WO2014112072A1 - 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置 - Google Patents

還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置 Download PDF

Info

Publication number
WO2014112072A1
WO2014112072A1 PCT/JP2013/050809 JP2013050809W WO2014112072A1 WO 2014112072 A1 WO2014112072 A1 WO 2014112072A1 JP 2013050809 W JP2013050809 W JP 2013050809W WO 2014112072 A1 WO2014112072 A1 WO 2014112072A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
aqueous solution
exhaust gas
mixing
reducing agent
Prior art date
Application number
PCT/JP2013/050809
Other languages
English (en)
French (fr)
Inventor
加藤 隆志
裕之 富岡
木 伊東
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN201380000738.1A priority Critical patent/CN104066944B/zh
Priority to US14/000,481 priority patent/US9062589B2/en
Priority to PCT/JP2013/050809 priority patent/WO2014112072A1/ja
Priority to KR1020137021880A priority patent/KR20140102122A/ko
Priority to JP2013522030A priority patent/JP5728578B2/ja
Priority to DE112013000014.8T priority patent/DE112013000014B4/de
Publication of WO2014112072A1 publication Critical patent/WO2014112072A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/435Mixing tubes composed of concentric tubular members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a reducing agent aqueous solution mixing device and an exhaust gas aftertreatment device equipped with the same, and relates to a reducing agent aqueous solution mixing used to purify exhaust gas by supplying a reducing agent aqueous solution such as urea aqueous solution to a selective reduction catalyst.
  • the present invention relates to an apparatus and an exhaust gas aftertreatment apparatus including the apparatus.
  • an exhaust gas aftertreatment device that purifies nitrogen oxide (NOx) contained in engine exhaust gas with a selective reduction catalyst (hereinafter referred to as “SCR”) is known.
  • SCR selective reduction catalyst
  • an aqueous urea solution injected from the injector is supplied.
  • the injector is attached to a mixing device provided on the upstream side of the SCR.
  • the urea aqueous solution is injected from the injector into the exhaust gas flowing in the mixing device, and the urea aqueous solution and the exhaust gas are mixed in the mixing device.
  • the urea aqueous solution is thermally decomposed by the heat of the exhaust gas, and ammonia is obtained.
  • This ammonia is used as a reducing agent in the SCR.
  • the urea aqueous solution attached to the inner wall is also thermally decomposed by injecting the urea aqueous solution into the inner pipe. Therefore, it is possible to suppress crystallization and deposition by adhering as droplets.
  • Patent Documents 1 and 2 it is proposed that a mixing pipe is provided on the downstream side of the injector in the mixing apparatus so that the urea aqueous solution is sufficiently thermally decomposed.
  • a plurality of openings are provided on the outer peripheral surface of the mixing pipe. By causing the exhaust gas to flow into the mixing pipe through these openings, turbulent flow and swirl flow are generated in the mixing pipe.
  • the urea aqueous solution is refined to promote mixing with the exhaust gas, and the decomposition efficiency of the urea aqueous solution into ammonia is improved.
  • the injection nozzle of the injector exposed in the mixing device is located in a concave recess provided in the mixing device, and the periphery of the tip of the injection nozzle is surrounded by the wall surface of the recess. If such a recess is provided, a part of the sprayed urea aqueous solution is returned and stays in a vortex around the recess portion that becomes negative pressure. If the retained aqueous urea solution crystallizes and accumulates, there arises a problem that the injection of the aqueous urea solution from the injection nozzle is hindered.
  • An object of the present invention is to provide a reducing agent aqueous solution mixing device and an exhaust gas aftertreatment device including the same, which can suppress the retention of the urea aqueous solution around the injection nozzle of the injector.
  • a reducing agent aqueous solution mixing device is disposed between a filter device that collects particulate matter in exhaust gas and a selective reduction catalyst device that is disposed on the downstream side of the filter device.
  • An reducing agent aqueous solution mixing device for adding a reducing agent aqueous solution to a gas, wherein the elbow tube is attached to an outlet pipe of the filter device and changes a flow direction of exhaust gas flowing from the filter device, and the elbow tube A straight pipe extending in a direction intersecting the axis of the outlet pipe of the filter device, and an injector attached to the elbow pipe and for injecting the reducing agent aqueous solution into the elbow pipe toward the straight pipe And arranged in the elbow pipe so as to cover the periphery of the reducing aqueous solution injected from the injector, A mixing pipe having a number of openings, and at a position where the exhaust gas entering from the inlet of the elbow pipe flows toward the injection nozzle side of the injector at an attachment portion of the mixing pipe
  • the plurality of openings are provided on the straight pipe side of the mixing pipe.
  • the notch opening when the mixing pipe is viewed from the axial side of the straight pipe toward the inlet portion of the elbow pipe, the notch opening has a predetermined width in the circumferential direction of the mixing pipe. It is characterized by being omitted.
  • the notch opening of the mixing pipe is omitted in the injection region of the reducing agent aqueous solution injected from the injector. It is characterized in that it falls within the area where it is placed.
  • An exhaust gas aftertreatment device is a filter device that collects particulate matter in the exhaust gas, and the first to fourth aspects of the present invention that are arranged in parallel with the filter device on the downstream side of the filter device.
  • the reducing agent aqueous solution mixing device according to any one of the inventions, and a selective reduction catalyst device that is disposed downstream of the reducing agent aqueous solution mixing device and that reduces and purifies nitrogen oxides in the exhaust gas.
  • the injection nozzle is provided with a notch opening at a portion where the mixing pipe is attached to the elbow pipe, and exhaust gas flowing into the mixing pipe from the notch opening is directed to the injection nozzle of the injector. Even when surrounded by a recess, the periphery of the injection nozzle can be satisfactorily heated with exhaust gas. Therefore, the reducing agent aqueous solution returning to the jet nozzle side as a vortex can be reliably thermally decomposed, and the retention of the reducing agent aqueous solution around the jet nozzle can be suppressed.
  • the exhaust gas is caused to flow into a state where the reducing agent aqueous solution injected into the mixing pipe is sufficiently spread by providing a plurality of openings in a region of the mixing pipe that is close to the straight pipe.
  • the reducing agent aqueous solution can be effectively mixed with the exhaust gas.
  • the notch opening is omitted over a predetermined width at a position visible from the inlet portion of the elbow tube in the mixing pipe. That is, this region is not provided with a notch opening, and such a region is formed by a peripheral wall. Therefore, the exhaust gas entering from the inlet does not flow into the mixing pipe vigorously and go directly to the injection nozzle side. For this reason, the reducing agent aqueous solution injected from the injection nozzle does not have to worry about being blown by such exhaust gas, and can be injected in an appropriate direction.
  • the injection region of the reducing agent aqueous solution is reliably covered with the peripheral wall portion where the notch opening does not exist, the reducing agent aqueous solution immediately after being injected can be made more difficult to be swollen by the exhaust gas.
  • the injection direction of the aqueous agent solution can be further stabilized.
  • the top view which shows the exhaust-gas aftertreatment apparatus which concerns on 1st Embodiment of this invention.
  • Sectional drawing which shows the mixing apparatus of an exhaust-gas aftertreatment apparatus.
  • Sectional drawing which shows the principal part of a mixing apparatus. It is sectional drawing of the mixing pipe provided in a mixing apparatus, and is the IV-IV sectional view taken on the line of FIG. It is sectional drawing of a mixing pipe, and is the VV sectional view taken on the line of FIG. It is sectional drawing of a mixing pipe, and sectional drawing from another direction of the cross-sectional part of FIG. 5A.
  • Sectional drawing which shows the principal part of the mixing apparatus which concerns on 2nd Embodiment of this invention. It is sectional drawing of the mixing pipe provided in the mixing apparatus of 2nd Embodiment, and is the VII-VII sectional view taken on the line of FIG.
  • FIG. 1 shows a plan view of an exhaust gas aftertreatment device 1 of the present embodiment.
  • upstream refers to the upstream side in the exhaust gas flow direction
  • downstream refers to the downstream in the exhaust gas flow direction.
  • an exhaust gas aftertreatment device 1 includes a diesel particulate filter (hereinafter referred to as “DPF”) device 2, a mixing device 3, and an upstream side in the exhaust gas flow direction. And a selective reduction catalyst (Selective Catalytic Reduction; hereinafter referred to as “SCR”) device 4. These devices 2 to 4 are provided in the middle of an exhaust pipe through which exhaust gas from a diesel engine (not shown) flows.
  • DPF diesel particulate filter
  • SCR selective Catalytic Reduction
  • These devices 2 to 4 are provided in the middle of an exhaust pipe through which exhaust gas from a diesel engine (not shown) flows.
  • the exhaust gas aftertreatment device 1 is housed in the engine room together with the engine.
  • the DPF device 2 has a configuration in which a cylindrical DPF 22 is accommodated in a cylindrical case 21.
  • the DPF 22 collects particulate matter in the exhaust gas that passes therethrough.
  • an oxidation catalyst may be provided on the upstream side of the DPF 22.
  • the oxidation catalyst oxidizes and activates post-injected fuel and dosing fuel (both are the same as diesel engine fuel) supplied upstream thereof, and raises the temperature of the exhaust gas flowing into the DPF 22 to a renewable temperature of the DPF 22. Due to the high-temperature exhaust gas, the particulate matter collected by the DPF 22 is self-combusted and burned away, and the DPF 22 is regenerated.
  • the mixing device 3 adds a urea aqueous solution as a reducing agent aqueous solution to the exhaust gas.
  • a mixing device 3 is connected to the outlet pipe 23 of the DPF device 2, and an upstream elbow tube 31 as an elbow tube that changes the flow direction of the exhaust gas flowing out from the DPF device 2 by approximately 90 °, and an upstream elbow A straight pipe 32 connected to the downstream end of the pipe 31 and extending in a direction intersecting the axis CL2 (FIG.
  • the SCR device 4 is connected to the further downstream end of the downstream elbow pipe 33.
  • the SCR device 4 has a structure in which a cylindrical SCR 42 is accommodated in a cylindrical case 41.
  • the SCR 42 reduces and purifies nitrogen oxides in the exhaust gas by using ammonia generated in the mixing pipe 3 as a reducing agent.
  • an ammonia reduction catalyst may be provided on the downstream side of the SCR 42.
  • the ammonia reduction catalyst is a catalyst that oxidizes ammonia that has been unused in the SCR 42 to render it harmless, and further reduces emission of exhaust gas.
  • the urea aqueous solution injected from the injector 5 into the exhaust gas is thermally decomposed by the heat of the exhaust gas and becomes ammonia. Ammonia is supplied to the SCR device 4 together with the exhaust gas as a reducing agent.
  • the DPF device 2, the mixing device 3, and the SCR device 4 described above are arranged side by side so that the flow directions of the exhaust gas flowing through each of them are substantially parallel. At this time, the flow direction of the exhaust gas flowing inside the DPF device 2 and the SCR device 4 is opposite to the flow direction of the exhaust gas flowing inside the mixing device 3. For this reason, these devices 2 to 4 are arranged in a substantially S shape in plan view, and can be reliably arranged by mounting on the engine even in a limited arrangement space such as an engine room.
  • the exhaust gas aftertreatment device 1 is compact as a whole.
  • FIG. 2 shows a cross-sectional view of the mixing device 3.
  • the mixing apparatus 3 will be specifically described with reference to FIG.
  • a portion that changes the flow direction of the exhaust gas in the upstream elbow pipe 31 is a direction changing portion 31 ⁇ / b> A.
  • the upstream elbow pipe 31 includes a circular inlet part 31B that is opened and joined to the outlet pipe 23 side of the DPF device 2, and a circular outlet part 31C that is opened and connected to the straight pipe 32 side.
  • a direction changing unit 31A is provided between the two.
  • a mounting portion 6 is provided outside the direction changing portion 31A.
  • the injector 5 is attached to the outside of the attachment portion 6, and the mixing pipe 34 covering the periphery of the urea aqueous solution injected from the injector 5 is attached to the inside (inside of the direction changing portion 31 ⁇ / b> A).
  • the mounting portion 6 and the mixing pipe 34 will be described in detail later.
  • the straight tube 32 has a double tube structure having an outer tube 35 and an inner tube 36 disposed therein.
  • the inner tube 36 is welded or the like to a plurality of support recesses 35A provided in the outer tube 35, and is welded to the inner wall of the outer tube 35 via an annular support member 35B at the downstream end. .
  • the upstream end of the inner pipe 36 enters the upstream elbow pipe 31.
  • the position of the upstream end of the inner tube 36 is set so that the urea aqueous solution injected at an injection angle ⁇ 1 of about 25 ° from the injector 5 (see the one-dot chain line in FIG. 2) enters the inner tube 36 reliably.
  • a plurality of openings 36 ⁇ / b> A... Are provided on the downstream end side of the inner tube 36.
  • exhaust gas flows into the gap between the outer tube 35 and the inner tube 36.
  • the exhaust gas that has flowed in flows through the space between the support recesses 35A to the support member 35B because the support recesses 35A are discontinuously provided in the circumferential direction. Since the support member 35B is annular, the flow of the exhaust gas is stopped, and from here through the opening 36A, the exhaust gas enters the inner pipe 36, merges with the exhaust gas flowing through the inside, and flows downstream. That is, the inner pipe 36 is satisfactorily heated by the exhaust gas flowing inside and the exhaust gas flowing on the outer peripheral side. For this reason, the urea aqueous solution injected into the inner tube 36 is surely thermally decomposed without being formed into droplets even if it adheres to the inner wall.
  • FIG. 3 shows an enlarged portion of the upstream elbow pipe 31 of the mixing device 3.
  • 4 and FIG. 5A show the IV-IV line cross section and the VV line cross section in FIG. 3, respectively.
  • FIG. 5B shows a view of the cross-sectional portion as viewed from above.
  • the attachment portion 6 of the injector 5 and the mixing pipe 34 includes a first plate 61 that closes an injector attachment opening 31D provided in the direction changing portion 31A, and a second plate 62 that is attached to the first plate 61. Configured.
  • a concave recess 63 is provided that expands toward the inside of the direction changing portion 31A.
  • the recessed portion on the back side of the recess 63 is an injection opening 64, and the tip of the injection nozzle 51 constituting the injector 5 is exposed at this injection opening 64 portion.
  • the opening ⁇ 2 (FIG. 2) of the funnel-shaped inclined wall 65 that forms the recess 63 is not particularly limited, but is as large as 90 ° or more, preferably about 120 to 140 °. It is easy to flow to the back side, that is, the periphery of the injection nozzle 51.
  • a flat annular fixing portion 66 that is orthogonal to the axis CL1 of the straight pipe 32 is provided on the outer peripheral side of the recess 63.
  • the end portion of the mixing pipe 34 is welded to the fixing portion 66.
  • the mixing pipe 34 surrounds the downstream side of the injection nozzle 51, and the injection nozzle 51, the mixing pipe 34, and the straight pipe 32 are arranged on the same axis CL1 in order from the upstream side.
  • Exhaust gas strikes the mixing pipe 34 accommodated in the direction changing portion 31A from the lower side in the drawing near the inlet portion 31B of the upstream elbow pipe 31. Further, the exhaust gas from below is converted into a flow along the axis CL1 in the flow direction by the direction changing portion 31A.
  • the gap between the first plate 61 and the second plate 62 functions as a heat insulating space.
  • the mixing pipe 34 has, as its characteristic structure, a plurality of round holes 34A as openings provided on the peripheral wall on the straight pipe 32 side, and the injector 5 side.
  • Three rectangular cutout openings 34B, 34C, and 34D provided on the peripheral wall of the outer wall, through which external air gas flows.
  • the round holes 34 ⁇ / b> A are provided substantially uniformly in the length direction of the mixing pipe 34 on the straight pipe 32 side from the middle of the mixing pipe 34.
  • the notch openings 34B, 34C, 34D are provided along the circumferential direction of the mixing pipe 34, and are provided at the end on the fixed portion 66 side in the length direction. By providing the cutout openings 34B, 34C, and 34D at the end portions, the exhaust gas that flows into the mixing pipe 34 through these openings is directed toward the injection nozzle 51.
  • the length L2 of the cutout openings 34B, 34C, 34D is about 34% (L2 / L1 ⁇ 0.34) of the entire length L1 of the mixing pipe 34.
  • the exhaust gas passing through the cutout openings 34B, 34C, and 34D smoothly flows into the recess 63 so as to trace the surface of the fixed portion 66, and is directed toward the injection nozzle 51.
  • the recess 63 is heated by the exhaust gas and the temperature rises. Therefore, even when the urea aqueous solution injected from the injector 5 returns to the recess 63 side, the urea aqueous solution is easily decomposed by heating, and the recess 63 Residual crystallization and deposition are suppressed.
  • Such a mixing pipe 34 is provided with a round hole 34A and rectangular cutout openings 34B, 34C, and 34D by punching a flat metal plate or the like, and a tube that has been punched into a predetermined developed shape is cylindrical. It is manufactured by curving and welding the butted portion.
  • the diameter and length of the mixing pipe 34 are set such that the urea aqueous solution injected from the injector 5 does not come into contact (see ⁇ 1 indicated by a one-dot chain line in FIG. 2).
  • the round hole 34A is provided only in the first region A1 and the third region A3 that is point-symmetric with the first region A1.
  • the round hole 34A is provided over the entire first and third regions A1 and A3.
  • round holes 34A By providing the round holes 34A in a predetermined area such as the first and third areas A1 and A3, a swirl flow is generated in the exhaust gas flowing into the mixing pipe 34 through the round holes 34A, and the urea aqueous solution to be injected Can be mixed effectively.
  • the size and number of the round holes 34A are appropriately determined in consideration of the diameter and length of the mixing pipe 34, the mixing state of the exhaust gas and the urea aqueous solution, and the like.
  • the cutout openings 34B, 34C, and 34D of the mixing pipe 34 are provided at positions that are line-symmetric with respect to a vertical center line Ov in the drawing.
  • the opening areas of the cutout openings 34B and 34D are equal, and the opening area of the cutout opening 34C is larger than these opening areas.
  • the cutout opening 34B occupies approximately 2/3 of the first area A1 and is provided up to a position where it enters the second area A2.
  • the cutout opening 34C is provided so as to occupy approximately 1/2 of the second region A2 and approximately 1/2 of the third region A3 with the center line Ov as a boundary.
  • the cutout opening 34D is in a line-symmetrical position with the cutout opening 34B, occupies approximately 2/3 of the fourth area A4, and is provided up to a position entering the third area A3.
  • portions other than the cutout openings 34B, 34C, and 34D exist as three support portions 34E, 34F, and 34G each including a peripheral wall.
  • the support portions 34E, 34F, and 34G are also provided at positions that are line-symmetric with respect to the center line Ov.
  • the end edges of these support portions 34E, 34F, and 34G are welded to the fixed portion 66.
  • the circumferential length of the support portion 34E is longer than the lengths of the support portions 34F and 34G.
  • the circumferential lengths of the support portions 34F and 34G are the same.
  • the support portion 34E is provided across the first and fourth regions A1 and A4, so that the support portion 34E is located between the cutout openings 34B and 34D, and is provided symmetrically about the center line Ov as a symmetry line.
  • An angle ⁇ formed by both edges in the circumferential direction of the support portion 34E and the center O of the mixing pipe 34 (same as the axis CL1) is about 60 to 70 °.
  • the support portions 34F and 34G are located in the second and third regions A2 and A3, respectively.
  • the region indicated by the injection angle ⁇ 1 in the drawing is within the projection width W in the direction orthogonal to the axis CL1 of the support portion 34E not provided with the notch opening, and the exhaust gas flowing in from the DPF device 2 side is It prevents direct contact with urea aqueous solution. That is, the support portion 34E is a region having a predetermined width in which the opening according to the present invention is omitted, and the injection region is within this region.
  • the support portion 34E is in a position covering the lowermost portion of the mixing pipe 34 in the drawing. Most of the exhaust gas flowing in from the DPF device 2 side hits the support portion 34E, and therefore does not vigorously enter the mixing pipe 34 without changing its flow direction. For this reason, the urea aqueous solution immediately after being injected is not swept by the exhaust gas toward the second and third regions A2 and A3, and does not spread greatly.
  • the flow of the exhaust gas in the upstream elbow pipe 31 will be described with reference to FIGS. 3 to 5B.
  • the flow of exhaust gas is shown by solid arrows.
  • the exhaust gas flowing out from the DPF device 2 flows in from the inlet portion 31B of the upstream elbow pipe 31 and travels toward the direction changing portion 31A.
  • the exhaust gas passing through the inside flows as it is toward the inner tube 36 along the inner wall of the direction changing portion 31A.
  • most of the other exhaust gas goes to the mixing pipe 34.
  • the exhaust gas flows into the mixing pipe 34 through the round hole 34A.
  • the round hole 34 ⁇ / b> A is provided only in the first and third regions A ⁇ b> 1 and A ⁇ b> 3, the exhaust gas becomes a swirling flow in the mixing pipe 34.
  • the urea aqueous solution becomes finer and is mixed well with the exhaust gas, and thermal decomposition is promoted. Thereafter, the exhaust gas flows to the inner pipe 36 side.
  • the exhaust gas is mixed through the notch openings 34B, 34C, 34D. It flows into the pipe 34.
  • Such exhaust gas is injected so as to travel along the inclined wall 65 of the recess 63 which has spread at a large opening ⁇ 2 (FIG. 2) after flowing along the fixed portion 66, particularly on the side close to the fixed portion 66. It goes to the nozzle 51 side, flows so as to trace the periphery of the injection nozzle 51, and is finally caught in the swirling flow. Therefore, the recess 63 is heated by the exhaust gas and is maintained in a high temperature state. Therefore, the urea aqueous solution that has swirled around the recess 63 side stays around the injection nozzle 51, and is thus deposited by crystallization. Can be suppressed.
  • FIG. 6 is a cross-sectional view showing an upstream elbow pipe 31 portion of the mixing apparatus 3 according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the mixing pipe 34 disposed in the upstream elbow pipe 31, and is a cross-sectional view taken along the line VII-VII in FIG.
  • the same members and members having the same functions as those in the first embodiment are denoted by the same reference numerals, and descriptions thereof in the present embodiment are omitted or simplified.
  • the number, position, and length in the axial direction of the notch opening of the mixing pipe 34 are greatly different from those in the first embodiment.
  • Other configurations for example, a point in which a notch opening is provided in a notch shape, a region in which a round hole is provided, and the like are the same as those in the first embodiment.
  • the mixing pipe 34 of the present embodiment has a pair of cutout openings 34H and 34J provided in the first and third regions A1 and A3, respectively.
  • the lengths of the cutout openings 34H, 34J in the axial direction are smaller than the cutout openings 34B, 34C, 34D of the first embodiment, and the number of the round holes 34A is increased accordingly.
  • the length L2 of the cutout openings 34H and 34J is about 8% (L2 / L1 ⁇ 0.08) of the entire length L1 of the mixing pipe 34.
  • the cutout opening 34H has a length over substantially the entire first region A1 in the circumferential direction. That is, the edges of the support portions 34K, 34L on the side of the notch opening 34H between the notch openings 34H, 34J are provided so as to slightly enter the first area A1, and most of the first area A1 is notched.
  • the cutout opening 34J is shorter in the circumferential direction than the cutout opening 34H, and is provided in the third area A3 and at a position close to the second area A2 side.
  • Each of the support portions 34K and 34L has a large length that completely covers the second and fourth regions A2 and A4 in the circumferential direction.
  • the notch opening 34H is greatly opened in the circumferential direction, and the adjacent support portion 34L is sufficiently long to cover the first region A1 side on the lower side of the mixing pipe 34 in the drawing. Does not have.
  • the axial length of the notch opening 34H is short, and the opening area is not as large as that of the first embodiment.
  • the notch openings 34H and 34J are provided in a point-symmetrical positional relationship, and the exhaust gas flowing into the mixing pipe 34 from the notch openings 34H and 34J is also the same as the exhaust gas flowing through the round hole 34A. Similarly, it becomes a swirl flow.
  • the circumferential lengths of the support portions 34K and 34L are long and completely cover the second and fourth regions A2 and A4.
  • the exhaust gas flowing into the mixing pipe 34 from the notch openings 34H and 34J is accompanied by a swirling component immediately after flowing, and is directed toward the spray nozzle 51 so as to travel along the inclined wall 65 of the recess 63 while swirling. It flows so as to trace the periphery of the nozzle 51.
  • the recess 63 portion is maintained at a high temperature by the exhaust gas, so that even if the urea aqueous solution injected from the injection nozzle 51 becomes a vortex and returns to the recess 63 side, the retention can be prevented.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the cutout openings 34B, 34C, 34D, 34H, and 34J are squares, and the openings are round holes 34A.
  • the number of notch openings and the like may be arbitrarily determined for the implementation.
  • a support portion 34E made of a peripheral wall is provided on the side close to the inlet portion 31B of the upstream elbow pipe 31, and in the second embodiment, the notch openings 34H and 34J are formed in the first shape. 1, provided in the third regions A1 and A3, thereby suppressing the urea aqueous solution injected into the mixing pipe 34 from being swept by the exhaust gas, but a notch opening is provided on the side close to the inlet portion 31B. Even in this case, it is possible to heat the periphery of the injection nozzle 51 with the exhaust gas. Therefore, such a case can also achieve the object of the present invention and is included in the present invention.
  • the urea aqueous solution is used as the reducing agent aqueous solution, but the present invention includes the case where other liquid is used as the reducing agent aqueous solution.
  • the present invention can be suitably used as an exhaust gas aftertreatment device mounted on a construction machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 ミキシング装置(3)は、フィルタ装置(2)の出口管(23)に装着され、フィルタ装置(2)から流れてくる排気ガスの流れ方向を変更するエルボー管(31)と、エルボー管(31)の下流側に接続され、フィルタ装置(2)の出口管(23)の軸線(CL2)と交差する方向に延びるストレート管(32)と、エルボー管(31)に取り付けられ、ストレート管(32)に向かってエルボー管(31)内部に還元剤水溶液を噴射するインジェクタ(5)と、エルボー管(31)内において、インジェクタ(5)から噴射される還元水溶液の周囲を覆うように配置され、周壁に複数の開口を有するミキシングパイプ(34)とを備え、ミキシングパイプ(34)におけるエルボー管(31)との固定部分には、エルボー管(31)の入口部(31B)から入りくる排気ガスを噴射ノズル(51)側に向かって流入させる位置に切欠開口(34B,34C,34D)が設けられる。

Description

還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
 本発明は、還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置に係り、選択還元触媒に尿素水溶液等の還元剤水溶液を供給して排気ガスを浄化する際に用いられる還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置に関する。
 従来、エンジンの排気ガス中に含まれる窒素酸化物(NOx)を選択還元触媒(Selective Catalytic Reduction;以下「SCR」と記す)にて浄化する排気ガス後処理装置が知られている。このようなSCRに対しては、インジェクタから噴射された尿素水溶液が供給される。インジェクタは、SCRの上流側に設けられたミキシング装置に取り付けられる。ミキシング装置内を流れる排気ガス中にインジェクタから尿素水溶液を噴射し、この尿素水溶液と排気ガスとをミキシング装置内で混ぜ合わせる。この結果、尿素水溶液が排気ガスの熱によって熱分解され、アンモニアが得られる。このアンモニアがSCRにて還元剤として用いられる。
 このような排気ガス後処理装置においては、噴射された尿素水溶液と排気ガスとが十分に混合されないと、外側が外気によって冷やされたミキシング装置の内壁に尿素水溶液の一部が付着し、SCRでのアンモニアが不足するおそれがある。また、ミキシング装置の内壁で液滴となった尿素水溶液が結晶化し、内壁に堆積して排気ガスの流れを阻害することもある。このような問題を解決するために、外管および内管を有した2重管構造のミキシング装置を採用することがある。ミキシング装置の内管は、内外周の両面が排気ガスと接触していることで加熱されるため、この内管の内部に尿素水溶液を噴射することで、内壁に付着した尿素水溶液もが熱分解することとなり、液滴として付着して結晶化したり、堆積したりするのを抑制できる。
 また、特許文献1,2では、尿素水溶液が十分に熱分解されるよう、ミキシング装置内において、インジェクタジェクタの下流側にミキシングパイプを設けることが提案されている。ミキシングパイプの外周面には、複数の開口が設けられている。これらの開口を通じて排気ガスをミキシングパイプの内部に流入させることによって、ミキシングパイプ内で乱流や旋回流を発生させる。このような流れの排気ガス中にインジェクタから尿素水溶液を噴射することで、尿素水溶液を微細化して排気ガスとの混合を促進し、尿素水溶液のアンモニアへの分解効率を向上させている。
米国特許出願公開第2010/0263359号明細書 特開2008-208726号公報
 しかしながら、ミキシング装置内に露出するインジェクタの噴射ノズルは、ミキシング装置に設けられた凹状のリセス内に位置しており、噴射ノズル先端の周囲がリセスの壁面によって囲まれている。このようなリセスが設けられていると、噴射された尿素水溶液の一部は、負圧気味となるリセス部側に渦を巻くように戻されて滞留する。滞留した尿素水溶液が結晶化して堆積すると、噴射ノズルからの尿素水溶液の噴射が阻害されるという問題が生じる。
 本発明の目的は、インジェクタの噴射ノズル周辺での尿素水溶液の滞留を抑制できる還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置を提供することにある。
 第1発明に係る還元剤水溶液ミキシング装置は、排気ガス中の粒状物質を捕集するフィルタ装置と、前記フィルタ装置の下流側に配置された選択還元触媒装置との間に配置されるとともに、排気ガス中に還元剤水溶液を添加する還元剤水溶液ミキシング装置であって、前記フィルタ装置の出口管に装着され、前記フィルタ装置から流れてくる排気ガスの流れ方向を変更するエルボー管と、前記エルボー管の下流側に接続され、前記フィルタ装置の出口管の軸線と交差する方向に延びるストレート管と、前記エルボー管に取り付けられ、前記ストレート管に向かって前記エルボー管内部に還元剤水溶液を噴射するインジェクタと、前記エルボー管内において、前記インジェクタから噴射される還元水溶液の周囲を覆うように配置され、周壁に複数の開口を有するミキシングパイプとを備え、前記ミキシングパイプにおける前記エルボー管との取付部分には、前記エルボー管の入口部から入りくる排気ガスを前記インジェクタの噴射ノズル側に向かって流入させる位置に切欠開口が設けられることを特徴とする。
 第2発明に係る還元剤水溶液ミキシング装置では、前記複数の開口は、前記ミキシングパイプにおける前記ストレート管側に設けられることを特徴とする。
 第3発明に係る還元剤水溶液ミキシング装置では、前記ミキシングパイプを前記ストレート管の軸線側から前記エルボー管の入口部に向かって見たときに、前記切欠開口は前記ミキシングパイプの周方向の所定幅にわたって省かれることを特徴とする。
 第4発明に係る還元剤水溶液ミキシング装置では、前記ミキシングパイプを前記エルボー管の入口部から見たときに、前記インジェクタから噴射する還元剤水溶液の噴射領域は、前記ミキシングパイプの前記切欠開口が省かれている領域内に収まることを特徴とする。
 第5発明に係る排気ガス後処理装置は、排気ガス中の粒子状物質を捕集するフィルタ装置と、前記フィルタ装置の下流側において当該フィルタ装置と並列に配置された前記第1発明ないし第4発明のいずれかの還元剤水溶液ミキシング装置と、前記還元剤水溶液ミキシング装置の下流側に配置され、排気ガス中の窒素酸化物を還元浄化する選択還元触媒装置とを備えることを特徴とする。
 第1発明および第5発明によれば、ミキシングパイプのエルボー管との取付部分に切欠開口を設け、この切欠開口からミキシングパイプ内に流入する排気ガスをインジェクタの噴射ノズルに向かわせるため、噴射ノズルがリセスで囲われている場合でも、噴射ノズルの周辺を排気ガスで良好に加熱できる。従って、渦流となって噴射ノズル側に戻る還元剤水溶液を確実に熱分解でき、噴射ノズル周辺での還元剤水溶液の滞留を抑制できる。
 第2発明によれば、ミキシングパイプにおけるストレート管側に寄せた領域に複数の開口を設けることにより、ミキシングパイプ内に噴射された還元剤水溶液が十分に拡がった状態のところへ排気ガスを流入させることができ、還元剤水溶液を排気ガスと効果的に混合できる。
 第3発明によれば、ミキシングパイプのうち、エルボー管の入口部から見える位置にある所定幅にわたって切欠開口を省いている。すなわち、この領域には切欠開口を設けず、そのような領域を周壁で形成する。従って、入口部から入ってくる排気ガスは、勢いよくミキシングパイプ内に流入してそのまま噴射ノズル側に向かうといったことがない。このため、噴射ノズルから噴射された還元剤水溶液は、そのような排気ガスにて煽られる心配がなく、還元剤水溶液を適正な方向へ噴射できる。
 第4発明によれば、切欠開口が存在しない周壁部分にて還元剤水溶液の噴射領域を確実に覆うことになるので、噴射された直後の還元剤水溶液を排気ガスによってより煽られ難くでき、還元剤水溶液の噴射方向を一層安定させることができる。
本発明の第1実施形態に係る排気ガス後処理装置を示す平面図。 排気ガス後処理装置のミキシング装置を示す断面図。 ミキシング装置の要部を示す断面図。 ミキシング装置内に設けられるミキシングパイプの断面図であり、図3のIV-IV線断面図。 ミキシングパイプの断面図であり、図3のV-V線断面図。 ミキシングパイプの断面図であり、図5Aの断面部分の別の方向からの断面図。 本発明の第2実施形態に係るミキシング装置の要部を示す断面図。 第2実施形態のミキシング装置内に設けられるミキシングパイプの断面図であり、図6のVII-VII線断面図。
[第1実施形態]
 以下、本発明の第1実施形態を図面に基づいて説明する。
 図1には、本実施形態の排気ガス後処理装置1の平面図が示されている。なお、以下の説明において、「上流」とは、排気ガスの流れ方向の上流側をいい、「下流」とは、排気ガスの流れ方向の下流をいう。
 図1において、排気ガス後処理装置1は、排気ガスの流れ方向における上流側から順に、ディーゼル・パーティキュレート・フィルタ(Diesel particulate filter;以下「DPF」と記す)装置2と、ミキシング装置3と、選択還元触媒(Selective Catalytic Reduction;以下「SCR」と記す)装置4とを備える。これらの装置2~4は、図示しないディーゼルエンジンからの排気ガスが流通する排気管の途中に設けられる。また、油圧ショベルやホイールローダ、ブルドーザといった建設機械の場合、排気ガス後処理装置1がエンジンと共にエンジンルーム内に収容される。
 DPF装置2は、円筒状のケース21の内部に円柱状のDPF22を収容した構成である。DPF22は、通過する排気ガス中の粒子状物質を捕集するものである。ケース21内においては、DPF22の上流側に酸化触媒を設けてもよい。酸化触媒は、その上流側で供給されるポスト噴射燃料やドージング燃料(共にディーゼルエンジンの燃料と同じ)を酸化活性化し、DPF22へ流入する排気ガスの温度をDPF22の再生可能温度まで上昇させる。この高温の排気ガスにより、DPF22で捕集された粒子状物質が自己燃焼して焼失し、DPF22が再生される。
 ミキシング装置3は、排気ガス中に還元剤水溶液としての尿素水溶液を添加するものである。このようなミキシング装置3は、DPF装置2の出口管23に接続され、DPF装置2から流出した排気ガスの流れ方向を略90°変更するエルボー管としての上流側エルボー管31と、上流側エルボー管31の下流端に接続され、DPF装置2の出口管23の軸線CL2(図2)と交差する方向に延びるストレート管32と、ストレート管32の下流端に接続され、ストレート管32からの排気ガスの流れ方向をさらに略90°変更する下流側エルボー管33と、上流側エルボー管31に取り付けられ、ストレート管32に向かって上流側エルボー管31内部に尿素水溶液を噴射するインジェクタ5とを備える。下流側エルボー管33のさらに下流端にSCR装置4が接続される。
 SCR装置4は、円筒状のケース41の内部に円柱状のSCR42を収容した構造である。SCR42は、ミキシング配管3で生成されたアンモニアを還元剤とすることで、排気ガス中の窒素酸化物を還元浄化するものである。ケース41内においては、SCR42の下流側にアンモニア低減触媒を設けてもよい。アンモニア低減触媒は、SCR42で未使用とされたアンモニアを酸化処理して無害化するものであり、排気ガスのエミッションをより低減させる。
 インジェクタ5から排気ガス中に噴射された尿素水溶液は、排気ガスの熱によって熱分解され、アンモニアとなる。アンモニアは、還元剤として排気ガスと共にSCR装置4へ供給される。
 以上に説明したDPF装置2、ミキシング装置3、およびSCR装置4は、それぞれの内部を流れる排気ガスの流れ方向が略平行となるように並設されている。この際、DPF装置2およびSCR装置4の内部を流れる排気ガスの流れの向きと、ミキシング装置3の内部を流れる排気ガスの流れの向きとは逆である。このため、それらの装置2~4は平面視にて略S字形状に配置されることとなり、エンジンルームのような限られた配置スペースでも、エンジン上にマウントする等して確実に配置できるよう、全体としてコンパクトな排気ガス後処理装置1を構成している。
 図2には、ミキシング装置3の断面図が示されている。図2に基づき、ミキシング装置3を具体的に説明する。
 図2に示すミキシング装置3おいて、上流側エルボー管31で排気ガスの流れ方向を変える部分は、方向変換部31Aとされている。上流側エルボー管31は、DPF装置2の出口管23側に開口して接合される円形の入口部31Bと、ストレート管32側に開口して接続される円形の出口部31Cとを備え、これらの間に方向変換部31Aを有する。方向変換部31Aの外側には、取付部6が設けられている。この取付部6の外側には、インジェクタ5が取り付けられ、内側(方向変換部31Aの内部側)には、インジェクタ5から噴射される尿素水溶液の周囲を覆うミキシングパイプ34が取り付けられる。取付部6およびミキシングパイプ34については、後に詳細に説明する。
 ストレート管32は、外管35およびその内部に配置された内管36を有する2重管構造になっている。内管36は、外管35に設けられた複数の支持用凹部35Aに溶接等され、下流側の端部にて、環状の支持部材35Bを介して外管35の内壁に溶接等されている。また、内管36の上流端は、上流側エルボー管31内に入り込んでいる。内管36の上流端の位置は、インジェクタ5から約25°の噴射角度θ1(図2の1点鎖線参照)で噴射される尿素水溶液が内管36の内側に確実に入り込むように設定されている。内管36の下流端側には、複数の開口36A…が設けられている。
 ここで、外管35と内管36との間の空隙部分には、排気ガスが流れ込む。流れ込んだ排気ガスは、支持用凹部35Aが周方向に不連続に設けられていることで、支持用凹部35A間を通って支持部材35Bまで流れる。支持部材35Bは環状であることから、排気ガスは流れが止められ、ここから開口36Aを通って内管36内に入り込み、内部を流れる排気ガスと合流して下流側へと流れる。つまり、内管36は、その内部を流れる排気ガスと外周側を流れる排気ガスとによって良好に加熱される。このため、内管36の内部に噴射された尿素水溶液は、内壁に付着しても液滴化せずに確実に熱分解する。
 図3には、ミキシング装置3の上流側エルボー管31の部分が拡大して示されている。図4、図5Aにはそれぞれ、図3でのIV-IV線断面、V-V線断面が示されている。また、図5Bでは、上記断面部分を図中の上方から見た図が示されている。
 図3において、インジェクタ5およびミキシングパイプ34の取付部6は、方向変換部31Aに設けられたインジェクタ取付開口31Dを塞ぐ第1プレート61と、第1プレート61に取り付けられる第2プレート62とを備えて構成される。
 第1プレート61の中央には、方向変換部31Aの内部に向かって拡開した凹状のリセス63が設けられている。リセス63の窪んだ奥側の部分は噴射開口64とされ、この噴射開口64部分にインジェクタ5を構成する噴射ノズル51の先端が表出している。リセス63を形成するロート状の傾斜壁65の開度θ2(図2)は、特に限定されるものではないが、90°以上、好ましくは120~140°程度と大きく、排気ガスがリセス63の奥側、つまり噴射ノズル51の周辺まで流れ込み易くなっている。
 リセス63の外周側には、ストレート管32の軸線CL1に対して直交する平坦な環状の固定部66が設けられている。本実施形態では、固定部66には、ミキシングパイプ34の端部が溶接されている。ミキシングパイプ34は、噴射ノズル51の下流側を囲っており、これら噴射ノズル51、ミキシングパイプ34、および前述のストレート管32はそれぞれ、上流側から順に同一の軸線CL1上に配置されている。方向変換部31A内に収容されるミキシングパイプ34に対しては、上流側エルボー管31の入口部31Bに近い図中の下方から排気ガスがあたる。また、下方からの排気ガスは、方向変換部31Aにてその流れ方向が軸線CL1に沿った流れへと変換される。
 一方、第1プレート61および第2プレート62の間の空隙は、断熱空間として機能する。断熱空間を設けることで、排気ガスに曝される第1プレート61から第2プレート62への熱伝達を抑制し、第2プレート62に取り付けられるインジェクタ5への熱影響を軽減している。
 図3、図4、および図5Aに示すように、ミキシングパイプ34は、その特徴的な構造として、ストレート管32側の周壁に設けられた開口としての複数の丸孔34A…と、インジェクタ5側の周壁に設けられた3つの方形の切欠開口34B,34C,34Dとを有し、これらを通して内部に外気ガスが流入するようになっている。丸孔34Aは、ミキシングパイプ34の中程からストレート管32側であって、ミキシングパイプ34の長さ方向において、略満遍なく設けられている。
 切欠開口34B,34C,34Dは、ミキシングパイプ34の周方向に沿って設けられ、長さ方向においては、固定部66側の端部に設けられている。切欠開口34B,34C,34Dが端部に設けられることで、これらを通ってミキシングパイプ34内に流入する排気ガスが噴射ノズル51に向かうようになる。切欠開口34B,34C,34Dの長さL2は、ミキシングパイプ34の全体の長さL1の約34%(L2/L1≒0.34)程度である。
 従って、切欠開口34B,34C,34Dを通る排気ガスは、固定部66の表面をなぞるようにしてリセス63側にスムーズに流入し、噴射ノズル51に向かうようになる。この結果、リセス63部分は排気ガスで加熱されて温度が上昇するため、インジェクタ5から噴射された尿素水溶液がリセス63側に戻った場合でも、尿素水溶液が加熱分解し易くなり、リセス63内で滞留して結晶化したり、堆積したりするのが抑制される。
 このようなミキシングパイプ34は、平板状の金属プレートに打抜加工を施す等して丸孔34Aおよび方形の切欠開口34B,34C,34Dを設けるとともに、所定の展開形状に打ち抜いたものを筒状に湾曲させてその突き合わせ部分を溶接することで製作される。ミキシングパイプ34の径寸法および長さ寸法は、インジェクタ5から噴射した尿素水溶液が接触しない大きさに設定されている(図2中に1点鎖線で示すθ1を参照)。
 図4において、ミキシングパイプ34を周方向に90°間隔で4等分したとき、すなわちDPF装置2からの排気ガスがあたる最下部分を起点として、反時計回りに第1領域A1、第2領域A2、第3領域A3、および第4領域A4としたとき、丸孔34Aは第1領域A1およびこれと点対称な位置にある第3領域A3にのみ設けられている。丸孔34Aは、第1、第3領域A1,A3の全体にわたって設けられている。
 丸孔34Aが第1、第3領域A1,A3といった所定の領域に集約して設けられることにより、丸孔34Aを通してミキシングパイプ34内に流入する排気ガスに旋回流が生じ、噴射される尿素水溶液との混合が効果的に行える。丸孔34Aの大きさや数は、ミキシングパイプ34の径寸法や長さ寸法、排気ガスと尿素水溶液との混合状況などを勘案し、その実施にあたって適宜決められる。
 図5Aにおいて、ミキシングパイプ34の切欠開口34B,34C,34Dは、図中の鉛直な中心線Ovを対称線として線対称な位置に設けられている。切欠開口34B,34Dの開口面積は等しく、これらの開口面積よりも切欠開口34Cの開口面積の方が大きい開口面積となっている。
 具体的に切欠開口34Bは、第1領域A1の略2/3を占めるとともに、第2領域A2に入り込んだ位置まで設けられている。切欠開口34Cは、中心線Ovを境にして第2領域A2の略1/2および第3領域A3の略1/2を占めるように設けられている。切欠開口34Dは、切欠開口34Bと線対称な位置にあり、第4領域A4の略2/3を占めるとともに、第3領域A3に入り込んだ位置まで設けられている。
 ミキシングパイプ34の固定部66側の端部では、これら切欠開口34B,34C,34D以外の部分が、周壁からなる3つの支持部34E,34F、34Gとして存在する。支持部34E,34F、34Gも、中心線Ovを対称線として線対称な位置に設けられることになる。これらの支持部34E,34F、34Gの端縁が固定部66に溶接される。支持部34Eの周方向の長さは、支持部34F,34Gの長さよりも長い。支持部34F,34Gの周方向の長さは同じである。
 支持部34Eは、第1、第4領域A1,A4に跨って設けられることで、切欠開口34B,34Dに挟まれた位置にあり、中心線Ovを対称線として線対称に設けられている。支持部34Eの周方向の両縁とミキシングパイプ34の中心O(軸線CL1と同じ)との成す角度αは、大凡60~70°程度である。支持部34F,34Gはそれぞれ、第2,第3領域A2,A3内に位置している。また、ミキシングパイプ34を軸線CL1(中心O)側から上流側エルボー管31の入口部31B(図2、図3)に向けて見たときには、図5Bに示すように、尿素水溶液の噴射領域(図中に噴射角度θ1で示した領域)は、切欠開口が設けられていない支持部34Eの軸線CL1と直交する方向の投影幅W内に収まっており、DPF装置2側から流入する排気ガスが直接的に尿素水溶液にあたるのを防いでいる。すなわち、支持部34Eが本発明に係る開口部が省かれた所定幅の領域のことであり、この領域内に噴射領域が収まっている。
 このように、支持部34Eは、ミキシングパイプ34の図中の最下部を覆う位置にある。DPF装置2側から流入してくる排気ガスの多くは、支持部34Eにあたるため、その流れ方向を変えずに勢いよくミキシングパイプ34内に入り込むことがない。このことから、噴射された直後の尿素水溶液は、排気ガスによって第2、第3領域A2,A3側に煽られることがなく、大きくなびくこともない。
 以下、図3ないし図5Bに基づき、上流側エルボー管31内での排気ガスの流れについて説明する。各図では、排気ガスの流を実線矢印で図示してある。
 DPF装置2から流出した排気ガスは、図3に示すように、上流側エルボー管31の入口部31Bから流入し、方向変換部31Aへと向かう。方向変換部31Aでは、その内側を通る排気ガスは、そのまま方向変換部31Aの内壁に倣って内管36側に流れる。一方、他の排気ガスの大部分は、ミキシングパイプ34に向かうこととなる。
 ミキシングパイプ34の周辺においては、図4にも示すように、丸孔34Aを通して排気ガスがミキシングパイプ34内に流入する。このとき、丸孔34Aが第1、第3領域A1,A3にのみ設けられていることから、排気ガスはミキシングパイプ34内で旋回流となる。このような旋回流の中へ尿素水溶液を噴射することにより、尿素水溶液が微細化して排気ガスとの混合が良好に行われ、熱分解が促進される。その後、排気ガスは内管36側へと流れる。
 これに対して、ミキシングパイプ34周辺であっても、切欠開口34B,34C,34Dの近辺では、図5Aおよび図5Bにも示すように、排気ガスがそれらの切欠開口34B,34C,34Dを通してミキシングパイプ34内に流入する。そのような排気ガスは、特に固定部66に近い側において、その固定部66に沿って流入した後、大きな開度θ2(図2)で拡開したリセス63の傾斜壁65を伝うように噴射ノズル51側に向かい、噴射ノズル51周辺をなぞるように流れて、最終的に旋回流に巻き込まれる。このことから、リセス63部分が排気ガスよって加熱されて温度が高い状態に維持されるため、リセス63側に渦を巻いて戻った尿素水溶液の噴射ノズル51周辺での滞留、ひいては結晶化による堆積を抑制できる。
 また、固定部66に近い側では、DPF装置2側から流れてくる排気ガスの多くは、前述したように、切欠開口34B,34D間に設けられた支持部34Eにあたってその流が阻害されるため、そのままミキシングパイプ34内に流入することがない。このため、排気ガスは、切欠開口34B,34C,34Dに回り込むこととなり、3方向からミキシングパイプ34内に流入する。従って、ミキシングパイプ34内に噴射された尿素水溶液は、排気ガスに煽られて噴射直後から一方向に偏ってなびくことがなく、適正な方向に噴射されて排気ガスとの混合が良好に行われる。
[第2実施形態]
 図6は、本発明の第2実施形態に係るミキシング装置3の上流側エルボー管31部分を示す断面図である。図7は、上流側エルボー管31内に配置されるミキシングパイプ34の断面図であり、図6のVII-VII線断面図である。なお、本実施形態において、前述の第1実施形態と同一部材および同一機能を有した部材には同じ符号を付し、本実施形態でのそれらの説明を省略または簡略化する。
 図6、図7において、本実施形態では、ミキシングパイプ34の切欠開口の数、位置、および軸線方向の長さが第1実施形態とは大きく異なる。その他の構成、例えば切欠開口が切り欠き状に設けられている点や、丸孔が設けられる領域等に関しては、第1実施形態と同じである。
 本実施形態のミキシングパイプ34は、第1、第3領域A1,A3にそれぞれ設けられた一対の切欠開口34H,34Jを有している。切欠開口34H,34Jの軸線方向の長さは、第1実施形態の切欠開口34B,34C,34Dと比較して小さく、その分、丸孔34Aの数が多くなっている。切欠開口34H,34Jの長さL2は、ミキシングパイプ34の全体の長さL1の約8%(L2/L1≒0.08)程度である。
 その反面、切欠開口34Hは、周方向において、第1領域A1の略全体にわたる長さを有している。つまり、切欠開口34H,34J間に存在する支持部34K,34Lの切欠開口34H側の辺縁は、第1領域A1に僅かに入り込んで設けられる程度であり、第1領域A1の大部分は切欠開口34Hが占める。切欠開口34Jは、周方向の長さが切欠開口34Hよりも短く、第3領域A3内でも第2領域A2側に寄せた位置に設けられている。支持部34K,34Lはそれぞれ、周方向において、第2、第4領域A2,A4を完全に覆う大きな長さを有している。
 本実施形態においては、切欠開口34Hが周方向において大きく開口しており、隣接する支持部34Lは、ミキシングパイプ34の図中の下部側で、第1領域A1側までをも覆う十分な長さを有していない。
 しかしながら、切欠開口34Hの軸方向の長さが短く、その開口面積は第1実施形態ほど大きくはない。また、切欠開口34H,34Jは、丸孔34Aと同じく、点対称の位置関係で設けられ、切欠開口34H,34Jからミキシングパイプ34内へ流入する排気ガスも、丸孔34Aを通して流入する排気ガスと同様、旋回流となる。さらに、支持部34K,34Lの周方向の長さが長く、第2、第4領域A2,A4を完全に覆っている。
 従って、切欠開口34H,34Jからミキシングパイプ34内に流入する排気ガスは、流入直後から旋回成分を伴うこととなり、旋回しながらリセス63の傾斜壁65を伝うように噴射ノズル51側に向かい、噴射ノズル51周辺をなぞるように流れる。これにより、リセス63部分が排気ガスによって高い温度に維持されるから、噴射ノズル51から噴射された尿素水溶液が渦流となってリセス63側に戻っても、その滞留を防止可能である。
 そして、切欠開口34H,34Jから流入した排気ガスがより大きな旋回成分を伴うことから、支持部34Kによってミキシングパイプ34のDPF装置2側(図7中の下部側)が十分に覆われていなくとも、噴射ノズル51からの尿素水溶液は、そのような排気ガスによって第2、第3領域A2,A3側に極端に煽られることがなく、適正な方向に噴射される。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記各実施形態では、切欠開口34B,34C,34D,34H,34Jは方形であり、開口としては丸孔34Aであったが、それらの開口形状は任意であり、方形や丸孔に限定されない。さらに、切欠開口の数等もその実施にあたって任意に決められてよい。
 前記第1実施形態では、ミキシングパイプ34において、上流側エルボー管31の入口部31Bに近い側には、周壁からなる支持部34Eが設けられ、第2実施形態では、切欠開口34H,34Jが第1、第3領域A1,A3に設けられ、これによってミキシングパイプ34内に噴射された尿素水溶液が排気ガスによって煽られるのを抑制していたが、入口部31Bに近い側に切欠開口が設けられた場合でも、噴射ノズル51周辺を排気ガスで加熱することは可能であるから、そのような場合も本発明の目的を達成でき、本発明に含まれる。
 前記実施形態では、還元剤水溶液として尿素水溶液が用いられていたが、還元剤水溶液としてその他の液体が用いられた場合でも、本発明に含まれる。
 本発明は、建設機械に搭載される排気ガス後処理装置として好適に利用できる。
 1…排気ガス後処理装置、2…フィルタ装置であるDPF装置、3…還元剤水溶液ミキシング装置、4…選択還元触媒(SCR)装置、5…インジェクタ、23…出口管、31…エルボー管である上流側エルボー管、31B…入口部、32…ストレート管、34…ミキシングパイプ、34A…開口である丸孔、34B,34C,34D,34H,34J…切欠開口、34E…切欠開口が省かれた周壁で形成された支持部、51…噴射ノズル、CL1,CL2…軸線。
 
 
 

Claims (5)

  1.  排気ガス中の粒状物質を捕集するフィルタ装置と、前記フィルタ装置の下流側に配置された選択還元触媒装置との間に配置されるとともに、排気ガス中に還元剤水溶液を添加する還元剤水溶液ミキシング装置であって、
     前記フィルタ装置の出口管に装着され、前記フィルタ装置から流れてくる排気ガスの流れ方向を変更するエルボー管と、
     前記エルボー管の下流側に接続され、前記フィルタ装置の出口管の軸線と交差する方向に延びるストレート管と、
     前記エルボー管に取り付けられ、前記ストレート管に向かって前記エルボー管内部に還元剤水溶液を噴射するインジェクタと、
     前記エルボー管内において、前記インジェクタから噴射される還元水溶液の周囲を覆うように配置され、周壁に複数の開口を有するミキシングパイプとを備え、
     前記ミキシングパイプにおける前記エルボー管との固定部分には、前記エルボー管の入口部から入りくる排気ガスを前記インジェクタの噴射ノズル側に向かって流入させる位置に切欠開口が設けられる
     ことを特徴とする還元剤水溶液ミキシング装置。
  2.  請求項1に記載の還元剤水溶液ミキシング装置において、
     前記複数の開口は、前記ミキシングパイプにおける前記ストレート管側に設けられる
     ことを特徴とする還元剤水溶液ミキシング装置。
  3.  請求項1に記載の還元剤水溶液ミキシング装置において、
     前記ミキシングパイプを前記ストレート管の軸線側から前記エルボー管の入口部に向かって見たときに、前記切欠開口は前記ミキシングパイプの周方向の所定幅にわたって省かれる
     ことを特徴とする還元剤水溶液ミキシング装置。
  4.  請求項3に記載の還元剤水溶液ミキシング装置において、
     前記ミキシングパイプを前記ストレート管の軸線側から前記エルボー管の入口部に向かって見たときに、前記インジェクタから噴射する還元剤水溶液の噴射領域は、前記ミキシングパイプの前記切欠開口が省かれている領域内に収まる
     ことを特徴とする還元剤水溶液ミキシング装置。
  5.  排気ガス中の粒子状物質を捕集するフィルタ装置と、
     前記フィルタ装置の下流側において当該フィルタ装置と並列に配置された請求項1ないし請求項4のいずれかに記載の還元剤水溶液ミキシング装置と、
     前記還元剤水溶液ミキシング装置の下流側に配置され、排気ガス中の窒素酸化物を還元浄化する選択還元触媒装置とを備える
     ことを特徴とする排気ガス後処理装置。
     
     
PCT/JP2013/050809 2013-01-17 2013-01-17 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置 WO2014112072A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380000738.1A CN104066944B (zh) 2013-01-17 2013-01-17 还原剂水溶液混合装置及具备它的废气后处理装置
US14/000,481 US9062589B2 (en) 2013-01-17 2013-01-17 Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
PCT/JP2013/050809 WO2014112072A1 (ja) 2013-01-17 2013-01-17 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
KR1020137021880A KR20140102122A (ko) 2013-01-17 2013-01-17 환원제 수용액 믹싱 장치 및 이것을 구비한 배기 가스 후처리 장치
JP2013522030A JP5728578B2 (ja) 2013-01-17 2013-01-17 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
DE112013000014.8T DE112013000014B4 (de) 2013-01-17 2013-01-17 Mischvorrichtung für eine wässrige Reduktionsmittellösung und Abgasnachbehandlungsvorrichtung, die mit derselben versehen ist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050809 WO2014112072A1 (ja) 2013-01-17 2013-01-17 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置

Publications (1)

Publication Number Publication Date
WO2014112072A1 true WO2014112072A1 (ja) 2014-07-24

Family

ID=51164102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050809 WO2014112072A1 (ja) 2013-01-17 2013-01-17 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置

Country Status (6)

Country Link
US (1) US9062589B2 (ja)
JP (1) JP5728578B2 (ja)
KR (1) KR20140102122A (ja)
CN (1) CN104066944B (ja)
DE (1) DE112013000014B4 (ja)
WO (1) WO2014112072A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
JP2021025527A (ja) * 2019-08-07 2021-02-22 日新工業株式会社 排気浄化装置、流路形成部材、及び筒状部材
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer
JP2021067267A (ja) * 2019-10-18 2021-04-30 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハーEberspaecher Exhaust Technology GmbH 混合器装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6053096B2 (ja) * 2012-01-12 2016-12-27 日野自動車株式会社 排気浄化装置
US10369533B2 (en) 2013-09-13 2019-08-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
USD729141S1 (en) 2014-05-28 2015-05-12 Shaw Development LLC Diesel emissions fluid tank
USD729722S1 (en) 2014-05-28 2015-05-19 Shaw Development LLC Diesel emissions fluid tank floor
SE1550697A1 (en) * 2015-05-29 2016-11-30 Scania Cv Ab Exhaust gas system for an internal combustion engine
CN105257382A (zh) * 2015-10-21 2016-01-20 苏树杰 一种汽车尾气排气管
SE539834C2 (en) * 2016-04-11 2017-12-12 Scania Cv Ab An injection arrangement for injection of a urea solution into an exhaust gas passage
RU2017127296A (ru) * 2016-08-11 2019-01-31 Форд Глобал Текнолоджиз, Ллк Система снижения токсичности выбросов и инжектор восстановителя
CN106437982B (zh) * 2016-09-22 2019-05-24 无锡威孚力达催化净化器有限责任公司 轴进轴出筒式后处理总成
GB2556890B (en) 2016-11-23 2019-02-20 Proventia Oy Method, apparatus and system for aftertreatment of exhaust gas comprising inline housing
CN107559080A (zh) * 2017-10-10 2018-01-09 广西玉柴机器股份有限公司 柴油机后处理系统
DE102017124942A1 (de) * 2017-10-25 2019-04-25 Agco International Gmbh Fahrzeug, insbesondere geländegängiges Fahrzeug, mit einer Abgasnachbehandlungseinrichtung
DE102018103368A1 (de) * 2018-02-15 2019-08-22 Man Truck & Bus Ag Vorrichtung zum Mischen von Abgas und einem Additiv
DE102018117990A1 (de) * 2018-07-25 2020-01-30 Topas Gmbh Technologie-Orientierte Partikel-, Analysen- Und Sensortechnik Einrichtung zur Erzeugung eines Aerosols aus einer flüssigen Vorlage mit einer Klassierung der Partikel
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer
DE102018124025A1 (de) * 2018-09-28 2020-04-02 Man Truck & Bus Se Vorrichtung zum Zumischen eines flüssigen Reduktionsmittels zum Abgas einer Brennkraftmaschine und Kraftfahrzeug
USD909260S1 (en) * 2018-11-05 2021-02-02 Axlr, Satt Du Languedoc Roussillon Air flow generator
JP7045659B2 (ja) * 2019-03-18 2022-04-01 ヤンマーパワーテクノロジー株式会社 建設機械
CN112282900A (zh) * 2019-07-25 2021-01-29 康明斯排放处理公司 废气后处理系统
US11661876B2 (en) * 2019-09-13 2023-05-30 Cummins Emission Solutions, Inc. Aftertreatment system including preheating oxidation catalyst
CN111170395A (zh) * 2019-12-15 2020-05-19 上海述驭环境科技有限公司 一种高压多相涡流混合器及其实现全溶气气浮分离的方法
USD971965S1 (en) * 2020-06-26 2022-12-06 Powerhouse Engine Solutions Switzerland IP Holding GmbH Intake manifold section
USD941363S1 (en) * 2020-06-26 2022-01-18 Powerhouse Engine Solutions Switzerland IP Holding GmbH Intake manifold section
CN114060184B (zh) * 2020-07-31 2023-04-07 比亚迪股份有限公司 一种水气混合装置及发动机
CN115898597A (zh) * 2021-08-26 2023-04-04 佛吉亚排气控制技术开发(上海)有限公司 混合器、混合器组件以及混合方法
CN115013128B (zh) * 2022-08-09 2023-03-21 潍柴动力股份有限公司 一种scr混合器及scr系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156076A (ja) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp 内燃機関の排気ガス浄化装置
US20100212301A1 (en) * 2008-12-17 2010-08-26 Korneel De Rudder Flow Device for an Exhaust System
US20100263359A1 (en) * 2007-07-25 2010-10-21 Heinrich Gillet Gmbh Apparatus for the Aftertreatment of the Exhaust Gases of Diesel Engines
JP2011032970A (ja) * 2009-08-04 2011-02-17 Mitsubishi Fuso Truck & Bus Corp エンジンの排気浄化装置
US20110079003A1 (en) * 2009-10-05 2011-04-07 Caterpillar Inc. Reductant nozzle indentation mount
EP2314837A1 (en) * 2009-10-16 2011-04-27 Swenox AB Mixing apparatus for mixing an exhaust gas with a liquid
US20120324872A1 (en) * 2011-06-07 2012-12-27 Bosch Emission Systems Gmbh & Co. Kg Exhaust System

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926696B2 (ja) 1980-06-17 1984-06-29 日東紡績株式会社 布帛類に加工液を塗布する方法
US5284016A (en) 1992-08-28 1994-02-08 General Motors Corporation Exhaust gas burner reactor
GB0113226D0 (en) 2001-06-01 2001-07-25 Nelson Burgess Ltd Catalytic converter
US6722123B2 (en) * 2001-10-17 2004-04-20 Fleetguard, Inc. Exhaust aftertreatment device, including chemical mixing and acoustic effects
US7157060B1 (en) 2002-10-24 2007-01-02 Miratech Corporation Catalytic converter and catalyst element therefor
JP3883974B2 (ja) 2003-03-11 2007-02-21 日産ディーゼル工業株式会社 排気浄化装置
SE528119C2 (sv) 2004-08-06 2006-09-05 Scania Cv Ab Arrangemang för att tillföra ett medium till en avgasledning hos en förbränningsmotor
EP1785606B1 (en) 2004-09-02 2014-06-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifier
US7581387B2 (en) 2005-02-28 2009-09-01 Caterpillar Inc. Exhaust gas mixing system
JP2007010099A (ja) 2005-07-04 2007-01-18 Nichias Corp 吸気ガスケット
US7765801B2 (en) 2005-11-30 2010-08-03 Benteler Automotive Corporation Exhaust gas treatment device with insulated housing construction
US8066950B2 (en) 2005-12-19 2011-11-29 Miratech Holdings, Llc Catalytic converter system and element for diesel engines
US7328572B2 (en) * 2006-02-23 2008-02-12 Fleetguard, Inc. Exhaust aftertreatment device with star-plugged turbulator
JP2008014213A (ja) 2006-07-05 2008-01-24 Hitachi Ltd 排気処理装置
JP4779959B2 (ja) 2006-12-20 2011-09-28 株式会社デンソー 排気浄化装置
JP4928304B2 (ja) 2007-02-23 2012-05-09 日野自動車株式会社 排気浄化装置
JP4823944B2 (ja) 2007-03-07 2011-11-24 日野自動車株式会社 排気浄化装置
US7748212B2 (en) * 2007-03-09 2010-07-06 Cummins Filtration Ip, Inc. Exhaust aftertreatment system with flow distribution
JP5244334B2 (ja) 2007-05-01 2013-07-24 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP5132187B2 (ja) 2007-05-18 2013-01-30 Udトラックス株式会社 排気浄化装置
US7895832B2 (en) 2007-06-28 2011-03-01 Harley-Davidson Motor Company Group, Inc. Performance exhaust system
JP5066400B2 (ja) 2007-07-13 2012-11-07 日野自動車株式会社 排気浄化装置
DE202008001547U1 (de) 2007-07-24 2008-04-10 Emcon Technologies Germany (Augsburg) Gmbh Baugruppe zur Einbringung eines Reduktionsmittels in die Abgasleitung einer Abgasanlage einer Verbrennungskraftmaschine
DE102007034316A1 (de) 2007-07-24 2009-01-29 Emcon Technologies Germany (Augsburg) Gmbh Baugruppe sowie Verfahren zur Einbringung eines Reduktionsmittels in die Abgasleitung einer Abgasanlage einer Verbrennungskraftmaschine
US7919052B2 (en) 2007-07-27 2011-04-05 Silex Innovations Inc. Securing catalyst element in catalytic converter with bolted bar
JP5046332B2 (ja) 2007-07-30 2012-10-10 ボッシュ株式会社 内燃機関の排気浄化装置
GB2452249A (en) 2007-08-17 2009-03-04 Emcon Technologies Germany An exhaust system
JP4886636B2 (ja) 2007-09-04 2012-02-29 日野自動車株式会社 インジェクタの取付構造
JP4920532B2 (ja) 2007-09-13 2012-04-18 日野自動車株式会社 排気浄化装置
JP4286888B2 (ja) * 2007-09-28 2009-07-01 日産ディーゼル工業株式会社 排気浄化装置
JP2009138627A (ja) 2007-12-06 2009-06-25 Hino Motors Ltd 尿素水添加ノズル
JP4407843B2 (ja) 2007-12-25 2010-02-03 三菱自動車工業株式会社 内燃機関の排気ガス浄化装置
JP4816967B2 (ja) 2007-12-25 2011-11-16 三菱自動車工業株式会社 内燃機関の排気ガス浄化装置
US20090158722A1 (en) 2007-12-25 2009-06-25 Mitsutaka Kojima Emission control system
JP2009156077A (ja) 2007-12-25 2009-07-16 Mitsubishi Motors Corp 内燃機関の排気ガス浄化装置
JP5114219B2 (ja) 2008-01-10 2013-01-09 東京濾器株式会社 内燃機関用の排ガス浄化装置
JP4867923B2 (ja) 2008-01-28 2012-02-01 株式会社デンソー 噴射弁の搭載構造
JP5079630B2 (ja) 2008-08-08 2012-11-21 株式会社小松製作所 排気ガス浄化装置
KR101028548B1 (ko) 2008-09-05 2011-04-11 기아자동차주식회사 배기가스 정화장치
JP2010101236A (ja) 2008-10-23 2010-05-06 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
DE102008043408A1 (de) * 2008-11-03 2010-05-06 Robert Bosch Gmbh Vorrichtung zur Mischung eines Stroms eines ersten Fluids mit mindestens einem zweiten Fluid
GB2466483A (en) 2008-12-19 2010-06-30 Agco Gmbh & Co A vertical exhaust system for a vehicle
JP2010180863A (ja) 2009-02-09 2010-08-19 Isuzu Motors Ltd 排気管内液体噴射システム、排気ガス浄化システム、排気管内液体噴射方法及び排気ガス浄化方法
US8479501B2 (en) 2009-07-20 2013-07-09 International Engine Intellectual Property Company, Llc Exhaust cooling module for SCR catalysts
JP2011064069A (ja) * 2009-09-15 2011-03-31 Toyota Industries Corp 排気ガス処理装置
US8240137B2 (en) * 2009-10-27 2012-08-14 Cummins Filtration Ip, Inc. Reductant injection and decomposition system
JP2011099390A (ja) 2009-11-06 2011-05-19 Mitsubishi Fuso Truck & Bus Corp エンジンの排気浄化装置
JP2011099416A (ja) 2009-11-09 2011-05-19 Mitsubishi Fuso Truck & Bus Corp エンジンの排気浄化装置
KR101767284B1 (ko) 2010-02-10 2017-08-23 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 감소된 흐름 변동성 및 귀환 흐름을 갖는 압력 선회 흐름 인젝터
JP6000506B2 (ja) 2010-03-24 2016-09-28 日野自動車株式会社 排気浄化装置
JP5602495B2 (ja) 2010-05-25 2014-10-08 いすゞ自動車株式会社 排気ガス浄化装置
EP3267005B2 (en) 2010-06-22 2023-12-27 Donaldson Company, Inc. Exhaust aftertreatment device
FR2965011B1 (fr) 2010-09-21 2012-09-28 Peugeot Citroen Automobiles Sa Dispositif d'introduction d'un fluide dans une ligne d'echappement, ensemble et vehicule automobile comportant un tel dispositif
US20120124983A1 (en) * 2010-11-23 2012-05-24 Haiping Hong Exhaust system having reductant nozzle flow diverter
DE102011013335A1 (de) 2011-03-08 2012-09-13 Friedrich Boysen Gmbh & Co. Kg Abgasanlage einer Brennkraftmaschine
JP5124030B2 (ja) 2011-03-18 2013-01-23 株式会社小松製作所 排気ガス浄化装置
US8650864B2 (en) 2011-10-19 2014-02-18 Indmar Products Company Inc. Combination liquid-cooled exhaust manifold assembly and catalytic converter assembly for a marine engine
JP5244955B2 (ja) 2011-11-07 2013-07-24 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
US8696777B1 (en) * 2011-12-09 2014-04-15 Brunswick Corporation Marine engine exhaust systems having an oxygen sensor
US8932530B2 (en) * 2011-12-27 2015-01-13 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP5349576B2 (ja) * 2011-12-27 2013-11-20 株式会社小松製作所 還元剤水溶液ミキシング装置及び排気ガス後処理装置
JP5349575B2 (ja) * 2011-12-27 2013-11-20 株式会社小松製作所 還元剤水溶液ミキシング装置及び排気ガス後処理装置
US8916100B2 (en) * 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
US8800275B2 (en) * 2012-02-27 2014-08-12 Caterpillar Inc. Mounting assembly for a reductant injector
MY185231A (en) 2012-03-02 2021-04-30 Continental Automotive Gmbh Device for exhaust purification
DE102012010878A1 (de) 2012-06-01 2013-12-05 Daimler Ag Reduktionsmittelzugabe- und Aufbereitungssystem eines Kraftfahrzeugs
USD707258S1 (en) 2013-06-18 2014-06-17 Komatsu Ltd. Catalytic converter
USD702736S1 (en) * 2013-06-18 2014-04-15 Komatsu Ltd. Fluid-mixing device for a catalytic converter
USD704227S1 (en) 2013-06-18 2014-05-06 Komatsu Ltd. Fluid-mixing device for a catalytic converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263359A1 (en) * 2007-07-25 2010-10-21 Heinrich Gillet Gmbh Apparatus for the Aftertreatment of the Exhaust Gases of Diesel Engines
JP2009156076A (ja) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp 内燃機関の排気ガス浄化装置
US20100212301A1 (en) * 2008-12-17 2010-08-26 Korneel De Rudder Flow Device for an Exhaust System
JP2011032970A (ja) * 2009-08-04 2011-02-17 Mitsubishi Fuso Truck & Bus Corp エンジンの排気浄化装置
US20110079003A1 (en) * 2009-10-05 2011-04-07 Caterpillar Inc. Reductant nozzle indentation mount
EP2314837A1 (en) * 2009-10-16 2011-04-27 Swenox AB Mixing apparatus for mixing an exhaust gas with a liquid
US20120324872A1 (en) * 2011-06-07 2012-12-27 Bosch Emission Systems Gmbh & Co. Kg Exhaust System

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US10294843B2 (en) 2014-06-03 2019-05-21 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer
JP2021025527A (ja) * 2019-08-07 2021-02-22 日新工業株式会社 排気浄化装置、流路形成部材、及び筒状部材
JP7432240B2 (ja) 2019-08-07 2024-02-16 日新工業株式会社 排気浄化装置、流路形成部材、及び筒状部材
JP2021067267A (ja) * 2019-10-18 2021-04-30 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハーEberspaecher Exhaust Technology GmbH 混合器装置
JP7022187B2 (ja) 2019-10-18 2022-02-17 プーレム ゲー・エム・ベー・ハー 混合器装置
US11441470B2 (en) 2019-10-18 2022-09-13 Purem GmbH Mixer device

Also Published As

Publication number Publication date
DE112013000014T5 (de) 2014-11-13
CN104066944B (zh) 2016-08-31
DE112013000014B4 (de) 2021-04-15
CN104066944A (zh) 2014-09-24
KR20140102122A (ko) 2014-08-21
US9062589B2 (en) 2015-06-23
US20140196440A1 (en) 2014-07-17
JPWO2014112072A1 (ja) 2017-01-19
JP5728578B2 (ja) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5728578B2 (ja) 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
JP5530565B1 (ja) 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
JP5349715B1 (ja) 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
WO2014112063A1 (ja) 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
JP5985822B2 (ja) 排気浄化装置
US9707525B2 (en) Dosing and mixing arrangement for use in exhaust aftertreatment
JP5349575B2 (ja) 還元剤水溶液ミキシング装置及び排気ガス後処理装置
JP6053096B2 (ja) 排気浄化装置
JP6009260B2 (ja) 排気浄化装置
WO2018153162A1 (zh) 尾气后处理装置
BR112014026166B1 (pt) Dispositivo de tratamento de escape
US10030560B2 (en) Exhaust purification device
WO2018006718A1 (zh) 尾气后处理装置
JP6826058B2 (ja) 排気ガス浄化装置
JP6166027B2 (ja) 排気ガス浄化装置
GB2533331A (en) Mixing device for an exhaust gas system
KR101484254B1 (ko) 차량의 배기 시스템용 선택적 촉매 환원 장치
JP5352755B6 (ja) 還元剤水溶液ミキシング装置およびこれを備えた排気ガス後処理装置
JP7548872B2 (ja) 排ガス浄化装置
WO2022097198A1 (ja) 混合装置
WO2019208449A1 (ja) 排気浄化装置
JP2019218924A (ja) 排気浄化装置
JP2014190174A (ja) 内燃機関の排気浄化装置
JP2008082253A (ja) 液体還元剤噴射ノズルの構造
JP2016138459A (ja) 液体添加装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522030

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021880

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000481

Country of ref document: US

Ref document number: 112013000014

Country of ref document: DE

Ref document number: 1120130000148

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871634

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13871634

Country of ref document: EP

Kind code of ref document: A1