WO2014104339A1 - 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ - Google Patents
空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ Download PDFInfo
- Publication number
- WO2014104339A1 WO2014104339A1 PCT/JP2013/085208 JP2013085208W WO2014104339A1 WO 2014104339 A1 WO2014104339 A1 WO 2014104339A1 JP 2013085208 W JP2013085208 W JP 2013085208W WO 2014104339 A1 WO2014104339 A1 WO 2014104339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tread
- angle
- pneumatic tire
- front side
- reinforcing portion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C11/1323—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0327—Tread patterns characterised by special properties of the tread pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/11—Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C11/1346—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls covered by a rubber different from the tread rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/14—Anti-skid inserts, e.g. vulcanised into the tread band
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C5/00—Inflatable pneumatic tyres or inner tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C2011/1209—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
Definitions
- the present invention relates to a tread for a pneumatic tire and a pneumatic tire having the tread, and in particular, a tread for a pneumatic tire having improved performance on snow and on ice by a reinforcing portion provided on a front side wall of a block, and the tread.
- the present invention relates to a pneumatic tire.
- Winter tires also called studless tires, are well known as tires that can run on winter roads covered with snow and ice. Winter tires generally use multiple soft cuts compared to non-winter tires, with so-called edge effects and water film removal effects, with multiple narrow cuts that open to the contact surface. This improves the adhesion to the road surface in winter.
- the mechanism that generates frictional force with the road surface in winter tires is actually different depending on whether the road surface is snow or ice, so a soft compound is used to improve the performance on ice, and the block is a grounding element. It is known that even if a large number of thin slits are provided, the block rigidity is lowered as a result, and the improvement of performance on snow is hindered.
- Patent Document 1 mainly FIG. 3
- a block provided with three thin notches and one sub-groove has a JIS A hardness of 80 on the side wall of the block facing the lateral groove and the sub-groove.
- a pneumatic tire is described in which a reinforcing part using 95 ° rubber is provided to achieve both on-snow performance and on-ice performance.
- Patent Document 2 (mainly FIG. 2) describes at least one selected from carbon black and silica in 100 parts by weight of a diene rubber containing 30% by weight or more of a rubber component having a glass transition temperature of ⁇ 60 ° C. or more.
- Patent Document 3 (mainly FIG. 1), which is a prior application, a reinforcing layer (reinforcing portion) having a modulus (elastic modulus) of a material of 200 MPa or more over an area of 50% or more of the side wall of the block is less than 0.5 mm.
- the tread for a pneumatic tire is described in which the performance on the snow and the performance on the ice are made compatible with each other by providing the thickness.
- Patent Document 1 Patent Document 2
- Patent Document 3 Patent Document 4
- the present invention was made to solve the above-described problems of the prior art, and a reinforcing portion was provided on the side wall of the block, which can achieve both higher performance on snow and higher performance on ice. It is an object to provide a tread for a pneumatic tire and a pneumatic tire having such a tread.
- the present invention provides a tread for a pneumatic tire formed of at least one rubber composition, wherein the at least one rubber composition has an elastic modulus Et, and the tread has at least One circumferential main groove, a plurality of sub grooves, and a plurality of blocks delimited by the circumferential main grooves and the sub grooves, and at least one of the plurality of blocks is
- the upper surface is a ground contact surface that comes into contact with the road surface when the tire rolls, two front side walls positioned along the tire circumferential direction, and two side side walls positioned along the tire axial direction, respectively.
- the upper surface of the block has two front edges formed at positions intersecting the two front side walls, and the block is a reinforcement provided on at least one front side wall of the two front side walls.
- the block has a reinforcing portion provided on at least one of the two front side walls, and the reinforcing portion is formed of a material having an elastic modulus Ef, and the elastic modulus of the reinforcing portion is Ef and the elastic modulus Et of the rubber composition are values obtained from the tensile test specified in the standard ASTM D882-09, respectively, and the elastic modulus Ef of the reinforcing portion is at least 20 times larger than the elastic modulus Et of the rubber composition,
- the reinforcing portion of the block has an average thickness of 0.1 mm or more and 2.0 mm or less, and is provided so as to face at least the secondary groove over a region of 70% or more of the front side wall.
- the angle with respect to the upper surface is formed so as to form an angle T1 and an angle T2, respectively, and the angle T1
- the “groove” refers to a width and a width formed by connecting two opposing surfaces (wall surface, side wall) that do not come into contact with each other under normal use conditions by another surface (bottom surface). Say a space with depth.
- the “main groove” refers to a groove having a relatively wide width among various grooves formed in the tread, which mainly handles fluid drainage.
- the main groove means a groove extending in the tire circumferential direction in a straight line, zigzag shape or wave shape in many cases, but has a relatively wide width mainly extending the drainage of the fluid extending at an angle with respect to the tire rotation direction. Grooves with are also included. Further, grooves other than the “main groove” are called “sub-grooves”.
- the “edge” refers to an intersection between the upper surface of the block and the front side wall or the side wall (each edge of the upper surface of the block or a boundary between the front side wall or the side wall on the upper surface of the block).
- the upper surface of the block a part of which is a ground plane, is partitioned by such an edge.
- a chamfer is formed between the upper surface and the front side wall or the side wall, such a chamfer is interpreted as a part of the upper surface.
- the edges that define the upper surface of the block the intersection between the upper surface of the block and the front side wall on the rotational direction side is referred to as a “front edge”.
- the “elastic modulus” means a tensile elastic modulus E calculated from a tensile test curve obtained from a tensile test specified in the standard ASTM D882-09. That is, the elastic modulus Et of the rubber composition and the elastic modulus Ef of the reinforcing portion are calculated from a tensile test curve obtained from a tensile test defined in the standard ASTM D882-09.
- Such tensile modulus E is related to shear modulus G and the following relationship as described in “POLYMER PHYSICS” (Oxford, ISBN 978-0-19-852059-7, Chapter 7.7, Page 296).
- ⁇ is a Poisson's ratio
- the Poisson's ratio of the rubber material is very close to 0.5.
- the elastic modulus Ef of the material forming the reinforcing portion is at least 20 times higher than the elastic modulus Et of the rubber composition forming the tread, etc.
- the above-described elastic modulus Et and elastic modulus Ef are complex
- the elastic modulus (dynamic shear modulus of the material, dynamic shear modulus: G *) can be replaced with M, respectively.
- Known dynamic properties, the storage modulus represented by G ′ and the loss modulus represented by G ′′, are tests molded from the raw composition by means of a viscosity analyzer (viscoanalyzer: Metravib VB4000). Measured using strips or test strips bonded with the vulcanized composition.
- test specimen used is the one described in Figure X2.1 (a circular method) of the standard ASTM D 5992-96 (version published in September 2006 and originally approved in 1996).
- the test piece diameter “d” is 10 mm (thus the test piece has a circular cross section of 78.5 mm 2 ), the thickness “L” of each part of the rubber compound is 2 mm, (ASTM standard)
- the ratio “d / L” is set to 5 (unlike 2 in the ratio “d / L” recommended by the standard ISO 2856 described in paragraph X2.4).
- the test records the response of a vulcanized rubber composition specimen subjected to a simple alternating sinusoidal shear load at a frequency of 10 Hz.
- the maximum shear stress applied during the test is 0.7 MPa.
- the measurement is performed at a rate of 1.5 ° C. per minute from Tmin, which is lower than the glass transition temperature (Tg) of the rubber material, to a maximum temperature Tmax near 100 ° C.
- Tmin glass transition temperature
- Tmax glass transition temperature
- the specimen is stabilized for about 20 minutes at Tmin before starting the test to obtain good temperature uniformity within the specimen.
- the results obtained are the storage modulus (G ′) and loss modulus (G ′′) at the specified temperature.
- the complex elastic modulus G * is defined by the following formula from the absolute values of the storage elastic modulus and the loss elastic modulus:
- the friction coefficient of the road surface is sufficient to deform the grounding element as on snow.
- the buckling deformation of the block can be prevented by the effect of the reinforcing portion provided over at least 70% of the front side wall, thereby obtaining a high edge pressure locally. I can do it. Therefore, the front edge can be effectively sunk into the snow, and as a result, the performance on snow can be improved.
- the road surface has a coefficient of friction that is insufficient to deform the grounding element as on ice. In doing so, a moment force in the direction of decreasing the ground pressure can be generated near the front edge portion of the block. Therefore, it is possible to prevent the formation of a water film between the tread and ice, which is well known as one of the causes for reducing the friction coefficient on ice, and as a result, the performance on ice can be improved. I can do it.
- angles T1 and T2 are both 85 degrees or less.
- both the angles T1 and T2 are 60 degrees or more. In this invention comprised in this way, sufficient block rigidity for exhibiting the various performance calculated
- T1 and T2 are angles different from each other.
- the angle T2 is preferably larger than the angle T1.
- the angle T2 when the tire rolls, when the front edge on the side of the angle T2 having a relatively large angle becomes the front edge on the kick-out side, such kick-out is performed. Since the moment force in the direction of decreasing the contact area of the block generated near the front edge on the side can be reduced, the contact area of the block can be effectively increased. As a result, the performance on ice can be further improved.
- the “step-side front edge” means the front edge on the rotation direction side of the front edge when the tire is rolling, and the “kick-out front edge” is the opposite of the front edge. Of the edges, it refers to the front edge on the opposite side of the direction of rotation when the tire rolls.
- angles T1 and T2 are Satisfy the relationship.
- the present invention configured as described above, it is possible to more effectively achieve both on-ice performance and on-snow performance.
- the angle T1 is preferably 80 degrees or less.
- the front edge on the side of the angle T1 is the stepping side front edge.
- driving on a road surface where the coefficient of friction of the road surface is insufficient to deform the grounding element like ice while improving the performance on the snow by obtaining a high edge pressure to sufficiently penetrate the front edge into the snow. In doing so, it is possible to improve the on-ice performance by preventing the generation of too high ground pressure at the front edge.
- the angle T2 is preferably not less than 75 degrees and not more than 85 degrees.
- the contact area of the block generated in the vicinity of the kick-out front edge is determined. Since the moment force in the decreasing direction can be reduced, the contact area of the block can be increased. As a result, the performance on ice can be further improved while improving the performance on snow.
- the reinforcement part provided in the front side wall is provided in the front edge so that it may extend in at least one part of the width direction.
- the present invention configured as described above, it is possible to obtain a high edge pressure at the front edge portion more reliably than when traveling on a road surface where the friction coefficient of the road surface is sufficient to deform the grounding element as on snow. With this, the front edge can be bitten into snow more reliably, and as a result, the performance on snow can be further improved.
- the reinforcing portion is preferably provided over a region of 90% or more of at least one front side wall.
- a high edge pressure can be obtained more reliably at the front edge portion.
- the front edge can be made to bite into the snow more reliably.
- the performance on snow can be further improved.
- the reinforcing part is provided over the entire area of at least one front side wall, and even more preferably, the reinforcing part is provided over the entire area of the two front side walls. In the present invention configured as described above, the performance on snow can be improved more reliably.
- the performance on snow and the performance on the snow can be made compatible at a higher level.
- FIG. 1 is a perspective view schematically showing a tread for a pneumatic tire according to a first embodiment of the present invention. It is an expanded sectional view of the block of the tread for pneumatic tires seen along the II-II line of FIG. It is a perspective view which shows typically the tread for pneumatic tires by 2nd Embodiment of this invention.
- FIG. 4 is an enlarged cross-sectional view of a block of a tread for a pneumatic tire viewed along line IV-IV in FIG. 3. It is an expanded sectional view of the block of the tread for pneumatic tires by a prior art.
- FIG. 1 is a perspective view schematically showing a tread for a pneumatic tire according to a first embodiment of the present invention
- FIG. 2 is a block diagram of the tread for a pneumatic tire seen along line II-II in FIG. FIG.
- reference numeral 1 denotes a tread for a pneumatic tire according to the first embodiment of the present invention.
- the example of the tire size of the pneumatic tire to which this tread 1 for pneumatic tires is applied is 205 / 55R16.
- the tread 1 is made of a rubber composition having an elastic modulus Et, has a ground contact surface 2 that comes into contact with the road surface when the tire rolls, and is formed with two circumferential main grooves 3 and a plurality of sub grooves 4. .
- a plurality of blocks 5 are defined by the circumferential main grooves 3 and the sub-grooves 4.
- the block 5 includes an upper surface 51 that forms a part of the ground contact surface 2 and two side walls (front side walls) 52 that are positioned in the longitudinal direction along the tire circumferential direction and face the sub-groove 4. , 53 and two side walls (side walls) 54, 55 that are located in the lateral direction along the tire rotation axis direction and are formed so as to face the circumferential groove 3.
- front edges 521 and 531 are formed at edges that intersect with the front side walls 52 and 53.
- the two front side walls 52 and 53 are provided with reinforcing portions 6 made of a material having an elastic modulus Ef that is at least 20 times higher, preferably at least 50 times higher than the elastic modulus Et of the rubber composition forming the tread 1.
- the elastic modulus Et of the rubber composition forming the tread 1 is 5.4 MPa. This elastic modulus Et is preferably 1.5 MPa or more and 15 MPa or less.
- the elastic modulus Ef of the material forming the reinforcing portion 6 is 270 MPa. Accordingly, the elastic modulus Ef of the rubber composition forming the tread 1 is formed to be 50 times higher than the elastic modulus Et of the material forming the reinforcing portion 6.
- the elastic modulus Et of the rubber composition forming the tread 1 and the elastic modulus Ef of the material forming the reinforcing portion 6 are based on the tensile test curve obtained from the tensile test specified in the standard ASTM D882-09. It can be calculated.
- each reinforcement part 6 is provided so that 70% or more of the area
- each reinforcing portion 6 is provided so that its average thickness t (shown in FIG. 2) is less than 2.0 mm, preferably less than 1.0 mm.
- the thickness (t) of the reinforcing portion 6 is a thickness in a direction perpendicular to the surface facing the secondary groove 4 of the front side walls 52 and 53 on which the reinforcing portion 6 is provided.
- the “average thickness” is an average value measured from the bottom surface side of the sub-groove 4 to the upper surface 51 side of the block 5 in the reinforcing portion 6, that is, an average value over almost the entire surface of the reinforcing portion 6.
- the reinforcing portion 6 is provided over the entire area (100%) of the front edges 521 and 531 and the front side walls 52 and 53, and the average thickness t is 0.5 mm.
- the average thickness t of the reinforcing portion 6 is preferably 0.2 mm or more.
- the upper surface 51 of the block 5 of the tread 1 forms a part of the ground contact surface 2 of the tread 1 that comes into contact with the road surface when the tire rolls, and the upper surface 51 is a region of the block 5 that can be in contact with the road surface under a specific condition.
- the upper surface 51 has two circumferential edges (front edges) 521 and 531 in the tire circumferential direction, and the region of the upper surface 51 is limited by these circumferential edges 521 and 531. In other words, the upper surface 51 has two circumferential edges 521 and 531 at respective edges on the tire circumferential direction side.
- the front side walls 52 and 53 provided with the reinforcing portion 6 are positioned at the outermost position of the reinforcing portion 6 measured in the radial direction (the outer edge in the radial direction of the reinforcing portion 6) and the front edge.
- the distance between 521 and 531 is 2.0 mm or less.
- the reinforcing portion 6 is preferably formed so as to at least partially include the front edges 521 and 531, and more preferably include all the front edges 521 and 531. In the example shown in FIG.
- the distance between the radially outermost position of the reinforcing portion 6 and the positions of the front edges 521 and 531 is zero (0 mm), and the reinforcement provided on the front side walls 52 and 53 is provided.
- the outermost edge in the radial direction of the portion 6 is provided so as to exist over the entire width direction of the front edges 521 and 531.
- the outermost edge in the radial direction of the reinforcing portion 6 provided on the front side walls 52 and 53 is provided so as to exist at least partially on the front edges 521 and 531 in the width direction of the front edges 521 and 531. May be.
- the reinforcing portion 6 is a partial area of the front side walls 52 and 53 (this partial area is an area of 70% or more of the area of the front side walls 52 and 53 as described above). However, in order to maximize the effect of the reinforcing portion 6, it is preferably provided over the entire region of the front side walls 52 and 53. Naturally, the reinforcing portion 6 is provided so as to include all the front edges 521 and 531 as in the present embodiment.
- an angle T1 and an angle T2 are formed between the upper surface 51 of the block 5 and the two front side walls 52 and 53 as shown in FIG. Yes.
- These angles T1 and T2 are both less than 90 degrees (not including 90 degrees).
- these angles T1 and T2 are preferably 85 degrees or less, preferably both are 70 degrees or more, and preferably both are 60 degrees or more. In the example shown in FIG. 2, the above-described angles T1 and T2 are both 70 degrees.
- the angle T1 is a straight line connecting the one front edge 521 and the other front edge 531 in the tire circumferential direction on the upper surface 51 (a straight line in the sectional view of FIG. 2), and a front edge on the front side wall 52. It is measured at an angle between 521 and a straight line connecting a height position 1.6 mm inward in the radial direction from the height of the tread wear indicator in a direction perpendicular to the front edge 521.
- the angle T2 also includes a straight line connecting the one front edge 521 and the other front edge 531 in the tire circumferential direction (a straight line in a sectional view in FIG. 2), and a front edge 531 on the front side wall 53.
- a straight line connecting a height position 1.6 mm inward in the radial direction from the height of the tread wear indicator in a direction perpendicular to the front edge 531 is a straight line connected in a direction perpendicular to the direction in which the front edge extends”.
- the above-described embodiment can be applied to a case where a front edge in which either one or both of the front edges (521, 531) are formed of at least two sides is formed in the block (5).
- the “straight line connecting in the tire circumferential direction” or “front edge” as in the above-described method Is measured by a straight line connecting in a direction perpendicular to the direction extending on average.
- the tread wear indicator indicates a tire wear limit.
- the block 5 when traveling on a road surface where the friction coefficient of the road surface is insufficient to deform the grounding element such as on ice, when driving force and braking force generated in the rotation direction of the tire are added, As described above, even if the reinforcing portion 6 is provided in most regions of the front side walls 52 and 53, it is possible to suppress generation of high edge pressure in the front edge portions 521 and 531. Further, since the angles T1 and T2 are formed so as to be less than 90 degrees, when traveling on a road surface where the friction coefficient of the road surface is insufficient to deform the grounding element as on ice, the block 5 includes A moment force acting geometrically in the direction of decreasing the edge pressure at the front edge portions 521 and 531 is generated.
- the tread 1 of the present embodiment it is possible to prevent the generation of a water film between the tread and ice, which is well known as one of causes for reducing the friction coefficient on ice. As a result, the performance on ice can be improved.
- the average thickness t of the reinforcing portion 6 is less than 2.0 mm, preferably 1.0 mm or less, and more preferably 0.5 mm or less.
- the average thickness t of the reinforcing portion 6 may be different between the front side walls 52 and 53 of the same block 5.
- the reinforcing portions 6 provided in the region of 70% or more of the front side walls 52 and 53 may be provided in regions having different ratios with the front side walls 52 and 53 of the same block 5.
- materials based on natural resins are mixed or impregnated with fibers, thermoplastic resins, and those Those obtained by laminating or mixing them can also be used.
- a woven fabric, a nonwoven fabric or the like impregnated with a material based on a natural resin is used in combination with the above-described materials. You can also. Fiber materials such as woven fabrics and nonwoven fabrics impregnated with materials based on natural resins such as these may be used alone as the reinforcing portion 6. Further, different materials may be used for the front side walls 52 and 53 of the same block 5.
- the bottom surface of the sub-groove 4 is not covered by the reinforcing portion 6, but for the purpose of improving productivity when the reinforcing portion 6 is provided, the inner edge of the reinforcing portion 6 in the tire radial direction is provided.
- the reinforcing portion 6 is provided only on the front side walls 52 and 53 of the block facing the sub-groove 4, but the reinforcing portion 6 is also the side wall of the block facing the circumferential main groove 3. (Side side wall) 54, 55 may also be provided.
- FIG. 3 is a perspective view schematically showing a tread for a pneumatic tire according to a second embodiment of the present invention
- FIG. 4 is a block diagram of the tread for a pneumatic tire seen along line IV-IV in FIG. FIG.
- the tread 1 has a ground contact surface 2 that comes into contact with the road surface during tire rolling, as in the first embodiment described above, and includes two circumferential main grooves 3.
- a plurality of sub-grooves 4 are formed.
- the plurality of blocks 5 are defined by these circumferential main grooves and sub-grooves.
- These blocks 5 include an upper surface 51 that forms a part of the ground contact surface 2, two side walls (front side walls) 52 and 53 that are spaced apart in the vertical direction corresponding to the tire circumferential direction, and a lateral surface that corresponds to the tire axial direction. It has two side walls (side wall) 54 and 55 spaced apart in the direction.
- the upper surface 51 intersects with the front side walls 52 and 53 and forms front edges 521 and 531.
- the block 5 of the tread 1 according to the second embodiment has a thin notch 7 that opens in the upper surface 51 and extends in the tire width direction and extends in the tire radial direction (or may be substantially in the radial direction). Is formed.
- the narrow cut 7 is also opened in the side walls 54 and 55. Note that the thin cut 7 may extend at a predetermined angle with respect to the radial direction within a range in which various functions are exhibited.
- the “tire width direction” is a direction perpendicular to the tire circumferential direction in the present embodiment, but includes a direction extending obliquely with a predetermined angle with respect to the tire circumferential direction. Reinforcing portions 6 are provided on the two front side walls 52 and 53.
- each reinforcing portion 6 is provided so as to face the secondary groove 4 over a region of 70% or more, preferably 90% or more of the front side walls 52 and 53.
- the average thickness t (see FIG. 4) of each reinforcing portion 6 is provided to be less than 2.0 mm, preferably less than 1.0 mm.
- the front side walls 52 and 53 provided with the reinforcing portion 6 are provided so that the distance between the outermost position of the reinforcing portion 6 measured in the tire radial direction and the front edges 521 and 531 is 2.0 mm or less. It has been. In the example shown in FIG.
- the reinforcing portion 6 is provided in the entire region of one front side wall 52, that is, in a region of 100%, and in the other front side wall 53, it is provided over a region of 90%. Yes.
- the average thickness t is 0.7 mm on one front side wall 52 and 0.5 mm on the other front side wall 53.
- Front edges 521 and 531 are formed on the upper surface 51 of the block 5 as in the first embodiment described above, and the upper surface 51 has two circumferential edges (front edges) 521 and 531 along the tire circumferential direction.
- the range of the circumferential region is limited. That is, the upper surface 51 has two circumferential edges 521 and 531 at the respective circumferential edges of the tire.
- Block 5 is formed so as to have T1 and angle T2.
- These angles T1 and T2 are defined as “a straight line connecting the two front edge portions 521 and 531” and “in the front edge portion 521 or 531 and the front side walls 52 and 53, with a radius larger than the height of the tread wear indicator. It can be measured as an angle formed by a straight line connecting points in the direction 1.6 mm inside. In the present embodiment, these angles T1 and T2 are both formed to be less than 90 degrees (not including 90 degrees) and different from each other.
- the angle T1 is 65 degrees and T2 is 80 degrees.
- the angles T1 and T2 are different from each other, and preferably the angle T2 is larger than the angle T1.
- the angle T1 is 80 degrees or less, and the angle T2 is 75 degrees or more and 85 degrees or less.
- these angles T1, T2 are: Satisfy the relationship. In this equation, “°” is an angle unit “degree”.
- the angles T1 and T2 formed by the upper surface 51 and the front side walls 52 and 53 are set to different angles, and the angle T2 is configured to be larger than the angle T1.
- the front edge 521 of the angle T2 side with a relatively large angle turns into a kick-out side front edge at the time of tire rolling, for example.
- the ground contact area of the block 5 can be increased.
- FIG. 5 is an enlarged cross-sectional view schematically showing a conventional tread block for a pneumatic tire.
- the block 105 of the conventional pneumatic tire tread 101 has an upper surface 151 that constitutes a part of the ground contact surface 102, and forms front edges 1521, 1531 at intersections with the front side walls 152, 153.
- the block 105 is formed with a thin notch 107 which opens in the upper surface 151 and extends in the lateral direction and the inner radial direction of the tire.
- the two front side walls 152 and 153 are provided with a reinforcing portion 106 so as to include all the front edges 1521 and 1531.
- the average thickness t of the reinforcing portion 106 is 0.5 mm, and the reinforcing portion 106 is provided so as to face the sub-groove 104 over 84% of the front side walls 152 and 153.
- Example 1 is a block model provided with a reinforcing portion according to the first embodiment
- Example 2 and Example 3 are block models provided with a reinforcing portion according to the second embodiment.
- the angle between the front side wall is a combination of three different values.
- the sizes of the four types of block models according to the conventional example and the example are 10 mm in short side length, 20 mm in long side length, and 10 mm in height, all made of the same rubber material (elastic modulus 5.4 MPa). A cube was formed, and the thin notches were each 0.4 mm wide and 7 mm deep opening on the upper surface of the block.
- the reinforcing part is also made of the same material (elastic modulus 270 MPa), and is provided over the entire area of the front side wall with an average thickness of 0.5 mm.
- the elastic modulus of the material of the reinforcing part is It was set to be 50 times the elastic modulus of the rubber material.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
例えば、特許文献1(主に図3)には、3本の細い切れ込みと1本の副溝が設けられたブロックの、横溝及び副横溝に面したブロックの側壁に、JIS A硬度が80から95度のゴムを用いた補強部を設けることにより、雪上性能と氷上性能を両立するようにした空気入りタイヤが記載されている。
また、「主溝」とは、流体の排水を主に受け持つ、トレッドに形成される種々の溝の中で比較的広い幅を持つ溝のことを言う。主溝は、多くの場合、直線状、ジグザグ状又は波状にタイヤ周方向に延びる溝を意味するが、タイヤ回転方向に対して角度を持って延びる、流体の排水を主に受け持つ比較的広い幅を持つ溝も含まれる。
また、「主溝」以外の溝を「副溝」と言う。
ここで、υはポアソン比であり、ゴム材料のポアソン比は0.5に非常に近い値となる。
このように構成された本発明においては、タイヤに求められる諸性能を発揮させるための十分なブロック剛性を確保することが出来る。
本発明において、より好ましくは、角度T1、T2はどちらも70度以上である。
このように構成された本発明においては、タイヤ転動時、相対的に角度が大である角度T2の側の正面エッジが、特に、蹴り出し側の正面エッジとなるとき、そのような蹴り出し側の正面エッジ近傍に発生するブロックの接地面積を減少させる方向のモーメント力を減少させることが出来るので、ブロックの接地面積を効果的に増やすことが出来る。その結果、より氷上性能を向上させることが出来る。
ここで、「踏込み側正面エッジ」とは、正面エッジのうち、タイヤ転動時、その回転方向側にある正面エッジのことを言い、「蹴り出し側正面エッジ」とは、その反対に、正面エッジのうち、タイヤ転動時、その回転方向の反対側にある正面エッジのことを言う。
このように構成された本発明においては、雪上のように路面の摩擦係数が接地要素を変形させるのに十分な路面を走行する際、特に、角度T1の側の正面エッジが踏み込み側正面エッジであるとき、その正面エッジを雪に十分食い込ませるための高いエッジ圧力を得ることにより雪上性能を向上しつつ、氷上のように路面の摩擦係数が接地要素を変形させるのに不十分な路面を走行する際、正面エッジにおける高すぎる接地圧力の発生を防止することにより氷上性能を向上することが出来る。
このように構成された本発明においては、特に、タイヤ転動時、角度T2の側の正面エッジが蹴り出し側正面エッジであるとき、その蹴り出し側正面エッジ近傍に発生するブロックの接地面積を減少させる方向のモーメント力を減少させることが出来るので、ブロックの接地面積を増やすことが出来、その結果、雪上性能の向上を図りながら、より氷上性能を向上させることが出来る。
このように構成された本発明においては、雪上のように路面の摩擦係数が接地要素を変形させるのに十分な路面を走行する際より確実に正面エッジ部において高いエッジ圧力を得ることが可能であり、これにより、より確実に正面エッジを雪に食い込ませることが出来、その結果、より雪上性能を向上させることが出来る。
このように構成された本発明においては、雪上のように路面の摩擦係数が接地要素を変形させるのに十分な路面を走行する際、より確実に正面エッジ部において高いエッジ圧力を得ることが可能であり、これにより、より確実に正面エッジを雪に食い込ませることが出来る。その結果、より雪上性能を向上させることが出来る。
本発明において、より好ましくは、補強部は少なくとも1つの正面側壁の全領域にわたって設けられ、更により好ましくは、補強部は二つの正面側壁の全領域にわたって設けられる。
これらのように構成された本発明においては、より確実に、雪上性能を向上させることが出来る。
先ず、図1及至図2により、本発明の第1実施形態による空気入りタイヤ用トレッドを説明する。図1は、本発明の第1実施形態による空気入りタイヤ用トレッドを模式的に示す斜視図であり、図2は、図1のII-II線に沿って見た空気入りタイヤ用トレッドのブロックの拡大断面図である。
このトレッド1は、弾性率Etを有するゴム組成物から成り、タイヤ転動時に路面と接触する接地面2を有し、2本の周方向主溝3及び複数の副溝4が形成されている。これらの周方向主溝3及び副溝4により、複数のブロック5が区画形成されている。
このブロック5は、接地面2の一部を形成する上面51と、タイヤ周方向に沿った縦方向にそれぞれ位置し、副溝4に面するように形成された2つの側壁(正面側壁)52,53と、タイヤ回転軸線方向に沿った横方向にそれぞれ位置し、周方向溝3に面するように形成された2つの側壁(側面側壁)54,55と、を有している。
ここで、トレッド1を形成するゴム組成物の弾性率Et、及び、補強部6を形成する材料の弾性率Efは、規格ASTM D882-09に規定された引張試験から求められた引張試験曲線から算出可能である。
本実施形態では、各補強部6は、正面側壁52,53の領域の70%以上、好ましくは、正面側壁52,53の全ての領域にわたって副溝4に面するように設けられる。また、各補強部6は、その平均厚さt(図2に示す)が2.0mm未満、好ましくは1.0mm未満となるように設けられる。ここで、補強部6の厚さ(t)は、補強部6が設けられている正面側壁52,53の副溝4に面した表面に垂直な方向の厚さであり、補強部6の「平均厚さ」は、補強部6における、副溝4の底面側からブロック5の上面51側までの間で測定される平均値、即ち、補強部6のほぼ全面での平均値である。本実施形態においては、補強部6は、正面エッジ521,531および正面側壁52,53の全領域(100%)にわたって設けられ、平均厚さtは0.5mmである。ここで、補強部6の平均厚さtは、0.2mm以上であることが好ましい。
上面51は、タイヤ転動時に路面と接触するトレッド1の接地面2の一部を形成し、この上面51は、特定の条件下で、その一部が路面と接触可能なブロック5の領域として定義される。上面51は、タイヤ周方向において、2つの周方向エッジ(正面エッジ)521,531を有し、上面51は、これらの周方向エッジ521,531により、その領域が制限されている。言い換えると、上面51は、そのタイヤ周方向側のそれぞれの縁部に2つの周方向エッジ521、531を有している。
本実施形態では、補強部6が設けられた正面側壁52,53は、半径方向に測定される補強部6の最外側の位置(補強部6の半径方向外方の縁部)と、正面エッジ521,531との間の距離が2.0mm以下となるように形成されている。この補強部6は、好ましくは、少なくとも部分的に正面エッジ521,531を含み、より好ましくは、正面エッジ521,531全てを含むように形成されている。
図2に示す例では、補強部6の半径方向最外側の位置と正面エッジ521,531の位置との間の距離はゼロ(0mm)であり、且つ、正面側壁52,53に設けられた補強部6の半径方向の最外側の縁部が、正面エッジ521,531の幅方向の全てにわたって存在するよう設けられている。一方、正面側壁52,53に設けられた補強部6の半径方向の最外側の縁部が、正面エッジ521,531の幅方向において少なくとも部分的に正面エッジ521,531に存在するよう設けられていても良い。
本実施形態では、タイヤ回転軸線に垂直な断面視において、ブロック5の上面51と、2つの正面側壁52,53との間には、図2に示すように角度T1、角度T2が形成されている。これらの角度T1、T2は、どちらも90度未満(90度を含まない)である。また、これらの角度T1、T2は、好ましくはどちらも85度以下であり、好ましくはどちらも70度以上であり、好ましくはどちらも60度以上である。
図2に示す例では、上述した角度T1、T2はどちらも同じ70度である。
角度T2も同様に、上面51上で、一方の正面エッジ521と他方の正面エッジ531とをタイヤ周方向に結ぶ直線(図2の断面視における直線)と、正面側壁53上で、正面エッジ531とトレッドウエアインジケータの高さよりも半径方向1.6mm内側の高さ位置とを正面エッジ531に垂直な方向に結ぶ直線との角度で測定される。
なお、例えば、正面エッジ(521、531)がタイヤ回転軸方向に対して斜めの方向に延びている場合(副溝4がタイヤ回転軸方向に対して斜めに延びている場合)は、上述した測定手法のうち、「タイヤ周方向に結ぶ直線」は、「正面エッジが延びる方向と垂直な方向に結ぶ直線」となる。
また、例えば、正面エッジ(521、531)のどちらか一方又は両方が、少なくとも2つの辺からなるような正面エッジがブロック(5)に形成される場合にも、上述した実施形態が適用可能であり、その場合は、その上面(51)上で、それらの2つの辺が平均して延びる方向を基準にして、上述したような手法と同様に「タイヤ周方向に結ぶ直線」又は「正面エッジが平均して延びる方向と垂直な方向に結ぶ直線」で測定される。
なお、トレッドウエアインジケータは、タイヤの摩耗限度を示すものである。
通常、タイヤ転動時にブロック(5)に垂直荷重が付加されるとき、ブロック(5)には、雪上性能の向上には好ましくない、正面エッジ(521、531)にかかるエッジ圧力を減少させるようなバックリング変形が発生する。この現象は、雪上のように路面の摩擦係数が接地要素を変形させるのに十分な路面を走行する際に、タイヤの回転方向に発生する駆動力、又は、制動力により、より顕著に現れる。
このような現象に対し、本実施形態のトレッド1では、補強部6を正面側壁52,53の大部分の領域に設けるようにしているので、雪上路面では、上述したブロック5のバックリング変形の発生を防止することが出来ると共に、正面エッジ521,531において高いエッジ圧力を発生することが出来、その結果、雪上性能を向上させることが出来る。
補強部6の平均厚さtは2.0mm未満であり、好ましくは1.0mm以下であり、より好ましくは0.5mm以下である。この補強部6の平均厚さtは、同一のブロック5の正面側壁52,53とで互いに異なるようにしてもよい。
また、上述したように正面側壁52,53の70%以上の領域に設けられる補強部6は、同一ブロック5の正面側壁52,53とでそれぞれ異なる割合の領域に設けるようにしてもよい。
本実施形態では、これらの角度T1、T2は、どちらも90度未満(90度を含まない)、且つ、互いに異なる角度となるように形成されている。図4に示す例では、角度T1は65度、T2は80度である。
このように、本実施形態においては、角度T1、T2は、互いに異なる角度であり、好ましくは、角度T2が角度T1よりも大である。また、好ましくは、角度T1は80度以下であり、角度T2は75度以上且つ85度以下である。
また、好ましくは、これらの角度T1、T2は、
の関係性を満たす。なお、この式中「°」は、角度の単位「度」である。
本実施形態では、上面51と正面側壁52,53とがなす角度T1、T2を異なる角度としかつ角度T2が角度T1よりも大きくなるように構成している。これにより第2実施形態では、上述した第1実施形態における作用効果に加えて、例えば、タイヤ転動時、相対的に角度が大の角度T2側の正面エッジ521が蹴り出し側正面エッジとなるとき、その正面エッジ521の近傍に発生するブロック5の接地面積を減少させる方向のモーメント力を減少させることが出来るので、ブロック5の接地面積を増やすことが出来る。その結果、雪上のように路面の摩擦係数がブロック5を変形させるのに十分高い路面を走行する際、補強部6の効果により、ブロック5の正面エッジ部521おいて局所的に高いエッジ圧力を得ながらも、氷上のように路面の摩擦係数がブロック5を変形させるのに不十分な路面を走行する際、ブロック5の上面51の接地面積を増やすことが出来るので、より効果的に氷上性能および雪上性能を向上させることが出来る。
このような理由により、上面51と正面側壁52,53とがなす角度T1、T2は蹴り出し側正面エッジを意図する側をより大きい角度とすることが好ましい。
従来例および実施例に係る4種類のブロックモデルのサイズは、いずれも、同一のゴム系材料(弾性率5.4MPa)で形成された短辺長さ10mm、長辺長さ20mm、高さ10mmの立方体とし、細い切れ込みを、それぞれ、ブロックの上面に開口する幅0.4mm、深さ7mmとした。補強部に関しても、同一の材料(弾性率270MPa)にて形成されており、平均厚さを0.5mmにて正面側壁の全領域にわたって設けられており、補強部の材料の弾性率が、ブロックのゴム系材料の弾性率の50倍となるように設定した。
2 接地面
3 周方向主溝
4 副溝
5 ブロック
51 ブロックの上面(その一部が接地面2を含む)
52,53 周方向側の側壁、正面側壁
521,531 正面エッジ
54,55 タイヤ幅方向側の側壁、側面側壁
6 補強部
7 細い切れ込み(サイプ)
Claims (14)
- 少なくとも1つのゴム組成物により形成された空気入りタイヤ用トレッドであって、
前記少なくとも1つのゴム組成物は弾性率Etを有し、
前記トレッドは、少なくとも1本の周方向主溝と、複数の副溝と、これらの周方向主溝及び副溝によって区切られた複数のブロックと、を有し、
前記複数のブロックのうち少なくとも1つのブロックは、その一部がタイヤ転動時に路面と接触する接地面となる上面と、タイヤ周方向に沿ってそれぞれ位置する2つの正面側壁と、タイヤ軸線方向に沿ってそれぞれ位置する2つの側面側壁と、を有し、
前記ブロックの上面は、前記2つの正面側壁と交差する位置に形成された2つの正面エッジを有し、
前記ブロックは、前記2つの正面側壁のうち少なくとも1つの正面側壁に設けられた補強部を有し、
この補強部は、弾性率Efを有する材料により形成され、この補強部の弾性率Ef及び前記ゴム組成物の弾性率Etはそれぞれ規格ASTM D882-09に規定された引張試験から得られる値であり、前記補強部の弾性率Efは、前記ゴム組成物の弾性率Etより少なくとも20倍大きく、
上記ブロックの補強部は、0.1mm以上且つ2.0mm以下の平均厚さを有し、さらに、前記正面側壁の70%以上の領域にわたって少なくとも副溝に面するように設けられ、
前記2つの正面側壁は、前記上面に対する角度がそれぞれ角度T1及び角度T2をなすように形成され、それらの角度T1及び角度T2はどちらも90度未満であることを特徴とする空気入りタイヤ用トレッド。 - 前記角度T1及び角度T2は、どちらも85度以下である請求項1に記載の空気入りタイヤ用トレッド。
- 前記角度T1及び角度T2は、どちらも60度以上である請求項1または請求項2に記載の空気入りタイヤ用トレッド。
- 前記角度T1及び角度T2は、どちらも70度以上である請求項3に記載の空気入りタイヤ用トレッド。
- 前記角度T1と前記角度T2は互いに異なる角度である請求項1及至4の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記角度T2が前記角度T1よりも大である請求項1及至5の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記角度T1は80度以下である請求項1及至7の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記角度T2は75度以上且つ85度以下である請求項1及至8の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記正面側壁に設けられた補強部は、前記正面エッジにおいて、その幅方向の少なくとも一部に延びるように設けられている請求項1及至9の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記補強部が前記少なくとも1つの正面側壁の90%以上の領域にわたって設けられている請求項1及至10の何れか1項に記載の空気入りタイヤ用トレッド。
- 前記補強部が前記少なくとも1つの正面側壁の全領域にわたって設けられている請求項11に記載の空気入りタイヤ用トレッド。
- 前記補強部が前記2つの正面側壁の全領域にわたって設けられている請求項12に記載の空気入りタイヤ用トレッド。
- 請求項1及至13の何れか1項に記載のトレッドを有することを特徴とする空気入りタイヤ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380067960.3A CN104870216B (zh) | 2012-12-28 | 2013-12-27 | 充气轮胎胎面和具有所述胎面的充气轮胎 |
EP13868326.3A EP2946945B1 (en) | 2012-12-28 | 2013-12-27 | Tread for pneumatic tire and pneumatic tire having said tread |
JP2014554611A JP6269969B2 (ja) | 2012-12-28 | 2013-12-27 | 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ |
RU2015131117A RU2640666C2 (ru) | 2012-12-28 | 2013-12-27 | Протектор пневматической шины и пневматическая шина с таким протектором |
US14/655,870 US20150336431A1 (en) | 2012-12-28 | 2013-12-27 | Pneumatic tire tread and pneumatic tire having said tread |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2012/084162 | 2012-12-28 | ||
JP2012084162 | 2012-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104339A1 true WO2014104339A1 (ja) | 2014-07-03 |
Family
ID=51021402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085208 WO2014104339A1 (ja) | 2012-12-28 | 2013-12-27 | 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150336431A1 (ja) |
EP (1) | EP2946945B1 (ja) |
JP (1) | JP6269969B2 (ja) |
CN (1) | CN104870216B (ja) |
RU (1) | RU2640666C2 (ja) |
WO (1) | WO2014104339A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016117393A (ja) * | 2014-12-19 | 2016-06-30 | 東洋ゴム工業株式会社 | タイヤ |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3045495B1 (fr) * | 2015-12-22 | 2018-01-05 | Michelin & Cie | Materiaux composites a base d'empilage oriente de melanges durs-mous pour le couplage mecanique |
EP3490815B1 (fr) * | 2016-07-26 | 2020-07-01 | Compagnie Générale des Etablissements Michelin | Pneumatique à sous-couche de bande de roulement contenant des matériaux multiples |
WO2018080550A1 (en) * | 2016-10-31 | 2018-05-03 | Compagnie Generale Des Etablissements Michelin | Tire treads having discontinuities extending depthwise along non-linear paths |
FR3063934A1 (fr) * | 2017-03-20 | 2018-09-21 | Compagnie Generale Des Etablissements Michelin | Pneumatique dont la bande de roulement comporte des rainures avec faces laterales en contre-depouille et des elements de renforcement |
JP2019038341A (ja) * | 2017-08-23 | 2019-03-14 | 住友ゴム工業株式会社 | タイヤ |
JP7110699B2 (ja) * | 2018-04-18 | 2022-08-02 | 住友ゴム工業株式会社 | タイヤ |
JP7116710B2 (ja) * | 2019-06-14 | 2022-08-10 | 株式会社ブリヂストン | 空気入りタイヤ |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH061117A (ja) * | 1992-06-19 | 1994-01-11 | Toyo Tire & Rubber Co Ltd | 空気入りタイヤ |
JPH0747814A (ja) | 1993-08-03 | 1995-02-21 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JPH07112603A (ja) * | 1993-08-23 | 1995-05-02 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JPH0737709U (ja) * | 1993-12-24 | 1995-07-11 | 東洋ゴム工業株式会社 | 空気入りラジアルタイヤ |
JPH09193618A (ja) * | 1996-01-17 | 1997-07-29 | Bridgestone Corp | 空気入りタイヤ |
JP2009292229A (ja) | 2008-06-03 | 2009-12-17 | Bridgestone Corp | 空気入りタイヤ |
JP2010105509A (ja) | 2008-10-29 | 2010-05-13 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2011079188A (ja) | 2009-10-06 | 2011-04-21 | Ryunosuke Watanabe | 多重袋の製造装置並びに多重袋 |
WO2013088570A1 (ja) | 2011-12-16 | 2013-06-20 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 空気入りタイヤ用トレッド |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2487398A (en) * | 1947-03-21 | 1949-11-08 | Thompson Vincent Swire | Vehicle tire |
JPS62268708A (ja) * | 1986-05-19 | 1987-11-21 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JPH01133004U (ja) * | 1988-02-29 | 1989-09-11 | ||
JPH02249707A (ja) * | 1989-03-22 | 1990-10-05 | Bridgestone Corp | 空気入りタイヤ |
JP2774778B2 (ja) * | 1994-12-16 | 1998-07-09 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JPH1191318A (ja) * | 1997-09-24 | 1999-04-06 | Bridgestone Corp | 空気入りタイヤ |
JP2001287509A (ja) * | 2000-04-06 | 2001-10-16 | Bridgestone Corp | タイヤ |
TWM243757U (en) * | 2003-07-09 | 2004-09-11 | Lite On It Corp | No-touch clamping mechanism |
WO2008064868A2 (de) * | 2006-11-29 | 2008-06-05 | Borgwarner Inc. | Turbolader |
JP5136281B2 (ja) * | 2008-08-20 | 2013-02-06 | 横浜ゴム株式会社 | 空気入りタイヤ |
FR2939363B1 (fr) * | 2008-12-05 | 2011-11-11 | Michelin Soc Tech | Etat de surface renouvele d'une bande de roulement de pneu |
-
2013
- 2013-12-27 WO PCT/JP2013/085208 patent/WO2014104339A1/ja active Application Filing
- 2013-12-27 US US14/655,870 patent/US20150336431A1/en not_active Abandoned
- 2013-12-27 EP EP13868326.3A patent/EP2946945B1/en active Active
- 2013-12-27 RU RU2015131117A patent/RU2640666C2/ru active
- 2013-12-27 JP JP2014554611A patent/JP6269969B2/ja active Active
- 2013-12-27 CN CN201380067960.3A patent/CN104870216B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH061117A (ja) * | 1992-06-19 | 1994-01-11 | Toyo Tire & Rubber Co Ltd | 空気入りタイヤ |
JPH0747814A (ja) | 1993-08-03 | 1995-02-21 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JPH07112603A (ja) * | 1993-08-23 | 1995-05-02 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JPH0737709U (ja) * | 1993-12-24 | 1995-07-11 | 東洋ゴム工業株式会社 | 空気入りラジアルタイヤ |
JPH09193618A (ja) * | 1996-01-17 | 1997-07-29 | Bridgestone Corp | 空気入りタイヤ |
JP2009292229A (ja) | 2008-06-03 | 2009-12-17 | Bridgestone Corp | 空気入りタイヤ |
JP2010105509A (ja) | 2008-10-29 | 2010-05-13 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2011079188A (ja) | 2009-10-06 | 2011-04-21 | Ryunosuke Watanabe | 多重袋の製造装置並びに多重袋 |
WO2013088570A1 (ja) | 2011-12-16 | 2013-06-20 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 空気入りタイヤ用トレッド |
Non-Patent Citations (1)
Title |
---|
"POLYMER PHYSICS", pages: 296 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016117393A (ja) * | 2014-12-19 | 2016-06-30 | 東洋ゴム工業株式会社 | タイヤ |
Also Published As
Publication number | Publication date |
---|---|
CN104870216B (zh) | 2017-04-05 |
US20150336431A1 (en) | 2015-11-26 |
EP2946945B1 (en) | 2017-09-13 |
JP6269969B2 (ja) | 2018-01-31 |
EP2946945A4 (en) | 2016-11-30 |
RU2640666C2 (ru) | 2018-01-11 |
EP2946945A1 (en) | 2015-11-25 |
CN104870216A (zh) | 2015-08-26 |
RU2015131117A (ru) | 2017-02-03 |
JPWO2014104339A1 (ja) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6269969B2 (ja) | 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ | |
JP6206731B2 (ja) | 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ | |
JP6069709B2 (ja) | 空気入りタイヤ用トレッド | |
KR101636584B1 (ko) | 공기 타이어 | |
US7487810B2 (en) | Pneumatic tire with tread having zigzag sipes | |
KR20180016560A (ko) | 공기입 타이어 | |
JP2012501914A (ja) | 可変表面積タイヤトレッド及びタイヤ | |
EP3118024B1 (en) | Tire tread, and tire | |
WO2018062230A1 (ja) | タイヤ用トレッド及びこのトレッドを有するタイヤ | |
JP2021535858A (ja) | 改善された雪上性能のためのトレッド | |
EP3521062B1 (en) | Tire tread and tire having this tread | |
JP5506510B2 (ja) | 空気入りタイヤ | |
JP5519345B2 (ja) | 空気入りタイヤ | |
JP2005280367A (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13868326 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013868326 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013868326 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14655870 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014554611 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015131117 Country of ref document: RU Kind code of ref document: A |