィルムにおいて、バイオフィルム形成促進に不可欠なタンパク質であるSasGの局在の視覚化を試みた。下記手順にて実験を進めた。
 メチシリン耐性黄色ブドウ球菌(MRSA)臨床分離株MR23を2 mLのBHI培地に塗布し、37℃で一晩振とう培養した。
 前培養液を2 mLのBHIG培地に2 μL添加した。
 全ての菌液をガラス底培養皿に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに前固定液(4%パラホルムアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 バイオフィルムを1 mLのブロッキングバッファー(3% BSA、0.05% Triton X100、1% goat serum, PBS)に浸し、室温で30分間インキュベートした。
 ブロッキングバッファーを除去した。
 ブロッキングバッファーで200倍希釈した抗体SasG抗血清(一次抗体溶液)を1 mL添加し、室温で2時間反応させた。
 一次抗体溶液を除き、ブロッキングバッファー1 mLを用いてバイオフィルムを3回洗浄した。
 ブロッキングバッファーで200倍希釈したAlexa 647標識坑ウサギIgG二次抗体(Life Technology社製)(二次抗体溶液)を1 mL添加し、室温で2時間反応させた。
 二次抗体溶液を除き、1 mLのPBSを用いてバイオフィルムを3回洗浄した。
 後固定液(1%グルタールアルデヒド、4%パラホルムアルデヒド、PBS)を添加し、室温で10分間固定した。
 PBSで3回洗浄した。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stainをバイオフィルムに添加し、室温で30分染色した。
 染色液を除き、56wt%イオヘキソール溶液を添加し、共焦点レーザー顕微鏡LSM880を用いてバイオフィルムの三次元構造を観察した。
 図2(A)はSasGタンパク質の局在を示す写真図である。SasGは細胞壁へのアンカリングによりバイオフィルムの形成を促進しており、更にSasGは細胞外DNAと結合することでバイオフィルムの安定化に寄与している。図2(B)はMRSA細胞の局在を示す写真図である。図2(C)は(A)と(B)との重ね合わせである。
 図2(A)(B)(C)の写真図からMRSAバイオフィルムにおいて、バイオフィルム形成促進に不可欠なタンパク質であるSasGの局在が適切に視覚化されていることが判明した。
 (3)実施例3
 X線造影剤としてイオヘキソールを使用してMRSAバイオフィルムを透明化し、更に透明になったMRSAバイオフィルムにおいて、細胞表層の糖質の局在の視覚化を試みた。下記手順にて実験を進めた。
 メチシリン耐性黄色ブドウ球菌(MRSA)臨床分離株MR10を2 mLのBHI培地に塗布し、37℃で一晩培養した。
 前培養液を2 mLのBHIG培地に2 μL添加した。
 全ての菌液をガラス底培養皿に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したAlexa 647標識Wheat Germ Agglutinin(Alexa 647-WGA)(Life Technology社製)をバイオフィルムに添加し、室温で16時間以上染色した。
 染色液を除いた。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stainをバイオフィルムに添加し、室温で30分染色した。
 染色液を除き、56wt%イオヘキソール溶液を添加し、共焦点レーザー顕微鏡LSM880を用いてバイオフィルムの三次元構造を観察した。
 図3(A)は細胞表層の複合糖質(即ちN-アセチルグルコサミン及びN-アセチル神経アミン酸)の局在を示す写真図である。コムギ胚芽凝集素(WGA)はレクチンの1つでありAlexa Fluor(登録商標)色素にコンジュゲートすることで、コムギ胚芽凝集素は細胞膜上の複合糖質を検出する。図3(B)はMRSA細胞の局在を示す写真図である。図3(C)は(A)と(B)との重ね合わせである。
 図3(A)(B)(C)の写真図からMRSAバイオフィルムにおいて、細胞膜上の複合糖質の局在が適切に視覚化されていることが判明した。
 (4)実施例4
 実施例1ではX線造影剤としてイオヘキソールを使用してMRSAバイオフィルムの透明化を試みたが、実施例4ではイオベルソールを使用してMRSAバイオフィルムの透明化を試みた。下記手順にて実験を進めた。
 メチシリン耐性黄色ブドウ球菌(MRSA)臨床分離株MR23を2 mLのBHI培地に塗布し、37℃で一晩振とう培養した。
 前培養液を2 mLのBHIG培地に2 μL添加した。
 全ての菌液をガラス底培養皿に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stainをバイオフィルムに添加し、室温で30分以上染色した。
 染色液を除き、74wt%オプチレイ(一般名イオベルソール)溶液(オプチレイ350、ゲルベ・ジャパン社製)を添加し、共焦点レーザー顕微鏡LSM880を用いてバイオフィルムの三次元構造を観察した。
 図4はイオベルソールを使用するMRSAバイオフィルムの透明化を示す写真図でありそのうち(A)は低倍率像であり(B)は高倍率像である。図4(A)(B)に示されるようにイオベルソールを使用する場合にあってもMRSAバイオフィルムは不透明な部分がほとんどなくなり透明化が促進されていた。本明細書ではイオヘキソール及びイオベルソールについて実施例が示されているが、他のX線造影剤であるイオパミドール、イオメプロール、イオトロラン、イオキシラン、イオジキサノール、イオキサグル酸又はイオタラム酸ナトリウムであってもバイオフィルムの透明化は可能である。
 (5)実施例5
 実施例1ではX線造影剤としてイオヘキソールを使用してMRSAバイオフィルムの透明化を試みたが、実施例5ではイオヘキソールを使用して大腸菌バイオフィルムの透明化を試みた。下記手順にて実験を進めた。
 大腸菌K-12株を2 mLのLB培地に塗布し、37℃で一晩振とう培養した。
 前培養液を2 mLのYESCA培地(1% casamino acids、0.1% yeast extract)に2 μL添加した。
 全ての菌液をガラス底培養皿に移し、25℃で7日間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 終濃度5 μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stainをバイオフィルムに添加し、室温で30分以上染色した。
 染色液を除き、56wt%イオヘキソール溶液を添加し、共焦点レーザー顕微鏡LSM880を用いてバイオフィルムの三次元構造を観察した。
 図5はイオヘキソールを使用する大腸菌バイオフィルムの透明化を示す写真図である。図5に示されるように大腸菌バイオフィルムに対しても透明化が促進されていた。本明細書ではMRSAバイオフィルム及び大腸菌バイオフィルムについて実施例が示されているが、他のグラム陽性菌やグラム陰性菌由来のバイオフィルムであっても透明化は可能である。
 (6)実施例6
 X線造影剤であるイオジキサノールを使用して、真菌(Candida albicans)のバイオフィルムの透明化を試みた。下記手順にて実験を進めた。
 Candida albicans標準株(SC5314)を2 mLのYPD平板培地(1%酵母エキス、2%ペプトン、2%グルコース、2%寒天)に塗布、25℃で3日間培養した。
 YPD平板培地に生育したコロニーを5 mLのRPMI-MOPS培地[10.4 mg/mL RPMI-1640 powder (glutamine+, phenol red+, bicarbonate-)、165 mM MOPS (pH 7.0)]に1×10CFU/mLとなるように懸濁した。
 2 mLの菌液をガラス底培養皿(松浪硝子社製)に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、4%パラホルムアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、滅菌水で3回洗浄した。
 終濃度5μg/mLとなるように滅菌水に希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stain(Life Technology社製)をバイオフィルムに添加し、室温で30分染色した。
 染色液を除き、0wt%(即ちイオジキサノールを不添加)、30wt%、45wt%及び60wt%の各濃度のイオジキサノール溶液を添加した。
 各濃度のイオジキサノール溶液を添加して5分後に共焦点レーザー顕微鏡LSM880(Carl Zeiss社製)を用いてバイオフィルムの三次元構造を観察した。共焦点レーザー顕微鏡のレンズ部分は培養皿の底部側に当て、培養皿の底部側から開口部側方向へ観察を試みた。
 図6はイオジキサノールを使用するCandida albicansバイオフィルムの透明化を示す写真図である。図6Aは培養皿の上部から撮影した水平面図であり、図6BはXZ平面によるバイオフィルムの断面図を示す。
 図6に示されるように、イオジキサノール不添加の場合は、Candida albicansバイオフィルムは不透明な部分があるため培養皿の底部側は見えるものの培養皿の上の部分(即ち培養皿の開口部側の部分)は見えない。
 しかしながらイオジキサノールが45wt%の場合は、Candida albicansバイオフィルムは不透明な部分がほとんどなくなり、培養皿の底部側から培養皿の開口部側まで透明化が促進されていた。
 (7)実施例7
 X線造影剤であるイオヘキソールを使用して、枯草菌(Bacillus subtilis)のバイオフィルムの透明化を試みた。下記手順にて実験を進めた。
 Bacillus subtilis JKBS01株を2 mLのTryptic Soy Broth(TSB)培地に塗布し、37℃で一晩振とう培養した。
 前培養液を2 mLのTSB培地に2μL添加した。
 全ての菌液をガラス底培養皿に移し、37℃で24時間静置培養した。
 培養液を除き、ガラス表面に形成したバイオフィルムに固定液(1%グルタールアルデヒド、PBS)を添加し、室温で30分間固定した。
 固定液を除去し、PBSバッファーで3回洗浄した。
 終濃度5μg/mLとなるようにPBSバッファーに希釈したFilmTracerTM FMTM 1-43 Green Biofilm Cell Stainをバイオフィルムに添加し、室温で30分以上染色した。
 染色液を除き、56wt%イオヘキソール溶液を添加し、共焦点レーザー顕微鏡LSM880を用いてバイオフィルムの三次元構造を観察した。
 図7はイオヘキソールを使用して透明化したBacillus subtilisバイオフィルムを示す写真図であり、そのうち(A)は低倍率像であり(B)は高倍率像である。
 図7(A)(B)に示されるように、厚さ約90μmのBacillus subtilisバイオフィルムを観察できた。
 (8)実施例8
 X線造影剤であるイオジキサノールを使用して、表皮ブドウ球菌(Staphylococcus epidermidis)のバイオフィルムを生きたまま透明化し、ライブセルイメージングを行った。下記手順にて実験を進めた。
 Staphylococcus epidermidis SE21株を2 mLのBHI培地に塗布し、37℃で一晩培養した。
 前培養液(3 μL)を30wt%のイオジキサノール溶液および10 μMチオフラビンTを含むBHIG培地(3 mL)に添加した。
 全ての菌液をガラス底培養皿に移した。
 37℃で18時間静置培養しながら30分ごとに共焦点レーザー顕微鏡LSM880(Carl Zeiss社製)を用いてバイオフィルムの三次元構造を観察した。共焦点レーザー顕微鏡のレンズ部分は培養皿の底部側に当て、培養皿の底部側から開口部側方向へ観察を試みた。
 図8はイオジキサノールを使用するStaphylococcus epidermidisバイオフィルムの形成過程を観察した写真図である。それぞれの図には撮影した時間を示す。
 図8に示されるように、Staphylococcus epidermidisバイオフィルムの形成過程を菌が生きたまま観察することができた。まず、バイオフィルム形成の初期過程において矢印で示したマイクロコロニーが形成される。その後、周辺部にも菌が付着・増殖し盛り上がっていくことで、厚みのあるバイオフィルムが形成されていく様子がわかる。
 バイオフィルム感染症の予防法、治療法及び診断法の開発等に利用できる。

Claims (14)

  1.  X線造影剤を有することを特徴とするバイオフィルムの透明化試薬。
  2.  前記X線造影剤は、ヨウ素含有X線造影剤であることを特徴とする請求項1に記載のバイオフィルムの透明化試薬。
  3.  前記ヨウ素含有X線造影剤が、イオヘキソール、イオベルソール、イオパミドール、イオメプロール、イオトロラン、イオキシラン、イオジキサノール、イオキサグル酸又はイオタラム酸ナトリウムであることを特徴とする請求項2記載のバイオフィルムの透明化試薬。
  4.  前記バイオフィルムの厚みは10μm~550μmであることを特徴とする請求項1乃至3の何れか1項に記載のバイオフィルムの透明化試薬。
  5.  前記バイオフィルムが、グラム陽性球菌に属するブドウ球菌属細菌由来である請求項1乃至4の何れか1項に記載のバイオフィルムの透明化試薬。
  6.  前記グラム陽性球菌に属するブドウ球菌が、黄色ブドウ球菌、表皮ブドウ球菌及び腐性ブドウ球菌から選択されるいずれかである請求項5に記載のバイオフィルムの透明化試薬。
  7.  前記黄色ブドウ球菌が、メチシリン耐性黄色ブドウ球菌(MRSA)、メチシリン感受性黄色ブドウ球菌(MSSA)、又は、バンコマイシン耐性黄色ブドウ球菌(VRSA)である請求項6に記載のバイオフィルムの透明化試薬。
  8.  前記バイオフィルムが、グラム陰性菌由来である請求項1乃至4の何れか1項に記載のバイオフィルムの透明化試薬。
  9.  前記グラム陰性菌が、エシェリヒア・コリ(大腸菌)(Escherichia coli)、エンテロバクター・クロアカ(Enterobacter cloacae)、サルモネラ・エンテリカ(Salmonella enterica)、緑膿菌(Pseudomonas aeruginosa)、シュードモナス・シリンガエ(Pseudomonas syringae)、肺炎桿菌(Klebsiella pneumoniae)、又は、アシネトバクター・バウマンニ(Acinetobacter baumannii)である請求項8に記載のバイオフィルムの透明化試薬。
  10.  前記バイオフィルムが、カンジダ属真菌由来である請求項1乃至4の何れか1項に記載のバイオフィルムの透明化試薬。
  11.  前記バイオフィルムが、バシラス属細菌由来である請求項1乃至4の何れか1項に記載のバイオフィルムの透明化試薬。
  12.  観察対象のバイオフィルムにX線造影剤を作用させることで前記バイオフィルムを透明化する、バイオフィルムの観察方法。
  13.  前記X線造影剤は、ヨウ素含有X線造影剤であることを特徴とする請求項12に記載のバイオフィルムの観察方法。
  14.  固定液で固定化することなく前記バイオフィルムを観察する、請求項12又は13に記載のバイオフィルムの観察方法。
PCT/JP2021/007149 2020-03-13 2021-02-25 バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法 WO2021182121A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505907A JPWO2021182121A1 (ja) 2020-03-13 2021-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043605 2020-03-13
JP2020-043605 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182121A1 true WO2021182121A1 (ja) 2021-09-16

Family

ID=77670658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007149 WO2021182121A1 (ja) 2020-03-13 2021-02-25 バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法

Country Status (2)

Country Link
JP (1) JPWO2021182121A1 (ja)
WO (1) WO2021182121A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502063A (ja) * 1999-06-10 2003-01-21 エス.シー. ジョンソン アンド サン、インコーポレイテッド 殺菌剤の効力評価用モデルバイオフィルム
US20140065122A1 (en) * 2010-12-21 2014-03-06 Romain Briandet Method for Removing a Microorganism Biofilm
WO2014115206A1 (ja) * 2013-01-28 2014-07-31 独立行政法人科学技術振興機構 組織透明化方法、組織透明化試薬及び組織観察方法
WO2016147812A1 (ja) * 2015-03-18 2016-09-22 国立研究開発法人理化学研究所 生物材料の観察方法および透明化方法
JP2016538569A (ja) * 2013-09-20 2016-12-08 カリフォルニア インスティチュート オブ テクノロジー 無傷全組織の表現型分類のための方法
JP2018508538A (ja) * 2015-03-02 2018-03-29 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション バイオフィルムに有害な影響を与える方法
JP2018185297A (ja) * 2017-04-21 2018-11-22 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 生体組織を透明化するための組成物および同組成物を用いる生体組織の透明化方法
WO2019211705A1 (en) * 2018-04-29 2019-11-07 Regional Centre For Biotechnology Molecular probes for detection of mycobacteria
JP2019195281A (ja) * 2018-05-08 2019-11-14 学校法人慈恵大学 バイオフィルム抑制及び/又は除去剤
JP2021018167A (ja) * 2019-07-22 2021-02-15 国立大学法人 東京大学 生体組織の処理方法及び処理用組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502063A (ja) * 1999-06-10 2003-01-21 エス.シー. ジョンソン アンド サン、インコーポレイテッド 殺菌剤の効力評価用モデルバイオフィルム
US20140065122A1 (en) * 2010-12-21 2014-03-06 Romain Briandet Method for Removing a Microorganism Biofilm
WO2014115206A1 (ja) * 2013-01-28 2014-07-31 独立行政法人科学技術振興機構 組織透明化方法、組織透明化試薬及び組織観察方法
JP2016538569A (ja) * 2013-09-20 2016-12-08 カリフォルニア インスティチュート オブ テクノロジー 無傷全組織の表現型分類のための方法
JP2018508538A (ja) * 2015-03-02 2018-03-29 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション バイオフィルムに有害な影響を与える方法
WO2016147812A1 (ja) * 2015-03-18 2016-09-22 国立研究開発法人理化学研究所 生物材料の観察方法および透明化方法
JP2018185297A (ja) * 2017-04-21 2018-11-22 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 生体組織を透明化するための組成物および同組成物を用いる生体組織の透明化方法
WO2019211705A1 (en) * 2018-04-29 2019-11-07 Regional Centre For Biotechnology Molecular probes for detection of mycobacteria
JP2019195281A (ja) * 2018-05-08 2019-11-14 学校法人慈恵大学 バイオフィルム抑制及び/又は除去剤
JP2021018167A (ja) * 2019-07-22 2021-02-15 国立大学法人 東京大学 生体組織の処理方法及び処理用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE MENG-TSEN, NAKAI YASUHIRO, FUJIMOTO SATOSHI, TAKAYAMA RIE, YOSHIDA SHUHEI, KITAJIMA TOMOYA S., SATO MAKOTO, IMAI TAKESHI: "Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent", CELL REPORTS, vol. 14, no. 11, 2016, pages 2718 - 2732, XP055856765, DOI: https://doi.org/10.1016/j.celrep. 2016.02.05 7 *

Also Published As

Publication number Publication date
JPWO2021182121A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
Yasir et al. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa
Fleiszig et al. Contact lens-related corneal infection: Intrinsic resistance and its compromise
Boldock et al. Human skin commensals augment Staphylococcus aureus pathogenesis
Dlugaszewska et al. The pathophysiological role of bacterial biofilms in chronic sinusitis
Hudak et al. Illuminating vital surface molecules of symbionts in health and disease
Johnson et al. N eisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils
Gomes et al. Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix
Castro et al. Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens
Rändler et al. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses
Andersen et al. Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections
Epis et al. Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development
Banerjee et al. A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans
Scheid Mechanism of intrusion of a microspordian-like organism into the nucleus of host amoebae (Vannella sp.) isolated from a keratitis patient
Mónaco et al. Salmonella typhimurium triggers extracellular traps release in murine macrophages
Loza-Correa et al. The peptidoglycan and biofilm matrix of Staphylococcus epidermidis undergo structural changes when exposed to human platelets
Tülü et al. Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms
Al-Saedi et al. 3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity
Moraes et al. Leishmania (Leishmania) chagasi interactions with Serratia marcescens: ultrastructural studies, lysis and carbohydrate effects
WO2021182121A1 (ja) バイオフィルムの透明化試薬、及び、その透明化試薬を使用するバイオフィルムの観察方法
Leshem et al. The effect of nondialyzable material (NDM) cranberry extract on formation of contact lens biofilm by Staphylococcus epidermidis
Pakkulnan et al. DNase I and chitosan enhance efficacy of ceftazidime to eradicate Burkholderia pseudomallei biofilm cells
Hair et al. Peptide Inhibitor of Complement C1 (PIC1) Inhibits Growth of Pathogenic Bacteria
Nunes et al. Evaluation of the pathogenic potential of Escherichia coli strains isolated from eye infections
Beleneva et al. Assessment of the toxic effect exerted by fluorescent pseudomonads on embryos and larvae of the sea urchin Strongylocentrotus nudus
Wang et al. Ac-HSP20 is associated with the infectivity and encystation of Acanthamoeba castellanii

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768922

Country of ref document: EP

Kind code of ref document: A1