WO2014104307A1 - 発電システム、発電方法 - Google Patents

発電システム、発電方法 Download PDF

Info

Publication number
WO2014104307A1
WO2014104307A1 PCT/JP2013/085133 JP2013085133W WO2014104307A1 WO 2014104307 A1 WO2014104307 A1 WO 2014104307A1 JP 2013085133 W JP2013085133 W JP 2013085133W WO 2014104307 A1 WO2014104307 A1 WO 2014104307A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
power generation
expander
flow rate
heat
Prior art date
Application number
PCT/JP2013/085133
Other languages
English (en)
French (fr)
Inventor
平尾 豊隆
太一 舘石
隆史 渡辺
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/650,601 priority Critical patent/US20150318810A1/en
Priority to EP13867524.4A priority patent/EP2940254B1/en
Priority to CN201380066060.7A priority patent/CN104870757B/zh
Publication of WO2014104307A1 publication Critical patent/WO2014104307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/24Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical electrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Definitions

  • the present invention relates to a power generation system and a power generation method for generating power using exhaust heat from ships, factories, gas turbines, etc., geothermal heat, solar heat, ocean temperature difference, and the like as heat sources.
  • Rankine cycle power generation systems have been developed as systems that generate power using exhaust heat from ships, factories, gas turbines, etc., geothermal heat, solar heat, and ocean temperature differences from the viewpoint of effective energy use and environmental protection.
  • a medium having a boiling point lower than that of water more specifically, an organic fluid such as a fluorocarbon medium is used.
  • a low-boiling point such as an organic fluid is circulated in a cycle circuit 5 having a preheater 1, an evaporator 2, a turbine 3, and a condenser 4 by a circulation pump 6.
  • fever from the above heat sources is sent to the evaporator 2, heat-exchanges with a medium, a medium is evaporated, and it gasifies. Further, the heat medium that has passed through the evaporator 2 preheats the medium in the preheater 1 provided in the previous stage of the evaporator 2.
  • the gasified medium expands in the turbine 3 to rotationally drive the main shaft 3 a and drive the generator 7.
  • the medium expanded by the turbine 3 is condensed by the condenser 4 and circulated to the circulation pump 6.
  • the alternating current (AC) output when the generator 7 is driven is converted into direct current (DC) by the rectifier 9 and further converted back to alternating current by the grid interconnection inverter 10 to generate externally generated power. Is output.
  • the amount of fluctuation of the thermal energy output from the heat source is large.
  • the heat energy from the heat source side fluctuates, the amount of gas flowing into the turbine 3 obtained by the evaporation of the medium in the evaporator 2 fluctuates.
  • the rotational speed of the turbine 3 fluctuates with the fluctuation of the heat energy from the heat source side.
  • the present invention provides a power generation system and a power generation method that can be operated in a region where the efficiency of an expander is high while accommodating energy fluctuations on the heat source side.
  • a power generation system includes a medium circulation circuit that circulates a medium, a circulation pump that pressurizes the medium and circulates the medium in the medium circulation circuit, and the pressurized medium.
  • An evaporator that is heated and evaporated by the heat energy of a heat medium obtained from an external heat source that can vary the amount of heat
  • an expander that is driven by the medium evaporated by the evaporator, and that is driven by the expander
  • the expansion device flows into the expander so that the rotation speed of the expander or the generator is within a preset specified rotation speed region.
  • a flow rate control means for controlling the flow rate of the medium.
  • the amount of heat energy of exhaust heat from ships, factories, gas turbines, etc. varies depending on the operating conditions of ships, factories, gas turbines, etc. Natural energy, such as geothermal, solar heat, and ocean temperature differences, can also vary with natural phenomena.
  • the rotation speed of the expander or generator is within a preset specified rotation speed region.
  • the flow rate control means may control the flow rate of the medium by controlling the opening of a flow rate adjusting valve provided in the medium circulation circuit or the rotation speed of the circulation pump.
  • Rotational speed of the expander or generator can be controlled by controlling the flow rate of the medium in the medium circulation circuit. Thereby, it is possible to control the flow rate of the medium flowing into the expander so that the rotation speed of the expander or the generator is within a preset specified rotation speed region.
  • a plurality of power generation units including at least the expander and the power generator are provided in parallel, and the flow rate control unit is configured to operate the power generation unit.
  • the flow rate of the medium flowing into the expander is adjusted so that the rotation speed of the expander or the generator in each power generation unit in operation is within the specified rotation speed region. It is preferable to control.
  • the flow rate of the medium fed into the expander of each power generation unit is increased or decreased by increasing or decreasing the number of power generation units to be operated. Thereby, it is possible to control the flow rate of the medium flowing into the expander so that the rotation speed of the expander or the generator is within a preset specified rotation speed region.
  • the power generation system includes the temperature of the external heat source, the temperature or flow rate of the heat medium supplied from the external heat source to the evaporator, and the outlet of the evaporator.
  • the apparatus further comprises measurement means for measuring at least one of the temperatures of the medium, and the flow rate control means controls the flow rate of the medium flowing into the expander based on a change in the measurement result of the measurement means. Also good.
  • the medium is pressurized and circulated in the medium circulation circuit, and the medium is pressurized and evaporated by the heat energy of the heat medium obtained from an external heat source whose amount of heat can be varied.
  • the step of detecting the rotation speed of the expander or the generator, and the detected rotation speed A step of determining whether or not the rotation speed is within the specified rotation speed range; and when the rotation speed is not within the rotation speed range, the rotation speed of the expander or the generator is set in advance. And a step of controlling the flow rate of the medium flowing into the expander so as to be within the specified rotational speed range.
  • the rotation speed of the expander or the generator is within a preset specified rotation speed region.
  • the expander can be operated in a highly efficient region.
  • a power generation system 20A includes a heat medium circuit 21 into which a heat medium is sent from a heat source such as exhaust heat from ships, factories, gas turbines, etc., geothermal heat, solar heat, and ocean temperature difference, and the heat medium circuit.
  • a medium circulation circuit 22 that circulates a medium that obtains heat energy by exchanging heat with the heat medium 21.
  • a medium such as HFC-134a, HFC-245fa, HFO-1234yf, HFO-1234ze, or the like can be used as the medium of the medium circulation circuit 22.
  • the heat medium circuit 21 supplies a heat medium such as steam and water (hot water) obtained by recovering heat from a heat source.
  • a heat medium such as steam and water (hot water) obtained by recovering heat from a heat source.
  • the medium circulation circuit 22 includes a circulation pump 23, a preheater 24, an evaporator 25, a turbine (expander) 26, and a condenser 27.
  • the circulation pump 23 circulates the medium in the medium circulation circuit 22 so that the medium passes through the preheater 24, the evaporator 25, the turbine 26, and the condenser 27 in order by compressing and feeding the medium.
  • the preheater 24 and the evaporator 25 exchange heat between the heat medium of the heat medium circuit 21 and the medium of the medium circulation circuit 22, and the evaporator 25 uses the pressurized medium as a heat medium (external heat source).
  • the preheater 24 preheats the medium by the residual heat of the heat medium that has passed through the evaporator 25.
  • the turbine 26 rotates and drives the main shaft 26a around the axis thereof as the medium expands in the turbine chamber.
  • a rotor (not shown) of the generator 28 is connected to the main shaft 26a, and the rotor (not shown) is rotationally driven to face a stator (not shown) of the generator 28.
  • the generator 28 outputs an alternating current.
  • the alternating current output from the generator 28 is converted into a direct current by the rectifier 29, and further converted back to an alternating current by the grid interconnection inverter 30, and output as generated power to an external power transmission network.
  • the power generation system 20A includes a control unit (flow rate control means) 35.
  • the control unit 35 controls the heating medium supply of the heating medium circuit 21 and the operation of the circulation pump 23 of the medium circulation circuit 22 while monitoring the operating state of each device constituting the power generation system 20A.
  • Step S101 after starting the power generation system 20A in a predetermined procedure (step S101), the rotational speed of the turbine 26 (or the amount of power generated in the generator 28) is measured at regular intervals. (Step S102).
  • the temperature and flow rate of the heat medium supplied from the heat source side via the heat medium circuit 21 can vary greatly.
  • the amount of steam generated in the evaporator 25 varies, and as a result, the rotational speed of the turbine 26 varies. Therefore, as shown in FIG. 3, in the turbine 26, a specified rotational speed region with good turbine efficiency is set in advance.
  • the control part 35 determines whether the measured rotation speed of the turbine 26 is more than the upper limit of a regulation rotation speed area
  • the rotational speed of the circulation pump 23 is decreased (step S104).
  • the rotation speed of the circulation pump 23 can be changed to, for example, a plurality of steps for every fixed rotation speed (for example, 30 rpm), and when changing the rotation speed, the rotation speed of the circulation pump 23 is changed by one step. Can be changed.
  • control unit 35 determines whether or not the measured rotation speed of the turbine 26 is equal to or lower than the lower limit of the specified rotation speed region (step S105). As a result, when the measured rotational speed is less than or equal to the lower limit of the specified rotational speed region, the rotational speed of the circulation pump 23 is increased (step S106).
  • the rotational speed of the turbine 26 is monitored at regular intervals, and when the rotational speed is out of the specified rotational speed range, the rotational speed is returned to the specified rotational speed range.
  • control unit 35 can perform so-called feedforward control in which the fluctuation is predicted by monitoring the fluctuation of the heat energy supply from the heat source side. That is, at least one of the temperature of the heat source, the temperature or flow rate of the heat medium in the heat medium circuit 21, or the outlet temperature of the evaporator 25 is measured at regular intervals by a measurement unit (not shown) and measured immediately before. It is determined whether or not the temperature or flow rate has increased by a certain amount or more (steps S107 and S108). If there is an increase beyond a certain level, it is predicted that the supply of thermal energy from the heat source side tends to increase, and the rotational speed of the circulation pump 23 is increased in advance (step S109).
  • step S107 it is determined whether or not the measured value in step S107 is decreased by a certain amount or more than the temperature or flow rate when the measurement was performed immediately before (step S110). If there is a decrease beyond a certain level, it is predicted that the supply of heat energy from the heat source side tends to decrease, and the rotational speed of the circulation pump 23 is lowered in advance (step S111).
  • steps S102 to S111 are repeated at regular intervals (step S112).
  • the circulation flow rate of the medium is adjusted by changing the rotational speed of the circulation pump 23. Accordingly, it is possible to operate the turbine 26 in a specified rotational speed region with good operating efficiency in response to the energy fluctuation on the heat source side, and to efficiently generate power with the generator 28.
  • the rotation speed of the circulation pump 23 is adjusted so that the rotation speed of the turbine 26 falls within the specified rotation speed range.
  • the medium circulation circuit 22 is replaced with this.
  • a flow rate adjusting valve 70 (see FIG. 1) for adjusting the flow rate of the medium may be provided.
  • the control unit 35 may control the rotational speed of the turbine 26 to be within the specified rotational speed region by adjusting the opening degree of the flow rate adjusting valve 70 according to the rotational speed of the turbine 26.
  • feedforward control in steps S109 and S111, the number of rotations of the circulation pump 23 is increased or decreased based on the amount of increase or decrease in the measurement values by the measuring means.
  • the rotational speed of the circulation pump 23 may be increased or decreased based on the correlation data with the number.
  • the control flow described with reference to FIG. 2 can be performed without any problem even if the order of the flow is appropriately changed as long as the same function can be exhibited.
  • the rotational speed of the circulation pump is set. Further, after determining whether the measured rotational speed is equal to or higher than the upper limit after determining whether the rotational speed is equal to or higher than the upper limit of the specified rotational speed region, the rotational speed of the circulation pump 23 may be decreased.
  • the rotational speed of the circulation pump 23 is decreased and determined to be lower than the lower limit. In such a case, the rotational speed of the circulation pump may be increased.
  • steps S107 to S111 first, at least one of the temperature of the heat source, the temperature or flow rate of the heat medium in the heat medium circuit 21, or the outlet temperature of the evaporator 25 is measured for a predetermined time by a measuring means (not shown). It is measured every time, and it is determined whether or not the temperature or flow rate has been reduced more than a certain value from the temperature or flow rate at the time of the previous measurement.
  • a configuration may be adopted in which the number of revolutions of the circulation pump 23 is decreased in advance by predicting a tendency to decrease.
  • a configuration in which the number of revolutions of the circulation pump 23 is increased in advance by predicting that the number tends to increase may be adopted.
  • the power generation system 20B includes a plurality of sets of power generation units 50A, 50B, 50C,.
  • Each of the power generation units 50A, 50B, 50C,... Has the same configuration as that shown in the first embodiment, the heat medium circuit 21, the medium circulation circuit 22, the circulation pump 23, the preheater 24, the evaporator 25, and the turbine. 26, a condenser 27, a generator 28, and a rectifier 29.
  • each rectifier 29 of multiple sets of electric power generation unit 50A, 50B, 50C, ... is connected to the one grid connection inverter 30.
  • the control unit 35 of the power generation system 20B controls the heat medium supply of the heat medium circuit 21 and the operation of the circulation pump 23 of the medium circulation circuit 22 while monitoring the operation state and the like of each device constituting the power generation system 20B. Further, the control unit 35 counts the integrated value of the operation time of the turbine 26, and performs the operation control of the power generation units 50A, 50B, 50C,... Based on the integrated value.
  • Such a power generation system 20B has a plurality of power generation units 50A and 50B according to the input heat energy amount of the heat medium sent from the heat medium circuit 21 and the required power amount on the output side under the control of the control unit 35. , 50C,... Are selectively operated to change the number of units to be operated (that is, the number of operating turbines 26) and to change the power generation amount step by step.
  • step S201 After starting the power generation system 20B in a predetermined procedure (step S201), the rotational speed of the turbine 26 (or the power generation amount in the generator 28) is measured at regular intervals. (Step S202).
  • the control unit 35 determines whether or not the measured rotational speed of the turbine 26 is equal to or higher than a preset upper limit of a predetermined rotational speed range (see FIG. 3) with good turbine efficiency (step S203). As a result, when the measured rotational speed is equal to or greater than the upper limit of the specified rotational speed region, the number of operating units of the plurality of power generation units 50A, 50B, 50C,... Is reduced by one (step S204). Then, the medium flow rate per unit in the turbine 26 of each unit increases, and the rotation speed increases.
  • control unit 35 determines whether or not the measured rotation speed of the turbine 26 is equal to or lower than the lower limit of the specified rotation speed region (step S205). As a result, when the measured rotational speed is less than or equal to the lower limit of the specified rotational speed region, the number of operating units of the plurality of power generation units 50A, 50B, 50C,... Is increased by one (step S206). Then, the medium flow rate per unit in the turbine 26 of each unit decreases, and the rotation speed decreases.
  • the rotational speed of the turbine 26 is monitored at regular intervals, and when the rotational speed is out of the specified rotational speed range, the number of operating units of the plurality of power generation units 50A, 50B, 50C,. By doing so, the rotational speed is returned to within the specified rotational speed region.
  • control unit 35 can perform operation control in accordance with the heat energy supply fluctuation from the heat source side. That is, the temperature or flow rate of the heat medium in the heat medium circuit 21 is measured at regular time intervals, and it is determined whether or not the temperature or flow rate has been increased by a certain amount or more compared to the temperature or flow rate measured immediately before (step S207). , S208). When there is an increase beyond a certain level, the number of operating units of the plurality of power generation units 50A, 50B, 50C,... Is increased by one (step S209).
  • step S207 it is determined whether or not the measured value in step S207 is reduced by a certain amount or more than the temperature or flow rate when the measurement was performed immediately before (step S210). If there is a certain decrease, the number of operating units of the plurality of power generation units 50A, 50B, 50C,... Is reduced by one (step S211).
  • steps S202 to S211 is repeated at regular intervals until the operation of the power generation system 20B is completed (step S212).
  • the operation time of the turbine 26 can be averaged between the power generation units 50A, 50B, 50C,.
  • the maintenance interval of the turbine 26 can be extended. This also allows maintenance to be performed intensively and efficiently by bringing the maintenance timings of all the turbines 26 closer.
  • the number of operating units of the power generation units 50A, 50B, 50C,... Is increased or decreased in response to the energy fluctuation on the heat source side. It is also possible to combine the configurations shown in FIG. That is, in addition to increasing or decreasing the number of operating units of the plurality of power generation units 50A, 50B, 50C,..., In each of the plurality of power generation units 50A, 50B, 50C,.
  • the medium flow rate in the circulation circuit 22 can be adjusted. For example, in units in operation of the plurality of power generation units 50A, 50B, 50C,..., The medium flow rate can be varied between the units, and the rotational speed of the turbine 26 can be varied. Therefore, in the turbine 26 having a short operation time, the rotational speed can be increased as compared with the other turbines 26 to increase the load.
  • the control flow described with reference to FIG. 5 can be performed without any problem even if the order of the flow is appropriately changed as long as the same function can be exhibited.
  • steps S203 to S206 if it is determined whether or not the measured rotational speed is less than or equal to the lower limit of the specified rotational speed range after determining whether or not the lower limit of the specified rotational speed area, a plurality of power generation units 50A, When the number of operating units of 50B, 50C,... Is increased by one, and after determining whether the number of operating units is equal to or higher than the upper limit of the specified rotational speed range, The number of operating units of the power generation units 50A, 50B, 50C,.
  • the rotational speed of the circulation pump 23 is set to a plurality of power generation units 50A, 50B, The number of operating units of 50C,... May be reduced by one, and the rotational speed of the circulation pump may be increased when it is determined that the number is less than the lower limit.
  • At least one of the temperature of the heat source, the temperature or flow rate of the heat medium in the heat medium circuit 21, or the outlet temperature of the evaporator 25 is measured for a predetermined time by a measuring means (not shown). It is measured every time, and it is determined whether or not the temperature or flow rate at the time of the previous measurement is more than a certain amount, and if there is a certain amount or more, a plurality of power generation units 50A, 50B, The number of operating units of 50C,... May be reduced by one. Next, it is determined whether or not the measured value has increased by a certain amount or more than the temperature or flow rate when the measurement was performed immediately before. If there is an increase by a certain value or more, a plurality of power generation units 50A, 50B, The number of operating units of 50C, ... may be increased by one.
  • the rectifiers 29 of the plurality of power generation units 50A, 50B, 50C,... are connected to one grid-connected inverter 30, but the present invention is not limited to this.
  • the rectifier 29 may include the grid interconnection inverter 30 in each of the plurality of power generation units 50A, 50B, 50C,.
  • the power generation system 20C includes a plurality of sets of power generation units 60A, 60B, 60C,.
  • a set of a medium circulation circuit 22, a circulation pump 23, a preheater 24, an evaporator 25, and a condenser 27 are provided for one heat medium circuit 21.
  • the heat medium circuit 21 is branched into a plurality of branch pipes 21a, 21b, 21c,.
  • the power generation unit 60A, 60B, 60C, ... is formed by providing the turbine 26, the generator 28, and the rectifier 29 in each of the branch pipes 21a, 21b, 21c, ....
  • the rectifiers 29 of the plurality of sets of power generation units 60A, 60B, 60C,... are connected in parallel to one grid interconnection inverter 30.
  • the medium sent out from the circulation pump 23 passes through the preheater 24 and the evaporator 25 in the medium circulation circuit 22, and then branches into the power generation units 60A, 60B, 60C,. Branches to tubes 21a, 21b, 21c,.
  • the medium drives the turbine 26 to generate power with the generator 28, and then returns to the circulation pump 23 through the condenser 27 in order.
  • the direct current output from the rectifiers 29 of the plurality of power generation units 60A, 60B, 60C,... Is reconverted into alternating current, and is output to the external power transmission network as generated power.
  • the operation of the plurality of power generation units 60A, 60B, 60C,... Increase or decrease the number of units.
  • the control unit 35 among the plurality of power generation units 60A, 60B, 60C,..., The unit to be operated or stopped is determined based on the operation time of each turbine 26 when increasing or decreasing the number of operation units.
  • the operation time of the turbine 26 can be averaged among the plurality of power generation units 60A, 60B, 60C,.
  • the maintenance interval of the turbine 26 can be extended. This also allows maintenance to be performed intensively and efficiently by bringing the maintenance timings of all the turbines 26 closer.
  • the power generation system and power generation method of the present invention are not limited to the above-described embodiments described with reference to the drawings, and various modifications can be considered within the technical scope.
  • power generation is performed using exhaust heat from ships, factories, gas turbines, etc. as a heat source, or using natural energy such as geothermal, solar heat, and ocean temperature difference as a heat source.
  • a heat source or using natural energy such as geothermal, solar heat, and ocean temperature difference as a heat source.
  • the type of the heat source is not questioned at all, and is suitable when using a heat source that can change the amount of heat at least.
  • the turbine 26 was illustrated as an expander, it can replace with the turbine 26 and a scroll type expander etc. can also be employ
  • the operation time may be displayed on the display panel of the power generation system, or may be displayed on the display panel outside the power generation system via the Internet.
  • an administrator of the power generation system and a maintenance worker can confirm the operation status of each generator, and can perform operation management and maintenance.
  • the configurations described in the above embodiments can be selected or changed to other configurations as appropriate.

Abstract

 発電システム(20A)は、媒体を循環させる媒体循環回路(22)と、循環ポンプ(23)と、媒体を、熱量が変動し得る外部の熱源から得られる熱媒の熱エネルギにより加熱して蒸発させる蒸発器(25)と、蒸発器(25)で蒸発された媒体により駆動される膨張器(26)と、膨張器(26)により駆動されて発電する発電機(28)と、外部の熱源の熱量が変動したときも、膨張器(26)または発電機(28)の回転数が、予め設定された規定回転数領域内となるように、膨張器(26)に流入する媒体の流量を制御する流量制御手段(35)と、を備える。

Description

発電システム、発電方法
 本発明は、船舶,工場,ガスタービン等からの排熱、地熱、太陽熱、海洋温度差等を熱源として発電を行う発電システム、発電方法に関する。
 本願は、2012年12月28日に、日本に出願された特願2012-288961号に基づき優先権を主張し、その内容をここに援用する。
 近年、エネルギの有効利用、環境保全等の観点から、船舶,工場,ガスタービン等からの排熱、地熱、太陽熱、海洋温度差等を熱源として発電を行うシステムとして、ランキンサイクル式の発電システムが検討されている(例えば、特許文献1~3参照)。この際、上記のような熱源を利用する場合には、媒体として、例えば水よりも沸点の低い媒体、より詳しくはフロン系媒体などの有機流体が用いられる。
 このような発電システムにおいては、図7に示すように、予熱器1、蒸発器2、タービン3、凝縮器4を有したサイクル回路5内を、循環ポンプ6によって、有機流体などの低沸点の媒体を循環させる。そして、上記したような熱源から熱を回収した熱媒を、蒸発器2に送り込み、媒体と熱交換させ、媒体を蒸発させてガス化する。また、蒸発器2を経た熱媒は、蒸発器2の前段に設けられた予熱器1において、媒体を予熱する。
 ガス化された媒体は、タービン3において膨張することによって主軸3aを回転駆動し、発電機7を駆動する。タービン3で膨張した媒体は、凝縮器4で凝縮され、循環ポンプ6に循環される。
 発電機7が駆動されることによって出力される交流電流(AC)は、整流器9で直流電流(DC)に変換され、さらに、系統連系インバータ10で交流電流に再変換され、発電電力として外部に出力される。
特開2006-299996号公報 特開2006-313048号公報 特開2006-313049号公報
 ところで、上記のような排熱を熱源とした場合や、地熱、太陽熱、海洋温度差等の自然エネルギを熱源とした場合などにおいては、熱源から出力される熱エネルギの変動量が大きい。熱源側からの熱エネルギが変動すると、蒸発器2で媒体が蒸発することによって得られたガスのタービン3への流入量が変動することとなる。すると、熱源側からの熱エネルギの変動にともなって、タービン3の回転数が変動する。タービン3を発電機7の駆動源としている構成においては、タービン3を仕事効率の高い回転領域で作動させるのが好ましい。しかし、熱源側からの熱エネルギの変動にともなうタービン3の回転数変動により、仕事効率の高い回転領域を外れてしまうことがある。
 本発明は、熱源側のエネルギ変動に対応しつつ、膨張器の効率の高い領域において運転することのできる発電システム、発電方法を提供する。
 本発明の第1の態様によれば、発電システムは、媒体を循環させる媒体循環回路と、前記媒体を加圧して前記媒体循環回路内で循環させる循環ポンプと、加圧された前記媒体を、熱量が変動し得る外部の熱源から得られる熱媒の熱エネルギにより加熱して蒸発させる蒸発器と、前記蒸発器で蒸発された前記媒体により駆動される膨張器と、前記膨張器により駆動されて発電する発電機と、前記外部の熱源の熱量が変動したときも、前記膨張器または前記発電機の回転数が、予め設定された規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御する流量制御手段と、を備えることを特徴とする。
 船舶,工場,ガスタービン等からの排熱の熱エネルギ量は、船舶,工場,ガスタービン等の稼動状況によって変動する。また、地熱、太陽熱、海洋温度差等の自然エネルギーも、自然現象にともなって変動し得る。このように熱量が変動し得る外部の熱源を用いた発電システムにおいて、外部の熱源の熱エネルギ量が変動したときも、膨張器または発電機の回転数が、予め設定された規定回転数領域内となるように、膨張器に流入する媒体の流量を制御することで、効率の高い領域において膨張器を運転することができる。
 前記流量制御手段は、前記媒体循環回路に設けた流量調整弁の開度、または、前記循環ポンプの回転数を制御することによって、前記媒体の流量を制御するようにしてもよい。
 媒体循環回路における媒体の流量を制御することで、膨張器または発電機の回転数を制御できる。これによって、膨張器または発電機の回転数が、予め設定された規定回転数領域内となるように、膨張器に流入する媒体の流量を制御することができる。
 本発明の第2の態様によれば、発電システムは、少なくとも前記膨張器および前記発電機を備えた発電ユニットが、複数組並列して設けられ、前記流量制御手段は、稼動させる前記発電ユニットの数を増減させることによって、稼動中のそれぞれの前記発電ユニットにおける前記膨張器または前記発電機の回転数が、前記規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御するのが好ましい。
 複数組の発電ユニットを備える場合は、稼動させる発電ユニットの数を増減させることによって、各発電ユニットの膨張器に送り込まれる媒体の流量が増減する。これによって、膨張器または発電機の回転数が、予め設定された規定回転数領域内となるように、膨張器に流入する媒体の流量を制御することができる。
 また、本発明の第3の態様によれば、発電システムは、前記外部の熱源の温度、前記外部の熱源から前記蒸発器に供給される熱媒の温度または流量、および前記蒸発器の出口における前記媒体の温度の少なくとも一つを計測する計測手段をさらに備え、前記流量制御手段は、前記計測手段における計測結果の変化に基づき、前記膨張器に流入する前記媒体の流量を制御するようにしてもよい。
 このようにして、外部の熱源側から供給される熱エネルギの変動を予測し、これに基づいて媒体の流量を制御することができる。
 また、本発明の第4の態様によれば、媒体を加圧して媒体循環回路を循環させ、前記媒体を熱量が変動し得る外部の熱源から得られる熱媒の熱エネルギにより加圧して蒸発させ、蒸発した前記媒体により膨張器を回転させることによって発電機を駆動して発電する発電方法は、前記膨張器または前記発電機の回転数を検出するステップと、検出された前記回転数が、予め設定された前記規定回転数領域内にあるか否かを判定するステップと、前記回転数が前記規定回転数領域内にないときに、前記膨張器または前記発電機の回転数が、予め設定された規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御するステップと、を備えることを特徴とする。
 このように、熱量が変動し得る外部の熱源を用いた発電システムにおいて、外部の熱源の熱量が変動したときも、膨張器または発電機の回転数が、予め設定された規定回転数領域内となるように、膨張器に流入する媒体の流量を制御することで、効率の高い領域において膨張器を運転することができる。
 上記した発電システム及び発電方法によれば、熱源側のエネルギ変動に対応しつつ、効率の高い領域において発電システムを運転することが可能となる。
本発明の第1の実施形態に係る発電システムの構成を示す図である。 本発明の第1の実施形態に係る発電方法の流れを示す図である。 タービンにおける回転数と効率の関係の一例、および設定した規定回転数領域の例を示す図である。 本発明の第2の実施形態に係る発電システムの構成を示す図である。 本発明の第2の実施形態に係る発電方法の流れを示す図である。 本発明の第3の実施形態に係る発電システムの構成を示す図である。 従来の発電システムの構成を示す図である。
 以下、添付図面を参照して、本発明による発電システム、発電方法を実施するための形態を説明する。しかし、本発明はこれらの実施形態のみに限定されるものではない。
(第1の実施形態)
 図1に示すように、発電システム20Aは、船舶,工場,ガスタービン等からの排熱、地熱、太陽熱、海洋温度差等の熱源から熱媒が送り込まれる熱媒回路21と、この熱媒回路21の熱媒と熱交換することによって熱エネルギを得る媒体を循環させる媒体循環回路22と、を備える。
 ここで、媒体循環回路22の媒体としては、例えば、HFC-134a,HFC-245fa,HFO-1234yf,HFO-1234zeといったフロン系媒体等の媒体を用いることができる。
 熱媒回路21は、熱源から熱を回収することによって得た蒸気、水(湯)等の熱媒を供給する。
 媒体循環回路22には、循環ポンプ23、予熱器24、蒸発器25、タービン(膨張器)26、凝縮器27が備えられている。
 循環ポンプ23は、媒体を圧縮して送り出すことで、媒体が予熱器24、蒸発器25、タービン26、凝縮器27を順に経るよう、媒体を媒体循環回路22内で循環させる。
 予熱器24および蒸発器25は、熱媒回路21の熱媒と媒体循環回路22の媒体とを熱交換するもので、蒸発器25は、加圧された媒体を熱媒(外部の熱源)との熱交換によって加熱して蒸発させ、予熱器24は、蒸発器25を経た熱媒の余熱によって媒体を予熱する。
 タービン26は、媒体がタービン室内で膨張することによって、主軸26aをその軸線周りに回転駆動させる。この主軸26aには、発電機28の回転子(図示無し)が連結されており、この回転子(図示無し)が発電機28の固定子(図示無し)に対向して回転駆動される。これによって、発電機28では交流電流を出力する。
 発電機28から出力された交流電流は、整流器29で直流電流に変換され、さらに、系統連系インバータ30で交流電流に再変換されて、発電電力として外部の送電網に出力される。
 上記発電システム20Aにおいては、制御部(流量制御手段)35が備えられている。
この制御部35では、発電システム20Aを構成する各機器の作動状態等をモニタリングしながら、熱媒回路21の熱媒供給、媒体循環回路22の循環ポンプ23の作動を制御する。
 以下に、制御部35における発電システム20Aの運転制御方法について説明する。
 図2に示すように、制御部35においては、発電システム20Aを所定の手順で起動した後(ステップS101)、一定時間ごとに、タービン26の回転数(または発電機28における発電量)を計測する(ステップS102)。
 排熱、地熱、太陽熱、海洋温度差等の熱源においては、熱源側から熱媒回路21を介して送給される熱媒の温度や流量が大きく変動し得る。熱媒の温度や流量が変動すると、蒸発器25において発生される蒸気量が変動し、その結果、タービン26の回転数が変動する。そこで、図3に示すように、タービン26においては、タービン効率の良い規定回転数領域を予め設定しておく。
 そして、制御部35は、計測されたタービン26の回転数が、規定回転数領域の上限以上であるか否かを判定する(ステップS103)。
 その結果、計測された回転数が規定回転数領域の上限以上であると判定された場合、循環ポンプ23の回転数を下げる(ステップS104)。このとき、循環ポンプ23の回転数は、例えば、一定回転数(例えば30rpm)ごとに複数ステップに変更できるようにしておき、回転数を変えるときには、1ステップ分ずつ、循環ポンプ23の回転数を変えることができる。
 次いで、制御部35は、計測されたタービン26の回転数が、規定回転数領域の下限以下であるか否かを判定する(ステップS105)。
 その結果、計測された回転数が規定回転数領域の下限以下である場合、循環ポンプ23の回転数を上げる(ステップS106)。
 このようにして、一定時間ごとにタービン26の回転数をモニタリングして、その回転数が規定回転数領域から外れているときには、規定回転数領域内に回転数を戻すようになっている。
 制御部35においては、さらに、上記ステップS101~S106の制御に加え、熱源側からの熱エネルギ供給変動をモニタリングすることによって、その変動を予測した、いわゆるフィードフォワード制御を行うことができる。
 すなわち、熱源の温度、熱媒回路21内の熱媒の温度または流量、あるいは、蒸発器25の出口温度の少なくとも一つを、図示しない計測手段によって一定時間ごとに計測し、直前に計測を行ったときの温度または流量よりも、一定以上増加しているか否かを判定する(ステップS107,S108)。
 そして、一定以上の増加があった場合には、熱源側からの熱エネルギ供給が増大する傾向にあると予測し、予め、循環ポンプ23の回転数を上げる(ステップS109)。
 また、ステップS107における計測値が、直前に計測を行ったときの温度または流量よりも、一定以上減少しているか否かを判定する(ステップS110)。
 そして、一定以上の減少があった場合には、熱源側からの熱エネルギ供給が減少する傾向にあると予測し、予め、循環ポンプ23の回転数を下げる(ステップS111)。
 そして、発電システム20Aの運転が終了されるまで、上記ステップS102~S111の処理を一定時間ごとに繰り返す(ステップS112)。 
 上述したようにして、タービン26の回転数が、予め定めた、作動効率の良い規定回転数領域外にあるときには、循環ポンプ23の回転数を変えて媒体の循環流量を調整するようにした。これによって、熱源側のエネルギ変動に対応して、タービン26を作動効率の良い規定回転数領域内で運転して、発電機28で効率良く発電を行うことが可能となる。
 なお、上記第1の実施形態においては、循環ポンプ23の回転数を調整することによって、タービン26の回転数が規定回転数領域内に収まるようにしたが、これに代えて、媒体循環回路22に、媒体の流量を調整する流量調整弁70(図1参照)を備えるようにしてもよい。この場合、制御部35において、タービン26の回転数に応じて、流量調整弁70の開度を調整することによって、タービン26の回転数が規定回転数領域内に収まるよう制御してもよい。
 また、フィードフォーワード制御として、ステップS109、ステップS111では、計測手段での計測値の増減量に基づいて、循環ポンプ23の回転数を増減させるものとしたが、計測値と循環ポンプ23の回転数との相関データに基づいて循環ポンプ23の回転数を増減させるものとしてもよい。
 なお、上記第1の実施形態において、図2を参照しつつ説明した制御の流れは、同様の機能を発揮できるのであれば、その流れの順序等を適宜変更しても何ら支障がないことは言うまでもない。
 例えば、ステップS103~S106に代えて、規定回転数領域の下限以下であるか否かを判定した後に、計測された回転数が下限値以下であると判定された場合に循環ポンプの回転数を上げ、さらにその後に規定回転数領域の上限以上であるかを判定した後に、計測された回転数が上限以上であると判定された場合、循環ポンプ23の回転数を下げる構成としてもよい。また、規定回転数領域が上限以上であるか、下限以下であるかを同時に判定した後に、計測された回転数が上限以上であれば循環ポンプ23の回転数を下げ、下限以下であると判定された場合に循環ポンプの回転数を上げる構成としてもよい。
 また、ステップS107~S111に代えて、まず、熱源の温度、熱媒回路21内の熱媒の温度または流量、あるいは、蒸発器25の出口温度の少なくとも一つを、図示しない計測手段によって一定時間ごとに計測し、直前に計測を行ったときの温度または流量よりも、一定以上減少しているか否かを判定し、一定以上の減少があった場合には、熱源側からの熱エネルギ供給が減少する傾向にあると予測し、予め、循環ポンプ23の回転数を下げる構成としてもよい。次いで、計測値が直前に計測を行ったときの温度または流量よりも、一定以上増加しているか否かを判定し、一定以上の増加があった場合には、熱源側からの熱エネルギ供給が増加する傾向にあると予測し、予め、循環ポンプ23の回転数を上げる構成としてもよい。
(第2の実施形態)
 次に、本発明にかかる発電システム、発電方法の第2の実施形態について説明する。なお、以下に説明する第2の実施形態においては、上記第1の実施形態と共通する構成については図中に同符号を付してその説明を省略する。
 図4に示すように、本実施形態に係る発電システム20Bは、複数組の発電ユニット50A,50B,50C,…を備える。
 発電ユニット50A,50B,50C,…のそれぞれは、上記第1の実施形態で示した同様の構成の、熱媒回路21、媒体循環回路22、循環ポンプ23、予熱器24、蒸発器25、タービン26、凝縮器27、発電機28、整流器29を備えている。
 そして、複数組の発電ユニット50A,50B,50C,…のそれぞれの整流器29が、一つの系統連系インバータ30に接続されている。
 このような発電システム20Bにおいては、発電ユニット50A,50B,50C,…のそれぞれにおいて、循環ポンプ23により、媒体が、媒体循環回路22内で予熱器24、蒸発器25、タービン26、凝縮器27を順に経るよう、媒体を循環させる。そして、予熱器24で予熱され、さらに蒸発器25で蒸発してガス化したガス媒体は、タービン26のタービン室内で膨張することによって、発電機28を駆動する。発電機28においては、交流電流を出力し、これが整流器29で直流電流に変換され、系統連系インバータ30へと出力する。
 そして、系統連系インバータ30では、複数の発電ユニット50A,50B,50C,…の整流器29から出力された直流電流を、交流電流に再変換し、発電電力として外部の送電網に出力する。
 発電システム20Bの制御部35は、発電システム20Bを構成する各機器の作動状態等をモニタリングしながら、熱媒回路21の熱媒供給、媒体循環回路22の循環ポンプ23の作動を制御する。
 また、制御部35においては、タービン26について、その稼動時間の積算値をカウントし、その積算値に基づいた発電ユニット50A,50B,50C,…の稼動制御を行う。
 このような発電システム20Bは、制御部35の制御により、熱媒回路21から送られてくる熱媒の入力熱エネルギ量や、出力側における要求電力量に応じて、複数の発電ユニット50A,50B,50C,…を選択的に稼動させることによって、稼動させるユニット数(すなわちタービン26の稼動台数)を変化させ、発電量を段階的に変えることができるようになっている。
 以下に、制御部35における発電システム20Bの運転制御方法について説明する。
 図5に示すように、制御部35においては、発電システム20Bを所定の手順で起動した後(ステップS201)、一定時間ごとに、タービン26の回転数(または発電機28における発電量)を計測する(ステップS202)。
 制御部35は、計測されたタービン26の回転数が、予め設定された、タービン効率の良い規定回転数領域(図3参照)の上限以上であるか否かを判定する(ステップS203)。
 その結果、計測された回転数が規定回転数領域の上限以上である場合、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台減らす(ステップS204)。
すると各ユニットのタービン26における一台当たりの媒体流量が増加し、回転数が上昇する。
 次いで、制御部35は、計測されたタービン26の回転数が、規定回転数領域の下限以下であるか否かを判定する(ステップS205)。
 その結果、計測された回転数が規定回転数領域の下限以下である場合、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台増やす(ステップS206)。
すると各ユニットのタービン26における一台当たりの媒体流量が減少し、回転数が下がる。
 このようにして、一定時間ごとにタービン26の回転数をモニタリングして、その回転数が規定回転数領域から外れているときには、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を増減させることによって、規定回転数領域内に回転数を戻すようになっている。
 制御部35においては、さらに、上記ステップS201~S206の制御に加え、熱源側からの熱エネルギ供給変動に応じた運転制御を行うことができる。
 すなわち、熱媒回路21内の熱媒の温度または流量を一定時間ごとに計測し、直前に計測を行ったときの温度または流量よりも、一定以上増加しているか否かを判定する(ステップS207,S208)。
 そして、一定以上の増加があった場合には、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台増やす(ステップS209)。
 また、ステップS207における計測値が、直前に計測を行ったときの温度または流量よりも、一定以上減少しているか否かを判定する(ステップS210)。
 そして、一定以上の減少があった場合には、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台減らす(ステップS211)。
 そして、発電システム20Bの運転が終了されるまで、上記ステップS202~S211の処理を一定時間ごとに繰り返す(ステップS212)。
 ところで、上記したような一連の処理において、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を増減させる際には、発電ユニット50A,50B,50C,…の各タービン26の稼動時間に基づいて、稼動または停止させるユニットを決定するのが好ましい。そこで、制御部35においては、複数の発電ユニット50A,50B,50C,…のうち、稼動させるユニット数を減らすときには、稼動中のユニットのうち稼動時間が最も長いタービン26を備えたユニットから先行して稼動を停止させるようにする。また、発電ユニット50A,50B,50C,…の稼動ユニット数を増やすときには、稼動中のユニットのうち稼動時間が最も短いタービン26を備えたユニットから先行して稼動させるようにする。
 上述したようにして、タービン26の回転数が、予め定めた作動効率の良い規定回転数領域外にあるときには、発電ユニット50A,50B,50C,…の稼動ユニット数を変えるようにした。これによって、熱源側のエネルギ変動に対応して、タービン26を作動効率の良い規定回転数領域内で運転して、発電機28で効率良く発電を行うことが可能となる。
 また、発電ユニット50A,50B,50C,…の稼動ユニット数を増減させる際には、発電ユニット50A,50B,50C,…の各タービン26の稼動時間に基づいて稼動または停止させるユニットを決定するようにした。これにより、発電ユニット50A,50B,50C,…間で、タービン26の稼動時間を平均化することができる。その結果、タービン26のメンテナンスの間隔を延ばすことができる。また、これにより、すべてのタービン26のメンテナンスタイミングを近くすることによって、メンテナンスを集中的に効率良く行うこともできる。
 なお、上記第2の実施形態において、熱源側のエネルギ変動に対応して、発電ユニット50A,50B,50C,…の稼動ユニット数を増減するようにしたが、これに、上記第1の実施形態で示した構成を組み合わせることも可能である。
 すなわち、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を増減するのに加え、複数の発電ユニット50A,50B,50C,…のそれぞれにおいて、循環ポンプ23または流量調整弁70において、媒体循環回路22における媒体流量を調整することができる。例えば、複数の発電ユニット50A,50B,50C,…の稼動中のユニットにおいて、ユニット間で媒体流量を異ならせ、タービン26の回転数を異ならせることも可能である。そこで、稼動時間の短いタービン26においては、回転数を他のタービン26よりも高め、負荷を高めるようなこともできる。
 なお、上記第2の実施形態において、図5を参照しつつ説明した制御の流れは、同様の機能を発揮できるのであれば、その流れの順序等を適宜変更しても何ら支障がないことは言うまでもない。
 例えば、ステップS203~S206に代えて、規定回転数領域の下限以下であるか否かを判定した後に、計測された回転数が規定回転数領域の下限以下である場合、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台増やし、さらにその後に規定回転数領域の上限以上であるかを判定した後に、計測された回転数が規定回転数領域の上限以上である場合、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台減らす構成としてもよい。また、規定回転数領域が上限以上であるか、下限以下であるかを同時に判定した後に、計測された回転数が上限以上であれば循環ポンプ23の回転数を複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台減らし、下限以下であると判定された場合に循環ポンプの回転数を上げる構成としてもよい。
 また、ステップS207~S211に代えて、まず、熱源の温度、熱媒回路21内の熱媒の温度または流量、あるいは、蒸発器25の出口温度の少なくとも一つを、図示しない計測手段によって一定時間ごとに計測し、直前に計測を行ったときの温度または流量よりも、一定以上減少しているか否かを判定し、一定以上の減少があった場合には、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台減らすようにしてもよい。次いで、計測値が直前に計測を行ったときの温度または流量よりも、一定以上増加しているか否かを判定し、一定以上の増加があった場合には、複数の発電ユニット50A,50B,50C,…の稼動ユニット数を1台増やすようにしてもよい。
(第2の実施形態の変形例)
 上記第2の実施形態においては、複数の発電ユニット50A,50B,50C,…の整流器29を、一つの系統連系インバータ30に接続する構成としたが、これに限るものではない。例えば、複数の発電ユニット50A,50B,50C,…のそれぞれにおいて、整流器29にそれぞれ系統連系インバータ30を備えるようにしてもよい。
(第3の実施形態)
 次に、本発明にかかる発電システム、発電方法の第3の実施形態について説明する。なお、以下に説明する第3の実施形態においては、上記第1、第2の実施形態と共通する構成については図中に同符号を付してその説明を省略する。
 図6に示すように、本実施形態に係る発電システム20Cは、複数組の発電ユニット60A,60B,60C,…を備える。
 発電システム20Cにおいては、一つの熱媒回路21に対し、一組の媒体循環回路22、循環ポンプ23、予熱器24、蒸発器25、凝縮器27が設けられ、蒸発器25と凝縮器27との間で、熱媒回路21が複数の分岐管21a,21b,21c,…に分岐している。そして、分岐管21a,21b,21c,…のそれぞれに、タービン26、発電機28、整流器29が設けられることで、発電ユニット60A,60B,60C,…が形成されている。
 そして、複数組の発電ユニット60A,60B,60C,…のそれぞれの整流器29が、一つの系統連系インバータ30に並列に接続されている。
 このような構成の発電システム20Cにおいては、循環ポンプ23から送り出された媒体は、媒体循環回路22内で、予熱器24、蒸発器25を経た後、発電ユニット60A,60B,60C,…の分岐管21a,21b,21c,…に分岐する。この媒体は、発電ユニット60A,60B,60C,…のそれぞれにおいて、タービン26を駆動させて発電機28で発電した後、凝縮器27を順に経て循環ポンプ23に戻る。
 そして、系統連系インバータ30では、複数の発電ユニット60A,60B,60C,…の整流器29から出力された直流電流を、交流電流に再変換し、発電電力として外部の送電網に出力する。
 このような発電システム20Cにおいても、上記第2の実施形態と同様にして、制御部35の制御により、熱源側のエネルギ変動に対応して、複数の発電ユニット60A,60B,60C,…の稼動ユニット数を増減させる。これによって、熱源側のエネルギ変動が生じても、タービン26を作動効率の規定回転数領域内で運転して、発電機28で効率良く発電を行うことが可能となる。
 また、制御部35においては、複数の発電ユニット60A,60B,60C,…のうち、稼動ユニット数を増減するときには、各タービン26の稼動時間に基づいて稼動または停止させるユニットを決定する。これにより、複数の発電ユニット60A,60B,60C,…間で、タービン26の稼動時間を平均化することができる。その結果、タービン26のメンテナンスの間隔を延ばすことができる。また、これにより、すべてのタービン26のメンテナンスタイミングを近くすることによって、メンテナンスを集中的に効率良く行うこともできる。
(その他の実施形態)
 なお、本発明の発電システム、発電方法は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記各実施形態の発電システム20A,20B,20Cにおいては、船舶,工場,ガスタービン等からの排熱を熱源とし、または、地熱、太陽熱、海洋温度差等の自然エネルギーを熱源として発電に用いるようにしたが、これらに限られるものではない。その熱源の種類はなんら問うものではなく、少なくとも熱量が変動し得る熱源を用いる場合に好適である。
 また、上記各実施形態では、膨張器としてタービン26を例示したが、タービン26に代えてスクロール式の膨張器等を採用することもできる。 また、上記第2、第3実施形態において複数の発電機の運転時間を記憶する装置と、その運転時間を表示する装置を備えていてもよい。この場合、運転時間は発電システムの表示盤に表示しても良いし、インターネットを介して発電システム外への表示盤に表示しても良い。この場合、発電システムの管理者、メンテナンス従事者は各発電機の運転状況を確認でき、運転管理、メンテナンスを行うことが可能である。
 これ以外にも、本発明の主旨を逸脱しない限り、上記各実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 上記した発電システム及び発電方法によれば、熱源側のエネルギ変動に対応しつつ、効率の高い領域において発電システムを運転することが可能となる。
 20A,20B,20C  発電システム
 21  熱媒回路
 21a,21b,21c,  分岐管
 22  媒体循環回路
 23  循環ポンプ
 24  予熱器
 25  蒸発器
 26  タービン(膨張器)
 26a  主軸
 27  凝縮器
 28  発電機
 29  整流器
 30  系統連系インバータ
 35  制御部(流量制御手段)
 50A,50B,50C,  発電ユニット
 60A,60B,60C,  発電ユニット
 70  流量調整弁

Claims (5)

  1.  媒体を循環させる媒体循環回路と、
     前記媒体を加圧して前記媒体循環回路内で循環させる循環ポンプと、
     加圧された前記媒体を、熱量が変動し得る外部の熱源から得られる熱媒の熱エネルギにより加熱して蒸発させる蒸発器と、
     前記蒸発器で蒸発された前記媒体により駆動される膨張器と、
     前記膨張器により駆動されて発電する発電機と、
     前記外部の熱源の熱量が変動したときも、前記膨張器または前記発電機の回転数が、予め設定された規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御する流量制御手段と、を備える発電システム。
  2.  前記流量制御手段は、前記媒体循環回路に設けた流量調整弁の開度、または、前記循環ポンプの回転数を制御することによって、前記媒体の流量を制御する請求項1に記載の発電システム。
  3.  少なくとも前記膨張器および前記発電機を備えた発電ユニットが、複数組並列して設けられ、
     前記流量制御手段は、稼動させる前記発電ユニットの数を増減させることによって、稼動中のそれぞれの前記発電ユニットにおける前記膨張器または前記発電機の回転数が、前記規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御する請求項1または2に記載の発電システム。
  4.  前記外部の熱源の温度、前記外部の熱源から前記蒸発器に供給される熱媒の温度または流量、および前記蒸発器の出口における前記媒体の温度の少なくとも一つを計測する計測手段をさらに備え、
     前記流量制御手段は、前記計測手段における計測結果の変化に基づき、前記膨張器に流入する前記媒体の流量を制御することを特徴とする請求項1から3のいずれか一項に記載の発電システム。
  5.  媒体を加圧して媒体循環回路を循環させ、前記媒体を熱量が変動し得る外部の熱源から得られる熱媒の熱エネルギにより加圧して蒸発させ、蒸発した前記媒体により膨張器を回転させることによって発電機を駆動して発電する発電方法であって、
     前記膨張器または前記発電機の回転数を検出するステップと、
     検出された前記回転数が、予め設定された前記規定回転数領域内にあるか否かを判定するステップと、
     前記回転数が前記規定回転数領域内にないときに、前記膨張器または前記発電機の回転数が、予め設定された規定回転数領域内となるように、前記膨張器に流入する前記媒体の流量を制御するステップと、を備える発電方法。
PCT/JP2013/085133 2012-12-28 2013-12-27 発電システム、発電方法 WO2014104307A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/650,601 US20150318810A1 (en) 2012-12-28 2013-12-27 Power generation system and power generation method
EP13867524.4A EP2940254B1 (en) 2012-12-28 2013-12-27 Power generation system and power generation method
CN201380066060.7A CN104870757B (zh) 2012-12-28 2013-12-27 发电系统、发电方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288961 2012-12-28
JP2012288961A JP6021637B2 (ja) 2012-12-28 2012-12-28 発電システム、発電方法

Publications (1)

Publication Number Publication Date
WO2014104307A1 true WO2014104307A1 (ja) 2014-07-03

Family

ID=51021376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085133 WO2014104307A1 (ja) 2012-12-28 2013-12-27 発電システム、発電方法

Country Status (5)

Country Link
US (1) US20150318810A1 (ja)
EP (1) EP2940254B1 (ja)
JP (1) JP6021637B2 (ja)
CN (1) CN104870757B (ja)
WO (1) WO2014104307A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127132A1 (en) * 2014-02-19 2015-08-27 Remy Technologies, Llc Method for optimizing the efficiency of a system of parallel-connected generators
JP2017014986A (ja) * 2015-06-30 2017-01-19 アネスト岩田株式会社 バイナリー発電システムおよびバイナリー発電方法
JP6778475B2 (ja) * 2015-07-01 2020-11-04 アネスト岩田株式会社 発電システムおよび発電方法
JP6991103B2 (ja) * 2018-06-15 2022-01-12 日鉄エンジニアリング株式会社 バイナリー発電システム、およびバイナリー発電システムの制御方法
CN109356674A (zh) * 2018-12-25 2019-02-19 大庆特博科技发展有限公司 一种可调喷嘴数量的有机工质透平
CN113036812B (zh) * 2021-04-28 2023-05-12 南方海洋科学与工程广东省实验室(湛江) 一种用于海洋温差能发电的并网系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088806A (ja) * 1983-10-21 1985-05-18 Mitsui Eng & Shipbuild Co Ltd 内燃機関の廃熱回収装置
JPH0331884B2 (ja) * 1983-01-18 1991-05-09 Mitsui Shipbuilding Eng
JP2005337065A (ja) * 2004-05-25 2005-12-08 Toyota Industries Corp ランキンサイクル装置
JP2006299996A (ja) 2005-04-22 2006-11-02 Ebara Corp 排熱利用システム及び運転方法
JP2006313049A (ja) 2005-05-09 2006-11-16 Ebara Corp 排熱利用システム、及びその運転方法
JP2006313048A (ja) 2005-05-09 2006-11-16 Ebara Corp 排熱利用システム及びその運転方法
JP2008175108A (ja) * 2007-01-17 2008-07-31 Yanmar Co Ltd ランキンサイクル動力回収装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013877A (en) * 1974-08-13 1977-03-22 Westinghouse Electric Corporation Combined cycle electric power plant with a steam turbine having an improved valve control system
US4412422A (en) * 1981-08-31 1983-11-01 General Electric Company Apparatus and method for controlling a multi-turbine installation
IL88571A (en) * 1988-12-02 1998-06-15 Ormat Turbines 1965 Ltd Method of and apparatus for producing power using steam
US6784565B2 (en) * 1997-09-08 2004-08-31 Capstone Turbine Corporation Turbogenerator with electrical brake
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
JP3901608B2 (ja) * 2002-07-24 2007-04-04 本田技研工業株式会社 ランキンサイクル装置
JP3901609B2 (ja) * 2002-07-25 2007-04-04 本田技研工業株式会社 ランキンサイクル装置
US7290393B2 (en) * 2004-05-06 2007-11-06 Utc Power Corporation Method for synchronizing an induction generator of an ORC plant to a grid
US9441576B2 (en) * 2008-02-14 2016-09-13 Sanden Holdings Corporation Waste heat utilization device for internal combustion engine
US8353160B2 (en) * 2008-06-01 2013-01-15 John Pesce Thermo-electric engine
JP5001928B2 (ja) * 2008-10-20 2012-08-15 サンデン株式会社 内燃機関の廃熱回収システム
JP5221443B2 (ja) * 2009-05-08 2013-06-26 株式会社東芝 一軸型複合サイクル発電プラントの起動方法および一軸型複合サイクル発電プラント
CN101929360B (zh) * 2010-09-02 2013-08-21 上海交通大学 基于能量梯级利用的中低温热源发电装置及其热循环方法
US8667799B2 (en) * 2011-07-25 2014-03-11 Ormat Technologies Inc. Cascaded power plant using low and medium temperature source fluid
CN102619641A (zh) * 2012-04-12 2012-08-01 北京工业大学 同时利用内燃机排气和冷却余热的发电系统及控制方法
CN102787889A (zh) * 2012-08-14 2012-11-21 天津大学 柴油机排气余热双效回收系统
JP6187852B2 (ja) * 2012-12-28 2017-08-30 三菱重工業株式会社 発電システムのメンテナンス方法
JP5964229B2 (ja) * 2012-12-28 2016-08-03 三菱重工業株式会社 発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331884B2 (ja) * 1983-01-18 1991-05-09 Mitsui Shipbuilding Eng
JPS6088806A (ja) * 1983-10-21 1985-05-18 Mitsui Eng & Shipbuild Co Ltd 内燃機関の廃熱回収装置
JP2005337065A (ja) * 2004-05-25 2005-12-08 Toyota Industries Corp ランキンサイクル装置
JP2006299996A (ja) 2005-04-22 2006-11-02 Ebara Corp 排熱利用システム及び運転方法
JP2006313049A (ja) 2005-05-09 2006-11-16 Ebara Corp 排熱利用システム、及びその運転方法
JP2006313048A (ja) 2005-05-09 2006-11-16 Ebara Corp 排熱利用システム及びその運転方法
JP2008175108A (ja) * 2007-01-17 2008-07-31 Yanmar Co Ltd ランキンサイクル動力回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940254A4

Also Published As

Publication number Publication date
EP2940254A4 (en) 2016-11-16
CN104870757A (zh) 2015-08-26
EP2940254B1 (en) 2017-11-22
US20150318810A1 (en) 2015-11-05
CN104870757B (zh) 2016-08-24
JP2014129797A (ja) 2014-07-10
EP2940254A1 (en) 2015-11-04
JP6021637B2 (ja) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2014104307A1 (ja) 発電システム、発電方法
JP6086726B2 (ja) 発電システム、発電方法
US8375716B2 (en) Operating a sub-sea organic Rankine cycle (ORC) system using individual pressure vessels
EP2550435B1 (en) Plant for the production of energy based upon the organic rankine cycle.
JP5964229B2 (ja) 発電システム
JP6187852B2 (ja) 発電システムのメンテナンス方法
EP2540995B1 (en) Power generation apparatus
JP5596606B2 (ja) 発電装置
CA2744707A1 (en) Refrigerant mixtures for an organic rankine cycle drive
KR101399428B1 (ko) Orc 발전시스템의 안전장치
JP5871663B2 (ja) バイナリ発電装置の制御方法
JP5910122B2 (ja) 熱回収発電装置
JP5192736B2 (ja) 排熱発電装置、排熱発電装置の運転方法
JP5924980B2 (ja) バイナリ発電装置およびその制御方法
US9540961B2 (en) Heat sources for thermal cycles
JP5822505B2 (ja) 発電システムに対する起動装置及び起動方法
JP2019019797A (ja) 熱電併給システム及び熱電併給システムの運転方法
WO2016170653A1 (ja) 蒸気タービンシステム
JP2017186982A (ja) 自然再生可能エネルギー蓄熱システム
KR101808111B1 (ko) 저온 발전 시스템
JP2022154612A (ja) バイナリー発電装置
JP2013059170A (ja) 発電装置及び発電装置の起動方法
JP2005278232A (ja) 発電システム
PL417825A1 (pl) Sposób wytwarzania pracy użytecznej w urządzeniu termodynamicznym i urządzenie termodynamiczne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867524

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013867524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14650601

Country of ref document: US

Ref document number: 2013867524

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE