WO2014112483A1 - 圧粉磁心の製造方法、圧粉磁心およびコイル部品 - Google Patents

圧粉磁心の製造方法、圧粉磁心およびコイル部品 Download PDF

Info

Publication number
WO2014112483A1
WO2014112483A1 PCT/JP2014/050467 JP2014050467W WO2014112483A1 WO 2014112483 A1 WO2014112483 A1 WO 2014112483A1 JP 2014050467 W JP2014050467 W JP 2014050467W WO 2014112483 A1 WO2014112483 A1 WO 2014112483A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
powder
magnetic material
material powder
core
Prior art date
Application number
PCT/JP2014/050467
Other languages
English (en)
French (fr)
Inventor
好正 西尾
野口 伸
西村 和則
加藤 哲朗
敏男 三原
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020157020127A priority Critical patent/KR101792088B1/ko
Priority to EP14740461.0A priority patent/EP2947670B8/en
Priority to US14/760,964 priority patent/US10008324B2/en
Priority to CN201480004998.0A priority patent/CN104919551B/zh
Priority to JP2014520083A priority patent/JP5626672B1/ja
Publication of WO2014112483A1 publication Critical patent/WO2014112483A1/ja
Priority to US15/988,209 priority patent/US11011305B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/05Water or water vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/253Aluminum oxide (Al2O3)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a method of manufacturing a dust core made of soft magnetic material powder, a dust core, and a coil component formed by winding a coil around a dust core.
  • the coil component includes a magnetic core (magnetic core) and a coil wound around the magnetic core.
  • a magnetic core magnetic core
  • ferrite having excellent magnetic properties, flexibility in shape, and cost is widely used.
  • Patent Document 1 discloses an example in which an Fe—Cr—Al-based magnetic powder is used as a magnetic powder capable of self-generation of a high electrical resistance material serving as an insulating coating.
  • a magnetic powder is obtained by oxidizing a magnetic powder to generate an oxide film having a high electrical resistance on the surface of the magnetic powder, and solidifying and molding the magnetic powder by discharge plasma sintering. .
  • Patent Document 1 does not require the high pressure as described above, it is a manufacturing method that requires complicated equipment and a lot of time, and also pulverizes the agglomerated powder after the oxidation treatment of the magnetic powder. Therefore, the process becomes complicated. Further, since the obtained magnetic powder molded body is a sintered body sintered at high density, there is a possibility that core loss particularly in a high frequency region may be deteriorated.
  • the present invention has been made in view of the above problems, and a dust core manufacturing method capable of obtaining a high-strength dust core even by a simple press molding manufacturing method, and further by simple pressure molding.
  • An object of the present invention is to provide a dust core and a coil component that can obtain high strength even by a manufacturing method.
  • the method for producing a dust core according to the present invention is a method for producing a dust core using soft magnetic material powder, A first step of mixing the soft magnetic material powder and the binder; A second step of pressure-molding the mixture obtained through the first step; A third step of heat-treating the molded body obtained through the second step,
  • the soft magnetic material powder is an Fe—Cr—Al based alloy powder containing Fe, Cr and Al, By the heat treatment, an oxide layer having a higher ratio of Al to the sum of Fe, Cr, and Al than the inner alloy phase is formed on the surface of the soft magnetic material powder.
  • a high space factor and dust core strength can be obtained even at a low molding pressure. Furthermore, since the oxide layer having a high Al ratio can be formed on the surface of the soft magnetic material powder by the heat treatment after molding, the formation of the insulating coating is also simplified. That is, according to the method for manufacturing a dust core of the present invention, a dust core having excellent strength and the like can be provided by a simple manufacturing method.
  • the soft magnetic material powder may have a Cr content of 2.5 to 7.0 mass% and an Al content of 3.0 to 7.0 mass%. preferable.
  • the space factor of the soft magnetic material powder in the dust core subjected to the heat treatment is in a range of 80 to 90%.
  • the median diameter d50 of the soft magnetic material powder is 30 ⁇ m or less.
  • the molding pressure during the pressure molding is 1.0 GPa or less, and the space factor of the soft magnetic material powder in the powder magnetic core subjected to the heat treatment is 83% or more. It is preferable.
  • the dust core of the present invention is a dust core using soft magnetic material powder, and the soft magnetic material powder is Fe—Cr—Al based alloy powder containing Fe, Cr and Al, and soft magnetic material powder.
  • the soft magnetic material powder preferably has a Cr content of 2.5 to 7.0 mass% and an Al content of 3.0 to 7.0 mass%.
  • the average of the maximum diameter of each particle of the soft magnetic material powder in the cross-sectional observation image of the dust core is 15 ⁇ m or less.
  • the coil component of the present invention is characterized by having the dust core and a coil wound around the dust core.
  • high strength can be obtained even by a manufacturing method of a dust core capable of obtaining a high-strength powder magnetic core even by a manufacturing method by a simple pressure molding, and further by a manufacturing method by a simple pressure molding.
  • a dust core and coil components can be provided.
  • FIG. 1 is a process flow for explaining an embodiment of a method for producing a dust core according to the present invention.
  • This manufacturing method is a manufacturing method of a powder magnetic core using soft magnetic material powder, which is a first step of mixing soft magnetic material powder and a binder, and pressurizing the mixture obtained through the first step. It has the 2nd process of shape
  • the soft magnetic material powder to be used is Fe—Cr—Al alloy powder containing Fe, Cr and Al.
  • the surface of the soft magnetic material powder has a mass ratio higher than that of the internal alloy phase. An oxide layer having a high ratio of Al to the sum of Fe, Cr and Al is formed.
  • the Fe—Cr—Al-based alloy powder containing Cr and Al is superior in corrosion resistance to the Fe—Si-based alloy powder. Furthermore, Fe—Cr—Al based alloy powder is more easily plastically deformed than Fe—Si based or Fe—Si—Cr based alloy powder. Therefore, the Fe—Cr—Al-based alloy powder can obtain a dust core having a high space factor and strength even at a low molding pressure. Therefore, the enlargement and complexity of the molding machine can be avoided. In addition, since molding can be performed at a low pressure, damage to the mold is suppressed and productivity is improved.
  • an insulating oxide can be formed on the surface of the soft magnetic material powder by heat treatment after molding, as will be described later. Therefore, it is possible to omit the step of forming the insulating oxide before molding, and the method for forming the insulating coating is simplified, so that productivity is improved in this respect.
  • the composition of the Fe—Cr—Al alloy powder containing Fe, Cr, and Al as the three main elements having a high content ratio is not particularly limited as long as it can constitute a dust core.
  • Cr and Al are elements that improve corrosion resistance and the like.
  • the content of Cr in the soft magnetic material powder is preferably 1.0% by mass or more, more preferably 2.5% by mass or more.
  • the Cr content is preferably 9.0% by mass or less, more preferably 7.0% by mass or less, and even more preferably 4.5% by mass or less. It is.
  • Al is an element that improves the corrosion resistance as described above, and contributes particularly to the formation of surface oxides.
  • the content of Al in the soft magnetic material powder is preferably 2.0% by mass or more, more preferably 3.0% by mass or more, and further preferably 5.0% by mass or more.
  • the Al content is preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and even more preferably 7.0% by mass or less. Especially preferably, it is 6.0 mass% or less.
  • the total content of Cr and Al is preferably 6.0% by mass or more, and more preferably 9.0% by mass or more.
  • the total content of Cr and Al is more preferably 11% by mass or more.
  • Al is significantly concentrated in the surface oxide layer as compared with Cr, it is more preferable to use Fe—Cr—Al based alloy powder having a higher Al content than Cr.
  • the balance other than Cr and Al is mainly composed of Fe, but may contain other elements as long as it exhibits advantages such as formability of the Fe—Cr—Al alloy powder.
  • the content of such other elements is preferably 1.0% by mass or less.
  • Si used in Fe—Si based alloys is an element that is disadvantageous for improving the strength of the powder magnetic core, in the present invention, impurities contained through a normal manufacturing process of Fe—Cr—Al based alloy powder. Keep it below the level.
  • the Fe—Cr—Al based alloy powder is more preferably composed of Fe, Cr and Al except for inevitable impurities.
  • the average particle diameter of the soft magnetic material powder (here, the median diameter d50 in the cumulative particle size distribution is used) is not particularly limited.
  • a soft magnetic material powder having an average particle diameter of 1 ⁇ m or more and 100 ⁇ m or less is used. Can be used. By reducing the average particle size, the strength, core loss, and high frequency characteristics of the powder magnetic core are improved. Therefore, the median diameter d50 is more preferably 30 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the median diameter d50 is more preferably 5 ⁇ m or more. It is more preferable to remove coarse particles from the soft magnetic material powder using a sieve or the like. In this case, it is preferable to use a soft magnetic material powder that is at least under 32 ⁇ m (that is, passed through a sieve having an opening of 32 ⁇ m).
  • the form of the soft magnetic material powder is not particularly limited, but it is preferable to use granular powder represented by atomized powder from the viewpoint of fluidity and the like.
  • Atomization methods such as gas atomization and water atomization are suitable for producing powders of alloys that have high malleability and ductility and are difficult to grind.
  • the atomization method is also suitable for obtaining a substantially spherical soft magnetic material powder.
  • the binder used in the first step When the binder is pressure-molded, the binder binds the powders together and gives the molded body the strength to withstand handling after molding.
  • the kind of binder is not specifically limited, For example, various organic binders, such as polyethylene, polyvinyl alcohol, an acrylic resin, can be used.
  • the organic binder is thermally decomposed by heat treatment after molding. Therefore, an inorganic binder such as a silicone resin that solidifies and remains after the heat treatment and binds the powders may be used in combination.
  • the oxide layer formed in the third step has an effect of binding soft magnetic material powders, and thus the use of the above inorganic binder is omitted. Thus, it is preferable to simplify the process.
  • the amount of the binder added may be an amount that can be sufficiently distributed between the powders of the soft magnetic material and can secure sufficient strength of the compact. On the other hand, if the amount is too large, the density and strength are lowered. From this point of view, the amount of binder added is preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the soft magnetic material powder, for example.
  • the mixing method of the soft magnetic material powder and the binder in the first step is not particularly limited, and conventionally known mixing methods and mixers can be used.
  • the mixed powder is an agglomerated powder having a wide particle size distribution due to its binding action.
  • a granulated powder having a desired secondary particle size suitable for molding can be obtained.
  • a lubricant such as stearic acid or stearate.
  • the addition amount of the lubricant is preferably 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the soft magnetic material powder.
  • the lubricant can be applied to the mold.
  • the mixture obtained in the first step is preferably granulated as described above and subjected to the second step.
  • the granulated mixture is pressure-molded into a predetermined shape such as a toroidal shape or a rectangular parallelepiped shape using a molding die.
  • the molding in the second step may be room temperature molding or warm molding performed by heating to such an extent that the binder does not disappear.
  • molding method of a mixture are not limited above.
  • the space factor (relative density) of the dust core can be increased at a low pressure, and the strength of the dust core can be improved. It is more preferable that the space factor of the soft magnetic material powder in the dust core subjected to the heat treatment be within the range of 80 to 90% by utilizing such action. The reason why such a range is preferable is that the magnetic characteristics are improved by increasing the space factor, but if the space factor is excessively increased, the equipment and cost are increased. More preferably, the space factor is 82 to 90%.
  • the molding pressure during pressure molding is 1.0 GPa or less, It is more preferable that the space factor of the soft magnetic material powder in the dust core subjected to the heat treatment is 83% or more.
  • the molded body that has undergone the second step is subjected to heat treatment.
  • heat treatment an oxide layer having a higher ratio of Al to the sum of Fe, Cr, and Al than the inner alloy phase is formed on the surface of the soft magnetic material powder.
  • This oxide layer is grown by reacting soft magnetic material powder and oxygen by heat treatment, and is formed by an oxidation reaction exceeding the natural oxidation of the soft magnetic material powder.
  • Such heat treatment can be performed in an atmosphere in which oxygen exists, such as in the air or in a mixed gas of oxygen and an inert gas. Further, the heat treatment can be performed in an atmosphere in which water vapor exists, such as in a mixed gas of water vapor and inert gas. Of these, heat treatment in the air is simple and preferable.
  • the soft magnetic material powder is oxidized by the heat treatment, and an oxide layer is formed on the surface.
  • Al in the Fe—Cr—Al based alloy powder is concentrated in the surface layer, and the oxide layer has a higher ratio of Al to the sum of Fe, Cr and Al than the internal alloy phase.
  • the ratio of Al among constituent metal elements is particularly high, and the ratio of Fe is low.
  • an oxide layer having a higher Fe ratio in the center of the layer than in the vicinity of the alloy phase is formed at the grain boundary between the Fe—Cr—Al alloy powders.
  • this oxide layer is formed after forming a molded object, it contributes also to the coupling
  • soft magnetic material powders By combining soft magnetic material powders with each other through the oxide layer, a high-strength powder magnetic core can be obtained.
  • the heat treatment in the third step may be performed at a temperature at which the oxide layer is formed. By such heat treatment, a dust core having excellent strength can be obtained. Further, the heat treatment in the third step is preferably performed at a temperature at which the soft magnetic material powder is not significantly sintered. When the soft magnetic material powder is significantly sintered, a part of the oxide layer having a high Al ratio is surrounded by the alloy phase and is isolated in an island shape. Therefore, the function as an oxide layer separating the base alloy phases of the soft magnetic material powder is lowered, and the core loss is also increased.
  • the specific heat treatment temperature is preferably in the range of 600 to 900 ° C, more preferably in the range of 700 to 800 ° C, and still more preferably in the range of 750 to 800 ° C.
  • the oxide layer is not substantially isolated by being surrounded by the alloy phase.
  • substantially surrounded by the alloy phase and not isolated means that when the cross section of the powder magnetic core is polished and observed with a microscope, the isolated oxide layer surrounded by the alloy phase is 0.01 mm. It means 1 or less per 2 places.
  • the holding time in the above temperature range is appropriately set according to the size of the dust core, the processing amount, the allowable range of characteristic variation, etc., and is set to 0.5 to 3 hours, for example.
  • a preliminary step of forming an insulating film on the soft magnetic material powder by heat treatment or sol-gel method may be added before the first step.
  • the oxide layer can be formed on the surface of the soft magnetic material powder by the third step, so that the preliminary step as described above is omitted. It is more preferable to simplify.
  • the oxide layer itself is not easily plastically deformed. Therefore, by adopting the above-mentioned process of forming an Al-rich oxide layer after pressure forming, the high formability of the Fe—Cr—Al alloy powder is effectively obtained in the pressure forming of the second step. Can be used.
  • the powder magnetic core obtained as described above exhibits an excellent effect itself.
  • the soft magnetic material powder is an alloy powder containing Fe, Cr and Al, and the space factor of the soft magnetic material powder is in the range of 80 to 90%.
  • the powder magnetic core having an oxide layer having a higher ratio of Al to the sum of Fe, Cr, and Al than the inner alloy phase on the surface of the soft magnetic material powder has excellent moldability and a high space factor. It is suitable for realizing the dust core strength.
  • the oxide layer ensures insulation and realizes a sufficient core loss as a dust core. From the viewpoint of sufficiently exhibiting the effect of the oxide layer, it is more preferable that the oxide layer is substantially surrounded by the alloy phase and is not isolated.
  • the average of the maximum diameter of each particle of the soft magnetic material powder in the cross-sectional observation image is preferably 15 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the strength and high frequency characteristics are improved because the soft magnetic material powder constituting the dust core is fine.
  • the number ratio of particles having a maximum diameter exceeding 40 ⁇ m in the cross-sectional observation image of the dust core is less than 1.0%.
  • the average maximum particle diameter is preferably 0.5 ⁇ m or more.
  • the average of the maximum diameter may be calculated by polishing the cross section of the powder magnetic core and observing under a microscope, reading the maximum diameter for 30 or more particles existing in a visual field of a certain area, and taking the number average. Although the soft magnetic material powder after molding is plastically deformed, most of the particles are exposed in the cross section of the portion other than the center in the cross section observation, so the average of the maximum diameter is smaller than the median diameter d50 evaluated in the powder state. Value.
  • the number ratio of particles having a maximum diameter exceeding 40 ⁇ m is evaluated in a visual field range of at least 0.04 mm 2 or more.
  • a coil component is provided using the above-described dust core and a coil wound around the dust core.
  • the coil may be configured by winding a conductive wire around a powder magnetic core or may be configured by winding it around a bobbin.
  • a coil component having such a dust core and a coil is used as, for example, a choke, an inductor, a reactor, a transformer, or the like.
  • the powder magnetic core may be manufactured in the form of a powder magnetic core formed by pressing only the soft magnetic material powder mixed with the binder or the like as described above, or manufactured in a form in which a coil is arranged inside. Also good.
  • the latter configuration is not particularly limited.
  • the soft magnetic material powder and the coil can be integrally formed by pressure forming and can be manufactured in the form of a powder magnetic core having a coil enclosing structure.
  • a powder magnetic core was produced as follows.
  • Fe—Cr—Al based soft magnetic alloy powder was used as the soft magnetic material powder.
  • Such an alloy powder was a granular atomized powder, and its composition was Fe-4.0% Cr-5.0% Al in mass percentage.
  • the atomized powder was used after removing coarse particles through a sieve of 440 mesh (aperture 32 ⁇ m).
  • the average particle diameter (median diameter d50) of the soft magnetic material powder measured with a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.) was 18.5 ⁇ m.
  • An emulsion acrylic resin binder (Polysol AP-604 manufactured by Showa Polymer Co., Ltd., solid content 40%) was mixed at a ratio of 2.0 parts by weight with 100 parts by weight of the alloy powder. This mixed powder was dried at 120 ° C. for 10 hours, and the dried mixed powder was passed through a sieve to obtain granulated powder. To this granulated powder, zinc stearate was added and mixed at a ratio of 0.4 parts by weight with respect to 100 parts by weight of the soft magnetic material powder to obtain a mixture for molding.
  • the obtained mixed powder was press-molded at room temperature with a molding pressure of 0.91 GPa using a press machine.
  • the obtained toroidal shaped molded body was heat-treated in the atmosphere at a heat treatment temperature of 800 ° C. for 1.0 hour to obtain a dust core (No. 1).
  • Fe-Si soft magnetic alloy powder Fe-3.5% Si in mass percentage
  • Fe-Cr-Si soft magnetic alloy powder Fe-4. 0Cr-3.5% Si
  • Each molded body was heat-treated at 500 ° C. and 700 ° C. to obtain dust cores (No. 2 and No. 3).
  • the heat treatment temperature of 500 ° C. was adopted as described above.
  • the density of the dust core produced by the above steps was calculated from its dimensions and mass, and the space factor (relative density) was calculated by dividing the density of the dust core by the true density of the soft magnetic material powder. Further, a load was applied in the radial direction of the toroidal powder magnetic core, the maximum load P (N) at the time of fracture was measured, and the crushing strength ⁇ r (MPa) was obtained from the following equation.
  • ⁇ r P (Dd) / (Id 2 ) (Here, D: outer diameter of the core (mm), d: thickness of the core (mm), I: height of the core (mm)) Furthermore, 15 turns of the winding were wound on each of the primary side and the secondary side, and the core loss Pcv was measured under the conditions of a maximum magnetic flux density of 30 mT and a frequency of 300 kHz using a BH analyzer SY-8232 manufactured by Iwatatsu Measurement Co., Ltd. The initial permeability ⁇ i was measured at a frequency of 100 kHz by winding a conducting wire 30 turns around the toroidal powder magnetic core and using 4284A manufactured by Hewlett-Packard Company.
  • the No. 1 dust core produced using the Fe—Cr—Al soft magnetic alloy powder is composed of the No. 2 dust core and Fe—Cr—Si using the Fe—Si soft magnetic alloy powder.
  • the space factor and the permeability were significantly increased.
  • the crushing strength of the No. 1 dust core showed a high value of 100 MPa or more.
  • the crushing strength of the No. 1 dust core is more than twice that of the No. 2 and 3 dust cores, and the configuration according to the above embodiment is extremely advantageous in obtaining excellent crushing strength. I found out. That is, according to the structure which concerns on the said Example, the powder magnetic core which has high intensity
  • the powder magnetic core of No. 2 using Fe—Si based soft magnetic alloy powder had remarkable corrosion and insufficient corrosion resistance.
  • the initial permeability at 10 MHz was maintained at 99.0% or more with respect to the initial permeability of 1 MHz. It has been clarified that the structure according to the above has excellent high frequency characteristics.
  • FIGS. 2A and 3 are SEM images
  • FIG. 2 is an enlarged view of FIG. It can be seen that a phase having a black color tone is formed on the surface of the soft magnetic material powder 1 having a light gray color tone. It was 8.8 micrometers when the average of the largest diameter was computed about the particle
  • FIGS. 2B to 2E are mappings showing the distribution of O (oxygen), Fe (iron), Al (aluminum), and Cr (chromium), respectively. The brighter the color, the greater the number of target elements.
  • the surface (grain boundaries) of the soft magnetic material powder is rich in oxygen and oxides are formed, and that the soft magnetic material powders are bonded together via this oxide.
  • the Fe magnetic surface has a lower Fe concentration on the surface of the soft magnetic material powder, and Cr does not show a large concentration distribution.
  • Al has a significantly high concentration on the surface of the soft magnetic material powder. From these, it was confirmed that an oxide layer having a higher ratio of Al to the sum of Fe, Cr, and Al than the internal alloy phase was formed on the surface of the soft magnetic material powder. Before the heat treatment, the concentration distribution of each constituent element as shown in FIG. 2 was not observed, and it was also found that the oxide layer was formed by the heat treatment.
  • the oxide layers at each grain boundary having a high Al ratio are connected to each other.
  • no isolated oxide layer surrounded by the alloy phase was observed. It is considered that the configuration related to the oxide layer contributes to improvement of characteristics such as loss.
  • a dust core was prepared in the same manner as in the above example using Fe—Cr—Al based soft magnetic alloy powder having the same composition and the same particle size as in the above example.
  • the average particle diameter (median diameter d50) of the Fe—Cr—Al based soft magnetic alloy powder used was 10.2 ⁇ m.
  • the heat treatment was performed under three conditions of 700 ° C., 750 ° C., and 800 ° C., respectively.
  • Table 2 The results of evaluating the characteristics in the same manner as in the above examples are shown in Table 2.
  • the No. 4 to 6 dust cores made with Fe-Cr-Al soft magnetic alloy powders use the same Fe-Si soft magnetic alloy powder as the No. 1 dust cores.
  • the space factor, permeability, and ring crushing strength were significantly increased.
  • the No. 6 dust core using the Fe—Cr—Al soft magnetic alloy powder having a median diameter d50 of 15 ⁇ m or less is the No. 1 dust core. It can be seen that each characteristic is improved compared to the magnetic core, and in particular, the crushing strength and the core loss are greatly improved.
  • an electrode was formed by applying a silver paste to the dust cores of Nos. 4 to 6, and after measuring the electric resistance by applying a DC voltage, the electric resistivity ⁇ was estimated from the electrode area and the distance between the electrodes.
  • the electrical resistivity ⁇ of the Nos. 4 to 6 dust cores was 1 ⁇ 10 3 ⁇ ⁇ m, 1 ⁇ 10 4 ⁇ ⁇ m, and 1 ⁇ 10 4 ⁇ ⁇ m, respectively.
  • the electric resistivity ⁇ of the used No. 2 dust core was significantly larger than 1 ⁇ 10 1 ⁇ ⁇ m.
  • the electrical resistivity ⁇ of the No. 3 dust core is 1 ⁇ 10 3 ⁇ ⁇ m, and the electrical resistivity ⁇ of the No.
  • FIG. 4 is a TEM photograph showing the grain boundary portion between the soft magnetic material powders observed in the cross section of the dust core.
  • Table 3 shows the point analysis values of the intragranular and grain boundary phases of the soft magnetic material powder in FIG. The balance of the analysis values shown in Table 3 is impurities. Analysis point 4 is in the grain, analysis point 2 is the center of the grain boundary phase, and analysis points 1 and 3 are portions of the grain boundary phase very close to the soft magnetic material powder.
  • the thickness of the grain boundary phase of the dust core shown in FIG. 4 was about 40 nm.
  • Table 3 it was found that an oxide layer was formed as the grain boundary phase, and a concentration gradient of constituent elements or a plurality of phases existed.
  • Cr is contained in the oxide layer, the ratio is almost the same as that in the grains of the soft magnetic material powder, and the difference between the Cr concentration in the oxide layer and the Cr concentration in the grains is within ⁇ 3%.
  • the oxide layer had a higher Al content than in the grains and that Al was concentrated in the oxide layer at the grain boundary.
  • the ratio of Fe is higher in the center of the layer than in the vicinity of the alloy phase in the grains, and it has also been clarified that there is more Fe than Al.
  • Al was more than Fe in the portion in the very vicinity of the soft magnetic material powder. It was also found that the Al content in the center of the oxide layer at the grain boundary and in the very vicinity of the soft magnetic material powder was higher than that in Cr.
  • the Al oxide has high insulation, it is presumed that the Al oxide is formed at the grain boundary of the soft magnetic material powder, thereby contributing to ensuring insulation and reducing core loss. Further, the soft magnetic material powder is bonded through the grain boundary layer as shown in FIG. 4, and it is considered that this configuration contributes to the improvement of the strength.
  • a space factor of 83% or more can be obtained at 0.6 GPa or more, and a space factor of 85% or more can be obtained at 0.7 GPa or more.
  • a powder magnetic core having a high space factor equivalent to or higher than that of a conventional Fe-Si based powder magnetic core can be obtained, so that the load on the molding equipment can be reduced.
  • the compacting pressure was 0.73 GPa, and the heat treatment temperature was 750 ° C.
  • a magnetic core was prepared. With respect to the obtained dust core, the crushing strength, the initial permeability ⁇ i, and the incremental permeability ⁇ ⁇ when a DC magnetic field of 10 kA / m was applied were evaluated. Moreover, the average of the maximum diameter was computed like the powder magnetic core of No1. The results are shown in Table 5.
  • the core loss increased by 100% or more in the dust core heat-treated at 850 ° C. as compared with the dust core heat-treated at 750 ° C.
  • the increase rate of core loss was 62% in the composition of No11, and 20% in the composition of No13. That is, it was found that as the Cr and Al contents are increased, the change rate of the core loss with respect to the heat treatment temperature is reduced, and there is a margin in the management range of the heat treatment temperature.
  • a dust core was produced by applying discharge plasma sintering shown in Patent Document 1 as follows.
  • Atomized powder having a composition of Fe-4.0% Cr-5.0% Al and an average particle diameter of 9.8 ⁇ m (median diameter d50) in a mass percentage was heat-treated at 900 ° C. for 1 hour in the air.
  • the atomized powder after the heat treatment was solidified in a bulk shape, and it was necessary to add a crushing step before the discharge plasma sintering step.
  • the atomized powder after heat treatment and pulverization was filled into a graphite mold without adding a binder, and then placed in a chamber, and discharge plasma sintering was performed under conditions of a pressure of 50 MPa, a heating temperature of 900 ° C., and a holding time of 5 minutes. .
  • the obtained sintered body was mainly composed of oxide, and a desired magnetic core could not be obtained. This is considered to be because the atomized powder was excessively oxidized during the heat treatment of the atomized powder performed before the discharge plasma sintering, and the manufacturing method shown in Patent Document 1 only makes the manufacturing process complicated. In addition, it was confirmed that direct application was not possible when using fine atomized powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 軟磁性材料粉を用いた圧粉磁心の製造方法であって、軟磁性材料粉とバインダーを混合する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体を熱処理する第3の工程とを有し、前記軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、前記熱処理によって、前記軟磁性材料粉の表面に、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成する。

Description

圧粉磁心の製造方法、圧粉磁心およびコイル部品
 本発明は、軟磁性材料粉を用いて構成された圧粉磁心の製造方法、圧粉磁心および圧粉磁心の周囲にコイルを巻装して構成されたコイル部品に関する。
 従来から、家電機器、産業機器、車両など多種多様な用途において、インダクタ、トランス、チョーク等のコイル部品が用いられている。コイル部品は、磁心(磁性コア)と、その磁心の周囲に巻回されたコイルで構成される。かかる磁心には、磁気特性、形状自由度、価格に優れるフェライトが広く用いられている。
 近年、電子機器等の電源装置の小型化が進んだ結果、小型・低背で、かつ大電流に対しても使用可能なコイル部品の要求が強くなり、フェライトと比較して飽和磁束密度が高い金属系磁性粉末を使用した圧粉磁心の採用が進んでいる。金属系磁性粉末としては、例えばFe-Si系、Fe-Ni系などの磁性合金粉末が用いられている。コイル部品には、加圧成形して得られた圧粉磁心の周囲にコイルを巻装した一般的な構造の他、小型・低背の要求を満たすために、コイルと磁性粉末が一体的に加圧成形された構造(コイル封入構造)も採用されている。
 Fe-Si系、Fe-Ni系などの磁性合金粉末を圧密化して得られる圧粉磁心は、飽和磁束密度が高い反面、合金粉末であるため電気抵抗率が低い。そのため、合金粉末表面に絶縁性被覆を形成したのち成形するなど、磁性合金粉末間の絶縁性を高める方法が適用されている。特許文献1には、絶縁性被覆となる高電気抵抗物質の自己生成が可能な磁性粉末としてFe-Cr-Al系の磁性粉末を用いた例が開示されている。特許文献1では、磁性粉末を酸化処理することで、高電気抵抗の酸化皮膜を磁性粉末の表面に生成し、かかる磁性粉末を放電プラズマ焼結によって固化成形することで圧粉磁心を得ている。
特開2005-220438号公報
 コイル封入構造に採用される圧粉磁心の場合、上記のように磁性合金粉末の絶縁性を高めても、成形時にコイルに高い圧力を加えてしまうと、導線間がショートしやすくなる。一方、コイル部品として、加圧成形して得られた小型の圧粉磁心にコイルを巻装した構造を用いる場合には、圧粉磁心の強度が不足して巻線時に圧粉磁心が破損しやすい。圧粉磁心の強度を高めるには大きな圧力を必要とするが、高圧を発生するために装置が大型化し、金型が破損しやすくなるなどの製造設備上の問題があった。そのため、実用上得られる圧粉磁心の強度には限界があった。
 一方、特許文献1に記載の構成は、上記のような高圧は必要としないものの、複雑な設備と多くの時間を必要とする製法である上、磁性粉末の酸化処理後に凝集した粉末を粉砕するための工程が必要になるため、工程が煩雑なものとなってしまう。また、得られる磁性粉末成形体は、高密度に焼結した焼結体であるため、特に高周波数領域でのコアロスが劣化する恐れがあった。
 本発明は、上記問題点に鑑みたものであり、簡易な加圧成形による製造方法でも高強度の圧粉磁心を得ることが可能な圧粉磁心の製造方法、さらには簡易な加圧成形による製造方法でも高い強度が得られる圧粉磁心およびコイル部品を提供することを目的とする。
 本発明の圧粉磁心の製造方法は、軟磁性材料粉を用いた圧粉磁心の製造方法であって、
 軟磁性材料粉とバインダーを混合する第1の工程と、
 前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、
 前記第2の工程を経て得られた成形体を熱処理する第3の工程とを有し、
 前記軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、
 前記熱処理によって、前記軟磁性材料粉の表面に、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成することを特徴とする。
 Fe、CrおよびAlを含む合金粉を用いることで、低い成形圧力でも高い占積率と圧粉磁心強度を得ることができる。さらに、成形後の熱処理によって軟磁性材料粉表面にAlの比率が高い酸化物層を形成することができるため、絶縁性被覆の形成も簡易なものとなる。すなわち、本発明の圧粉磁心の製造方法によれば、簡易な製造方法で、強度等に優れた圧粉磁心を提供することができる。
 また、前記圧粉磁心の製造方法において、前記軟磁性材料粉のCrの含有量が2.5~7.0質量%、Alの含有量が3.0~7.0質量%であることが好ましい。
 また、前記圧粉磁心の製造方法において、前記熱処理を経た圧粉磁心における軟磁性材料粉の占積率が80~90%の範囲内であることが好ましい。
 さらに、前記圧粉磁心の製造方法において、前記軟磁性材料粉のメジアン径d50が30μm以下であることが好ましい。
 さらに、前記圧粉磁心の製造方法において、前記加圧成形時の成形圧が1.0GPa以下であるとともに、前記熱処理を経た圧粉磁心における軟磁性材料粉の占積率が83%以上であることが好ましい。
 本発明の圧粉磁心は、軟磁性材料粉を用いた圧粉磁心であって、前記軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、軟磁性材料粉の占積率が80~90%の範囲内であるとともに、前記軟磁性材料粉同士が、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を介して結合していることを特徴とする。
 また、前記圧粉磁心において、前記軟磁性材料粉のCrの含有量が2.5~7.0質量%、Alの含有量が3.0~7.0質量%であることが好ましい。
 また、前記圧粉磁心において、前記圧粉磁心の断面観察像における軟磁性材料粉の各粒子の最大径の平均が15μm以下であることが好ましい。
 本発明のコイル部品は、前記圧粉磁心と、前記圧粉磁心の周囲に巻装されたコイルとを有することを特徴とする。
 本発明によれば、簡易な加圧成形による製造方法でも高強度の圧粉磁心を得ることが可能な圧粉磁心の製造方法、さらには簡易な加圧成形による製造方法でも高い強度が得られる圧粉磁心およびコイル部品を提供することができる。
本発明に係る圧粉磁心の製造方法の実施形態を説明するための工程のフロー図である。 圧粉磁心の断面のSEM写真である。 圧粉磁心の断面のSEM写真である。 圧粉磁心の断面のTEM写真である。 成形圧と占積率の関係を示すグラフである。
  以下、本発明に係る圧粉磁心の製造方法、圧粉磁心およびコイル部品の実施形態を、具体的に説明する。但し、本発明はこれに限定されるものではない。
 図1は、本発明に係る圧粉磁心の製造方法の実施形態を説明するための工程のフローである。この製造方法は、軟磁性材料粉を用いた圧粉磁心の製造方法であって、軟磁性材料粉とバインダーを混合する第1の工程と、第1の工程を経て得られた混合物を加圧成形する第2の工程と、第2の工程を経て得られた成形体を熱処理する第3の工程とを有する。使用する軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、第3の工程の熱処理によって、軟磁性材料粉の表面に、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成する。
 CrおよびAlを含むFe-Cr-Al系の合金粉は、Fe-Si系の合金粉に比べて耐食性に優れる。さらにFe-Cr-Al系の合金粉は、Fe-Si系やFe-Si-Cr系の合金粉に比べて塑性変形しやすい。したがって、Fe-Cr-Al系の合金粉は、低い成形圧力でも高い占積率と強度を備えた圧粉磁心を得ることができる。そのため、成形機の大型化・複雑化も回避することができる。また、低圧で成形できるため、金型の破損も抑制され、生産性が向上する。
 さらに、軟磁性材料粉としてFe-Cr-Al系の合金粉を用いることにより、後述するように、成形後の熱処理によって軟磁性材料粉の表面に絶縁性の酸化物を形成することができる。したがって、成形前に絶縁性酸化物を形成する工程を省略することが可能であるうえ、絶縁性被覆の形成方法も簡易になるため、かかる点においても生産性が向上する。
 まず、第1の工程に供する軟磁性材料粉ついて説明する。含有比率の高い三つの主要元素としてFe、CrおよびAlを含むFe-Cr-Al系合金粉の組成は、圧粉磁心を構成できるものであれば、特に限定されるものではない。CrおよびAlは耐食性等を高める元素である。かかる観点から、軟磁性材料粉のCrの含有量は、好ましくは1.0質量%以上、より好ましくは2.5質量%以上である。一方、Crが多くなりすぎると飽和磁束密度が低下するため、Crの含有量は、好ましくは9.0質量%以下、より好ましくは7.0質量%以下、さらに好ましくは4.5質量%以下である。また、Alは上記のように耐食性を高める元素であり、特に表面酸化物の形成に寄与する。かかる観点から、軟磁性材料粉のAlの含有量は、好ましくは2.0質量%以上、より好ましくは3.0質量%以上、さらに好ましくは5.0質量%以上である。一方、Alが多くなりすぎると飽和磁束密度が低下するため、Alの含有量は、好ましくは10.0質量%以下、より好ましくは8.0質量%以下、さらに好ましくは7.0質量%以下、特に好ましくは6.0質量%以下である。
 また、上記耐食性等の観点から、CrとAlを合計した含有量は、6.0質量%以上が好ましく、9.0質量%以上がより好ましい。熱処理温度に対するコアロスの変化率を抑え、熱処理温度の管理幅を広く確保する観点から、CrとAlを合計した含有量は、11質量%以上がさらに好ましい。また、表面の酸化物層にはCrに比べてAlが顕著に濃化するため、CrよりもAlの含有量が多いFe-Cr-Al系合金粉を用いることがより好ましい。
 上記CrおよびAl以外の残部は主にFeで構成されるが、Fe-Cr-Al系合金粉が持つ成形性等の利点を発揮する限りにおいて、他の元素を含むこともできる。但し、非磁性元素は飽和磁束密度等を低下させるため、かかる他の元素の含有量は1.0質量%以下であることが好ましい。なお、Fe-Si系合金等で用いられるSiは、圧粉磁心の強度向上に不利な元素であるため、本発明では、Fe-Cr-Al系合金粉の通常の製造プロセスを経て含まれる不純物レベル以下に抑える。Fe-Cr-Al系合金粉は、不可避不純物を除きFe、CrおよびAlで構成されることがさらに好ましい。
 軟磁性材料粉の平均粒径(ここでは、累積粒度分布におけるメジアン径d50を用いる)は特に限定されるものではないが、例えば、1μm以上、100μm以下の平均粒径を有する軟磁性材料粉を用いることができる。平均粒径を小さくすることで、圧粉磁心の強度、コアロス、高周波特性が改善されるので、メジアン径d50はより好ましくは30μm以下、さらに好ましくは15μm以下である。一方、平均粒径が小さい場合は透磁率が低くなるため、メジアン径d50はより好ましくは5μm以上である。また、篩等を用いて軟磁性材料粉から粗い粒子を除くことがより好ましい。この場合、少なくとも32μmアンダーの(すなわち、目開き32μmの篩を通過した)軟磁性材料粉を用いることが好ましい。
 軟磁性材料粉の形態は、特に限定されるものではないが、流動性等の観点からアトマイズ粉に代表される粒状粉を用いることが好ましい。ガスアトマイズ、水アトマイズ等のアトマイズ法は、展性や延性が高く、粉砕しにくい合金の粉末作製に好適である。また、アトマイズ法は略球状の軟磁性材料粉を得る上でも好適である。
 次に、第1の工程において用いるバインダーについて説明する。バインダーは、加圧成形する際、粉体同士を結着させ、成形後のハンドリングに耐える強度を成形体に付与する。バインダーの種類は、特に限定されないが、例えば、ポリエチレン、ポリビニルアルコール、アクリル樹脂等の各種有機バインダーを用いることができる。有機バインダーは成形後の熱処理により、熱分解する。そのため、熱処理後においても固化、残存して粉末同士を結着する、シリコーン樹脂などの無機系バインダーを併用してもよい。但し、本発明に係る圧粉磁心の製造方法においては、第3の工程で形成される酸化物層が軟磁性材料粉同士を結着する作用を奏するため、上記の無機系バインダーの使用を省略して、工程を簡略化することが好ましい。
 バインダーの添加量は、軟磁性材料粉間に十分に行きわたり、十分な成形体強度を確保できる量にすればよい。一方、これが多すぎると密度や強度が低下するようになる。かかる観点から、バインダーの添加量は、例えば、軟磁性材料粉100重量部に対して、0.5~3.0重量部にすることが好ましい。
 第1の工程における、軟磁性材料粉とバインダーとの混合方法は、特に限定されるものではなく、従来から知られている混合方法、混合機を用いることができる。バインダーが混合された状態では、その結着作用により、混合粉は広い粒度分布をもった凝集粉となっている。かかる混合粉を、例えば振動篩等を用いて篩に通すことによって、成形に適した所望の二次粒子径の造粒粉を得ることができる。また、加圧成形時の粉末と金型との摩擦を低減させるために、ステアリン酸、ステアリン酸塩等の潤滑材を添加することが好ましい。潤滑材の添加量は、軟磁性材料粉100重量部に対して0.1~2.0重量部とすることが好ましい。潤滑剤は、金型に塗布することも可能である。
 次に、第1の工程を経て得られた混合物を加圧成形する第2の工程について説明する。第1の工程で得られた混合物は、好適には上述のように造粒されて、第2の工程に供される。造粒された混合物は、成形金型を用いて、トロイダル形状、直方体形状等の所定形状に加圧成形される。第2の工程における成形は、室温成形でもよいし、バインダーが消失しない程度に加熱して行う温間成形でもよい。また、混合物の調整方法および成形方法も上記に限定されるものではない。
 上述のように軟磁性材料粉としてFe-Cr-Al系合金粉を用いると、低い圧力で圧粉磁心の占積率(相対密度)を高めることができ、圧粉磁心の強度も向上する。かかる作用を利用して、熱処理を経た圧粉磁心における軟磁性材料粉の占積率を80~90%の範囲内にすることがより好ましい。かかる範囲が好ましい理由は、占積率を高めることで磁気特性が向上する一方、過度に占積率を高めようとすると、設備的、コスト的な負荷が大きくなるからである。さらに好ましくは、占積率は82~90%である。
 さらに、上記のような低圧でも圧粉磁心の占積率、強度が向上するFe-Cr-Al系合金粉の特徴を利用して、加圧成形時の成形圧を1.0GPa以下としながら、熱処理を経た圧粉磁心における軟磁性材料粉の占積率を83%以上にすることがより好ましい。低圧で成形することで、金型の破損等を抑制しながら、高磁気特性および高強度を備えた圧粉磁心を実現することができる。かかる構成は、Fe-Cr-Al系合金粉を用いることでもたらされる効果の一つである。
 次に、前記第2の工程を経て得られた成形体を熱処理する第3の工程について説明する。成形等で導入された応力歪を緩和して良好な磁気特性を得るために、第2の工程を経た成形体に対して熱処理が施される。かかる熱処理によって、さらに、軟磁性材料粉の表面に、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成する。この酸化物層は、熱処理により軟磁性材料粉と酸素とを反応させ成長させたものであり、軟磁性材料粉の自然酸化を超える酸化反応により形成される。かかる熱処理は、大気中、酸素と不活性ガスの混合気体中など、酸素が存在する雰囲気中で行うことができる。また、水蒸気と不活性ガスの混合気体中など、水蒸気が存在する雰囲気中で熱処理を行うこともできる。これらのうち大気中の熱処理が簡便であり好ましい。
 上記の熱処理によって軟磁性材料粉が酸化されて、その表面に酸化物層が形成される。このとき、Fe-Cr-Al系合金粉中のAlが表層に濃化し、前記酸化物層は内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高くなる。典型的には、内部の合金相に比べて、構成金属元素のうち特にAlの比率が高く、Feの比率が低い。さらに、より微視的には、Fe-Cr-Al系合金粉間の粒界において、合金相近傍よりも層中央の方がFeの比率が高い酸化物層が形成される。かかる酸化物が形成されることによって、軟磁性材料粉の絶縁性および耐食性が向上する。また、かかる酸化物層は、成形体を構成した後に形成されるため、該酸化物層を介した軟磁性材料粉同士の結合にも寄与する。軟磁性材料粉同士が前記酸化物層を介して結合されることで、高強度の圧粉磁心が得られる。
 第3の工程の熱処理は、上記酸化物層が形成される温度で行えばよい。かかる熱処理によって強度に優れた圧粉磁心が得られる。さらに、第3の工程の熱処理は、軟磁性材料粉が著しく焼結しない温度で行うことが好ましい。軟磁性材料粉が著しく焼結すると、Alの比率が高い酸化物層の一部が合金相に取り囲まれてアイランド状に孤立化するようになる。そのため、軟磁性材料粉の母体の合金相同士を隔てる酸化物層としての機能が低下し、コアロスも増加するようになる。具体的な熱処理温度は、600~900℃の範囲が好ましく、700~800℃の範囲がより好ましく、750~800℃の範囲がいっそう好ましい。前記酸化物層は実質的に合金相に取り囲まれて孤立化していないようにすることがより好ましい。ここで、実質的に合金相に取り囲まれて孤立化していないとは、圧粉磁心の断面を研磨して顕微鏡観察したとき、合金相に取り囲まれて孤立化している酸化物層が0.01mm当たり一箇所以下であることをいう。上記温度範囲での保持時間は、圧粉磁心の大きさ、処理量、特性ばらつきの許容範囲などによって適宜設定され、例えば0.5~3時間に設定される。
 第1~第3の各工程の前後に他の工程を追加することも可能である。例えば、第1の工程の前に、熱処理やゾルゲル法等によって軟磁性材料粉に絶縁被膜を形成する予備工程を付加してもよい。但し、本発明に係る圧粉磁心の製造方法においては、第3の工程によって軟磁性材料粉の表面に酸化物層を形成することができるため、上記のような予備工程を省略して製造工程を簡略化することがより好ましい。また、酸化物層自体は塑性変形しにくい。そのため、加圧成形後に上述のAlに富む酸化物層を形成するプロセスを採用することで、第2の工程の加圧成形において、Fe-Cr-Al系合金粉が持つ高い成形性を有効に利用することができる。
 上記のようにして得られる圧粉磁心は、それ自体が優れた効果を発揮する。例えば、軟磁性材料粉を用いた圧粉磁心であって、その軟磁性材料粉はFe、CrおよびAlを含む合金粉であり、軟磁性材料粉の占積率が80~90%の範囲内であるとともに、軟磁性材料粉の表面に、内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を有する圧粉磁心は、成形性に優れ、高い占積率と圧粉磁心強度を実現する上で好適である。また、その酸化物層によって絶縁性が確保され、圧粉磁心として十分なコアロスが実現される。かかる酸化物層の効果を十分に発揮させる観点から、酸化物層が実質的に合金相に取り囲まれて孤立化していないことがより好ましい。
 圧粉磁心は、その断面観察像において軟磁性材料粉の各粒子の最大径の平均が15μm以下であることが好ましく、8μm以下がより好ましい。圧粉磁心を構成する軟磁性材料粉が細かいことで、特に強度と高周波特性が改善される。かかる観点から、圧粉磁心の断面観察像において、最大径が40μmを超える粒子の個数比率が1.0%未満であることが好ましい。一方、透磁率の低下を抑える観点から、粒子の最大径の平均は0.5μm以上であることが好ましい。最大径の平均は、圧粉磁心の断面を研磨して顕微鏡観察し、一定の面積の視野内に存在する30個以上の粒子について最大径を読み取り、その個数平均を取って算出すればよい。成形後の軟磁性材料粉は塑性変形しているものの、断面観察ではほとんどの粒子が中心以外の部分の断面で露出するため、上記最大径の平均は粉末状態で評価したメジアン径d50よりも小さい値となる。最大径が40μmを超える粒子の個数比率は、少なくとも0.04mm以上の視野範囲で評価する。
 上記の圧粉磁心と、該圧粉磁心の周囲に巻装されたコイルとを用いてコイル部品が提供される。コイルは、導線を圧粉磁心に巻回して構成してもよいし、ボビンに巻回して構成してもよい。このような圧粉磁心とコイルとを有するコイル部品は、例えばチョーク、インダクタ、リアクトル、トランス等として用いられる。
 圧粉磁心は、上述のようにバインダー等を混合した軟磁性材料粉末だけを加圧成形した圧粉磁心単体の形態で製造してもよいし、内部にコイルが配置された形態で製造してもよい。後者の構成は、特に限定されるものではなく、例えば軟磁性材料粉末とコイルとを一体で加圧成形してコイル封入構造の圧粉磁心の形態で製造することができる。
 以下のようにして、圧粉磁心を作製した。軟磁性材料粉末として、Fe-Cr-Al系軟磁性合金粉を用いた。かかる合金粉は粒状のアトマイズ粉であり、その組成は質量百分率でFe-4.0%Cr-5.0%Alであった。アトマイズ粉は、440メッシュ(目開き32μm)の篩を通して粗い粒子を除いてから使用した。レーザー回折散乱式粒度分布測定装置(堀場製作所製LA-920)で測定した軟磁性材料粉末の平均粒径(メジアン径d50)は18.5μmであった。
 前記合金粉100重量部に対して、エマルジョンのアクリル樹脂系のバインダー(昭和高分子株式会社製ポリゾールAP-604 固形分40%)を2.0重量部の割合で混合した。この混合粉を120℃で10時間乾燥し、乾燥後の混合粉を篩に通して造粒粉を得た。この造粒粉に、軟磁性材料粉末100重量部に対して0.4重量部の割合でステアリン酸亜鉛を添加、混合して成形用の混合物を得た。
 得られた混合粉は、プレス機を使用して、0.91GPaの成形圧で室温にて加圧成形した。得られたトロイダル形状の成形体に、大気中、800℃の熱処理温度で1.0時間の熱処理を施し、圧粉磁心を得た(No1)。
 比較のために、軟磁性材料粉末として、Fe-Si系軟磁性合金粉(質量百分率でFe-3.5%Si)、Fe-Cr-Si系軟磁性合金粉(質量百分率でFe-4.0Cr-3.5%Si)を用いて、同様の条件で混合、加圧成形し、トロイダル形状の成形体を得た。また、それぞれの成形体に500℃、700℃の条件で熱処理を行い、圧粉磁心を得た(No2、3)。なお、Fe-Si系軟磁性合金粉を用いた場合は、500℃を超える温度で熱処理するとコアロスが劣化するため、前記のとおり500℃の熱処理温度を採用した。
 以上の工程により作製した圧粉磁心の密度をその寸法および質量から算出し、圧粉磁心の密度を軟磁性材料粉の真密度で除して占積率(相対密度)を算出した。また、トロイダル形状の圧粉磁心の径方向に荷重をかけ、破壊時の最大加重P(N)を測定し、次式から圧環強度σr(MPa)を求めた。
 σr=P(D-d)/(Id
 (ここで、D:コアの外径(mm)、d:コアの肉厚(mm)、I:コアの高さ(mm)である。)
 さらに、一次側と二次側のそれぞれに巻線を15ターン巻回し、岩通計測株式会社製B-HアナライザーSY-8232により、最大磁束密度30mT、周波数300kHzの条件でコアロスPcvを測定した。また、初透磁率μiは、前記トロイダル形状の圧粉磁心に導線を30ターン巻回し、ヒューレット・パッカード社製4284Aにより、周波数100kHzで測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すようにFe-Cr-Al系軟磁性合金粉を用いて作製したNo1の圧粉磁心は、Fe-Si系軟磁性合金粉を用いたNo2の圧粉磁心およびFe-Cr-Si系軟磁性合金粉を用いたNo3の圧粉磁心に比べて、占積率および透磁率が大幅に高くなった。特に、No1の圧粉磁心の圧環強度は100MPa以上の高い値を示した。No1の圧粉磁心の圧環強度は、No2および3の圧粉磁心に比べても二倍以上の値を示しており、上記実施例に係る構成が、優れた圧環強度を得るうえできわめて有利であることが分かった。すなわち、上記実施例に係る構成によれば、簡易な加圧成形によって高い強度を有する圧粉磁心を提供できた。また、別途塩水噴霧試験によって耐食性を評価したところ、No1の圧粉磁心はNo3の圧粉磁心に比べて良好な耐食性を示した。Fe-Si系軟磁性合金粉を用いたNo2の圧粉磁心は、腐食が顕著で、耐食性に関して不十分なものであった。
 さらに、No1の圧粉磁心を用いて初透磁率の周波数特性を評価したところ、1MHzの初透磁率に対して10MHzでの初透磁率は99.0%以上が維持されており、上記実施例に係る構成が高周波特性にも優れる点が明らかとなった。
 No1の圧粉磁心について、走査電子顕微鏡(SEM/EDX)を用いて圧粉磁心の断面観察を行い、同時に各構成元素の分布を調べた。結果を図2および3に示す。図2(a)および図3はSEM像であり、図2は図3を拡大したものである。明るいグレーの色調を有する軟磁性材料粉1の表面に黒の色調を有する相が形成されていることがわかる。SEM像を用いて30個以上の軟磁性材料粉の粒子について最大径の平均を算出したところ8.8μmであった。また、0.047mmの視野範囲において、最大径が40μmを超える粒子は観察されなかった。図2(b)~(e)はそれぞれ、O(酸素)、Fe(鉄)、Al(アルミニウム)、Cr(クロム)の分布を示すマッピングである。明るい色調ほど対象元素が多いことを示す。
 図2から、軟磁性材料粉の表面(粒界)には酸素が多く、酸化物が形成されていること、および各軟磁性材料粉同士がこの酸化物を介して結合している様子がわかる。また、軟磁性材料粉の表面では内部に比べてFeの濃度が低く、Crは大きな濃度分布を示していない。一方、Alは軟磁性材料粉の表面での濃度が顕著に高くなっている。これらのことから、軟磁性材料粉の表面に、内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成していることが確認された。熱処理前には図2に示すような各構成元素の濃度分布は観察されず、上記酸化物層が熱処理によって形成されたこともわかった。また、Alの比率が高い各粒界の酸化物層が互いに連結していることもわかる。0.02mmの視野において、合金相に取り囲まれて孤立化している酸化物層は観察されなかった。この酸化物層に係る構成が、ロス等の特性改善に寄与していると考えられる。
 次に、上記実施例と組成等は同じで粒径が異なるFe-Cr-Al系軟磁性合金粉を用い、上記実施例と同様にして圧粉磁心を作製した。用いたFe-Cr-Al系軟磁性合金粉の平均粒径(メジアン径d50)は10.2μmであった。熱処理は、それぞれ700℃、750℃および800℃の三条件で行った。上記実施例と同様にして特性を評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、Fe-Cr-Al系軟磁性合金粉を用いて作製したNo4~6の圧粉磁心は、No1の圧粉磁心と同様に、Fe-Si系軟磁性合金粉を用いたNo2の圧粉磁心およびFe-Cr-Si系軟磁性合金粉を用いたNo3の圧粉磁心に比べて、占積率、透磁率および圧環強度が大幅に高くなった。さらに、熱処理温度が同じNo6とNo1の圧粉磁心同士で比較した場合、メジアン径d50が15μm以下のFe-Cr-Al系軟磁性合金粉を用いたNo6の圧粉磁心は、No1の圧粉磁心に比べて各特性が向上し、特に圧環強度とコアロスが大幅に改善していることがわかる。
 また、表2の結果から、熱処理温度を上げることによって圧環強度が向上し、コアロスも大幅に改善することがわかる。特に、750℃以上で熱処理したNo5および6の圧粉磁心は、Fe-Si系軟磁性合金粉を用いたNo2の圧粉磁心よりも低いコアロスを維持しながら、圧環強度や透磁率が大幅に向上した。
 さらに、No4~6の圧粉磁心に銀ペーストを塗って電極を形成し、直流電圧を印加して電気抵抗を測定後、電極面積と電極間距離から電気抵抗率ρを概算した。No4~6の圧粉磁心の電気抵抗率ρは、それぞれ、1×10Ω・m、1×10Ω・m、1×10Ω・mとなり、Fe-Si系軟磁性合金粉を用いたNo2の圧粉磁心の電気抵抗率ρの1×10Ω・mに比べて大幅に大きかった。また、No3の圧粉磁心の電気抵抗率ρは1×10Ω・mであり、No4~6の圧粉磁心の電気抵抗率ρは、Fe-Cr-Si系軟磁性合金粉を用いたNo3の圧粉磁心に比べても同等以上の電気抵抗率を示した。これにより、上記酸化物層に係る構成が高電気抵抗率にも寄与していると考えられる。
 No4の圧粉磁心に対して透過電子顕微鏡(TEM/EDX)観察を行った。図4は、圧粉磁心の断面で観察した軟磁性材料粉間の粒界部分を示すTEM写真である。図4中の軟磁性材料粉の粒内および粒界相の点分析値を表3に示す。表3に示した分析値の残部は不純物である。分析点4は粒内、分析点2は粒界相の中央、分析点1、3は粒界相のうち軟磁性材料粉のごく近傍の部分である。
Figure JPOXMLDOC01-appb-T000003
 図4に示す圧粉磁心の粒界相の厚さは約40nmであった。表3の結果から明らかなように、粒界相として酸化物層が形成されているとともに、構成元素の濃度勾配または複数の相が存在していることがわかった。Crは酸化物層にも含まれるが軟磁性材料粉の粒内とほぼ同比率であり、酸化物層のCr濃度と粒内のCr濃度との差は±3%以内であった。一方、粒内に比べて酸化物層ではAl含有量が多く、Alが粒界の酸化物層に濃化していることが確認された。また、粒内の合金相近傍よりも層中央の方がFeの比率が高くなっており、AlよりもFeが多いことも明らかとなった。一方、軟磁性材料粉のごく近傍の部分ではFeよりもAlが多くなっていた。また、粒界の酸化物層の中央、軟磁性材料粉のごく近傍の部分ともCrよりもAlの含有量が多いこともわかった。
 上記のように、軟磁性材料粉の内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層が確認された。Alの酸化物は絶縁性が高いため、かかるAlの酸化物が軟磁性材料粉の粒界に形成されることで、絶縁性確保やコアロスの低減に寄与していると推察される。また、図4に示すような粒界層を介して軟磁性材料粉が結合しており、かかる構成が強度向上にも寄与していると考えられる。
 次に、No4~6と同じ混合物を用い、成形圧を変えて加圧成形して圧粉磁心を作製した。熱処理温度は800℃とした。評価結果を表4に示し、占積率の成形圧依存性を図5に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、成形圧を調整することで80~90%の範囲の占積率の圧粉磁心が得られることがわかる。また、成形圧を上げることで占積率、圧環強度、コアロス、透磁率が改善される。また、逆に成形圧を下げても高い圧環強度が確保されるとも言える。表4および図5の結果から、成形圧が1.0GPa以下であっても、例えば0.4GPa以上とすれば、80%以上の占積率が得られることがわかる。さらに、0.6GPa以上であれば83%以上、0.7GPa以上であれば85%以上の占積率が得られることがわかる。すなわち、低い成形圧でも、従来のFe-Si系の圧粉磁心と同等以上の高い占積率を有する圧粉磁心が得られることから、成形設備への負荷を低減できることも明らかとなった。
 次に、表5に示す組成および平均粒径(メジアン径d50)のアトマイズ粉を用い、成形圧を0.73GPa、熱処理温度を750℃とした以外は上記No1の実施例と同様にして圧粉磁心を作製した。得られた圧粉磁心に対して、圧環強度、初透磁率μiおよび10kA/mの直流磁界印加時の増分透磁率μΔを評価した。また、No1の圧粉磁心と同様にして、最大径の平均を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、いずれの圧粉磁心においても200MPa以上の高い圧粉磁心が得られた。中でもCr6.0質量%以下、Al6.0質量%以下で特に高い圧環強度が得られた。また、表5に示す組成範囲でCr量およびAl量が増加しても、初透磁率および直流重畳特性を示す増分透磁率μΔとも高い値を維持することがわかった。表5に示すように、No10~14の圧粉磁心の最大径の平均はいずれも8μm以下であった。さらに、0.047mmの視野範囲において最大径が40μmを超える粒子の個数比率はいずれも1.0%未満であり、No10~14の圧粉磁心が微細な組織を有することが確認された。
 次に、No10~13の組成に対して、熱処理温度に対する特性の変化を確認するため、650℃および850℃で熱処理した圧粉磁心を作製した。圧環強度は熱処理温度が高くなるにつれて上昇した。具体的には、650℃で熱処理した圧粉磁心はいずれの組成でも170MPa以上の圧環強度を示し、850℃で熱処理した圧粉磁心はいずれの組成でも290MPa以上の圧環強度を示した。また、コアロスは、No10~13のいずれの組成でも750℃で極小値を示し、熱処理温度が850℃になると大きくなる傾向を示した。No10および12の組成において、850℃で熱処理した圧粉磁心では、750℃で熱処理した圧粉磁心に比べてコアロスが100%以上増加した。一方、No11の組成ではコアロスの増加率は62%、No13の組成では20%になった。すなわち、CrとAlの含有量が大きくなるにつれて、熱処理温度に対するコアロスの変化率が小さくなり、熱処理温度の管理幅に余裕があることがわかった。
 次に、比較のために、以下のように特許文献1に示す放電プラズマ焼結を適用して圧粉磁心を作製した。質量百分率でFe-4.0%Cr-5.0%Alの組成、9.8μmの平均粒径(メジアン径d50)のアトマイズ粉を大気中で1時間、900℃にて加熱処理した。加熱処理後のアトマイズ粉はバルク状に固化しており、放電プラズマ焼結の工程の前に解砕工程を追加する必要があった。加熱処理、解砕後のアトマイズ粉を、バインダーは添加せずに黒鉛型に充填した後チャンバー内に入れ、圧力50MPa、加熱温度900℃、保持時間5分の条件で放電プラズマ焼結を行った。得られた焼結体は酸化物が主体となっており、所望の磁心は得られなかった。これは、放電プラズマ焼結前に行ったアトマイズ粉の加熱処理の際にアトマイズ粉が過度に酸化されたためであると考えられ、特許文献1に示す製造方法は、製造工程が煩雑になるだけでなく、細かいアトマイズ粉を用いる場合には直接適用できないことも確認された。
1:軟磁性材料粉

Claims (9)

  1.  軟磁性材料粉を用いた圧粉磁心の製造方法であって、
     軟磁性材料粉とバインダーを混合する第1の工程と、
     前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、
     前記第2の工程を経て得られた成形体を熱処理する第3の工程とを有し、
     前記軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、
     前記熱処理によって、前記軟磁性材料粉の表面に、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を形成することを特徴とする圧粉磁心の製造方法。
  2.  前記軟磁性材料粉のCrの含有量が2.5~7.0質量%、Alの含有量が3.0~7.0質量%であることを特徴とする請求項1に記載の圧粉磁心の製造方法。
  3.  前記熱処理を経た圧粉磁心における軟磁性材料粉の占積率が80~90%の範囲内であることを特徴とする請求項1または2に記載の圧粉磁心の製造方法。
  4.  前記第1の工程に供する前記軟磁性材料粉のメジアン径d50が30μm以下であることを特徴とする請求項1~3のいずれか一項に記載の圧粉磁心の製造方法。
  5.  前記加圧成形時の成形圧が1.0GPa以下であるとともに、前記熱処理を経た圧粉磁心における軟磁性材料粉の占積率が83%以上であることを特徴とする請求項1~4のいずれか一項に記載の圧粉磁心の製造方法。
  6.  軟磁性材料粉を用いた圧粉磁心であって、
     前記軟磁性材料粉はFe、CrおよびAlを含むFe-Cr-Al系合金粉であり、
    軟磁性材料粉の占積率が80~90%の範囲内であるとともに、
     前記軟磁性材料粉同士が、質量比で内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層を介して結合されていることを特徴とする圧粉磁心。
  7.  前記軟磁性材料粉のCrの含有量が2.5~7.0質量%、Alの含有量が3.0~7.0質量%であることを特徴とする請求項6に記載の圧粉磁心。
  8.  前記圧粉磁心の断面観察像における軟磁性材料粉の各粒子の最大径の平均が15μm以下であることを特徴とする請求項6または7に記載の圧粉磁心。
  9.  請求項6~8のいずれか一項に記載の圧粉磁心と、前記圧粉磁心の周囲に巻装されたコイルとを有することを特徴とするコイル部品。
PCT/JP2014/050467 2013-01-16 2014-01-14 圧粉磁心の製造方法、圧粉磁心およびコイル部品 WO2014112483A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157020127A KR101792088B1 (ko) 2013-01-16 2014-01-14 압분 자심의 제조 방법, 압분 자심 및 코일 부품
EP14740461.0A EP2947670B8 (en) 2013-01-16 2014-01-14 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
US14/760,964 US10008324B2 (en) 2013-01-16 2014-01-14 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
CN201480004998.0A CN104919551B (zh) 2013-01-16 2014-01-14 压粉磁芯的制造方法、压粉磁芯以及线圈部件
JP2014520083A JP5626672B1 (ja) 2013-01-16 2014-01-14 圧粉磁心の製造方法、圧粉磁心およびコイル部品
US15/988,209 US11011305B2 (en) 2013-01-16 2018-05-24 Powder magnetic core, and coil component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005120 2013-01-16
JP2013005120 2013-01-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/760,964 A-371-Of-International US10008324B2 (en) 2013-01-16 2014-01-14 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
US15/988,209 Division US11011305B2 (en) 2013-01-16 2018-05-24 Powder magnetic core, and coil component

Publications (1)

Publication Number Publication Date
WO2014112483A1 true WO2014112483A1 (ja) 2014-07-24

Family

ID=51209573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050467 WO2014112483A1 (ja) 2013-01-16 2014-01-14 圧粉磁心の製造方法、圧粉磁心およびコイル部品

Country Status (6)

Country Link
US (2) US10008324B2 (ja)
EP (1) EP2947670B8 (ja)
JP (2) JP5626672B1 (ja)
KR (1) KR101792088B1 (ja)
CN (1) CN104919551B (ja)
WO (1) WO2014112483A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053491A (ja) * 2013-01-16 2015-03-19 日立金属株式会社 圧粉磁心
WO2015108059A1 (ja) * 2014-01-14 2015-07-23 日立金属株式会社 磁心およびそれを用いたコイル部品
JP2015226000A (ja) * 2014-05-29 2015-12-14 日立金属株式会社 磁心の製造方法、磁心およびそれを用いたコイル部品
JP2016009785A (ja) * 2014-06-25 2016-01-18 日立金属株式会社 磁心およびそれを用いたコイル部品
JP2016027643A (ja) * 2014-06-27 2016-02-18 日立金属株式会社 コイル部品
US10176912B2 (en) * 2014-03-10 2019-01-08 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
US10260132B2 (en) 2015-03-31 2019-04-16 Taiyo Yuden Co., Ltd. Magnetic body and electronic component comprising the same
US10468174B2 (en) 2016-09-15 2019-11-05 Hitachi Metals, Ltd. Magnetic core and coil component
US10544488B2 (en) 2015-02-27 2020-01-28 Taiyo Yuden Co., Ltd. Magnetic body and electronic component comprising the same
US10586646B2 (en) 2016-09-15 2020-03-10 Hitachi Metals, Ltd. Magnetic core and coil component
JP2020155672A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心
JP2020155671A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心
US11192183B2 (en) * 2015-09-16 2021-12-07 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846016B2 (ja) * 2015-09-16 2021-03-24 日立金属株式会社 圧粉磁心
US10576541B2 (en) * 2016-06-22 2020-03-03 United Technologies Corporation Structured powder particles for feedstock improvement for laser based additive manufacturing
CN110462764B (zh) * 2017-03-24 2023-09-12 博迈立铖株式会社 带端子压粉磁芯及其制造方法
JP2018166156A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
CN114446565A (zh) * 2017-03-31 2022-05-06 松下知识产权经营株式会社 磁性粉体、复合磁性体及线圈部件
DE102017210941A1 (de) * 2017-06-28 2019-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines weichmagnetischen Kompositwerkstoffs und weichmagnetischer Kompositwerkstoff
US11189409B2 (en) * 2017-12-28 2021-11-30 Intel Corporation Electronic substrates having embedded dielectric magnetic material to form inductors
CN111161935B (zh) * 2018-11-07 2022-03-04 山东精创磁电产业技术研究院有限公司 高强度高磁导率高饱和磁通密度软磁复合材料的烧结方法
JP6868159B2 (ja) * 2019-03-22 2021-05-12 日本特殊陶業株式会社 圧粉磁心
JP2020161760A (ja) * 2019-03-28 2020-10-01 太陽誘電株式会社 巻線型コイル部品及びその製造方法、並びに巻線型コイル部品を載せた回路基板
US20220294279A1 (en) * 2019-08-20 2022-09-15 Hitachi Metals, Ltd. Magnetic wedge, rotary electric machine, and method for manufacturing magnetic wedge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297646A (ja) * 1988-09-30 1990-04-10 Riken Corp 高周波用コイル
JP2000030925A (ja) * 1998-07-14 2000-01-28 Daido Steel Co Ltd 圧粉磁芯およびその製造方法
JP2005220438A (ja) 2004-01-06 2005-08-18 Hitachi Metals Ltd Fe−Cr−Al系磁性粉末と、Fe−Cr−Al系磁性粉末成形体およびその製造方法
JP2006233268A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd 高電気抵抗磁性粉末とその製造方法、ならびに高電気抵抗磁性粉末成形体とその製造方法
JP2007162103A (ja) * 2005-12-15 2007-06-28 Hitachi Metals Ltd 混合磁性粉末とその製造方法、およびそれを用いてなるシート素材とその製造方法
JP2008240041A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 軟磁性粉末、圧粉磁心および磁性素子
JP2009158802A (ja) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd 圧粉磁心の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684461B2 (ja) * 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
JP2002231518A (ja) * 2001-02-02 2002-08-16 Daido Steel Co Ltd 軟磁性粉末、それを用いた圧粉磁心
JP4548035B2 (ja) * 2004-08-05 2010-09-22 株式会社デンソー 軟磁性材の製造方法
JP4576206B2 (ja) * 2004-11-02 2010-11-04 株式会社デンソー 軟磁性材料の製造方法
JP2007129093A (ja) * 2005-11-04 2007-05-24 Sumitomo Electric Ind Ltd 軟磁性材料およびこれを用いて製造された圧粉磁心
JP5093008B2 (ja) * 2007-09-12 2012-12-05 セイコーエプソン株式会社 酸化物被覆軟磁性粉末の製造方法、酸化物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2009088502A (ja) * 2007-09-12 2009-04-23 Seiko Epson Corp 酸化物被覆軟磁性粉末の製造方法、酸化物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2009272615A (ja) 2008-04-08 2009-11-19 Hitachi Metals Ltd 圧粉磁心およびその製造方法
CN102822913B (zh) * 2010-03-26 2017-06-09 日立粉末冶金株式会社 压粉磁芯及其制造方法
JP5032711B1 (ja) 2011-07-05 2012-09-26 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
EP2947670B8 (en) 2013-01-16 2019-06-05 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core, powder magnetic core, and coil component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297646A (ja) * 1988-09-30 1990-04-10 Riken Corp 高周波用コイル
JP2000030925A (ja) * 1998-07-14 2000-01-28 Daido Steel Co Ltd 圧粉磁芯およびその製造方法
JP2005220438A (ja) 2004-01-06 2005-08-18 Hitachi Metals Ltd Fe−Cr−Al系磁性粉末と、Fe−Cr−Al系磁性粉末成形体およびその製造方法
JP2006233268A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd 高電気抵抗磁性粉末とその製造方法、ならびに高電気抵抗磁性粉末成形体とその製造方法
JP2007162103A (ja) * 2005-12-15 2007-06-28 Hitachi Metals Ltd 混合磁性粉末とその製造方法、およびそれを用いてなるシート素材とその製造方法
JP2008240041A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 軟磁性粉末、圧粉磁心および磁性素子
JP2009158802A (ja) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd 圧粉磁心の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947670A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053491A (ja) * 2013-01-16 2015-03-19 日立金属株式会社 圧粉磁心
WO2015108059A1 (ja) * 2014-01-14 2015-07-23 日立金属株式会社 磁心およびそれを用いたコイル部品
JP2017168844A (ja) * 2014-01-14 2017-09-21 日立金属株式会社 磁心の製造方法
US9805855B2 (en) 2014-01-14 2017-10-31 Hitachi Metals, Ltd. Magnetic core and coil component using same
US10176912B2 (en) * 2014-03-10 2019-01-08 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
JP2015226000A (ja) * 2014-05-29 2015-12-14 日立金属株式会社 磁心の製造方法、磁心およびそれを用いたコイル部品
JP2016009785A (ja) * 2014-06-25 2016-01-18 日立金属株式会社 磁心およびそれを用いたコイル部品
JP2016027643A (ja) * 2014-06-27 2016-02-18 日立金属株式会社 コイル部品
US10544488B2 (en) 2015-02-27 2020-01-28 Taiyo Yuden Co., Ltd. Magnetic body and electronic component comprising the same
US10260132B2 (en) 2015-03-31 2019-04-16 Taiyo Yuden Co., Ltd. Magnetic body and electronic component comprising the same
US11192183B2 (en) * 2015-09-16 2021-12-07 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core
US10468174B2 (en) 2016-09-15 2019-11-05 Hitachi Metals, Ltd. Magnetic core and coil component
US10586646B2 (en) 2016-09-15 2020-03-10 Hitachi Metals, Ltd. Magnetic core and coil component
JP2020155672A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心
JP2020155671A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心
JP7269046B2 (ja) 2019-03-22 2023-05-08 日本特殊陶業株式会社 圧粉磁心
JP7300288B2 (ja) 2019-03-22 2023-06-29 日本特殊陶業株式会社 圧粉磁心

Also Published As

Publication number Publication date
US20180268994A1 (en) 2018-09-20
KR20150102084A (ko) 2015-09-04
EP2947670B1 (en) 2019-04-17
EP2947670B8 (en) 2019-06-05
US20150332850A1 (en) 2015-11-19
JP2015053491A (ja) 2015-03-19
US10008324B2 (en) 2018-06-26
JPWO2014112483A1 (ja) 2017-01-19
EP2947670A1 (en) 2015-11-25
EP2947670A4 (en) 2016-10-05
CN104919551B (zh) 2018-03-20
US11011305B2 (en) 2021-05-18
JP6260508B2 (ja) 2018-01-17
KR101792088B1 (ko) 2017-11-01
JP5626672B1 (ja) 2014-11-19
CN104919551A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6260508B2 (ja) 圧粉磁心
JP6447938B2 (ja) 磁心およびそれを用いたコイル部品
JP6390929B2 (ja) 磁心の製造方法、磁心およびそれを用いたコイル部品
JP6601389B2 (ja) 磁心、コイル部品および磁心の製造方法
JP6358491B2 (ja) 圧粉磁心、それを用いたコイル部品および圧粉磁心の製造方法
JP6365670B2 (ja) 磁心、磁心の製造方法およびコイル部品
WO2015137493A1 (ja) 磁心、コイル部品および磁心の製造方法
JP6369749B2 (ja) 磁心およびそれを用いたコイル部品
JP6471881B2 (ja) 磁心およびコイル部品
JP6460505B2 (ja) 圧粉磁心の製造方法
JP2016021510A (ja) 磁心およびそれを用いたコイル部品
JP6471882B2 (ja) 磁心およびコイル部品
JP6478141B2 (ja) 磁心の製造方法、磁心およびそれを用いたコイル部品
JP2018137349A (ja) 磁心およびコイル部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520083

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14760964

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157020127

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014740461

Country of ref document: EP