WO2014112768A1 - 폴리부텐의 제조 방법 - Google Patents

폴리부텐의 제조 방법 Download PDF

Info

Publication number
WO2014112768A1
WO2014112768A1 PCT/KR2014/000391 KR2014000391W WO2014112768A1 WO 2014112768 A1 WO2014112768 A1 WO 2014112768A1 KR 2014000391 W KR2014000391 W KR 2014000391W WO 2014112768 A1 WO2014112768 A1 WO 2014112768A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutene
butene
raw material
isobutene
fractional distillation
Prior art date
Application number
PCT/KR2014/000391
Other languages
English (en)
French (fr)
Inventor
김명석
박민섭
서형재
이세현
Original Assignee
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대림산업 주식회사 filed Critical 대림산업 주식회사
Priority to BR112015017093-5A priority Critical patent/BR112015017093B1/pt
Priority to EP14740608.6A priority patent/EP2947102B1/en
Priority to SG11201505498YA priority patent/SG11201505498YA/en
Priority to CN201480005295.XA priority patent/CN105073795A/zh
Publication of WO2014112768A1 publication Critical patent/WO2014112768A1/ko
Priority to US14/801,357 priority patent/US9683060B2/en
Priority to SA515360793A priority patent/SA515360793B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/13Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation with simultaneous isomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/02Stabilising gasoline by removing gases by fractioning

Definitions

  • the present invention relates to a process for producing polybutene, and more particularly, to a process for economically producing high quality polybutene with low fluorine content and high vinylidene content with high catalyst mileage.
  • Polybutene is a polymerized olefin component having 4 carbon atoms (C4) derived from hydrocarbon decomposition process using a Friedel-Craft type catalyst.
  • the number average molecular weight (Mn) is about 300 to 5000. to be.
  • the isobutene is mainly used in the production of methyl t-butylether (MTBE) or polybutene, which is used as an octane number enhancer, and isobutene has the highest reactivity of isobutene among the olefin components. Consists mainly of isobutene units.
  • polybutene was mainly used as an adhesive, an adhesive or an insulating oil, a low reactivity product was preferred, and such a low reactivity polybutene is called a conventional polybutene (Conventional PIB).
  • a polar group is introduced into polybutene and used as an anti-scuff agent, a viscosity index improver, or the like of an engine oil, or mixed with a fuel of an internal combustion engine such as an automobile and used as a cleaning agent.
  • the highly reactive polybutene is referred to as High Reactive Polyisobutylene (HRPIB).
  • PIBSA polyisobutenyl succinic anhydride
  • HRPIB reactive polybutene
  • the double bond is located inside the polybutene, and the number of alkyl groups substituted in the double bond is large, and in the case of general polybutene (Conventional PIB) having low reactivity due to steric hindrance, chlorine gas is used to form polybutene. After the chlorination reaction, it is reacted with maleic anhydride to prepare PIBSA.
  • a method of controlling the polymerization conditions of the polybutene so that a double bond is positioned at the terminal of the polybutene is used.
  • the double bond located at the terminal of the polybutene is called vinylidene
  • the compound having a vinylidene content of 70% or more is called high reactive polybutene
  • the compound having a vinylidene content of about 40 to 70% is referred to as an intermediate reactive polybutene ( MVPIB, Mid Vinylidene Polyisobutylene)
  • a compound having a vinylidene content of 3 to 40% is called general polybutene.
  • boron trifluoride (BF 3 ) is generally used as a catalyst, and alcohols, ether compounds and the like are generally used as a promoter.
  • AlCl 3 the aluminum trichloride
  • the product quality, product productivity per unit catalyst, and product productivity per unit raw material decrease due to normal butenes contained in the raw material, and the higher the isobutene content in the raw material, the higher the product quality and product productivity per unit catalyst. In addition, product productivity per unit raw material is improved.
  • 5,674,955 discloses pretreatment of raw materials containing at least 5% by weight of 1-butene to reduce the content of 1-butene by at least 20% by weight than the initial content, and polybutene using a halogenated catalyst.
  • a method for producing polybutene having a high vinylidene content and a low halogen content is disclosed.
  • isomerized 2-butene still lowers catalyst activity and catalyst mileage.
  • U.S. Patent No. 6,207,115 discloses the selective hydrogenation of diolefins (Ex. Butadiene) using an Olefin Conversion Unit (OCU), at the same time isomerizing 1-butene to 2-butene, followed by polybutene polymerization. And to produce propylene by Metathesis of 2-butene and ethylene.
  • this method also has the disadvantage of low catalyst mileage, since polybutene is produced in the presence of large amounts of 2-butene.
  • the C4 fraction produced during catalytic cracking of heavy oil and the C4 residue produced during pyrolysis of naphtha include 20 to 50 wt% of 1-butene or 2-butene component, and the C4 olefin
  • the polybutene is manufactured using the components as it is, there is a disadvantage in that the halogen content in the product is high and the vinylidene content is low.
  • a large amount of normal butene components such as 1-butene present in the C4 olefin component (raw material) lowers the catalytic activity, lowers the quality of the polybutene, or lowers the product productivity per unit raw material.
  • the method of preparing (isolating) isobutene from a C4 mixture includes t-butyl alcohol (t-Butyl Alcohol: TBA) Dehydration method, Methyl t-Butyl Ether (MTBE) cracking method for adding methanol to isobutene using an acid catalyst and then cracking again to obtain isobutene, iso Butane dehydrogenation (Dehydrogenation) method and the like, all of the above methods are expensive to manufacture (separation) of isobutene, there is a disadvantage that the price of polybutene increases.
  • TBA t-Butyl Alcohol
  • MTBE Methyl t-Butyl Ether
  • An object of the present invention is to provide a method for producing polybutene which can economically produce high-quality and high-reactivity polybutene having a low halogen content such as fluorine and high terminal vinylidene content with high catalyst mileage.
  • Another object of the present invention is to provide a method for producing polybutene having excellent productivity per unit raw material or per unit catalyst.
  • the present invention in the petroleum refining process for cracking crude oil or C4 hydrocarbon components generated in the naphtha cracking plant, selectively hydrogenated the diolefin, and at the same time isomerized 1-butene to 2-butene Then, separating the isobutene raw material through fractional distillation; And it provides a method for producing polybutene comprising the step of polymerizing the isobutene raw material obtained by the fractional distillation.
  • a C4 hydrocarbon raw material generated from a petroleum refining process or naphtha cracking plant (NCC) which decomposes crude oil is used as it is, or 1-butene in this raw material is simply isomerized to 2-butene.
  • NCC naphtha cracking plant
  • diolefin for example, butadiene
  • NCC naphtha cracking center
  • the most reactive diolefin component that is, 1,3-butadiene
  • the isomerization reaction of 1-butene to 2-butene is hydrogen isomerization converting 1-butene and 1-butene already present in the C4 hydrocarbon component into 2-butene generated by the conversion of the diolefin. (hydroisomerisation) reaction.
  • the hydrogenation reaction of the diolefin and the isomerization reaction of 1-butene to 2-butene may be performed by supplying hydrogen gas to the C4 hydrocarbon component in the presence of a metal catalyst.
  • a periodic table group 10 metal such as Ni, Pd, or Pt may be used, and the metal catalyst may be supported on a carrier.
  • the amount of hydrogen used depends on the diolefin content in the C4 hydrocarbon component, preferably above the theoretical stoichiometry necessary for converting the diolefin to normal butene, preferably slightly above the theoretical amount. It can be used in an amount of, for example, 1 to 1.2 equivalents, preferably 1 to 1.1 equivalents, based on the diolefin. If the amount of hydrogen used is too high, the diolefin is converted to normal butane, which is not preferable.
  • the temperature of the hydrogenation reaction and the hydroisomerization reaction is usually 20 to 200 °C, preferably 50 to 150 °C, more preferably 60 to 150 °C, the reaction pressure is 0.1 to 5 MPa, preferably 0.5 to 4 MPa More preferably 0.5 to 3 MPa.
  • Conditions for the hydrogenation reaction and hydroisomerization reaction are disclosed in detail in US Pat. No. 6,207,115, the disclosure of which is incorporated herein by reference.
  • Fractional distillation is a method of separating various liquid mixtures by boiling point (boiling point) using a fractional distillation column.
  • the isobutene raw material obtained by the fractional distillation (isolated) has isobutene as its main component and contains trace amounts of 1-butene and 2-butene, but most of the normal butene components (1-butene, etc.) are removed, Relatively high purity isobutene.
  • the number of stages, the operating temperature, the operating pressure, and the like of the distillation tower can be enumerated.
  • the number of stages of the distillation tower for obtaining an isobutene raw material suitable for the present invention is 20 to 150 stages, preferably 50 to 130 stages, more preferably 70 to 130 stages, and the tower stage is less than 20 stages. This lowers and the purity of isobutene (IB) may fall, and when it exceeds 150 steps, the apparatus cost more than necessary will arise.
  • Said fractional distillation temperature is 0-100 degreeC, Preferably it is 10-80 degreeC, More preferably, it is 20-80 degreeC.
  • the fractional distillation pressure is 0 to 30 atm, preferably 2 to 15 atm, more preferably 3 to 10 atm, even more preferably 5 to 10 atm. When the fractional distillation pressure is 0 atm, it means a vacuum.
  • the composition of the C4 residue oil removed by selective hydrogenation of diolefin and acetylene is shown in Table 2 below.
  • the C4 residue oil of the components shown in Table 2 below contains a large amount of normal butene components (such as 1-butene, C (cis) or T (trans) -2-butene), and therefore high reactivity of high vinylidene and low halogen content Polybutene production is difficult
  • an isobutene raw material obtained through simple isomerization obtained by selectively hydrogenating diolefin and acetylene by using an olefin conversion unit (OCU, Olefin Conversion Unit) and isomerizing 1-butene to 2-butene.
  • OCU Olefin Conversion Unit
  • the composition of the isobutene raw material is shown in Table 3 below.
  • the isobutene raw material manufactured (separated) as mentioned above is polymerized by a conventional method to produce polybutene.
  • the method for producing polybutene from the isobutene raw material includes a method of preparing general polybutene using an aluminum trichloride (AlCl 3 ) catalyst, and a highly reactive polybutene using a boron trifluoride (BF 3 ) catalyst and a promoter. And methods for preparing the intermediate reactive polybutenes. Since a method for producing a general polybutene using an aluminum trichloride catalyst is well known, a brief description of a method for producing a highly reactive polybutene using a boron trifluoride (BF 3 ) catalyst is given here.
  • a promoter (alcohol, ether, etc.) and boron trifluoride (BF 3 ) may be directly introduced into the reactor together or prepared in a complex form in a separate tank and introduced into the reactor.
  • the alcohol compound used as the cocatalyst may be a primary, secondary or tertiary alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, isopropanol, normal propanol, isobutanol, tert-butanol, etc.
  • ether compound used as the cocatalyst a primary, secondary or tertiary ether having 2 to 8 carbon atoms may be used.
  • dimethyl ether, diethyl ether, diisopropyl ether, methyl Propyl ether, methyl isopropyl ether, methyl ethyl ether, methyl butyl ether, methyl tertiary butyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl tertiary butyl ether and the like can be used.
  • the promoter may be used alone or in combination of two or more.
  • the complex compound may be easily prepared by adding a promoter alone or in the form of a mixture into a tank, and then introducing boron trifluoride gas.
  • the complex formation reaction of boron trifluoride and alcohol is an exothermic reaction, it is preferable to remove the heat of reaction in order to reduce the risk of decomposition and explosion of the catalyst.
  • the complexing reaction is preferably performed at a low temperature of 10 ° C. or less, more preferably 0 ° C. or less, most preferably ⁇ 40 ° C. to ⁇ 10 ° C., so that the heat of reaction is sufficiently removed to maintain catalyst stability.
  • the amount of the catalyst used is preferably used so that the amount of boron trifluoride in the catalyst component is 0.05 to 1.0 parts by weight based on 100 parts by weight of isobutene in the isobutene raw material.
  • the use amount of the boron trifluoride exceeds 1.0 parts by weight, a product having a molecular weight that is too low is obtained, the productivity per catalyst is lowered and there is no economical efficiency. I can't.
  • the polymerization (reaction) temperature of the highly reactive polybutene is generally -30 to 20 °C
  • the polymerization (reaction) pressure is set to maintain the isobutene raw material in the liquid state at the reaction temperature, usually 3 kg / cm 2 or more to be.
  • the conversion of isobutene is at least 70%, more preferably about 80-95%.
  • the residence time required for obtaining the above conversion rate is generally 5 to 100 minutes, and outside the above range, it is economically undesirable.
  • a high reactivity polybutene may be obtained by performing a subsequent process such as neutralization commonly performed in the art.
  • the highly reactive polybutenes prepared according to the invention have a number average molecular weight (Mn) of 300 to 5000, a vinylidene content of at least 80% and a conversion of isobutene at least 85%.
  • a highly reactive polybutene having a vinylidene content (a ratio of double bonds (vinylidene) located at the terminal of polybutene among the total double bonds present in polybutene) is 70% or more.
  • MVPIB intermediate reactive polybutene
  • conventional polybutene Conventional Polyisobutylene
  • polybutene In the production of polybutene, in particular in the production of highly reactive polybutene having a vinylidene content of 80% or more and an isobutene conversion of 85% or more, a conventional boron trifluoride complex catalyst is used and conventionally high purity isobutane If the ten is separated and used, the raw material cost increases too much, and the product is not competitive. However, if polybutene is prepared using the isobutene raw material separated according to the present invention, high-quality polybutenes of low fluorine content and high vinylidene content, as well as general polybutene, can be economically produced with high catalyst mileage.
  • the high reactivity polybutene of the high vinylidene content prepared according to the present invention not only increases the content of the active ingredient which plays a clean role in the production of lubricants, fuel cleaners, etc., but also has a low halogen content, and therefore, a detergent and a lubricant additive. There is an advantage that can prevent reactor corrosion that may occur during manufacture.
  • Diolefin (butadiene) is selectively hydrogenated in a petroleum refining process or a naphtha cracking plant (NCC) raw material to decompose crude oil, and at the same time, 1-butene isomerized to 2-butene, and then fractional distillation.
  • NCC naphtha cracking plant
  • Butadiene was removed from the C4 hydrocarbon raw material generated in the naphtha cracking plant (NCC) to obtain C4 residue oil-1 (Raffinate-1) consisting of the components shown in Table 2, which was used as an isobutene raw material.
  • C4 residue oil-1 Raffinate-1
  • isobutene raw materials of the components shown in Table 2 were continuously injected, and the polymerization temperature (reaction temperature), catalyst (BF 3 ) and cocatalysts (methanol and ethanol) shown in Table 4 below And diisopropyl ether) to polymerize polybutene (Comparative Examples 1 and 2).
  • diolefin butadiene
  • 1-butene simply isomerized to 2-butene.
  • the isobutene raw material which consists of a component shown to the obtained.
  • isobutene raw materials of the components shown in Table 3 were continuously injected, and the polymerization temperature (reaction temperature), catalyst (BF 3 ) and cocatalysts (methanol and ethanol) shown in Table 4 below And diisopropyl ether) to polymerize polybutene (Comparative Examples 3 and 4).
  • promoter / BF 3 represents the ratio of the mole number of promoter / mole of BF 3 .
  • the polybutene prepared according to Examples 1 to 4 of the present invention has a vinylidene content of 88% or more (higher is better), an F content of 10 ppm or less (lower is better), high quality and high Meets reactive conditions.
  • Comparative Examples 1 and 2 when C4 residue oil-1 is used as a raw material, although the raw material cost is low, the amount of catalyst and cocatalyst used is high, the yield of product is low, and the product cost is rather increased. There is a disadvantage in that the physical properties of the produced polybutene are lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

불소 함량이 낮고 비닐리덴 함량은 높은 고품질의 폴리부텐을 높은 촉매 마일리지로 경제적으로 제조하는 방법이 개시된다. 상기 폴리부텐의 제조 방법은, 원유를 분해하는 석유 정제 과정 혹은 납사분해설비에서 발생하는 C4 탄화수소 성분 중, 디올레핀을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화한 후, 분별 증류를 통해 이소부텐 원료를 분리하는 단계; 및 상기 분별 증류로 얻은 이소부텐 원료를 중합하는 단계를 포함한다.

Description

폴리부텐의 제조 방법
본 발명은 폴리부텐의 제조 방법에 관한 것으로서, 더욱 상세하게는, 불소 함량이 낮고 비닐리덴 함량은 높은 고품질의 폴리부텐을 높은 촉매 마일리지로 경제적으로 제조하는 방법에 관한 것이다.
폴리부텐은 일반적으로 탄화수소 분해 과정에서 파생되는 탄소수 4(C4)의 올레핀 성분을 프리델-크래프트형 촉매(Friedel-Craft type catalyst)를 사용하여 중합한 것으로서, 수평균 분자량(Mn)은 약 300 내지 5000이다. 원유를 분해하는 석유정제 과정 혹은 납사분해설비(NCC, Naphtha Cracking Center)에서 발생하는 C4 탄화수소 성분 중, 1,3-부타디엔을 추출하고 남은 원료에는, 이소부탄(iso-butane), 노르말부탄(normal-butane)의 파라핀류와 1-부텐(1-butene), 2-부텐(2-butene), 이소부텐(iso-butene) 등의 올레핀이 포함되어 있으며, 이중 이소부텐의 함량은 대략 20 내지 50 중량%이다. 상기 이소부텐은 옥탄가 향상제로 사용되는 메틸-t-부틸에테르(methyl t-butylether: MTBE) 또는 폴리부텐의 제조에 주로 사용되며, 상기 올레핀 성분 중, 이소부텐의 반응성이 가장 높으므로 생성된 폴리부텐은 주로 이소부텐 단위로 이루어진다. 과거에는, 폴리부텐이 점착제, 접착제 또는 절연유로 주로 사용되었으므로, 반응성이 낮은 제품이 선호되었으며, 이와 같이 반응성이 낮은 폴리부텐을 일반 폴리부텐(Conventional PIB)이라 한다. 한편, 최근에는, 폴리부텐에 극성기를 도입하여, 엔진오일의 내마모제(anti-scuff agent), 점도지수 개선제(viscosity index improver) 등으로 사용하거나, 자동차 등 내연기관의 연료에 혼합하여 청정제 등으로 사용하는 경우가 증가하고 있으며, 이와 같이 반응성이 높은 폴리부텐을 고반응성 폴리부텐(High Reactive Polyisobutylene, HRPIB)이라 한다.
폴리부텐에 극성기를 도입하여 얻어지는 제품 중, 가장 일반적인 물질은 폴리부텐과 무수말레인산을 반응시켜 제조되는 폴리이소부테닐숙신산무수물(PIBSA)이며, 이 PIBSA로부터 다양한 윤활유 첨가제나 연료 청정제가 제조된다. 상기 PIBSA 제조에 있어서, 폴리부텐의 이중결합이 폴리부텐의 말단에 위치할수록, 즉, 폴리부텐이 고반응성 폴리부텐(HRPIB)일수록, 폴리부텐과 무수말레인산과 직접 반응하여, 높은 수율로 PIBSA가 얻어진다. 반면, 상기 이중결합이 폴리부텐의 내부에 위치하고, 이중결합에 치환되어 있는 알킬기의 수가 많아, 입체 장애로 인하여 반응성이 낮은 일반 폴리부텐(Conventional PIB)의 경우에는, 염소 가스를 사용하여 폴리부텐을 염소화 반응시킨 후, 무수말레인산과 반응시켜 PIBSA를 제조한다.
폴리부텐의 반응성을 향상시키기 위하여, 폴리부텐의 중합 조건을 조절하여, 가급적 폴리부텐의 말단에 이중 결합이 위치하도록 하는 방법이 사용되고 있다. 이와 같이 폴리부텐의 말단에 위치하는 이중 결합을 비닐리덴이라 하며, 비닐리덴 함량이 70% 이상인 화합물을 고반응성 폴리부텐이라 하고, 비닐리덴 함량이 약 40 내지 70%인 화합물을 중간 반응성 폴리부텐(MVPIB, Mid Vinylidene Polyisobutylene)이라 하고, 비닐리덴 함량이 3 내지 40%인 화합물을 일반 폴리부텐이라 한다. 폴리부텐의 반응성을 조절하기 위해서는, 촉매 및 조촉매의 선택이 중요하며, 촉매로는 삼불화붕소(BF3)가 일반적으로 사용되고, 조촉매로는 알콜류, 에테르류 화합물 등이 일반적으로 사용된다. 또한, 폴리부텐의 이중결합 위치를 말단으로 유도하지 않고 자연 그대로 합성하는 경우에는, 삼염화알루미늄(AlCl3)이 촉매로 사용되어, 비닐리덴 함량이 3 내지 40%인 일반 폴리부텐이 얻어진다. 폴리부텐의 제조에 있어서는, 원료 내에 포함되는 노르말부텐에 의해, 제품 품질, 단위 촉매 당 제품 생산성, 단위 원료당 제품 생산성이 저하되고, 원료 중의 이소부텐 함량이 높을수록, 제품 품질, 단위 촉매 당 제품 생산성, 단위 원료당 제품 생산성이 향상된다.
특히, 말단 비닐리덴 함량이 높은 고반응성 폴리부텐을 제조하고, 촉매에 의해 제품에 포함되는 불소 함량을 낮추기 위해서는, 노르말부텐이 제거된 고순도 이소부텐 원료를 사용하는 것이 바람직하다. 일반 폴리부텐의 경우에도, 제품 내에 포함되는 염소 함량을 낮추고, 단위 원료당 또는 단위 촉매당 생산성을 향상시키기 위해서는, 노르말부텐이 제거된 고순도 이소부텐 원료를 사용하는 것이 바람직하다. 이와 같은 노르말부텐 중, 폴리부텐의 품질에 가장 큰 영향을 미치는 1-부텐을 제거하는 다양한 방법이 알려져 있다. 예를 들어, 미국특허 5,674,955호에는, 적어도 5 중량%의 1-부텐이 포함된 원료를 전처리하여, 1-부텐의 함량을 초기 함량 보다 20 중량% 이상 감소시키고, 할로겐 화합물 촉매를 사용하여 폴리부텐을 중합함으로써, 비닐리덴 함량이 높고, 할로겐 함량이 낮은 폴리부텐을 제조하는 방법이 개시되어 있다. 그러나, 상기 방법에 있어서는, 이성화된 2-부텐이 여전히 촉매 활성 및 촉매 마일리지를 저하시킨다. 미국특허 6,207,115호에는, 올레핀 변환 유닛(OCU, Olefin Conversion Unit)을 사용하여 디올레핀(Ex. Butadiene)을 선택적 수소첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화한 다음, 폴리부텐 중합을 수행하고, 2-부텐과 에틸렌의 메타테시스(Metathesis)에 의해 프로필렌을 제조하는 것을 개시하고 있다. 그러나, 이 방법 역시, 다량의 2-부텐 존재 하에, 폴리부텐이 제조되므로, 촉매 마일리지가 낮은 단점이 있다.
이와 같이, 석유 정제 과정에서, 중질유의 접촉분해 시 생성되는 C4 유분 및 나프타의 열분해 과정에서 생성되는 C4 잔사유는 20 내지 50 중량%의 1-부텐 또는 2-부텐 성분을 포함하며, 상기 C4 올레핀 성분을 그대로 사용하여 폴리부텐을 제조할 경우, 제품 내의 할로겐 함량이 높고, 비닐리덴 함량이 낮아지는 단점이 있다. 상기 C4 올레핀 성분(원료) 내에 존재하는 1-부텐 등 다량의 노르말부텐 성분들은, 촉매 활성을 저하시키고, 폴리부텐의 품질을 저하시키거나, 단위 원료 당 제품 생산성을 저하시킨다. 이러한 문제를 해결하기 위해, 고순도 이소부텐을 사용하는 방법이 있는데, C4 혼합물로부터 이소부텐을 제조(분리)하는 방법으로는, 수화 반응과 탈수 반응을 조합한 t-부틸알코올(t-Butyl Alcohol: TBA) 탈수(Dehydration) 방법, 산촉매를 이용해서 이소부텐에 메탄올을 부가한 후, 다시 크랙킹해서 이소부텐을 수득하는 메틸 t-부틸에테르(Methyl t-Butyl Ether: MTBE) 크랙킹(Cracking) 방법, 이소부탄의 탈수소화(Dehydrogenation) 방법 등이 있으나, 상기 방법들은 모두 이소부텐의 제조(분리)에 많은 비용이 소요되어, 폴리부텐의 가격이 상승하는 단점이 있다.
본 발명의 목적은, 불소 등 할로겐 함유량이 작고, 말단 비닐리덴 함량이 높은 고품질 및 고반응성의 폴리부텐을 높은 촉매 마일리지로 경제적으로 제조할 수 있는 폴리부텐의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은, 단위 원료당 또는 단위 촉매당 생산성이 우수한 폴리부텐의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 원유를 분해하는 석유 정제 과정 혹은 납사분해설비에서 발생하는 C4 탄화수소 성분 중, 디올레핀을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화한 후, 분별 증류를 통해 이소부텐 원료를 분리하는 단계; 및 상기 분별 증류로 얻은 이소부텐 원료를 중합하는 단계를 포함하는 폴리부텐의 제조 방법을 제공한다.
본 발명에 따른 폴리부텐의 제조 방법은, 원유를 분해하는 석유정제 과정 혹은 납사분해설비(NCC)에서 발생하는 C4 탄화수소 원료를 그대로 사용하거나, 이 원료 중의 1-부텐을 2-부텐으로 단순 이성화한 원료를 사용하는 것과 비교하여, 불소 등 할로겐 함유량이 작고, 말단 비닐리덴 함량이 높은 고품질 및 고반응성의 폴리부텐을 높은 촉매 마일리지로 경제적으로 제조할 수 있는 장점이 있다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 폴리부텐의 제조방법은, 원유를 분해하는 석유 정제 과정 혹은 납사분해설비(NCC, Naphtha Cracking Center)에서 발생하는 C4 탄화수소 성분 중, 디올레핀(예를 들면, 부타디엔(butadiene))을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화(isomerisation)한 후, 분별 증류를 통해 분리된 이소부텐 원료를 폴리부텐의 중합 원료로 사용하는 것을 특징으로 한다.
상기 디올레핀의 수소 첨가 반응은, 상기 C4 탄화수소 성분 중, 반응성이 가장 큰 디올레핀 성분, 즉, 1,3-부타디엔과 수소를 반응시켜, 노르말부텐(1-부텐 및 2-부텐) 혼합물을 형성하는 반응이며, 상기 1-부텐의 2-부텐으로의 이성화 반응은 상기 디올레핀의 변환에 의해 발생된 1-부텐 및 상기 C4 탄화수소 성분에 이미 존재하는 1-부텐을 2-부텐으로 변환시키는 수소이성화(hydroisomerisation) 반응이다. 상기 디올레핀의 수소 첨가 반응 및 상기 1-부텐의 2-부텐으로의 이성화 반응은, 금속 촉매의 존재 하에서, 상기 C4 탄화수소 성분으로 수소 가스를 공급하여 수행될 수 있다. 상기 수소화 및 수소이성화(hydroisomerisation) 반응에 사용되는 금속 촉매로는 Ni, Pd, Pt 등의 주기율표 10족 금속을 사용할 수 있고, 상기 금속 촉매는 담체에 담지되어 있을 수 있다. 상기 수소의 사용량은, 상기 C4 탄화수소 성분 중의 디올레핀 함량에 따라 달라지며, 바람직하게는 디올레핀을 노르말부텐으로 전환시키기 위하여 필요한 이론양(theoretical stoichiometry) 이상, 바람직하게는 상기 이론양을 약간 초과하는 양, 예를 들면, 디올레핀에 대하여 1 내지 1.2 당량, 바람직하게는 1 내지 1.1 당량으로 사용될 수 있다. 여기서, 수소의 사용량이 너무 많으면, 디올레핀이 노르말부탄으로 전환되어 바람직하지 못하다. 상기 수소 첨가 반응 및 수소이성화 반응의 온도는 통상 20 내지 200 ℃, 바람직하게는 50 내지 150 ℃, 더욱 바람직하게는 60 내지 150 ℃이며, 반응 압력은 0.1 내지 5 MPa, 바람직하게는 0.5 내지 4 MPa, 더욱 바람직하게는 0.5 내지 3 MPa이다. 상기 수소 첨가 반응 및 수소이성화 반응의 조건은 미국특허 6,207,115호에 상세히 개시되어 있으며, 상기 특허의 개시 내용은 참조로서 본 명세서에 포함된다.
이와 같이 C4 탄화수소 성분을 수소 첨가 반응 및 수소이성화 반응시킨 후, 분별 증류를 통해, 폴리부텐 중합에 사용될 이소부텐 원료를 분리한다. 분별 증류는, 분별 증류탑을 사용하여, 여러 가지 액체 혼합물을 끓는 점(boiling point, 비점) 차이에 의하여 분리하는 방법이다. 상기 분별 증류에 의해 얻어지는(분리된) 이소부텐 원료는, 주성분이 이소부텐이고, 미량의 1-부텐 및 2-부텐이 포함되어 있으나, 대부분의 노르말부텐 성분(1-부텐 등)이 제거됨으로써, 비교적 고순도의 이소부텐을 포함한다. 상기 이소부텐 원료를 얻기 위한 분별 증류 조건으로는, 증류 타워의 단수, 운전 온도, 운전 압력 등을 열거 할 수 있다. 본 발명에 적합한 이소부텐 원료를 얻기 위한 증류 타워의 단수는 20 내지 150단, 바람직하게는 50 내지 130단, 더욱 바람직하게는 70 내지 130단이며, 상기 타워 단수가 20단 미만이면 원료의 분리 효율이 저하되어 이소부텐(IB)의 순도가 저하될 우려가 있고, 150단을 초과하면 필요 이상의 장치 비용이 발생한다. 상기 분별 증류 온도는 0 내지 100 ℃, 바람직하게는 10 내지 80 ℃, 더욱 바람직하게는 20 내지 80 ℃이다. 상기 분별 증류 온도가 0 ℃ 미만이면, 진공장치 및 그에 부수하는 장치 비용이 증가하고, 100 ℃를 초과하면, 필요 이상의 에너지가 소요되고, 높은 압력을 유지하기 위해 장치 비용이 증가할 뿐 만 아니라, 상기 분별 증류 온도가 상기 범위를 벗어나면, 고품질 및 고반응성의 폴리부텐을 얻을 수 없게 될 우려가 있다. 상기 분별 증류 압력은 0 내지 30 기압, 바람직하게는 2 내지 15 기압, 더욱 바람직하게는 3 내지 10기압, 더더욱 바람직하게는 5 내지 10 기압이다. 상기 분별 증류 압력이 0 기압인 것은 진공을 의미하며, 상기 분별 증류 압력이 30 기압을 초과이면 혼합물의 비점이 높아져 필요 이상의 에너지가 소모되고 주변 장치들의 장치 비용이 증가할 뿐 만 아니라, 상기 분별 증류 압력이 상기 범위를 벗어나면, 고품질 및 고반응성의 폴리부텐을 얻을 수 없게 될 우려가 있다. 이와 같이 분별 증류로 얻은 이소부텐 원료를 사용하여 폴리부텐을 중합하면, 고순도의 이소부텐으로 중합된 폴리부텐과 유사한 수준의 높은 품질(높은 비닐리덴 함량 및 낮은 할로겐 함량) 및 제조 효율성을 달성할 수 있다. 본 발명에 사용되는 이소부텐 원료로서, 증류 타워 105단, 증류 온도 50 ℃ / 60 ℃ (상/하), 증류 압력 6 기압의 분별 증류 조건으로 분리된 이소부텐 원료 조성의 일예를 하기 표 1에 나타내었다.
표 1
성 분 이소부텐 n-부탄 1-부텐 C-2-부텐 T-2-부텐 i-부탄
함량(중량%) 45.2 0.4 1.9 0.1 0.9 51.3
한편, 납사분해설비(NCC)에서 발생하는 C4 탄화수소 성분 중, 디올레핀 및 아세틸렌을 선택적으로 수소첨가 반응하여 제거한 C4 잔사유의 조성을 하기 표 2에 나타내었다. 하기 표 2에 나타낸 성분의 C4 잔사유는 다량의 노르말부텐 성분(1-부텐, C(cis) 또는 T(trans)-2-부텐 등)을 포함하므로, 높은 비닐리덴 및 낮은 할로겐 함량의 고반응성 폴리부텐 제조가 곤란하다
표 2
성 분 이소부텐 n-부탄 1-부텐 C-2-부텐 T-2-부텐 i-부탄
함량(중량%) 49.5 10.9 24.8 4.2 9.3 2.9
또한, 올레핀 변환 유닛(OCU, Olefin Conversion Unit)을 사용하여, 디올레핀 및 아세틸렌을 선택적으로 수소 첨가 반응시켜 제거하고, 1-부텐을 2-부텐으로 이성화하여 얻은 이소부텐 원료(단순 이성화를 통해 얻은 이소부텐 원료)의 조성을 하기 표 3에 나타내었다.
표 3
성 분 이소부텐 n-부탄 1-부텐 C-2-부텐 T-2-부텐 i-부탄
함량(중량%) 44.9 10.9 1.7 14.2 23.4 4.9
다음으로, 상기와 같이 제조(분리)된 이소부텐 원료를 통상의 방법으로 중합하여 폴리부텐을 제조한다. 상기 이소부텐 원료로부터 폴리부텐을 제조하는 방법은, 삼염화알루미늄(AlCl3) 촉매를 사용하여 일반 폴리부텐을 제조하는 방법과, 삼불화붕소(BF3) 촉매와 조촉매를 사용하여 고반응성 폴리부텐 및 중간 반응성 폴리부텐을 제조하는 방법으로 구분될 수 있다. 삼염화알루미늄 촉매를 사용하여 일반 폴리부텐을 제조하는 방법은 널리 공지되어 있으므로, 여기서는, 삼불화붕소(BF3) 촉매를 이용한 고반응성 폴리부텐 제조 방법에 대하여 간략히 설명한다.
고반응성 폴리부텐 제조에 있어서는, 조촉매(알코올, 에테르 등)와 삼불화붕소(BF3)가 함께 반응기로 직접 투입되거나, 별도의 탱크에서 착화합물(complex) 형태로 제조되어 반응기로 투입될 수 있다. 상기 조촉매로 사용되는 알코올 화합물로는 탄소수 1 내지 4의 1차, 2차 또는 3차 알코올을 사용할 수 있으며, 예를 들면, 메탄올, 에탄올, 이소프로판올, 노르말프로판올, 이소부탄올, 터셔리부탄올 등을 사용할 수 있고, 상기 조촉매로 사용되는 에테르 화합물로는 탄소수 2 내지 8의 1차, 2차 또는 3차 에테르를 사용할 수 있으며, 예를 들면, 디메틸에테르, 디에틸에테르, 디이소프로필에테르, 메틸프로필에테르, 메틸이소프로필에테르, 메틸에틸에테르, 메틸부틸에테르, 메틸터셔리부틸에테르, 에틸프로필에테르, 에틸이소프로필에테르, 에틸부틸에테르, 에틸이소부틸에테르, 에틸터셔리부틸에테르 등을 사용할 수 있다. 상기 조촉매는 단독 또는 2이상이 혼합되어 사용될 수 있다. 상기 조촉매와 삼불화붕소의 착화합물을 형성할 경우, 단독 또는 혼합물 형태의 조촉매를 탱크에 투입한 후, 삼불화붕소 기체를 투입하여 착화합물을 용이하게 제조할 수 있다. 이때, 삼불화붕소와 알코올의 착물 형성 반응은 발열 반응이므로, 촉매의 분해 및 폭발 위험성을 줄이기 위하여, 반응열을 제거하는 것이 바람직하다. 특히, 상기 반응열이 충분히 제거되어 촉매 안정성이 유지되도록, 10 ℃ 이하, 더욱 바람직하게는 0 ℃ 이하, 가장 바람직하게는 -40 ℃ 내지 -10 ℃의 낮은 온도에서 착물화 반응이 수행되는 것이 좋다. 상기 촉매의 사용량은, 이소부텐 원료 중의 이소부텐 100 중량부에 대하여, 촉매 성분 중 삼불화붕소의 양이 0.05 내지 1.0 중량부가 되도록 사용하는 것이 바람직하다. 상기 삼불화붕소의 사용양이 1.0 중량부를 초과하면, 너무 낮은 분자량의 제품이 얻어지고, 촉매당 생산성이 저하되어 경제성이 없으며, 0.05 중량부 미만이면, 폴리부텐의 수율이 저하되어, 경제적으로 바람직하지 못하다.
상기 고반응성 폴리부텐의 중합(반응) 온도는 일반적으로 -30 내지 20 ℃이며, 중합(반응) 압력은 해당 반응 온도에서 이소부텐 원료가 액체 상태를 유지하도록 설정되며, 통상 3 kg/cm2 이상이다. 일반적으로 이소부텐의 전환율은 70% 이상, 더욱 바람직하게는 약 80 내지 95%이다. 본 발명에 있어서, 상기 전환율을 얻는데 필요한 체류 시간은 일반적으로 5 내지 100분이며, 상기 범위를 벗어나면, 경제적으로 바람직하지 못하다. 폴리부텐의 중합이 완료되면, 당해 분야에서 통상적으로 실시되는 중화 등의 후속공정을 수행하여 고반응성 폴리부텐을 얻을 수 있다. 본 발명에 따라 제조된 고반응성 폴리부텐은 300 내지 5000의 수평균 분자량(Mn)을 가지며, 비닐리덴 함량이 80% 이상이고, 이소부텐의 전환율이 85% 이상이다.
본 발명에 따른 폴리부텐의 제조 방법에 의하면, 비닐리덴 함량(폴리부텐에 존재하는 전체 이중 결합 중, 폴리부텐의 말단에 위치하는 이중결합(비닐리덴)의 비율)이 70% 이상인 고반응성 폴리부텐 뿐만 아니라, 비닐리덴 함량이 약 40 내지 70%인 중간 반응성 폴리부텐(MVPIB, Mid Vinylidene Polyisobutylene) 및/또는 비닐리덴 함량이 3 내지 40%인 일반 폴리부텐(Conventional Polyisobutylene)을 효율적으로 중합할 수 있다. 폴리부텐의 제조, 특히, 비닐리덴 함량이 80% 이상이고, 이소부텐의 전환율이 85% 이상인 고반응성 폴리부텐의 제조에 있어서, 통상적인 삼불화붕소 착화합물 촉매를 사용하고, 통상의 방법으로 고순도 이소부텐을 분리하여 사용하면, 원료 비용이 너무 증가하여, 제품의 경쟁력이 없다. 그러나, 본 발명에 따라 분리된 이소부텐 원료를 사용하여 폴리부텐을 제조하면, 일반 폴리부텐 뿐만 아니라, 낮은 불소 함유량 및 높은 비닐리덴 함량의 고품질 폴리부텐을 높은 촉매 마일리지로 경제적으로 제조할 수 있다.
석유 정제 과정에서 중질유의 접촉 분해 시 생성되는 C4 유분 또는 나프타 열분해 과정에서 생성되는 C4 잔사유의 경우, 20 내지 50 중량%, 구제적으로 20 내지 35 중량%의 노르말부텐(1-부텐 등)이 포함되어 있어, 폴리부텐의 생산성 및 품질을 저하시키지만(낮은 비닐리덴 함량 및 높은 할로겐 함량), 본 발명에 따른 폴리부텐의 제조 방법에 의하면, 제품 품질 및 생산성을 저하시키는 노르말부텐 성분이 제거된 원료를 사용하여, 상기 문제를 해결할 수 있다. 본 발명에 따라 제조된, 높은 비닐리덴 함량의 고반응성 폴리부텐은, 윤활유, 연료청정제 등의 제조 시 청정 역할을 하는 유효성분의 함량을 증가시킬 뿐만 아니라, 할로겐 함량이 낮으므로, 청정제, 윤활유 첨가제 제조 시 발생될 수 있는 반응기 부식을 방지할 수 있는 장점이 있다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 구체적으로 설명한다. 하기 실시예 및 비교예는 본 발명의 이해를 돕기 위한 것으로서, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
[실시예 1 내지 4] 고반응성 폴리부텐의 제조
원유를 분해하는 석유정제 과정 혹은 납사분해설비(NCC)에서 발생하는 C4 탄화수소 원료 중, 디올레핀(부타디엔)을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화한 후, 분별 증류(증류 타워: 105단, 증류 온도: 50 ℃ / 60 ℃ (상/하), 증류 압력: 6 기압)하여, 표 1에 나타낸 성분의 이소부텐 원료를 얻었다. 냉각 장치가 부착되어 있는 스테인레스 압력 반응기로, 표 1에 나타낸 성분의 이소부텐 원료를 연속적으로 주입하고, 하기 표 4에 기재된 중합온도(반응온도), 촉매(BF3) 및 조촉매(메탄올, 에탄올 및 디이소프로필에테르(IPE, Diisopropyl Ether)를 사용하여, 폴리부텐을 중합하였다(실시예 1 내지 4). 이때, 이소부텐 원료가 액상을 유지하도록, 반응기 압력을 3 kg/cm2 이상으로 유지하였으며, 평균 체류 시간은 30분이었고, 180분 경과 후, 반응기 출구로부터 중합액을 5 중량%의 가성 소다 용액이 담겨있는 용기에 직접 취하여, 중합을 중지하고 촉매 성분을 중화시킨 다음, 약 3배 부피의 헥산을 혼합하고, 3회 수세하여 미반응 원료 및 용매를 제거하였다. 끝으로, 220 ℃ 및 5 mmHg 에서 30분간 스트리핑하여, 잔여 저비점 성분을 제거하여, 목적물인 폴리부텐을 얻었다. 얻어진 폴리부텐의 분자량(Mn, 수평균 분자량) 및 분자량 분포(MWD, Molecular Weight Distribution)을 GPC(Gel permeation chromatography)로 측정하고, C13-NMR을 이용하여 비닐리덴 함량(Vinyldene, %)을 분석하였으며, ISE(Ion Selective Electrode)를 사용하여 F 함량(F, ppm)을 분석하여, 그 결과를 표 4에 나타내었다. 하기 표 4에서, "반응 후 IB 함량(%)" 및 "IB 전환율(%)"은 가스크로마토그래피(GC) 분석을 통하여, 반응 전, 후의 이소부텐(IB) 함량을 비교하여, 이소부텐(IB)의 반응 참여도를 분석한 것이다.
[비교예 1 및 2] 고반응성 폴리부텐의 제조
납사분해설비(NCC)에서 발생하는 C4 탄화수소 원료로부터, 부타디엔을 제거하여, 표 2에 나타낸 성분으로 이루어진 C4 잔사유-1(Raffinate-1)을 얻었으며, 이를 이소부텐 원료로 사용하였다. 냉각 장치가 부착되어 있는 스테인레스 압력 반응기로, 표 2에 나타낸 성분의 이소부텐 원료를 연속적으로 주입하고, 하기 표 4에 기재된 중합온도(반응온도), 촉매(BF3) 및 조촉매(메탄올, 에탄올 및 디이소프로필에테르)를 사용하여, 폴리부텐을 중합하였다(비교예 1 및 2). 다른 조건은 실시예와 동일하게 유지하였으며, 얻어진 폴리부텐의 분자량(Mn), 분자량 분포(MWD), 비닐리덴 함량(Vinyldene, %), F 함량(F, ppm), 반응 후 IB함량(%), IB 전환율(%) 및 촉매 마일리지(PIB/BF3)를 실시예와 동일한 방법으로 분석하여, 그 결과를 표 4에 나타내었다.
[비교예 3 및 4] 고반응성 폴리부텐의 제조
원유를 분해하는 석유정제 과정 혹은 납사분해설비(NCC)에서 발생하는 C4 탄화수소 원료 중, 디올레핀(부타디엔)을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 단순 이성화하여, 표 3에 나타낸 성분으로 이루어진 이소부텐 원료를 얻었다. 냉각 장치가 부착되어 있는 스테인레스 압력 반응기로, 표 3에 나타낸 성분의 이소부텐 원료를 연속적으로 주입하고, 하기 표 4에 기재된 중합온도(반응온도), 촉매(BF3) 및 조촉매(메탄올, 에탄올 및 디이소프로필에테르)를 사용하여, 폴리부텐을 중합하였다(비교예 3 및 4). 다른 조건은 실시예와 동일하게 유지하였으며, 얻어진 폴리부텐의 분자량(Mn), 분자량 분포(MWD), 비닐리덴 함량(Vinyldene, %), F 함량(F, ppm), 반응 후 IB함량(%), IB 전환율(%) 및 촉매 마일리지(PIB/BF3)를 실시예와 동일한 방법으로 분석하여, 그 결과를 표 4에 나타내었다.
표 4
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2 비교예3 비교예4
메탄올 1.70 1.0 1.7
에탄올 1.65 1.0 1.65 2.0 1.65
IPE 0.6 0.55
조촉매/BF3 Mole Ratio 1.7 1.65 1.60 1.55 1.65 2.0 1.7 1.65
반응 후 IB 함량(%) 7.5 8.6 9.0 8.4 14.6 14.3 8.2 8.4
IB 전환율(%) 93 92 91 92 83 83 92 92
반응온도(℃) -25 -25 -18 -18 -25 -25 -25 -25
촉매 마일리지 (PIB/BF3) 634 610 603 642 412 162 240 266
Vinyldene(%) 88.3 89.3 90.5 90.3 80.2 85.6 86.0 87.8
F(ppm) 6 4 3 4 41 31 5 4
Mn(MWD) 1830 (1.85) 2350 (1.90) 1060 (1.34) 1370 (1.47) 2250 (1.88) 1270 (1.55) 1980 (1.79) 2410 (1.88)
상기 표 4에서, "조촉매/BF3"는 조촉매 몰수합/BF3 몰수의 비율을 나타낸다. 상기 표 4로부터, 본 발명의 실시예 1 내지 4에 따라 제조된 폴리부텐은 비닐리덴 함량이 88% 이상이고(높을수록 좋음), F 함량이 10 ppm 이하로서(낮을수록 좋음), 고품질 및 고반응성 조건을 충족한다. 반면, 비교예 1 및 2와 같이, C4 잔사유-1을 원료로 사용하면, 원료 비용이 저렴하기는 하지만, 촉매 및 조촉매의 사용량이 많고, 제품 생산 수율이 낮아, 제품 원가가 오히려 상승하고, 제조된 폴리부텐의 물성이 저하되는 단점이 있다. 또한, 비교예 3 및 4와 같이, 단순 이성화만으로 얻어진 이소부텐 원료를 사용하면, 일정 정도 양호한 품질의 폴리부텐을 제조할 수 있지만, 촉매 마일리지가 낮아, 제품 생산성이 낮은 단점이 있다.

Claims (8)

  1. 원유를 분해하는 석유 정제 과정 혹은 납사분해설비에서 발생하는 C4 탄화수소 성분 중, 디올레핀을 선택적으로 수소 첨가 반응시키고, 동시에 1-부텐을 2-부텐으로 이성화한 후, 분별 증류를 통해 이소부텐 원료를 분리하는 단계; 및
    상기 분별 증류로 얻은 이소부텐 원료를 중합하는 단계를 포함하는 폴리부텐의 제조 방법.
  2. 청구항 1에 있어서, 상기 폴리부텐은 비닐리덴 함량이 70% 이상인 고반응성 폴리부텐, 비닐리덴 함량이 40 내지 70%인 중간 반응성 폴리부텐 및 비닐리덴 함량이 3 내지 40%인 일반 폴리부텐으로 이루어진 군으로부터 선택되는 것인, 폴리부텐의 제조방법.
  3. 청구항 2에 있어서, 상기 일반 폴리부텐은 삼염화알루미늄 촉매를 사용하여 제조되고, 상기 고반응성 폴리부텐 및 중간 반응성 폴리부텐은 삼불화붕소(BF3) 촉매 및 조촉매를 사용하여 제조되는 것인, 폴리부텐의 제조방법.
  4. 청구항 3에 있어서, 상기 조촉매는 탄소수 1 내지 4의 1차, 2차 또는 3차 알코올 또는 탄소수 2 내지 8의 1차, 2차 또는 3차 에테르인 것인, 폴리부텐의 제조방법.
  5. 청구항 1에 있어서, 상기 이소부텐 원료의 중합 온도는 -30 내지 20 ℃이고, 중합 압력은 3 kg/cm2 이상이며, 체류 시간은 5 내지 100분인 것인, 폴리부텐의 제조방법.
  6. 청구항 1에 있어서, 상기 디올레핀의 수소 첨가 반응 및 1-부텐의 이성화 반응은, 금속 촉매의 존재 하에서, 상기 C4 탄화수소 성분으로 수소 가스를 공급하여 수행되는 것인, 폴리부텐의 제조방법.
  7. 청구항 1에 있어서, 상기 분별 증류 단계는, 증류 타워 단수 20 내지 150단, 분별 증류 온도 20 내지 80 ℃, 및 분별 증류 압력 2 내지 10 기압으로 이소부텐 원료를 분리하는 것인 폴리부텐의 제조방법.
  8. 청구항 1 내지 청구항 7의 어느 한 항에 따른 제조방법으로 얻어지는 폴리부텐.
PCT/KR2014/000391 2013-01-17 2014-01-14 폴리부텐의 제조 방법 WO2014112768A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112015017093-5A BR112015017093B1 (pt) 2013-01-17 2014-01-14 método para preparar polibuteno
EP14740608.6A EP2947102B1 (en) 2013-01-17 2014-01-14 Method for preparing polybutene
SG11201505498YA SG11201505498YA (en) 2013-01-17 2014-01-14 Method for preparing polybutene
CN201480005295.XA CN105073795A (zh) 2013-01-17 2014-01-14 一种制备聚丁烯的方法
US14/801,357 US9683060B2 (en) 2013-01-17 2015-07-16 Method for preparing polybutene
SA515360793A SA515360793B1 (ar) 2013-01-17 2015-07-22 طريقة لتحضير بولي بيوتين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130005211A KR101458404B1 (ko) 2013-01-17 2013-01-17 폴리부텐의 제조 방법
KR10-2013-0005211 2013-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/801,357 Continuation-In-Part US9683060B2 (en) 2013-01-17 2015-07-16 Method for preparing polybutene

Publications (1)

Publication Number Publication Date
WO2014112768A1 true WO2014112768A1 (ko) 2014-07-24

Family

ID=51209820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000391 WO2014112768A1 (ko) 2013-01-17 2014-01-14 폴리부텐의 제조 방법

Country Status (9)

Country Link
US (1) US9683060B2 (ko)
EP (1) EP2947102B1 (ko)
KR (1) KR101458404B1 (ko)
CN (1) CN105073795A (ko)
BR (1) BR112015017093B1 (ko)
MY (1) MY170215A (ko)
SA (1) SA515360793B1 (ko)
SG (1) SG11201505498YA (ko)
WO (1) WO2014112768A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658545B1 (ko) * 2014-08-22 2016-09-21 대림산업 주식회사 폴리부텐의 제조방법
US9617366B1 (en) 2016-03-03 2017-04-11 Tpc Group Llc Low-fluoride, reactive polyisobutylene
WO2017151341A1 (en) 2016-03-03 2017-09-08 Tpc Group Llc Low-fluoride, reactive polyisobutylene
US9617363B1 (en) 2016-03-03 2017-04-11 Tpc Group Llc Low-fluoride, reactive polyisobutylene
KR102589091B1 (ko) 2017-07-27 2023-10-16 사빅 글로벌 테크놀러지스 비.브이. 연료 첨가제의 제조 방법
WO2019180585A1 (en) 2018-03-19 2019-09-26 Sabic Global Technologies B.V. Method of producing a fuel additive
US11427518B2 (en) 2018-03-19 2022-08-30 Saudi Arabian Oil Company Method of producing a fuel additive
CN111989387B (zh) 2018-04-19 2022-09-06 沙特基础工业全球技术有限公司 生产燃油添加剂的方法
EP3790944B1 (en) 2018-05-07 2023-06-14 SABIC Global Technologies B.V. Method of producing a fuel additive
EP3790854A1 (en) 2018-05-07 2021-03-17 SABIC Global Technologies B.V. Method of producing a fuel additive
CN112135809A (zh) 2018-05-18 2020-12-25 沙特基础工业全球技术有限公司 利用水合单元生产燃料添加剂的方法
EP3853192B1 (en) 2018-09-18 2024-03-13 SABIC Global Technologies B.V. Process for the production of fuel additives
CN113056490B (zh) * 2019-01-18 2023-07-28 株式会社Lg化学 聚丁烯的分离方法
US20230167208A1 (en) 2021-11-30 2023-06-01 Braskem S.A. Heterogeneous catalyst for highly-reactive polyisobutylene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960041140A (ko) * 1995-05-11 1996-12-19 프랑스와 앙드레프 올레핀계 c₄ 유분을 폴리이소부텐과 프로필렌으로 전환시키는 방법 및 장치
US5674955A (en) 1994-03-07 1997-10-07 Bp Chemicals Limited Production of polyisobutenes
KR0140716B1 (ko) * 1987-12-22 1998-07-01 돈 제이. 마혼 삼불학 붕소 촉매를 사용하여 반응성이 향상된 폴리부텐을 제조하는 방법
KR20020029083A (ko) * 1999-07-16 2002-04-17 캐털리틱 디스틸레이션 테크놀로지스 노말 부텐으로부터 이소부텐의 분리방법
KR20020037083A (ko) * 2000-11-13 2002-05-18 이정국 폴리부텐의 제조방법
KR20090014372A (ko) * 2006-06-06 2009-02-10 바스프 에스이 이소부텐 함량이 낮은 c4 탄화수소 혼합물로부터 반응성이있고 실질적으로 할로겐을 함유하지 않는 폴리이소부텐의 제조
KR20100069011A (ko) * 2008-12-15 2010-06-24 대림산업 주식회사 삼불화붕소 착화합물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2121431A (en) * 1982-06-08 1983-12-21 Exxon Research Engineering Co Isomerisation of butene-1 to butene-2 in isobutylene
FR2614295B1 (fr) * 1987-04-22 1989-08-04 Inst Francais Du Petrole Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c4 contenant du butadiene et des composes sulfures.
US5087780A (en) * 1988-10-31 1992-02-11 Chemical Research & Licensing Company Hydroisomerization process
US5012030A (en) * 1989-10-10 1991-04-30 Amoco Corporation Process for preparing polybutenes with increased reactivity
FR2802921B1 (fr) * 1999-12-24 2002-08-23 Inst Francais Du Petrole Production d'isobutene de haute purete et de propylene a partir de coupes d'hydrocarbures a quatre atomes de carbone
DE10118181A1 (de) * 2001-04-11 2002-10-17 Basf Ag Abtrennung nicht umgesetzten Isobutens bei der Polymerisation von Isobuten
US7888541B2 (en) * 2005-04-15 2011-02-15 Catalytic Distillation Technologies Double bond hydroisomerization of butenes
US20090023882A1 (en) * 2006-02-23 2009-01-22 Basf Se Process for preparation of polyisobutylene whose content of terminal double bonds is more than 50% from an industrial c4 hydrocarbon stream comprising 1-butene, 2-butene and isobutene
CA2650930A1 (en) * 2006-05-05 2007-11-15 Paul Benjerman Himelfarb A process for selectively hydrogenating butadiene in an c4 olefin stream containing a catalyst poison with the simultaneous isomerization of 1-butene to 2-butene
US7982086B2 (en) * 2009-02-03 2011-07-19 Catalytic Distillation Technologies Deisobutenizer
US20100298507A1 (en) * 2009-05-19 2010-11-25 Menschig Klaus R Polyisobutylene Production Process With Improved Efficiencies And/Or For Forming Products Having Improved Characteristics And Polyisobutylene Products Produced Thereby
MY171009A (en) * 2011-04-28 2019-09-23 Basf Se Isomerization of light alpha-olefins to light internal olefins

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0140716B1 (ko) * 1987-12-22 1998-07-01 돈 제이. 마혼 삼불학 붕소 촉매를 사용하여 반응성이 향상된 폴리부텐을 제조하는 방법
US5674955A (en) 1994-03-07 1997-10-07 Bp Chemicals Limited Production of polyisobutenes
KR960041140A (ko) * 1995-05-11 1996-12-19 프랑스와 앙드레프 올레핀계 c₄ 유분을 폴리이소부텐과 프로필렌으로 전환시키는 방법 및 장치
US6207115B1 (en) 1995-05-11 2001-03-27 Institut Francais Du Petrole Process and plant for the conversion of olefinic C4 cuts to polyisobutene and to propylene
KR20020029083A (ko) * 1999-07-16 2002-04-17 캐털리틱 디스틸레이션 테크놀로지스 노말 부텐으로부터 이소부텐의 분리방법
KR20020037083A (ko) * 2000-11-13 2002-05-18 이정국 폴리부텐의 제조방법
KR20090014372A (ko) * 2006-06-06 2009-02-10 바스프 에스이 이소부텐 함량이 낮은 c4 탄화수소 혼합물로부터 반응성이있고 실질적으로 할로겐을 함유하지 않는 폴리이소부텐의 제조
KR20100069011A (ko) * 2008-12-15 2010-06-24 대림산업 주식회사 삼불화붕소 착화합물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947102A4

Also Published As

Publication number Publication date
MY170215A (en) 2019-07-09
SA515360793B1 (ar) 2018-01-04
US9683060B2 (en) 2017-06-20
EP2947102A1 (en) 2015-11-25
EP2947102A4 (en) 2016-08-17
EP2947102B1 (en) 2018-03-21
KR20140092996A (ko) 2014-07-25
BR112015017093B1 (pt) 2021-01-19
SG11201505498YA (en) 2015-09-29
CN105073795A (zh) 2015-11-18
US20150322181A1 (en) 2015-11-12
KR101458404B1 (ko) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2014112768A1 (ko) 폴리부텐의 제조 방법
JPH07268033A (ja) ポリイソブテンの製造方法
KR20090014372A (ko) 이소부텐 함량이 낮은 c4 탄화수소 혼합물로부터 반응성이있고 실질적으로 할로겐을 함유하지 않는 폴리이소부텐의 제조
US9637576B2 (en) Device and method for re-circulating raw material used when manufacturing polybutene
WO2016028123A1 (ko) 폴리부텐의 제조방법
WO2010071307A2 (ko) 삼불화붕소 착화합물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법
KR101523568B1 (ko) 반응성 폴리부텐 및 비반응성 폴리부텐의 선택적 제조장치 및 방법
KR101871071B1 (ko) 폴리부텐의 제조방법, 이에 의해 제조된 폴리부텐, 및 이에 의해 제조된 폴리부텐의 제조장치
US4379899A (en) Process for producing polyisobutenes
KR20130115624A (ko) 삼불화붕소 착물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법
KR100851639B1 (ko) 고농도 이소부텐을 이용한 고반응성 폴리이소부텐의제조방법
KR102203006B1 (ko) 고반응성 폴리부텐의 제조 방법
KR101511707B1 (ko) 분자량 조절이 용이한 폴리부텐의 제조장치 및 방법
KR101628897B1 (ko) 노르말 프로판올을 포함한 촉매를 이용한 폴리부텐의 제조방법
KR101457452B1 (ko) 다양한 분자량을 가지는 폴리부텐의 제조 장치 및 방법
DE102005002722A1 (de) Verfahren zur Herstellung von Polyisobuten
JP2000080127A (ja) ブテンポリマーの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480005295.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014740608

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017093

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015017093

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150716