CN105073795A - 一种制备聚丁烯的方法 - Google Patents

一种制备聚丁烯的方法 Download PDF

Info

Publication number
CN105073795A
CN105073795A CN201480005295.XA CN201480005295A CN105073795A CN 105073795 A CN105073795 A CN 105073795A CN 201480005295 A CN201480005295 A CN 201480005295A CN 105073795 A CN105073795 A CN 105073795A
Authority
CN
China
Prior art keywords
polybutene
butylene
prepare
raw material
iso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480005295.XA
Other languages
English (en)
Inventor
金明奭
朴敏燮
徐炯在
李说铉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DL Holdings Co Ltd
Original Assignee
Daelim Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daelim Industrial Co Ltd filed Critical Daelim Industrial Co Ltd
Publication of CN105073795A publication Critical patent/CN105073795A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/13Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation with simultaneous isomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/02Stabilising gasoline by removing gases by fractioning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种在高耐久性催化剂下经济地制备具有低氟含量和高亚乙烯基含量的高质量高反应性聚丁烯的方法。所述制备聚丁烯的方法包括:对由涉及裂解原油的炼油厂或石脑油裂解中心生产的C4烃组分中的二烯烃进行选择性氢化反应,同时进行1-丁烯转化为2-丁烯的异构化反应,然后通过分馏分离异丁烯原料;以及将通过分馏获得的异丁烯原料聚合。

Description

一种制备聚丁烯的方法
技术领域
本发明涉及一种制备聚丁烯的方法,更具体而言,涉及一种在高耐久性(mileage)催化剂下经济地制备氟含量低和亚乙烯基含量高的高质量聚丁烯的方法。
背景技术
聚丁烯是在弗里德尔-克拉夫茨(Friedel-Craft)型催化剂的存在下由烃裂解过程中形成的含有4个碳原子的C4烯烃生产的聚合物。聚丁烯的数均分子量(Mn)为约300-5000。由涉及裂解原油的炼油厂或石脑油裂解中心(NCC)生产的C-4烃提取1,3-丁二烯之后剩余的原料残留物含有链烷烃如异丁烷或正丁烷以及烯烃如1-丁烯、2-丁烯、异丁烯等。原料的异丁烯含量为约20-50wt%。异丁烯主要用在用作辛烷增强剂的甲基叔丁基醚(MTBE)或聚丁烯的制备中。由于异丁烯是烯烃中最易反应的一种,聚丁烯主要由异丁烯单元生产。按照惯例,聚丁烯已用在胶合剂(gluingagent)、粘合剂或隔离油中,且优选反应性低的聚丁烯。这种低反应性聚异丁烯称为“常规PIB”。近年来,具有极性基团的聚丁烯越来越多地在发动机油抗磨剂(anti-scuffagent),粘度指数改进剂或与汽车内燃机燃料结合使用的清洁剂等中使用。这种高反应性的聚异丁烯被称为“高反应性聚异丁烯(HR-PIB)”。
通过将极性基团引入聚丁烯而得到的产物中最受欢迎的一种是通过聚丁烯和马来酸酐反应制备的聚异丁烯琥珀酸酐(PIBSA)。由PIBSA可制备各种润滑添加剂或燃料清洁剂。在PIBSA的制备中,由于聚丁烯的双键位于聚丁烯的最远端,即聚丁烯是高反应性聚异丁烯(HR-PIB),聚丁烯可与马来酐直接反应形成产量高的PIBSA。相反地,当聚丁烯是由于位于内侧的聚丁烯双键和包含的作为引起位阻的取代基的许多烷基而具有相对低反应性的常规PIB时,必须用氯气氯化聚丁烯并将其与马来酐反应,以生成PIBSA。
为了提高聚丁烯的反应性,这样控制聚丁烯的聚合条件使在聚丁烯尽可能最远端具有聚丁烯位置的双键。位于聚丁烯末端的双键被称为“亚乙烯基”。亚乙烯基含量为70%或更高的化合物是“高反应性聚异丁烯”,亚乙烯基含量为约40-70%的化合物是“中反应性亚乙烯基聚异丁烯(MV-PIB),和亚乙烯基含量为3-40%的化合物是常规聚异丁烯。催化剂和助催化剂的选择对聚丁烯反应性的控制非常重要。一般而言,催化剂是三氟化硼(BF3),助催化剂是醇类、醚类等。此外,在双键位置未被引入到末端的聚丁烯的合成中,三氯化铝(AlCl3)可用作催化剂,以获得亚乙烯基含量为3-40%的常规聚异丁烯。在聚丁烯的制备中,原料中包含的正丁烯可能导致产品质量、每单位催化剂的生产率和每单位原料的生产率的劣化,但是原料中较高的异丁烯含量使得产品质量、每单位催化剂的生产率和每单位原料的生产率得到提高。
为了生产具有高末端亚乙烯基含量的高反应性聚异丁烯和降低产物中来自催化剂的的氟含量,尤其需要使用除去了正丁烯的高质量异丁烯原料。甚至对于常规聚异丁烯的生产,优选使用除去了正丁烯的高质量异丁烯原料,以降低产物中的氯含量和提高每单位原料或单位催化剂的生产率。已知有各种除去正丁烯中最不利影响聚丁烯质量的1-丁烯的方法。例如,美国专利号5674955公开了一种由包含至少5wt%的1-丁烯的原料生产聚丁烯的方法,所述方法的特征在于,在聚合之前,对原料进行预处理步骤,以将1-丁烯含量降低至少20wt%,然后使用卤素化合物作为催化剂进行聚合步骤,以生产具有高亚乙烯基含量和低卤素含量的聚丁烯。然而,在该方法中,异构化的2-丁烯仍可能导致催化活性和催化剂耐久性的劣化。美国专利号6207115描述了一种生产丙烯的方法,所述方法包括使用烯烃转换装置(OCU)进行二烯烃(例如丁二烯)的选择性氢化并同时将1-丁烯异构化为2-丁烯,聚合聚丁烯,然后将2-丁烯和乙烯置换成丙烯。但是,该方法也包括在大量2-丁烯的存在下生产聚丁烯。这导致催化剂的耐久性低。
在石油精炼过程中的中等质量油接触降解产生的C4油以及石脑油热解产生的C4残留物含有20-50wt%的1-丁烯或2-丁烯。在聚丁烯生产中使用C4烯烃可能会导致聚丁烯产物的卤素含量高和亚乙烯基含量低。此外,C4烯烃(即原料)中存在的正丁烯如1-丁烯等的高含量可能会导致催化活性、聚丁烯质量或每单位原料中的生产率劣化。作为这一问题的解决方案,可以使用高纯度异丁烯。有以下几种由C4混合物生产(分离)异丁烯的方法:(1)将水合反应和脱水反应相结合的叔丁醇(TBA)脱水法;(2)包括使用酸催化剂将甲醇加成至异丁烯然后裂解成异丁烯的甲基叔丁基醚(MTBE)裂解法;以及(3)异丁烷脱氢法。然而,所有这些方法生产(分离)异丁烯的费用很高,导致聚丁烯成本上升。
发明内容
本发明的一个目的在于提供一种制备聚丁烯的方法,所述方法能在高耐久性催化剂下经济地制备高质量的高反应性聚丁烯,该聚丁烯具有低含量的卤素如氟等和高末端亚乙烯基。
本发明的另一个目的在于提供一种每单位原料或催化剂的生产率良好的聚丁烯制备方法。
为实现本发明的目的,提供了制备聚丁烯的方法,该方法包括:对由涉及裂解原油的炼油厂或石脑油裂解中心生产的C4烃组分中的二烯烃进行选择性氢化反应,同时进行1-丁烯转化为2-丁烯的异构化反应,然后通过分馏分离异丁烯原料;以及将通过分馏获得的异丁烯原料聚合。
发明效果
有利地,相对于使用由涉及裂解原油的炼油厂或石脑油裂解中心(NCC)生产的C4烃原料的方法,在1-丁烯异构化成2-丁烯的简单工序后没有任何单独处理或不使用原料的情况下,根据本发明的聚丁烯制备方法可在高耐久性催化剂下经济地生产高质量的高反应性聚丁烯,该聚丁烯具有低含量的卤素如氟和高末端亚乙烯基含量。
发明最佳实施方式
下文中,将更详细地描述本发明。
制备聚丁烯的方法包括:对由涉及裂解原油的炼油厂或石脑油裂解中心生产的C4烃组分中的二烯烃进行选择性氢化反应,同时进行1-丁烯转化为2-丁烯的异构化反应,然后通过分馏分离异丁烯原料;以及将通过分馏获得的异丁烯原料聚合。
二烯烃的氢化反应是出自C4烃组分的最易反应的二烯烃组分(即1,3-丁二烯)和氢气之间的形成正丁烯(1-丁烯和2-丁烯)混合物的反应。1-丁烯转化为2-丁烯的异构化反应是将通过二烯烃转化产生的1-丁烯和C4烃组分中包括的1-丁烯转换成2-丁烯的加氢异构化反应。二烯烃的氢化反应和1-丁烯转化为2-丁烯的异构化反应是通过在金属催化剂的存在下将氢气供给C4烃组分而进行的。在氢化和氢化异构化反应中可用的金属催化剂可以包括第10族的金属,如Ni、Pd、Pt等。该金属催化剂可以负载在负载材料上。氢气的使用量取决于C4烃组分中二烯烃的含量。优选地,氢气的使用量大于二烯烃转化成正丁烯所需的理论化学计量数量,优选略大于该理论化学计量数量,如例如,就二烯烃而言,1-1.2当量,优选1-1.1当量。在这一点上,当氢气的使用量过多时,二烯烃不良地转换成正丁烷。氢化反应和加氢异构化反应的温度通常为20-200℃,优选为50-150℃,更优选为60-150℃。氢化反应和加氢异构化反应的压力通常为0.1-5MPa,优选为0.5-4MPa,更优选为0.5-3MPa。用于氢化反应和加氢异构化反应的条件在美国专利号6207115中有详细公开,并作为参考包括在本说明书中。
C4烃组分的氢化反应和加氢异构化反应之后,进行分馏步骤以分离应用于聚丁烯聚合的异丁烯原料。分馏是利用沸腾温度差用分馏塔分离不同液体的混合物的方法。通过分馏获得(即分离)的异丁烯原料包括作为主要组分的异丁烯和微量1-丁烯及2-丁烯。异丁烯原料失去大部分正丁烯(即1-丁烯等),并因此含有相对高纯度的异丁烯。获得异丁烯原料的分馏条件可以包括分馏塔中分馏柱的数量、操作温度、操作压力等等。适合本发明的用于获得异丁烯原料的蒸馏塔中分馏柱的数量的范围为20-150,优选为50-130,更优选70-130。当分馏塔中分馏柱的数量小于20时,原料的分离效率可能变得劣化,降低异丁烯(IB)的纯度。当分馏塔中分馏柱的数量大于150时,产生不必要的设备费用。分馏温度为0-100℃,优选为10-80℃,更优选为20-80℃。当分馏温度低于0℃时,真空设备及其附件的费用增加。当分馏温度高于100℃时,导致不必要的能耗以及维持高压的设备费用增加。高于分馏温度的界定范围时,不可能获得所需高质量的高反应性聚异丁烯。分馏压力为0-30atm(大气压),优选为2-15atm,更优选为3-10atm,还更优选为5-10atm。趋近于零的分馏压力意味着真空蒸馏。当分馏压力超过30atm,混合物的沸点升高,需要消耗更多的能量以及增加外围设备费用。此外,当分馏压力超出界定范围时,可能导致无法获得高质量的高反应性聚异丁烯。使用通过分馏获得的异丁烯原料以通过聚合合成聚丁烯可以生产具有与由高纯异丁烯合成聚丁烯的那些相当的高质量(即高亚乙烯基含量和低卤素含量)和高生产效率的聚丁烯。下表1中列出了异丁烯原料的示例性组成。该异丁烯原料是在所限定的条件如分馏塔的105个分馏柱、50℃/60℃的(塔顶/塔底)蒸馏温度、6atm的蒸馏压力下所分离的,并用在本发明中。
[表1]
成分 异丁烯 正丁烷 1-丁烯 顺-2-丁烯 反-2-丁烯 异丁烷
含量(wt%) 45.2 0.4 1.9 0.1 0.9 51.3
下表2列出了由石脑油裂解中心生产的C4烃组分中的通过氢化反应除去二烯烃和乙炔的C4残留物的组成。表2中示出C4残留物的组成含有大量的正丁烯组分(1-丁烯、C(顺)-或T(反_-2-丁烯等),并因此不可能用于具有高亚乙烯基含量和低卤素含量的高反应性聚异丁烯的制备。
[表2]
成分 异丁烯 正丁烷 1-丁烯 顺-2-丁烯 反-2-丁烯 异丁烷
含量(wt%) 49.5 10.9 24.8 4.2 09.3 2.9
下表3列出了通过使用烯烃转换装置(OCU)的选择性氢化反应除去二烯烃和乙炔并将1-丁烯异构化为2-丁烯而获得(简单地通过异构化生成)的异丁烯原料的组成。
[表3]
成分 异丁烯 正丁烷 1-丁烯 顺-2-丁烯 反-2-丁烯 异丁烷
含量(wt%) 44.9 10.9 1.7 14.2 23.4 4.9
随后,根据一般方法将由如上所生产(分离)的异丁烯聚合以形成聚丁烯。由异丁烯原料生产聚丁烯的方法可分类为使用三氯化铝(AlCl3)作为催化剂生产常规聚异丁烯的方法和使用三氟化硼(BF3)作为催化剂和助催化剂生产高反应性聚异丁烯和中反应性亚乙烯基聚异丁烯的方法。使用三氯化铝(AlCl3)作为催化剂生产常规聚异丁烯的方法是众所周知的。因此,将对在三氟化硼(BF3)的存在下生产高反应性聚异丁烯的方法进行简单描述。
在高反应性聚异丁烯的制备中,可以将助催化剂(即醇,醚等)和三氟化硼(BF3)直接加入到反应器中,或者在单独的罐体中以络合物的形式生产,然后投入到反应器中。用作助催化剂的醇化合物可以是具有1至4个碳原子的伯醇、仲醇或叔醇,如例如甲醇、乙醇、异丙醇、正丙醇、异丁醇、叔丁醇等。用作助催化剂的醚化合物可以是具有2至8个碳原子的伯醚、仲醚或叔醚,如例如二甲醚、二乙醚、二异丙醚、甲基丙基醚、甲基异丙基醚、甲基乙基醚、甲基丁基醚、甲基叔丁基醚、乙基丙基醚、乙基异丙基醚、乙基丁基醚、乙基异丁醚、乙基叔丁基醚等。该助催化剂可单独使用或与其它助催化剂中的至少一种组合使用。在形成助催化剂和三氟化硼的络合物时,将单独的或与其它助催化剂中的至少一种组合使用的助催化剂加入到罐中,然后加入三氟化硼气体以容易地生成络合物。在这一点上,形成三氟化硼和醇的络合物的反应是放热反应。因此,需要消除反应热以降低催化剂分解和爆炸的风险。具体而言,为了完全消除反应热以维持催化剂的稳定性,络合反应在低温下进行,优选为10℃或以下,更优选为0℃或以下,最优选为-40℃至-10℃。按需要地控制催化剂的使用量,从而催化剂组分中的三氟化硼含量为以异丁烯原料中异丁烯100重量份计的0.05-1.0重量份。当三氟化硼的使用量大于1.0重量份时,可能导致形成分子量过低的产物和每单位催化剂的生产率的劣化,以及由此导致的差经济性。当三氟化硼的使用量小于0.05重量份时,聚丁烯的产量劣化,这在经济方面是不希望的。
对于高反应性聚异丁烯,聚合(反应)温度通常为-30℃至20℃,确定聚合(反应)压力以在相应反应温度下使异丁烯原料保持在液态,即通常为3kg/cm2或更高。一般而言,异丁烯的转化率为至少70%,更优选为约80-95%。在本发明中,实现上述转化率所需的停留时间一般为5-100分钟。在经济方面,不希望保留时间超出界定范围。一旦完成聚丁烯聚合,进行如相关技术中通常采用的中和等后续工序以完成高反应性聚异丁烯的制备。根据本发明制备的高反应性聚异丁烯的数均分子量(Mn)为300-5000,亚乙烯基含量为至少80%且异丁烯转化率为至少85%。
根据本发明的聚丁烯的制备方法使高效率的聚合成为可能,该聚合不仅可以生产亚乙烯基(即聚丁烯中存在的总双键中位于聚丁烯末端的双键(亚乙烯基))含量为至少70%的高反应性聚异丁烯,还可以生产亚乙烯基含量为约40-70%的中反应性亚乙烯基聚异丁烯和/或亚乙烯基含量为3-40%的常规聚异丁烯。在聚丁烯,特别是亚乙烯基含量为至少80%和异丁烯转化率为至少85%的高反应性聚丁烯的制备中,当使用典型三氟化硼络合物催化剂和一般分离方法来分离高纯度异丁烯时,极大地增加了原料费用,以致得到不具竞争力的产物。然而,在聚丁烯制备中使用根据本发明分离的异丁烯原料可以在高耐久性催化剂下经济地生产具有低氟含量和高亚乙烯基含量的高质量聚丁烯。
由于在石油精炼过程中的中等质量油接触降解产生的C4油以及石脑油热解产生的C4残留物含有20-40wt%,特别是20-35wt%的正丁烯(即1-丁烯等),聚丁烯产物的生产率和质量可能劣化(即具有低亚乙烯基含量和高卤素含量)。然而,根据本发明的聚丁烯制备方法使用除去了可能使产物质量和生产率劣化的正丁烯组分的原料,从而解决了上述问题。更有利的是,根据本发明制备的亚乙烯基含量高的高反应性聚丁烯不仅显示出在润滑剂、燃料清洁剂等的制备中具有清洁功能的有效成分的含量较高,而且具有较低卤素含量,这可防止用于燃料清洁剂或润滑剂的添加剂的制备中可能发生的反应物腐蚀。
下文中,将参照结合以下实施例和比较例进一步详细地描述本发明,该实施例和比较例是用于理解本发明,而不是意图限制本发明的范围。
[实施例1-4]高反应性聚丁烯的制备
对来自由涉及裂解原油的炼油厂或石脑油裂解中心(NCC)生产的C4烃原料的二烯烃(即丁二烯)进行选择性氢化,同时将1-丁烯异构化为2-丁烯。然后,进行分馏工序(分馏塔中105个分馏柱,50℃/60℃的蒸馏温度(塔顶/塔底)、6atm的蒸馏压力),以获得具有如表1所示组成的异丁烯原料。将具有表1组成的异丁烯原料连续供给至装备有冷却装置的不锈钢压力反应器,然后使用如表4列出的聚合温度(反应温度)、催化剂(BF3)和助催化剂(例如乙醇、乙醇,或二异丙醚(IPE))进行聚合以生成聚丁烯(实施例1-4)。在这一点上,反应器的压力保持在3kg/cm2或更高,以使异丁烯原料保持在液态。平均停留时间为30分钟。180分钟后,从反应器出口收集聚合物液体直接进入装有含5wt%苛性钠的溶液的容器中,与大约3倍体积的己烷混合,然后用水洗涤三次以除去未反应的原料和溶剂。最后,在220℃和5mmHg下进行30分钟汽提工序,以除去低沸点温度的剩余组分,从而获得目标产物聚丁烯。使用凝胶渗透色谱法(GPC)法测量最终产物的分子量(数均分子量,Mn)以及分子量分布(MWD)。此外,使用C13-NMR分析亚乙烯基含量(%),和使用离子选择性电极(ISE)方法确定氟含量(ppm)。测定结果在表4中列出。在表4中,通过比较反应前后异丁烯(IB)含量确定“反应后IB含量(%)”和“IB转化率(%)”,以分析异丁烯(IB)的反应参与水平。
[比较例1和2]高反应性聚丁烯的制备
将石脑油裂解中心(NCC)生产的C4烃原料除去丁二烯以获得具有如表2所示组成的C4残留物-1(萃余液-1),然后用作异丁烯原料。将具有表2所示组成的异丁烯原料连续供给至装备有冷却装置的不锈钢压力反应器中,然后使用如表4列出的聚合温度(反应温度)、催化剂(BF3)和助催化剂(例如乙醇、乙醇,或二异丙醚(IPE))进行聚合以生成聚丁烯(比较例1和2)。其他条件与实施例1-4中描述的相同。采用与实施例1-4中描述的相同方式分析由此获得的聚丁烯的分子量(数均分子量Mn)、分子量分布(MWD)、亚乙烯基含量(%),氟含量(ppm)、反应后IB含量(%),IB转化率以及催化剂(PIB/BF3)的耐久性。测定结果在表4中列出。
[比较例3和4]高反应性聚丁烯的制备
将由油精炼设备或涉及裂解原油的石脑油裂化中心(NCC)生产的C4烃原料(即,丁二烯)制成的二烯烃选择性氢化,同时将1-丁烯选择性异构化为2-丁烯以获得具有如表3所示组成的异丁烯原料。具有如表3所示组成的异丁烯原料连续供给至装备有冷却装置的不锈钢压力反应器,然后利用如表4列出的聚合温度(反应温度)、催化剂(BF3)和助催化剂(如乙醇、乙醇,或二异丙醚(IPE))进行聚合以产生聚丁烯(比较例3和4)。其他条件与实施例1-4中描述的相同。采用与实施例1-4中描述的相同方式分析由此获得的聚丁烯的分子量(数均分子量Mn)、分子量分布(MWD)、亚乙烯基含量(%)、氟含量(ppm)、反应后IB含量(%)、IB转化率以及催化剂(PIB/BF3)的耐久性。测定结果在表4中列出。
[表4]
在表4中,“助催化剂/BF3”表示助催化剂的总摩尔数与BF3的摩尔数的比值。由表4可以看出,根据本发明实施例1-4制备的聚丁烯的亚乙烯基含量为至少88%(越高越好)和F含量为10ppm或更低(越低越好),其满足高质量和高反应性标准。与此相反,当使用按比较例1和2中的C4残留物-1原料时,虽然原料费用低,但催化剂和助催化剂的使用量太大,且产品收率低,导致产品成本增加和聚丁烯产物性质劣化。另外,当使用按比较例3和4中的简单通过异构化获得异丁烯原料时,虽然一定程度上可能生产出良好质量的聚丁烯,但是催化剂的极低耐久性会不利地导致低生产率。

Claims (8)

1.一种制备聚丁烯的方法,包括:
对由涉及裂解原油的炼油厂或石脑油裂解中心生产的C4烃组分中的二烯烃进行选择性氢化反应,同时进行1-丁烯转化为2-丁烯的异构化反应,然后通过分馏分离异丁烯原料;以及
将通过分馏获得的异丁烯原料聚合。
2.如权利要求1所述的制备聚丁烯的方法,其中聚丁烯选自亚乙烯基含量为至少70%的高反应性聚异丁烯、亚乙烯基含量为40-70%的中反应性亚乙烯基聚异丁烯以及亚乙烯基含量为3-40%的常规聚异丁烯。
3.如权利要求2所述的制备聚丁烯的方法,其中所述常规聚异丁烯是使用三氯化铝作为催化剂来制备,所述高反应性聚异丁烯和中反应性亚乙烯基聚异丁烯是使用三氟化硼(BF3)作为催化剂和助催化剂来制备。
4.如权利要求3所述的制备聚丁烯的方法,其中助催化剂是具有1-4个碳原子的伯醇、仲醇或叔醇,或具有2-8个碳原子的伯醚、仲醚或叔醚。
5.如权利要求1所述的制备聚丁烯的方法,其中对于异丁烯原料的聚合,聚合温度为-30至20℃,聚合压力为3kg/cm2或以上,以及停留时间为5-100分钟。
6.如权利要求1所述的制备聚丁烯的方法,其中二烯烃的氢化反应以及1-丁烯的异构化反应是通过在金属催化剂的存在下将氢气供给C4烃组分来进行的。
7.如权利要求1所述的制备聚丁烯的方法,其中所述分馏步骤包括用20-150个蒸馏柱在20-80℃的分馏温度和2-10atm的分馏压力下分离异丁烯原料。
8.由权利要求1-7中任一项所述的制备方法获得的聚丁烯。
CN201480005295.XA 2013-01-17 2014-01-14 一种制备聚丁烯的方法 Pending CN105073795A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020130005211A KR101458404B1 (ko) 2013-01-17 2013-01-17 폴리부텐의 제조 방법
KR10-2013-0005211 2013-01-17
PCT/KR2014/000391 WO2014112768A1 (ko) 2013-01-17 2014-01-14 폴리부텐의 제조 방법

Publications (1)

Publication Number Publication Date
CN105073795A true CN105073795A (zh) 2015-11-18

Family

ID=51209820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480005295.XA Pending CN105073795A (zh) 2013-01-17 2014-01-14 一种制备聚丁烯的方法

Country Status (9)

Country Link
US (1) US9683060B2 (zh)
EP (1) EP2947102B1 (zh)
KR (1) KR101458404B1 (zh)
CN (1) CN105073795A (zh)
BR (1) BR112015017093B1 (zh)
MY (1) MY170215A (zh)
SA (1) SA515360793B1 (zh)
SG (1) SG11201505498YA (zh)
WO (1) WO2014112768A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056490A (zh) * 2019-01-18 2021-06-29 株式会社Lg化学 聚丁烯的分离方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658545B1 (ko) * 2014-08-22 2016-09-21 대림산업 주식회사 폴리부텐의 제조방법
WO2017151339A1 (en) 2016-03-03 2017-09-08 Tpc Group Llc Low-fluoride, reactive polyisobutylene
US9617366B1 (en) 2016-03-03 2017-04-11 Tpc Group Llc Low-fluoride, reactive polyisobutylene
US9617363B1 (en) 2016-03-03 2017-04-11 Tpc Group Llc Low-fluoride, reactive polyisobutylene
JP7355728B2 (ja) 2017-07-27 2023-10-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 燃料添加剤を生成する方法
SG11202008332SA (en) 2018-03-19 2020-09-29 Sabic Global Technologies Bv Method of producing a fuel additive
CN111801404A (zh) 2018-03-19 2020-10-20 沙特基础工业全球技术有限公司 生产燃料添加剂的方法
KR102501569B1 (ko) 2018-04-19 2023-02-22 사빅 글로벌 테크놀러지스 비.브이. 연료 첨가제 제조 방법
CN112020547A (zh) 2018-05-07 2020-12-01 沙特基础工业全球技术有限公司 生产燃料添加剂的方法
US11407952B2 (en) 2018-05-07 2022-08-09 Saudi Arabian Oil Company Method of producing a fuel additive
WO2019220257A1 (en) 2018-05-18 2019-11-21 Sabic Global Technologies B.V. Method of producing a fuel additive with a hydration unit
WO2020058825A1 (en) 2018-09-18 2020-03-26 Sabic Global Technologies B.V. Systems and processes for efficient production of one or more fuel additives
US20230167208A1 (en) 2021-11-30 2023-06-01 Braskem S.A. Heterogeneous catalyst for highly-reactive polyisobutylene

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2121431A (en) * 1982-06-08 1983-12-21 Exxon Research Engineering Co Isomerisation of butene-1 to butene-2 in isobutylene
FR2614295B1 (fr) * 1987-04-22 1989-08-04 Inst Francais Du Petrole Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c4 contenant du butadiene et des composes sulfures.
US4849572A (en) * 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
US5087780A (en) * 1988-10-31 1992-02-11 Chemical Research & Licensing Company Hydroisomerization process
US5012030A (en) * 1989-10-10 1991-04-30 Amoco Corporation Process for preparing polybutenes with increased reactivity
GB9404368D0 (en) 1994-03-07 1994-04-20 Bp Chem Int Ltd Production of polyisobutenes
FR2733986B1 (fr) 1995-05-11 1997-06-13 Inst Francais Du Petrole Procede et installation pour la conversion de coupes c4 olefiniques en polyisobutenes et en propylene
US6242661B1 (en) * 1999-07-16 2001-06-05 Catalytic Distillation Technologies Process for the separation of isobutene from normal butenes
FR2802921B1 (fr) * 1999-12-24 2002-08-23 Inst Francais Du Petrole Production d'isobutene de haute purete et de propylene a partir de coupes d'hydrocarbures a quatre atomes de carbone
KR100486044B1 (ko) * 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
DE10118181A1 (de) * 2001-04-11 2002-10-17 Basf Ag Abtrennung nicht umgesetzten Isobutens bei der Polymerisation von Isobuten
US7888541B2 (en) * 2005-04-15 2011-02-15 Catalytic Distillation Technologies Double bond hydroisomerization of butenes
WO2007096296A1 (de) * 2006-02-23 2007-08-30 Basf Se Verfahren zur herstellung von polyisobutylen mit einem gehalt an endständigen doppelbindungen von mehr als 50% aus einem technischen 1-buten-, 2-buten- und isobuten-haltigen c4-kohlenwasserstoffstrom
US20070265483A1 (en) * 2006-05-05 2007-11-15 Himelfarb Paul B Process for selectively hydrogenating butadiene in an c4 olefin stream containing a catalyst poison with the simultaneous isomerization of 1-butene to 2-butene
WO2007141277A1 (de) * 2006-06-06 2007-12-13 Basf Se Herstellung reaktiver, im wesentlichen halogenfreier polyisobutene aus isobuten-armen c4-kohlenwasserstoff-gemischen
KR101088529B1 (ko) * 2008-12-15 2011-12-05 대림산업 주식회사 삼불화붕소 착화합물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법
US7982086B2 (en) * 2009-02-03 2011-07-19 Catalytic Distillation Technologies Deisobutenizer
US20100298507A1 (en) * 2009-05-19 2010-11-25 Menschig Klaus R Polyisobutylene Production Process With Improved Efficiencies And/Or For Forming Products Having Improved Characteristics And Polyisobutylene Products Produced Thereby
KR20140027345A (ko) * 2011-04-28 2014-03-06 바스프 에스이 저급 알파-올레핀의 저급 내부 올레핀으로의 이성질화

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056490A (zh) * 2019-01-18 2021-06-29 株式会社Lg化学 聚丁烯的分离方法
CN113056490B (zh) * 2019-01-18 2023-07-28 株式会社Lg化学 聚丁烯的分离方法

Also Published As

Publication number Publication date
US20150322181A1 (en) 2015-11-12
SG11201505498YA (en) 2015-09-29
MY170215A (en) 2019-07-09
EP2947102A1 (en) 2015-11-25
EP2947102B1 (en) 2018-03-21
KR20140092996A (ko) 2014-07-25
BR112015017093B1 (pt) 2021-01-19
KR101458404B1 (ko) 2014-11-05
SA515360793B1 (ar) 2018-01-04
US9683060B2 (en) 2017-06-20
WO2014112768A1 (ko) 2014-07-24
EP2947102A4 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105073795A (zh) 一种制备聚丁烯的方法
KR20090014372A (ko) 이소부텐 함량이 낮은 c4 탄화수소 혼합물로부터 반응성이있고 실질적으로 할로겐을 함유하지 않는 폴리이소부텐의 제조
JPH07268033A (ja) ポリイソブテンの製造方法
US9637576B2 (en) Device and method for re-circulating raw material used when manufacturing polybutene
JP6673904B2 (ja) ポリブテンの製造方法
KR101088529B1 (ko) 삼불화붕소 착화합물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법
CN100334116C (zh) 生产聚异丁烯的方法
JP6454327B2 (ja) 反応性ポリブテンおよび非反応性ポリブテンを選択的に製造するための装置および方法
JP7378344B2 (ja) 高反応性ポリブテンの製造方法
KR20130115624A (ko) 삼불화붕소 착물 촉매 및 이를 이용한 고반응성 폴리부텐의 제조방법
CN115703855A (zh) 用于c4液化石油气阳离子聚合的催化剂体系及聚丁烯生产方法
KR101511707B1 (ko) 분자량 조절이 용이한 폴리부텐의 제조장치 및 방법
CN106471016B (zh) 使用含有正丙醇的催化剂制备聚丁烯的方法
CN114181337A (zh) 聚丁烯的生产方法及其产品应用
KR101457452B1 (ko) 다양한 분자량을 가지는 폴리부텐의 제조 장치 및 방법
JP2000080127A (ja) ブテンポリマーの製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151118

RJ01 Rejection of invention patent application after publication