WO2014103919A1 - 人工土壌団粒体、及び人工土壌培地 - Google Patents

人工土壌団粒体、及び人工土壌培地 Download PDF

Info

Publication number
WO2014103919A1
WO2014103919A1 PCT/JP2013/084226 JP2013084226W WO2014103919A1 WO 2014103919 A1 WO2014103919 A1 WO 2014103919A1 JP 2013084226 W JP2013084226 W JP 2013084226W WO 2014103919 A1 WO2014103919 A1 WO 2014103919A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial soil
water
aggregate
artificial
particles
Prior art date
Application number
PCT/JP2013/084226
Other languages
English (en)
French (fr)
Inventor
石坂 信吉
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to JP2014554406A priority Critical patent/JP6034879B2/ja
Priority to EP13867446.0A priority patent/EP2939525A4/en
Priority to US14/650,975 priority patent/US20150313102A1/en
Priority to CN201380066233.5A priority patent/CN104869805A/zh
Publication of WO2014103919A1 publication Critical patent/WO2014103919A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/13Zeolites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/42Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure of granular or aggregated structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/08Aluminium compounds, e.g. aluminium hydroxide

Definitions

  • the present invention relates to an artificial soil aggregate obtained by aggregating artificial soil particles, and an artificial soil medium using the artificial soil aggregate.
  • Patent Document 2 a water-absorbing aggregate obtained by adding crushed stone particles or sand to polystyrene expanded particles and then granulating them by dissolving polystyrene has been developed (for example, see Patent Document 2).
  • the water-absorbent aggregates of Patent Document 2 are intended to achieve good water retention and air permeability by utilizing cavities generated by dissolving polystyrene foam particles.
  • the aggregate structure zeolite of Patent Document 1 is obtained by simply mixing and drying a powdered zeolite and a binder in the presence of water. Therefore, appropriate water retention and air permeability are not always realized by voids formed between zeolite particles. Moreover, when compaction etc. occur during operations such as watering, there is a risk that the volumetric water content and the gas phase ratio of the artificial soil will decrease.
  • the water-absorbent aggregate of Patent Document 2 realizes water retention and air permeability by melting polystyrene to form a cavity in the aggregate, but the cavity in the aggregate is appropriately formed. It is difficult to control the size, and it is difficult to set the desired volumetric water content and gas phase rate as artificial soil. In addition, because crushed stone particles and sand are mixed and foamed, the structure of the aggregate is fragile, finely pulverized during cultivation work or watering, etc., and the volumetric water content of artificial soil and There is a possibility that the gas phase rate may decrease.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide artificial soil aggregates obtained by aggregating artificial soil particles by filling the artificial soil aggregates in a container such as a planter.
  • the present invention provides a technique capable of increasing the volumetric water content and the gas phase ratio of artificial soil when the soil is constructed, and maintaining these capabilities over a long period of time.
  • the characteristic configuration of the artificial soil aggregate according to the present invention for solving the above problems is as follows.
  • Artificial soil aggregate in which a plurality of fillers having sub-nm order to sub- ⁇ m order pores are aggregated, and artificial soil particles in which sub- ⁇ m order to sub-mm order communication holes are formed between the fillers are aggregated A granule,
  • the volume moisture content in the range of pF 1.7 to 2.3 is 10 to 40%, and the gas phase ratio in pF 1.5 is 20 to 80%.
  • the artificial soil aggregate of this configuration since the artificial soil particles constituting the artificial soil aggregate have a pore size in the order of sub-nm to sub- ⁇ m, It is possible to effectively take in the nutrients necessary to improve the quality.
  • the size of the communication holes formed between the aggregated fillers is on the order of sub- ⁇ m to sub-mm, moisture (including easy-to-use water) essential for plant growth is effectively absorbed into the communication holes. Can increase the water retention capacity.
  • the artificial soil aggregate of this configuration obtained by aggregating artificial soil particles having such a specific configuration has a volumetric water content in the range of pF 1.7 to 2.3 and 10 to 40%, and pF1 .5 gas phase rate is set to 20-80%, the volumetric water content and gas phase rate of artificial soil are balanced in high dimension, high added value artificial having unique functions not found in natural soil Soil can be realized.
  • a primary gap of the order of ⁇ m to mm is formed between the artificial soil particles.
  • the primary gap is formed between the artificial soil particles in the order of ⁇ m to mm, the water that can be used for the plant is effectively retained in the primary gap. be able to. As a result, the plant growth can be enhanced.
  • the size of the primary gap is preferably 5 to 100 ⁇ m.
  • the size of the primary gap is 5 to 100 ⁇ m, an appropriate gap is generated between the artificial soil aggregates, and water available to the plant is placed in the primary gap. Necessary and sufficient amount can be retained. As a result, the growth of the plant can be further enhanced.
  • the artificial soil aggregate according to the present invention It preferably has a size of 0.2 to 10 mm.
  • the aggregate structure is stable because it has a size of 0.2 to 10 mm. Furthermore, if it is the said particle size range, since an appropriate clearance gap will arise between artificial soil aggregates, it becomes possible to make it compatible with outstanding air permeability and water retention.
  • the artificial soil particles preferably have a particle size distribution of 5 to 1000 ⁇ m.
  • the artificial soil aggregate of this configuration by setting the particle size distribution of the artificial soil particles in the range of 5 to 1000 ⁇ m, appropriate voids are formed in the aggregate structure, and the volumetric water content and air volume of the artificial soil are increased.
  • the phase ratio can be increased.
  • the aggregate structure becomes more stable.
  • ion exchange capacity is imparted to the pores.
  • the artificial soil aggregate of this configuration since the ion exchange ability is imparted to the pores of the artificial soil particles, the artificial soil aggregate can support the fertilizer component necessary for plant growth. . Therefore, it is possible to realize an artificial soil culture medium having plant growth ability equivalent to that of natural soil.
  • the water retaining material since the water retaining material is included, in addition to the water retaining property inherent in the voids of the artificial soil aggregate, the water retaining power of the water retaining material can be further provided. As a result, the water retention is further increased, and an artificial soil aggregate that is resistant to drying can be obtained.
  • the characteristic configuration of the artificial soil culture medium according to the present invention for solving the above problems is as follows.
  • the artificial soil aggregate according to any one of the above is used.
  • the artificial soil culture medium of this configuration since the artificial soil aggregate of the present invention is used, the basic performance as a soil is realized in a well-balanced manner while increasing the volumetric water content and gas phase ratio of the artificial soil over a long period of time. can do. Moreover, since such an artificial soil culture medium can supply a water
  • FIG. 1 is a schematic diagram of artificial soil particles constituting the artificial soil aggregate of the present invention.
  • FIG. 2 is a schematic diagram of the artificial soil aggregate of the present invention.
  • FIG. 3 is a graph showing the measurement results of the pore size distribution of the artificial soil aggregate of the present invention by the mercury intrusion method.
  • FIG. 1 is a schematic diagram of artificial soil particles 10 constituting the artificial soil aggregate of the present invention.
  • artificial soil particles 10 are conceptually shown.
  • FIG. 1A illustrates an artificial soil particle 10 using a zeolite 12 a that is a porous natural mineral as the filler 12.
  • FIG. 1B illustrates an artificial soil particle 10 using a hydrotalcite 12 b that is a layered natural mineral as the filler 12.
  • the symbols x, y, and z shown in FIG. 1 represent the sizes of the pores 11, the communication holes 13, and the artificial soil particles 10 described later, respectively, but the relationship between x, y, and z on the drawing is as follows. It does not reflect the actual size relationship.
  • the artificial soil particles 10 are a plurality of fillers 12 assembled into a granular shape. It is not essential that the fillers 12 in the artificial soil particles 10 are in contact with each other, and if the relative positional relationship within a certain range is maintained through a binder or the like in one particle, It can be considered that a plurality of fillers 12 are aggregated to form a granular shape.
  • the filler 12 constituting the artificial soil particle 10 has a large number of pores 11 from the surface to the inside.
  • the pore 11 includes various forms. For example, when the filler 12 is the zeolite 12a shown in FIG. 1 (a), the voids present in the crystal structure of the zeolite 12a are the pores 11, and in the case of the hydrotalcite 12b shown in FIG.
  • the layers present in the layer structure of the hydrotalcite 12b are the pores 11. That is, in the present invention, the “pore” means a void portion, an interlayer portion, a space portion and the like existing in the structure of the filler 12, and these are not limited to the “pore shape”.
  • the size of the pores 11 of the filler 12 (average value of the size x shown in FIG. 1) is on the order of sub-nm to sub- ⁇ m.
  • the size of the pores 11 can be set to about 0.2 to 800 nm, but when the filler 12 is the zeolite 12a shown in FIG. 1 (a), the voids present in the crystal structure of the zeolite 12a.
  • the size (diameter) is about 0.3 to 1.3 nm.
  • the size (distance) between layers existing in the layer structure of the hydrotalcite 12b is about 0.3 to 3.0 nm.
  • an organic porous material which will be described later, can be used as the filler 12, and the diameter x of the pores 11 in that case is about 0.1 to 0.8 ⁇ m.
  • a communication hole 13 is formed between the plurality of fillers 12.
  • the pores 11 are dispersedly arranged around the communication hole 13. Since moisture (including easy-to-use water described later) is mainly held in the communication hole 13, the artificial soil particles 10 can have a certain water retention.
  • the size of the communication hole 13 (the average value of the distance y between adjacent fillers 12 shown in FIG. 1) can vary depending on the type, composition, and granulation conditions of the filler 12 and the binder. Become.
  • the size of the communication hole 13 can be set to about 0.1 to 500 ⁇ m, but the filler 12 is the zeolite 12a shown in FIG. 1 (a) or the hydrotalcite 12b shown in FIG. 1 (b).
  • the size of the communication hole 13 is 0.1 to 20 ⁇ m.
  • the sizes of the pores 11 and the communication holes 13 are optimum by using a gas adsorption method, a mercury intrusion method, a small-angle X-ray scattering method, an image processing method, or a combination of these methods depending on the state of the measurement object. Can be measured by various methods.
  • the filler 12 is preferably made of a material in which ion exchange capacity is imparted to the pores 11 so that the artificial soil particles 10 have a sufficient fertilizer.
  • a material imparted with ion exchange ability a material imparted with cation exchange ability, a material imparted with anion exchange ability, or a mixture of both can be used.
  • a porous material that does not have ion exchange capacity for example, polymer foam, glass foam, etc.
  • press-fit the material with the above ion exchange capacity into the pores of the porous material It is also possible to introduce it by impregnation or the like and use it as the filler 12.
  • the material imparted with the cation exchange ability include cation exchange minerals, humus, and cation exchange resins.
  • the material imparted with the anion exchange ability include anion exchange minerals and anion exchange resins.
  • Examples of the cation exchange mineral include smectite minerals such as montmorillonite, bentonite, beidellite, hectorite, saponite, and stevensite, mica minerals, vermiculite, and zeolite.
  • Examples of the cation exchange resin include a weak acid cation exchange resin and a strong acid cation exchange resin. Of these, zeolite or bentonite is preferable.
  • the cation exchange mineral and the cation exchange resin can be used in combination of two or more.
  • the cation exchange capacity of the cation exchange mineral and the cation exchange resin is set to 10 to 700 meq / 100 g, preferably 20 to 700 meq / 100 g, more preferably 30 to 700 meq / 100 g.
  • the cation exchange capacity is less than 10 meq / 100 g, the nutrients cannot be taken in sufficiently, and the taken-up nutrients may be lost early due to irrigation or the like.
  • the fertilizer is excessively increased so that the cation exchange capacity exceeds 700 meq / 100 g, the effect is not greatly improved and it is not economical.
  • Anion-exchange minerals include, for example, natural layered double hydroxides that have double hydroxides as the main skeleton such as hydrotalcite, manaceite, pyroaulite, sjoglenite, patina, synthetic hydrotalcite and hydrotalcite-like Materials, clay minerals such as allophane, imogolite, kaolin and the like.
  • the anion exchange resin include weakly basic anion exchange resins and strong basic anion exchange resins. Of these, hydrotalcite is preferred.
  • An anion exchange mineral and an anion exchange resin can be used in combination of two or more.
  • the anion exchange capacity of the anion exchange mineral and the anion exchange resin is set to 5 to 500 meq / 100 g, preferably 20 to 500 meq / 100 g, more preferably 30 to 500 meq / 100 g.
  • the anion exchange capacity is less than 5 meq / 100 g, the nutrients cannot be taken in sufficiently, and the taken-up nutrients may be lost early due to irrigation or the like.
  • the fertilizer is excessively increased so that the anion exchange capacity exceeds 500 meq / 100 g, the effect is not greatly improved and it is not economical.
  • ⁇ Granulation method of artificial soil particles When the filler 12 is an inorganic mineral such as zeolite 12a or hydrotalcite 12b shown in FIG. 1, a plurality of fillers 12 are aggregated to form a granular material (artificial soil particle 10). Can be made.
  • the formation of the artificial soil particles 10 using a binder is performed by adding a binder or a solvent to the filler 12 and mixing them, introducing the mixture into a granulator, rolling granulation, fluidized bed granulation, stirring granulation, compression granulation. It can be performed by a known granulation method such as granulation, extrusion granulation, crushing granulation, melt granulation, spray granulation or the like.
  • the obtained granulated body is dried and classified as needed, and the artificial soil particle 10 is completed. Further, a binder is added to the filler 12, and a solvent or the like is further added and kneaded. If necessary, this is dried and made into a block shape, which is appropriately pulverized by pulverizing means such as a mortar and pestle, hammer mill, roll crusher, etc. It is also possible to obtain a granular material. This granular material can be used as the artificial soil particle 10 as it is, but it is preferable to adjust to a desired particle size by sieving.
  • Organic binders include, for example, modified cellulose binders such as ethyl cellulose, polyolefin binders, polyvinyl alcohol binders, polyurethane binders, vinyl acetate binders such as vinyl acetate and ethylene vinyl acetate, urethane resins such as urethane resins and vinyl urethane resins.
  • Binders such as synthetic resin binders such as acrylic binders, acrylic resin binders, silicone resin binders, polysaccharides such as starch, carrageenan, xanthan gum, gellan gum, and alginates, and natural product binders such as proteins such as polyamino acids and glues.
  • the inorganic binder include silicate binders such as water glass, phosphate binders such as aluminum phosphate, borate binders such as aluminum borate, and hydraulic binders such as cement.
  • An organic binder and an inorganic binder can be used in combination of two or more.
  • the artificial soil particles 10 may be formed by the same method as the granulation method of the filler 12 described above using a binder. It is also possible to form the artificial soil particles 10 by heating to a temperature equal to or higher than the melting point of the organic porous material (polymer material or the like) constituting the material and thermally fusing the surfaces of the plurality of fillers 12 together to granulate. It is. In this case, a granular material in which a plurality of fillers 12 are gathered can be obtained without using a binder.
  • an organic porous material for example, an organic polymer foam obtained by foaming an organic polymer material such as polyethylene, polypropylene, polyurethane, polyvinyl alcohol, and cellulose, and the powder of the organic polymer material is heated and melted.
  • An organic polymer porous body having an open cell structure is exemplified.
  • a gelation reaction of a polymer gelling agent can be used.
  • the gelation reaction of the polymer gelling agent include a gelation reaction of alginate, propylene glycol alginate, gellan gum, glucomannan, pectin, or carboxymethylcellulose (CMC) with a polyvalent metal ion, carrageenan, agar, xanthan gum.
  • CMC carboxymethylcellulose
  • Gelation reaction by double helix structuring reaction of polysaccharides such as locust bean gum and tara gum.
  • the gelation reaction between an alginate and a polyvalent metal ion will be described.
  • sodium alginate which is one of alginates, is a neutral salt in which the carboxyl group of alginic acid is bonded to Na ions.
  • Alginic acid is insoluble in water, but sodium alginate is water soluble.
  • polyvalent metal ions for example, Ca ions
  • ionic crosslinking occurs between molecules of sodium alginate, and gelation proceeds.
  • the gelation reaction can be performed by the following steps.
  • an alginate aqueous solution is prepared by dissolving alginate in water, a filler 12 is added to the alginate aqueous solution, and this is sufficiently stirred to form a mixed solution in which the filler 12 is dispersed in the alginate aqueous solution. .
  • the mixed solution is dropped into the polyvalent metal ion aqueous solution, and the alginate contained in the mixed solution is gelled in a granular form. Thereafter, the gelled particles are collected, washed with water, and sufficiently dried. Thereby, the artificial soil particle 10 as the granular material which the filler 12 disperse
  • alginates examples include sodium alginate, potassium alginate, and ammonium alginate. These alginate can be used in combination of two or more.
  • the concentration of the alginate aqueous solution is 0.1 to 5% by weight, preferably 0.2 to 5% by weight, more preferably 0.2 to 3% by weight. When the concentration of the alginate aqueous solution is less than 0.1% by weight, the gelation reaction hardly occurs. When the concentration exceeds 5% by weight, the viscosity of the alginate aqueous solution becomes too large. In addition, it is difficult to drop the mixed solution into the aqueous solution of the polyvalent metal ion.
  • the polyvalent metal ion aqueous solution to which the alginate aqueous solution is dropped may be a divalent or higher metal ion aqueous solution that reacts with the alginate and causes gelation.
  • Examples of such polyvalent metal ion aqueous solutions include aqueous chloride solutions of polyvalent metals such as calcium chloride, barium chloride, strontium chloride, nickel chloride, aluminum chloride, iron chloride, cobalt chloride, calcium nitrate, barium nitrate, aluminum nitrate.
  • Nitrate aqueous solutions of polyvalent metals such as iron nitrate, copper nitrate and cobalt nitrate, lactate aqueous solutions of polyvalent metals such as calcium lactate, barium lactate, aluminum lactate and zinc lactate, aluminum sulfate, zinc sulfate, cobalt sulfate etc.
  • An aqueous solution of a valent metal sulfate is mentioned.
  • These polyvalent metal ion aqueous solutions can be used in combination of two or more.
  • the concentration of the polyvalent metal ion aqueous solution is 1 to 20% by weight, preferably 2 to 15% by weight, more preferably 3 to 10% by weight. When the concentration of the polyvalent metal ion aqueous solution is less than 1% by weight, the gelation reaction hardly occurs. When the concentration exceeds 20% by weight, it takes time to dissolve the metal salt and excessive materials are used. Not economical.
  • One method for improving the water retention of the communication hole 13 is to introduce a water retention material into the communication hole 13 of the artificial soil particle 10.
  • the water retention material can be introduced, for example, by filling the entire communication hole 13 with a water retention material or coating the surface of the communication hole 13 with a film of the water retention material. At this time, it is sufficient that the water retaining material exists in at least a part of the communication hole 13.
  • the introduction of the water retention material is performed, for example, by dissolving a polymer material having water retention in a solvent to prepare a polymer solution, and impregnating the artificial soil particles 10 with the polymer solution.
  • the fibers having water retention properties may be mixed in the raw material.
  • the fiber which is a water retention material can be introduced not only into the communication hole 13 of the artificial soil particle 10 but also to the entire artificial soil particle 10.
  • the fiber introduced as the water retention material also functions as a reinforcing material.
  • Examples of fibers that can be introduced into the artificial soil particles 10 include synthetic fibers such as vinylon, urethane, nylon, and acetate, and natural fibers such as cotton, wool, rayon, and cellulose. Of these fibers, vinylon and cotton are preferred.
  • the artificial soil particles 10 introduced with the water-retaining material greatly improve the water-retaining ability, so that, for example, even when used in a dry external environment, it is possible to prevent plant dying and poor growth without providing water for a long time. it can. Furthermore, since the strength and durability of the artificial soil particles 10 are improved by introducing the water retention material, a synergistic effect of maintaining the water retention over a long period can be expected.
  • polymer materials that can be used as water-retaining materials include synthetic polymer water-retaining properties such as polyacrylate polymers, polysulfonate polymers, polyacrylamide polymers, polyvinyl alcohol polymers, and polyalkylene oxide polymers.
  • synthetic polymer water-retaining properties such as polyacrylate polymers, polysulfonate polymers, polyacrylamide polymers, polyvinyl alcohol polymers, and polyalkylene oxide polymers.
  • natural polymeric water-retaining materials such as materials, polyaspartate-based polymers, polyglutamate-based polymers, polyalginate-based polymers, cellulose-based polymers, and starches. These water retaining materials can be used in combination of two or more.
  • the solvent that dissolves the polymer material which is a water-retaining material, has a high solubility depending on the polymer material used, that is, a combination in which the solubility parameter (SP value) between the polymer material and the solvent is close Selected.
  • SP value solubility parameter
  • a combination in which the difference between the SP value of the polymer material and the SP value of the solvent is 5 or less eg, a combination of nitrocellulose having an SP value of about 10 and methanol having an SP value of about 14.5
  • solvents include methanol, ethanol, isopropanol, butanol, ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone. These solvents can be used in combination of two or more.
  • Another method for improving the water retention of the communication hole 13 is to use a water retention filler for a part or all of the filler 12 as a raw material when the artificial soil particles 10 are prepared.
  • the generated artificial soil particles 10 themselves have water retention properties, so that a special post-treatment for improving the water retention properties is not necessary.
  • Hydrophilic fillers and porous granular materials can be used as water retention fillers, and examples of hydrophilic fillers include zeolite, smectite minerals, mica minerals, talc, silica, and double hydroxides.
  • the porous particulate material include foamed glass, porous metal, porous ceramic, polymer porous body, and hydrophilic fiber.
  • FIG. 2 is a schematic diagram of the artificial soil aggregate 1 of the present invention.
  • the artificial soil aggregate 1 is conceptually shown.
  • the artificial soil aggregate 1 of the present invention is an aggregate of artificial soil particles 10.
  • the artificial soil aggregate 1 is used in a form filled in a container such as a planter.
  • the water retention of the soil is closely related to the moisture contained in the soil.
  • the moisture contained in the soil is classified into those that can be used for plants and those that cannot be used depending on the state retained in the soil.
  • soil is composed of soil particles of various sizes, and moisture contained in the soil is retained in gaps formed between the soil particles by capillary action or the like.
  • Moisture contained in the soil is classified into gravity water, capillary water, and hygroscopic water from those having a weak adsorption power according to the adsorption power to the soil.
  • Soil permeability is related to the condition of the gaps formed between soil particles.
  • a certain gas phase rate ratio of voids (gas phase) to the total volume of soil
  • the total volume of the soil is the sum of the three phases of the soil, that is, the gas phase, the liquid phase, and the solid phase.
  • the artificial soil aggregate 1 of the present invention has a sub-nm order.
  • the artificial soil aggregate 1 of the present invention has a sub-nm order.
  • the artificial soil aggregate 1 is composed of a plurality of artificial soil particles 10, and it is not essential that they are in contact with each other, and relative positions within a certain range via a binder or the like within the aggregate. As long as the relationship is maintained. A space is formed between the plurality of artificial soil particles 10 constituting the artificial soil aggregate 1, and moisture can be absorbed from the outside and held in the space. In this specification, the void formed between the artificial soil particles 10 is defined as a primary gap 2.
  • the amount of easy water and the gas phase rate are related to the size of the primary gap 2 formed in the aggregate structure of the artificial soil aggregate 1.
  • the size of the primary gap 2 becomes too large, the force for holding moisture in the primary gap 2 is weakened, and moisture cannot be held in the aggregate structure against gravity.
  • the amount of easy-to-use water decreases, the gas phase rate increases, the water available to the plant decreases, and the plant can die.
  • the size of the primary gap 2 becomes too small, the moisture retention in the aggregate structure becomes strong.
  • the amount of easy-to-use water decreases and the plant cannot easily use water.
  • the gas phase rate of the soil is reduced, and moisture damage is likely to occur in plants.
  • the primary gap 2 functions as a water retention gap that retains a large amount of water available to plants.
  • the size of the primary gap 2 (the average value of the size s of the primary gap 2 shown in FIG. 2) can vary depending on the type, composition and granulation conditions of the artificial soil particles 10 and the binder, but is usually in the order of ⁇ m to mm. For example, it is adjusted to 1 ⁇ m to 1 mm.
  • the preferred size of the primary gap 2 is 2 to 500 ⁇ m, more preferably 5 to 100 ⁇ m.
  • the size of the primary gap 2 is also related to the particle size distribution of the artificial soil particles 10 constituting the artificial soil aggregate 1.
  • the particle size distribution of the artificial soil particles 10 is adjusted to a range of 5 to 1000 ⁇ m, preferably 10 to 500 ⁇ m. If the particle size distribution of the artificial soil particles 10 is broader than the range of 5 to 1000 ⁇ m, the primary gap 2 may not be formed in a stable state.
  • the size of the primary gap 2 is also related to the size z of the artificial soil particles 10 constituting the artificial soil aggregate 1.
  • the average value (average particle diameter) of the size z of the artificial soil particles 10 is adjusted to 20 to 500 ⁇ m, preferably 30 to 300 ⁇ m. If the average particle size of the artificial soil particles 10 is smaller than 20 ⁇ m, the pore size of the primary gap 2 becomes too small, the force for holding the moisture in the primary gap 2 becomes large, and it becomes difficult for the plant to use the moisture.
  • the average particle size of the artificial soil particles 10 is larger than 500 ⁇ m, the size of the primary gap 2 becomes too large, the force for holding the moisture in the primary gap 2 becomes weak, and the moisture is washed away from the primary gap 2 by gravity. It becomes easy.
  • the gap formed between the artificial soil aggregates 1 is distinguished from the primary gap 2 formed between the artificial soil particles 10 described above and is defined as a secondary gap.
  • the secondary gap retains moisture and plays an important role in the air permeability of the artificial soil medium. Since the secondary gap is a so-called coarse gap, and the size of the gap is large, the water that has entered the secondary gap is easily drained from the artificial soil medium as gravity water, and the space from which the moisture has been drained increases the air permeability of the artificial soil medium. It becomes space to secure.
  • the primary gap 2 since the primary gap 2 has a small gap size, the water that has entered the primary gap 2 is not easily discharged as gravity water and is held in the primary gap 2. Plants can use water for a long time due to the moisture retained in the primary gap 2.
  • the secondary gap between the artificial soil aggregates 1 is a space where the plant is rooted and oxygen is taken from the root, if the secondary gap is insufficient and the air permeability of the artificial soil medium is deteriorated, the plant is damaged by moisture. May occur. On the other hand, if the air permeability of the artificial soil medium becomes too high, the amount of water retained decreases and the water available to the plant decreases. Therefore, in order to keep the secondary gap between the artificial soil aggregates 1 appropriately, it is necessary to set the size of the artificial soil aggregates 1 to an appropriate size.
  • the size of the artificial soil aggregate 1 (average value of the size w of the artificial soil aggregate 1 shown in FIG.
  • the plant to be cultivated becomes difficult to absorb oxygen from the roots and may cause root rot.
  • the size of the artificial soil aggregate 1 exceeds 10 mm, the secondary gap becomes large, the adsorptivity between the artificial soil aggregate 1 and the moisture is weakened, and moisture is excessively discharged by gravity. As a result, the plant may not easily absorb moisture, or the artificial soil culture medium may become sparse and the plant may lie down.
  • the size of the artificial soil aggregate 1, the size of the primary gap 2 between the artificial soil particles 10, and the particle size of the artificial soil particles 10 can be measured using, for example, an optical microscope observation and an image processing method.
  • the size of the artificial soil aggregate 1, the size of the primary gap 2, and the particle size of the artificial soil particles 10 were measured by the following measurement method.
  • the artificial soil particles to be measured are observed together with a scale with a microscope, and the microscope image is acquired using image processing software (two-dimensional image analysis processing software “WinROOF”, manufactured by Mitani Corporation).
  • 100 artificial soil aggregates or artificial soil particles are selected from the image, and the outline of the artificial soil aggregate, primary gap, or artificial soil particle is traced.
  • the diameter of the equivalent circle is calculated from the circumference of the traced figure.
  • the average of the diameters (100) of the equivalent circles obtained from the respective artificial soil aggregates, primary gaps, or artificial soil particles is defined as an average size (unit: pixel). Then, the average size is compared with the scale in the microscopic image, converted to a unit length ( ⁇ m order to mm order), the size of the artificial soil aggregate, the size of the primary gap, or the particle size of the artificial soil particles calculate.
  • the artificial soil aggregate 1 is constituted by aggregating a plurality of artificial soil particles 10, and the aggregation method is performed by the same method as described in the granulating method of the artificial soil particles 10. can do. Since the artificial soil aggregate 1 of the present invention is formed by granulating the artificial soil particles 10 with a binder or gelling with a polymer gelling agent, the primary gap 2 between the artificial soil particles 10 is present. Immobilized with a binder or polymer gelling agent. Therefore, the artificial soil medium composed of the artificial soil aggregate 1 has sufficient strength. For this reason, soil compaction or the like occurs, and the amount of easy-to-use water and air permeability do not decrease, and the amount of easy-to-use water necessary for plants can be supplied over a long period of time.
  • the artificial soil aggregate 1 when constructing the artificial soil aggregate 1, different types of artificial soil particles may be used as the artificial soil particles 10.
  • additives such as fertilizers, pigments, fragrances, bactericides, antibacterial agents, deodorants, insecticides, and the like can be mixed to be agglomerated.
  • a water retention material when constructing the artificial soil aggregate 1, it is possible to introduce a water retention material into the primary gap 2. In this case, the same water retention material can be introduced by the same method as the introduction of the water retention material into the artificial soil particles 10.
  • Soil is composed of soil particles of various sizes, and moisture is retained in gaps formed between the soil particles by capillary action or the like.
  • the force with which the soil retains moisture is expressed as a pF value.
  • the pF value is a common logarithm value of the suction pressure of the soil moisture expressed by the height of the water column, and is a value representing the degree of strength at which the moisture in the soil is attracted by the capillary force of the soil. When the pF value is 2.0, it corresponds to a pressure of 100 cm of water column.
  • the pF value also represents the strength of soil and moisture adsorption.
  • the pF value becomes low, and the plant roots easily absorb moisture.
  • the pF value becomes high, and a large force is required for the roots of plants to absorb moisture.
  • the water in the soil that the plant can absorb from the roots is the water from the water remaining in the soil (pF1.7), usually 24 hours after rainfall or irrigation, to the initial wilting point (pF3.8) where the plant begins to wither. It is.
  • the range of pF value that can grow plants, so-called easy water is 1.7 to 2.7.
  • the range of easy-to-use water in the artificial soil medium is defined as 1.7 to 2.3.
  • the pF value can be measured using a pF meter (tensiometer).
  • the water retention amount (easily effective water amount) in the range of pF 1.7 to 2.3 is expressed as volumetric water content (VWC 1.7 to 2.3 ) per 100 ml of artificial soil aggregate.
  • VWC 1.7 to 2.3 (%) is the mass Wd of the artificial soil aggregate 1 in the dry state, the mass W 1.7 of the artificial soil aggregate 1 at the time of pF1.7, and pF2.3.
  • the mass W 2.3 of the artificial soil aggregate 1 at this time is measured, and calculated from the following equation (1).
  • VWC 1.7 to 2.3 (%) [(W 2.3 ⁇ Wd) / 100 ⁇ (W 1.7 ⁇ Wd) / 100] ⁇ 100 (1)
  • (W 2.3 -Wd) on the right side represents the amount of water retained when pF2.3 contained in the artificial soil aggregate 1 is expressed in weight (mg), but the specific gravity of water is 1 Therefore, the value (mg) of (W 2.3 -Wd) can be regarded as the volume (ml) of the water retention amount at the time of pF2.3.
  • the volumetric water content (%) in the range of pF 1.7 to 2.3 is adjusted to 10 to 40%, preferably 13 to 30%, more preferably 20 to 30%. ing.
  • volumetric water content (%) in the range of pF 1.7 to 2.3 at 10% or more.
  • the volumetric water content (%) in the range of pF 1.7 to 2.3 can be maintained over 10% for a long period of time, even if the frequency of irrigation is reduced, the viability of the plant does not decrease, and maintenance such as irrigation Can be reduced.
  • the artificial soil medium of the present invention since the artificial soil medium of the present invention has the primary gap and the secondary gap, water can be retained in the artificial soil medium for a long period of time.
  • volumetric water content (%) in the range of pF 1.7 to 2.3 of the artificial soil medium when set to the above range, easy water is effectively retained in the primary gap and the secondary gap.
  • the volumetric water content (%) in the range of pF 1.7 to 2.3 can be maintained at 10% or more for a long period of time, and maintenance such as irrigation can be reduced.
  • the gas phase rate of the soil in order for plants to grow, it is necessary to adjust the gas phase rate of the soil appropriately. For example, if the moisture content is high when the pF value is low, plant damage is likely to occur. Therefore, even when the pF value is low, it is necessary to maintain the air permeability of the soil above a certain level.
  • the index indicating the air permeability of soil when the pF value is low is represented by the gas phase rate at pF1.5.
  • pF1.5 refers to the state of water remaining in the soil after 24 hours of irrigation of 30-50 mm or more per day (a state in which drainage by gravity is almost completed). In order to sufficiently grow plants planted in soil, it is necessary to set the gas phase rate at pF1.5 to 20% or more.
  • the gas phase rate at pF1.5 is adjusted to 20 to 80%, preferably 20 to 60%.
  • the artificial soil culture aggregate 1 of the present invention realizes a high-value-added artificial soil having a unique function that is not found in natural soil, balanced in a high volumetric moisture content and gas phase ratio of the artificial soil. It will be possible. That is, since water (easily effective water) that can be used by the plant can be optimally secured, it is possible to reduce the number of times of watering the plant or to realize an optimal cultivation schedule according to the type of plant.
  • a reagent sodium alginate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in water to prepare an aqueous solution having a concentration of 0.5%, and an artificial zeolite “Ryukyu Light 600 manufactured by Ecowell Co., Ltd. was added to 100 parts by weight of an aqueous 0.5% sodium alginate solution. 10 parts by weight and 10 parts by weight of a reagent hydrotalcite manufactured by Wako Pure Chemical Industries, Ltd. were added and mixed.
  • the mixed solution was dropped into a 5% calcium chloride aqueous solution at a rate of 1 drop / second. After the dropped droplets were gelled, the particulate gel was recovered, washed with water, and dried for 24 hours with a dryer set at 55 ° C. The dried particulate gel was pulverized in a mortar, and the pulverized one was sieved and classified into a particle size of 75 ⁇ m over and 106 ⁇ m under, to obtain artificial soil particles. In this artificial soil particle, a plurality of fillers having pores in the order of sub-nm order to sub- ⁇ m order were collected, and communication holes in the order of sub- ⁇ m order to sub-mm order were formed between the fillers.
  • ⁇ Production of artificial soil aggregate Add 50 ml of 20% vinyl acetate emulsion aqueous solution (vinyl acetate emulsion: for bond woodwork manufactured by Konishi Co., Ltd.) to 100 ml of artificial soil particles, infiltrate the whole artificial soil particles, and dry at 80 ° C. for 48 hours. And solidified. A block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized material was sieved and classified into a particle size of 0.25 mm over and 2 mm under, to obtain an artificial soil aggregate. The obtained artificial soil aggregate had voids on the order of ⁇ m to mm between the artificial soil particles constituting the artificial soil aggregate.
  • volume content of the artificial soil aggregate in the range of pF 1.7 to 2.3 was determined from the formula (1) described in the item “Water retention and air permeability of the artificial soil aggregate”.
  • gas phase rate of the artificial soil aggregate in pF1.5 was calculated
  • the value measured by setting in a digital real volume measuring device “DIK-1150” manufactured by Kairi Kogyo Co., Ltd. was taken as the gas phase rate of the artificial soil aggregate at pF1.5.
  • the volumetric water content in the range of pF 1.7 to 2.3 of the artificial soil aggregate was 14%, and the gas phase ratio at pF 1.5 was 40%. This volumetric water content and gas phase ratio were included in the scope of the present invention.
  • a reagent sodium alginate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in water to prepare an aqueous solution having a concentration of 0.5%, and an artificial zeolite “Ryukyu Light 600 manufactured by Ecowell Co., Ltd. was added to 100 parts by weight of an aqueous 0.5% sodium alginate solution. 20 parts by weight were added and mixed. The mixed solution was dropped into a 5% calcium chloride aqueous solution at a rate of 1 drop / second.
  • the particulate gel was recovered, washed with water, and dried for 24 hours with a dryer set at 55 ° C.
  • the dried particulate gel was pulverized in a mortar, and the pulverized one was sieved and classified into a particle size of 0.1 mm over and 0.25 mm under, to obtain artificial soil particles.
  • the artificial soil particles were immersed in water to obtain a saturated water content, and then left for 1 hour to allow gravity water to flow down.
  • 100 ml of the water-containing artificial soil particles were mixed with 50 ml of 20% vinyl acetate emulsion aqueous solution (vinyl acetate emulsion: for bond woodwork manufactured by Konishi Co., Ltd.), and dried and solidified at 80 ° C. for 48 hours.
  • a block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized one was classified with a sieve to produce an artificial soil aggregate having a particle size of about 3 mm.
  • FIG. 3 is a graph showing the measurement results of the pore size distribution of the artificial soil aggregate of the present invention by the mercury intrusion method.
  • the peak around 30 nm is assumed to be a minute gap formed between fillers
  • the peak around 700 nm is assumed to be a communication hole
  • the peak around 20 ⁇ m is assumed to be a primary gap.
  • the artificial soil aggregate of the present invention has sub- ⁇ m order to sub mm order communication holes and ⁇ m order to mm order primary gaps, and the filler has sub nm order to sub ⁇ m order.
  • the pores it was confirmed to have a unique porous structure with at least a tertiary size distribution.
  • zeolite (Ryukyu Light CEC600, manufactured by Ecowell Co., Ltd.), bentonite (cation exchange material) having a cation exchange capacity as a filler.
  • Kathanen Kogyo Co., Ltd. and at least one of cation exchange resins (Organo Co., Ltd.) and hydrotalcite (Wako Pure Chemicals) which is a material with anion exchange ability (anion exchange material) Kogyo Kogyo Co., Ltd.) and at least one of anion exchange resins (Organo Co., Ltd.) were hardened with a binder to produce artificial soil particles used in Examples 1 to 23 and Comparative Examples 1 to 6. .
  • binder examples include sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd.), potassium alginate (manufactured by Kimika Co., Ltd.), agar (manufactured by Wako Pure Chemical Industries, Ltd.) or xanthan gum (Soaxane (registered trademark) XG550, MRC Polysaccharide Co., Ltd.). And a locust bean gum (Soar Locust (registered trademark) A120, manufactured by MRC Polysaccharide Inc.).
  • a method for producing artificial soil aggregates when a vinyl acetate resin adhesive is used as the binder (Examples 1 to 15, and 21 to 23, and Comparative Examples 1 to 6) will be described below.
  • the obtained artificial soil particles were immersed in water to obtain a saturated water-containing state, and then left for 1 hour to allow gravity water to flow down. 100 ml of this artificial soil particle containing water was mixed with 50 ml of a 20% vinyl acetate emulsion aqueous solution and dried at 80 ° C. for 48 hours to solidify.
  • a block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized one was classified with a sieve to produce an artificial soil aggregate.
  • a method for producing an artificial soil aggregate when a polyethylene mixed emulsion is used as a binder will be described below.
  • the obtained artificial soil particles were immersed in water to obtain a saturated water-containing state, and then left for 1 hour to allow gravity water to flow down.
  • 100 ml of the water-containing artificial soil particles were mixed with 50 ml of a 20% polyethylene mixed emulsion solution.
  • the obtained mixture was introduced into a granulator to be agglomerated and dried at 100 ° C. for 24 hours to produce an artificial soil aggregate.
  • a method for producing an artificial soil aggregate when agar is used as a binder (Example 17) will be described below.
  • the obtained artificial soil particles (100 ml) were mixed with 1% agar (manufactured by Wako Pure Chemical Industries, Ltd.) in 80 ml solution at 80 ° C. and cooled to room temperature to produce a gelled product.
  • the resulting gelled product was dried for 24 hours with a dryer set at 50 ° C., the mass was pulverized, and the pulverized product was classified with a sieve to produce an artificial soil aggregate.
  • a method for producing an artificial soil aggregate when acrylamide is used as a binder (Example 18) will be described below.
  • the obtained artificial soil particles were immersed in water to obtain a saturated water-containing state, and then left for 1 hour to allow gravity water to flow down.
  • 100 ml of the water-containing artificial soil particles were mixed with 50 ml of 10% acrylamide solution, and dried and solidified at 80 ° C. for 24 hours.
  • a block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized one was classified with a sieve to produce an artificial soil aggregate.
  • a method for producing an artificial soil aggregate when a urethane resin emulsion is used as a binder will be described below.
  • the obtained artificial soil particles were immersed in water to obtain a saturated water-containing state, and then left for 1 hour to allow gravity water to flow down.
  • 100 ml of the water-containing artificial soil particles were mixed with 50 ml of 10% urethane resin emulsion solution, and dried and solidified at 80 ° C. for 24 hours.
  • a block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized one was classified with a sieve to produce an artificial soil aggregate.
  • a method for producing an artificial soil aggregate when using ethyl cellulose as a binder will be described below.
  • the obtained artificial soil particles were immersed in water to obtain a saturated water-containing state, and then left for 1 hour to allow gravity water to flow down.
  • 100 ml of the water-containing artificial soil particles were mixed with 50 ml of 10% ethylcellulose solution, and dried and solidified at 80 ° C. for 24 hours.
  • a block of artificial soil particles solidified into a block shape was pulverized with a mortar, and the pulverized one was classified with a sieve to produce an artificial soil aggregate.
  • ⁇ Test content> Size of artificial soil particles or artificial soil aggregates Artificial soil particles or artificial soil aggregates are classified into a predetermined size with a sieve in advance, and the size is measured by a measurement method using image processing. This was used as a sample. The sizes of the artificial soil particles and the artificial soil aggregates were measured using the optical microscope observation and the image processing method described in the item “Artificial soil aggregates” described above.
  • the cation exchange capacity (CEC) of the artificial soil particles was measured using a comprehensive soil and crop body analyzer “SFP-3” manufactured by Fujihira Kogyo Co., Ltd.
  • Anion exchange capacity 20 mL of 0.05 M calcium nitrate solution was added to 2 g of artificial soil particles and stirred for 1 hour. The solution was centrifuged (10,000 rpm) at room temperature for 1 minute, and the supernatant was used as a measurement sample. About the sample for a measurement, the light absorbency of wavelength 410nm was measured using the ultraviolet visible spectrophotometer, and the calcium nitrate density
  • the artificial soil aggregate of the present invention since the artificial soil aggregate of the present invention has a communication hole and a primary gap, the volumetric water content in the range of pF 1.7 to 2.3 and the gas phase rate in pF 1.5 are easily within the above range. It was possible to adjust and the quality was stable. Thus, it was shown that the artificial soil aggregate of the present invention is balanced in a high volume moisture content and gas phase ratio, and can be a product with high added value that can be used in a plant factory or the like.
  • the artificial soil aggregate and the artificial soil culture medium of the present invention can be used for artificial soil used in plant factories and the like, but as other uses, facility horticultural soil, greening soil, molded soil, soil improvement It can also be used as an agent and soil for interiors.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cultivation Of Plants (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

 人工土壌粒子を団粒化した人工土壌団粒体において、人工土壌団粒体をプランター等の容器に充填して人工土壌を構成したときに、人工土壌の体積含水率及び気相率を高めるとともに、長期に亘ってこれら能力を維持することが可能となる技術を提供する。 サブnmオーダー乃至サブμmオーダーの細孔11を有するフィラー12が複数集合してなり、フィラー12の間にサブμmオーダー乃至サブmmオーダーの連通孔13が形成された人工土壌粒子10を団粒化した人工土壌団粒体1であって、pF1.7~2.3の範囲における体積含水率が10~40%であり、且つ、pF1.5における気相率が20~80%である。

Description

人工土壌団粒体、及び人工土壌培地
 本発明は、人工土壌粒子を団粒化した人工土壌団粒体、及び当該人工土壌団粒体を使用した人工土壌培地に関する。
 近年、生育条件がコントロールされた環境下で野菜等の植物を栽培する植物工場が増加している。これまでの植物工場は、レタス等の葉物野菜の水耕栽培が中心であったが、最近では水耕栽培には向かない根菜類についても植物工場での栽培を試みる動きがある。根菜類を植物工場で栽培するためには、土壌としての基本性能に優れ、品質が高く、且つ取り扱いが容易な人工土壌を開発する必要がある。そして、人工土壌には、植物に対する水遣り回数を低減でき、水分量の管理が容易になる等、天然土壌では実現が困難な独自の機能が求められるようになっている。
 これまでに開発された人工土壌に関連する技術として、粉状のゼオライトを水溶性高分子からなる結合材で結合して団粒化した団粒構造ゼオライトがあった(例えば、特許文献1を参照)。特許文献1の団粒構造ゼオライトは、保水性が乏しいゼオライトの多孔質構造を人工土壌として利用するため、ゼオライトを団粒化して保水性を向上させたものである。
 また、ポリスチレン発泡粒子に砕石粉粒や砂等を加えた後、ポリスチレンを溶解させて粒状化した吸水性団粒体も開発されている(例えば、特許文献2を参照)。特許文献2の吸水性団粒体は、ポリスチレン発泡粒子が溶解して生じる空洞を利用して、良好な保水性及び通気性を実現しようとするものである。
特開2000-336356号公報 特開昭53-23892号公報
 人工土壌の開発にあたっては、天然土壌と同等の植物育成力を達成しながら、保水性や通気性を適切に維持できる機能が求められる。特に、植物が利用可能な水分(易効水)を確保するため、人工土壌における体積含水率と気相率とを適切に維持することは、植物に対する水遣り回数の低減や、植物の種類に応じた最適な栽培スケジュールを実現するために重要となる。人工土壌の体積含水率及び気相率は、人工土壌粒子間に形成される空隙と深く関係し、この空隙を最適な状態に維持することで、体積含水率及び気相率のバランスに優れた、天然土壌にはない独自の機能を有する付加価値の高い人工土壌を実現することができる。
 この点、特許文献1の団粒構造ゼオライトは、水の存在下で粉末のゼオライトと結合材とを混合して乾燥させただけのものであるため、団粒体の製造中にゼオライトがダマになり易く、ゼオライトの粒子間に形成される空隙によって適切な保水性や通気性を実現できているとは限らない。また、水遣り等の作業中に締め固め等が生じると、人工土壌の体積含水率及び気相率が低下する虞がある。
 一方、特許文献2の吸水性団粒体は、ポリスチレンを溶融させて団粒体内に空洞を生じさせることにより、保水性及び通気性を実現するものであるが、団粒体内の空洞を適切な大きさに制御することは難しく、人工土壌として所望の体積含水率及び気相率に設定することは困難である。また、砕石粉粒や砂等を混合して発泡させているため、団粒体の構造が脆く、栽培の作業中や水遣り等で細かく粉砕されて締め固めが生じ、人工土壌の体積含水率及び気相率が低下する虞がある。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、人工土壌粒子を団粒化した人工土壌団粒体において、人工土壌団粒体をプランター等の容器に充填して人工土壌を構成したときに、人工土壌の体積含水率及び気相率を高めるとともに、長期に亘ってこれら能力を維持することが可能となる技術を提供するものである。
 上記課題を解決するための本発明に係る人工土壌団粒体の特徴構成は、
 サブnmオーダー乃至サブμmオーダーの細孔を有するフィラーが複数集合してなり、前記フィラーの間にサブμmオーダー乃至サブmmオーダーの連通孔が形成された人工土壌粒子を団粒化した人工土壌団粒体であって、
 pF1.7~2.3の範囲における体積含水率が10~40%であり、且つ、pF1.5における気相率が20~80%であることにある。
 本構成の人工土壌団粒体によれば、人工土壌団粒体を構成する人工土壌粒子は、フィラーの細孔のサイズがサブnmオーダー乃至サブμmオーダーであるため、当該細孔に植物の品質を向上させるために必要な養分を効果的に取り込むことができる。また、集合したフィラーの間に形成される連通孔のサイズがサブμmオーダー乃至サブmmオーダーであるため、当該連通孔に植物の生育に不可欠な水分(易効水を含む)を効果的に吸収することができ、保水力を高めることができる。このような特定の構成を有する人工土壌粒子を団粒化した本構成の人工土壌団粒体は、pF1.7~2.3の範囲における体積含水率が10~40%であり、且つ、pF1.5における気相率が20~80%に設定されているため、人工土壌の体積含水率及び気相率が高い次元でバランスされ、天然土壌にはない独自の機能を有する付加価値の高い人工土壌を実現することができる。
 本発明に係る人工土壌団粒体において、
 前記人工土壌粒子の間に、μmオーダー乃至mmオーダーの一次間隙が形成されていることが好ましい。
 本構成の人工土壌団粒体によれば、人工土壌粒子の間に、μmオーダー乃至mmオーダーの一次間隙が形成されているため、当該一次間隙に植物に利用可能な水分を効果的に保持することができる。その結果、植物の生育性を高めることができる。
 本発明に係る人工土壌団粒体において、
 前記一次間隙のサイズは、5~100μmであることが好ましい。
 本構成の人工土壌団粒体によれば、一次間隙のサイズは、5~100μmであるので、人工土壌団粒体間に適度な隙間が生じることとなり、一次間隙に植物に利用可能な水分を必要且つ十分な量保持することができる。その結果、植物の生育性をさらに高めることができる。
 本発明に係る人工土壌団粒体において、
 0.2~10mmのサイズを有することが好ましい。
 本構成の人工土壌団粒体によれば、0.2~10mmのサイズを有するので、団粒構造が安定したものとなる。さらに、上記粒径範囲であれば、人工土壌団粒体間に適度な隙間が生じるため、優れた通気性と保水性とを両立させることが可能となる。
 本発明に係る人工土壌団粒体において、
 前記人工土壌粒子は、5~1000μmの粒径分布を有することが好ましい。
 本構成の人工土壌団粒体によれば、人工土壌粒子の粒径分布を5~1000μmの範囲とすることで、団粒構造内に適度な空隙が形成され、人工土壌の体積含水率及び気相率を高めることができる。また、団粒構造がより安定したものとなる。
 本発明に係る人工土壌団粒体において、
 前記細孔にイオン交換能を付与してあることが好ましい。
 本構成の人工土壌団粒体によれば、人工土壌粒子の細孔にイオン交換能を付与してあることから、人工土壌団粒体に植物の育成に必要な肥料成分を担持させることができる。従って、天然土壌と同等の植物育成力を備えた人工土壌培地を実現することが可能となる。
 本発明に係る人工土壌団粒体において、
 保水性材料を含むことが好ましい。
 本構成の人工土壌団粒体によれば、保水性材料を含むことから、人工土壌団粒体の空隙が本来有する保水性に加え、保水性材料による保水力をさらに備えることができる。その結果、保水性がさらに高まり、乾燥に強い人工土壌団粒体とすることができる。
 上記課題を解決するための本発明に係る人工土壌培地の特徴構成は、
 前記何れか一つに記載の人工土壌団粒体を使用したことにある。
 本構成の人工土壌培地によれば、本発明の人工土壌団粒体を使用しているため、長期にわたって人工土壌の体積含水率及び気相率を高めながら、土壌としての基本性能をバランスよく実現することができる。また、このような人工土壌培地は、栽培対象の植物に対して水分や養分を適切に供給できるので、メンテナンスに手間が掛からず、取り扱いが容易なものとなる。
図1は、本発明の人工土壌団粒体を構成する人工土壌粒子の模式図である。 図2は、本発明の人工土壌団粒体の模式図である。 図3は、水銀圧入法による本発明の人工土壌団粒体の孔径分布の測定結果を示すグラフである。
 以下、本発明の人工土壌団粒体に関する実施形態を図1~図3に基づいて説明する。ただし、本発明の理解を容易にするため、初めに本発明の人工土壌団粒体を構成する人工土壌粒子について説明する。なお、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。
<人工土壌粒子>
 図1は、本発明の人工土壌団粒体を構成する人工土壌粒子10の模式図である。同図では、人工土壌粒子10を概念的に示している。図1(a)は、フィラー12として、多孔質天然鉱物であるゼオライト12aを使用した人工土壌粒子10を例示したものである。図1(b)は、フィラー12として、層状天然鉱物であるハイドロタルサイト12bを使用した人工土壌粒子10を例示したものである。なお、図1中に示す記号x、y及びzは、後述する細孔11、連通孔13及び人工土壌粒子10のサイズを夫々表しているが、図面上でのx、y及びzの関係は、実際のサイズ関係を反映したものではない。
 人工土壌粒子10は、複数のフィラー12が集合して粒状に構成されたものである。人工土壌粒子10中の複数のフィラー12は、それらが互いに接触していることは必須ではなく、一粒子内でバインダー等を介して一定範囲内の相対的な位置関係を維持していれば、複数のフィラー12が集合して粒状に構成したものと考えることができる。人工土壌粒子10を構成するフィラー12は、表面から内部にかけて多数の細孔11を有する。細孔11は、種々の形態を含む。例えば、フィラー12が、図1(a)に示すゼオライト12aの場合、当該ゼオライト12aの結晶構造中に存在する空隙が細孔11であり、図1(b)に示すハイドロタルサイト12bの場合、当該ハイドロタルサイト12bの層構造中に存在する層間が細孔11である。つまり、本発明において「細孔」とは、フィラー12の構造中に存在する空隙部、層間部、空間部等を意図し、これらは「孔状」の形態に限定されるものではない。
 フィラー12の細孔11のサイズ(図1に示すサイズxの平均値)は、サブnmオーダー乃至サブμmオーダーとなる。例えば、細孔11のサイズは、0.2~800nm程度に設定可能であるが、フィラー12が、図1(a)に示すゼオライト12aの場合、当該ゼオライト12aの結晶構造中に存在する空隙のサイズ(径)は、0.3~1.3nm程度である。フィラー12が、図1(b)に示すハイドロタルサイト12bの場合、当該ハイドロタルサイト12bの層構造中に存在する層間のサイズ(距離)は、0.3~3.0nm程度である。この他に、フィラー12として、後述する有機多孔質材料を使用することもでき、その場合の細孔11の径xは、0.1~0.8μm程度となる。
 複数のフィラー12の間には、連通孔13が形成されている。連通孔13の周囲には細孔11が分散配置されている。連通孔13には主に水分(後述の易効水を含む)が保持されるため、人工土壌粒子10に一定の保水性を持たせることができる。連通孔13のサイズ(図1に示す隣接するフィラー12間の距離yの平均値)は、フィラー12やバインダーの種類、組成、造粒条件により変化し得るが、サブμmオーダー乃至サブmmオーダーとなる。例えば、連通孔13のサイズは、0.1~500μm程度に設定可能であるが、フィラー12が、図1(a)に示すゼオライト12a、又は図1(b)に示すハイドロタルサイト12bであり、バインダーとして高分子ゲル化剤を使用した場合、連通孔13のサイズは、0.1~20μmである。細孔11及び連通孔13のサイズは、測定対象の状態に応じて、ガス吸着法、水銀圧入法、小角X線散乱法、画像処理法等を用いて、又はこれらの方法を組み合わせて、最適な方法により測定することができる。
 フィラー12は、人工土壌粒子10が十分な保肥力を有するように、細孔11にイオン交換能が付与された材料を使用することが好ましい。この場合、イオン交換能が付与された材料として、陽イオン交換能が付与された材料、陰イオン交換能が付与された材料、又は両者の混合物を使用することができる。また、イオン交換能を有さない多孔質材料(例えば、高分子発泡体、ガラス発泡体等)を別に用意し、当該多孔質材料の細孔に上記のイオン交換能が付与された材料を圧入や含浸等によって導入し、これをフィラー12として使用することも可能である。陽イオン交換能が付与された材料として、陽イオン交換性鉱物、腐植、及び陽イオン交換樹脂が挙げられる。陰イオン交換能が付与された材料として、陰イオン交換性鉱物、及び陰イオン交換樹脂が挙げられる。
 陽イオン交換性鉱物は、例えば、モンモリロナイト、ベントナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト等のスメクタイト系鉱物、雲母系鉱物、バーミキュライト、ゼオライト等が挙げられる。陽イオン交換樹脂は、例えば、弱酸性陽イオン交換樹脂、強酸性陽イオン交換樹脂が挙げられる。これらのうち、ゼオライト、又はベントナイトが好ましい。陽イオン交換性鉱物及び陽イオン交換樹脂は、二種以上を組み合わせて使用することも可能である。陽イオン交換性鉱物及び陽イオン交換樹脂における陽イオン交換容量は、10~700meq/100gに設定され、好ましくは20~700meq/100gに設定され、より好ましくは30~700meq/100gに設定される。陽イオン交換容量が10meq/100g未満の場合、十分に養分を取り込むことができず、取り込まれた養分も灌水等により早期に流失する虞がある。一方、陽イオン交換容量が700meq/100gを超えるように保肥力を過剰に大きくしても、効果は大きく向上せず、経済的ではない。
 陰イオン交換性鉱物は、例えば、ハイドロタルサイト、マナセアイト、パイロオーライト、シェーグレン石、緑青等の主骨格として複水酸化物を有する天然層状複水酸化物、合成ハイドロタルサイト及びハイドロタルサイト様物質、アロフェン、イモゴライト、カオリン等の粘土鉱物が挙げられる。陰イオン交換樹脂は、例えば、弱塩基性陰イオン交換樹脂、強塩基性陰イオン交換樹脂が挙げられる。これらのうち、ハイドロタルサイトが好ましい。陰イオン交換性鉱物及び陰イオン交換樹脂は、二種以上を組み合わせて使用することも可能である。陰イオン交換性鉱物及び陰イオン交換樹脂における陰イオン交換容量は、5~500meq/100gに設定され、好ましくは20~500meq/100gに設定され、より好ましくは30~500meq/100gに設定される。陰イオン交換容量が5meq/100g未満の場合、十分に養分を取り込むことができず、取り込まれた養分も灌水等により早期に流失する虞がある。一方、陰イオン交換容量が500meq/100gを超えるように保肥力を過剰に大きくしても、効果は大きく向上せず、経済的ではない。
<人工土壌粒子の粒状化方法>
 フィラー12が図1に示すゼオライト12aやハイドロタルサイト12bのような無機鉱物である場合、複数のフィラー12を集合して粒状物(人工土壌粒子10)を構成するために、バインダーを用いて粒状化を行うことができる。バインダーを用いた人工土壌粒子10の形成は、フィラー12にバインダーや溶媒等を加えて混合し、混合物を造粒機に導入し、転動造粒、流動層造粒、攪拌造粒、圧縮造粒、押出造粒、破砕造粒、溶融造粒、噴霧造粒等の公知の造粒法により行うことができる。得られた造粒体は、必要に応じて乾燥及び分級が行われ、人工土壌粒子10が完成する。また、フィラー12にバインダーを加え、さらに必要に応じて溶媒等を加えて混練し、これを乾燥してブロック状にしたものを、乳鉢及び乳棒、ハンマーミル、ロールクラッシャー等の粉砕手段で適宜粉砕して粒状物とすることも可能である。この粒状物は、そのまま人工土壌粒子10として用いることもできるが、篩にかけて所望の粒径に調整することが好ましい。
 バインダーは、有機バインダー又は無機バインダーの何れも使用可能である。有機バインダーは、例えば、エチルセルロースなどの変性セルロース系バインダー、ポリオレフィン系バインダー、ポリビニルアルコール系バインダー、ポリウレタン系バインダー、酢酸ビニル、エチレン酢酸ビニル等の酢酸ビニル系バインダー、ウレタン樹脂、ビニルウレタン樹脂等のウレタン樹脂系バインダー、アクリル樹脂系バインダー、シリコーン樹脂系バインダー等の合成樹脂系バインダー、デンプン、カラギーナン、キサンタンガム、ジェランガム、アルギン酸塩等の多糖類、ポリアミノ酸、膠等のたんぱく質等の天然物系バインダーが挙げられる。無機バインダーは、例えば、水ガラス等のケイ酸塩系バインダー、リン酸アルミニウム等のリン酸塩系バインダー、ホウ酸アルミニウム等のホウ酸塩系バインダー、セメント等の水硬性バインダーが挙げられる。有機バインダー及び無機バインダーは、二種以上を組み合わせて使用することも可能である。
 フィラー12が有機多孔質材料である場合、人工土壌粒子10の形成は、バインダーを用いた上述のフィラー12の粒状化法と同様の方法で行ってもよいが、フィラー12を、当該フィラー12を構成する有機多孔質材料(高分子材料等)の融点以上の温度に加熱し、複数のフィラー12の表面同士を熱融着させて粒状化することにより、人工土壌粒子10を形成することも可能である。この場合、バインダーを使用しなくても、複数のフィラー12が集合した粒状物を得ることができる。そのような有機多孔質材料として、例えば、ポリエチレン、ポリプロピレン、ポリウレタン、ポリビニルアルコール、セルロール等の有機高分子材料を発泡させた有機高分子発泡体、前記有機高分子材料の粉体を加熱溶融して連続気泡構造を形成した有機高分子多孔質体が挙げられる。
 人工土壌粒子10の形成にあたっては、高分子ゲル化剤のゲル化反応を利用することもできる。高分子ゲル化剤のゲル化反応として、例えば、アルギン酸塩、アルギン酸プロピレングリコールエステル、ジェランガム、グルコマンナン、ペクチン、又はカルボキシメチルセルロース(CMC)と多価金属イオンとのゲル化反応、カラギーナン、寒天、キサンタンガム、ローカストビーンガム、タラガムなどの多糖類の二重らせん構造化反応によるゲル化反応が挙げられる。このうち、アルギン酸塩と多価金属イオンとのゲル化反応について説明する。例えば、アルギン酸塩の一つであるアルギン酸ナトリウムは、アルギン酸のカルボキシル基がNaイオンと結合した形態の中性塩である。アルギン酸は水に不溶であるが、アルギン酸ナトリウムは水溶性である。アルギン酸ナトリウム水溶液を多価金属イオン(例えば、Caイオン)の水溶液中に添加すると、アルギン酸ナトリウムの分子間でイオン架橋が起こり、ゲル化が進行する。本実施形態の場合、ゲル化反応は、以下の工程により行うことができる。初めに、アルギン酸塩を水に溶解させてアルギン酸塩水溶液を調製し、アルギン酸塩水溶液にフィラー12を添加し、これを十分攪拌して、アルギン酸塩水溶液中にフィラー12が分散した混合液を形成する。次に、混合液を多価金属イオン水溶液中に滴下し、混合液に含まれるアルギン酸塩を粒状にゲル化させる。その後、ゲル化した粒子を回収して水洗し、十分に乾燥させる。これにより、アルギン酸塩及び多価金属イオンから形成されるアルギン酸塩ゲル化物中にフィラー12が分散した粒状物としての人工土壌粒子10が得られる。
 ゲル化反応に使用可能なアルギン酸塩は、例えば、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムが挙げられる。これらのアルギン酸塩は、二種以上を組み合わせて使用することも可能である。アルギン酸塩水溶液の濃度は、0.1~5重量%とし、好ましくは0.2~5重量%とし、より好ましくは0.2~3重量%とする。アルギン酸塩水溶液の濃度が0.1重量%未満の場合、ゲル化反応が起こり難くなり、5重量%を超えると、アルギン酸塩水溶液の粘度が大きくなり過ぎるため、フィラー12を添加した混合液の攪拌や、混合液を多価金属イオン水溶液中に滴下することが困難になる。
 アルギン酸塩水溶液を滴下する多価金属イオン水溶液は、アルギン酸塩と反応してゲル化が起きる2価以上の金属イオン水溶液であればよい。そのような多価金属イオン水溶液の例として、塩化カルシウム、塩化バリウム、塩化ストロンチウム、塩化ニッケル、塩化アルミニウム、塩化鉄、塩化コバルト等の多価金属の塩化物水溶液、硝酸カルシウム、硝酸バリウム、硝酸アルミニウム、硝酸鉄、硝酸銅、硝酸コバルト等の多価金属の硝酸塩水溶液、乳酸カルシウム、乳酸バリウム、乳酸アルミニウム、乳酸亜鉛等の多価金属の乳酸塩水溶液、硫酸アルミニウム、硫酸亜鉛、硫酸コバルト等の多価金属の硫酸塩水溶液が挙げられる。これらの多価金属イオン水溶液は、二種以上を組み合わせて使用することも可能である。多価金属イオン水溶液の濃度は、1~20重量%とし、好ましくは2~15重量%とし、より好ましくは3~10重量%とする。多価金属イオン水溶液の濃度が1重量%未満の場合、ゲル化反応が起こり難くなり、20重量%を超えると、金属塩の溶解に時間が掛かるとともに、過剰の材料を使用することになるため、経済的ではない。
 人工土壌粒子10を設計するに際し、連通孔13の保水性をさらに高めることも可能である。連通孔13の保水性を向上させる方法の一つとして、人工土壌粒子10の連通孔13に保水性材料を導入することが挙げられる。保水性材料は、例えば、連通孔13の全体に保水性材料を充填したり、連通孔13の表面を保水性材料の膜でコーティングしたりすることで導入可能である。このとき、連通孔13の少なくとも一部に保水性材料が存在していればよい。保水性材料の導入は、例えば、保水性のある高分子材料を溶媒に溶解して高分子溶液を調製し、当該高分子溶液を人工土壌粒子10に含浸させることによって行われる。あるいは、人工土壌粒子10を粒状化する際、原材料に保水性のある繊維を混合しておいても構わない。この場合、保水性材料である繊維は、人工土壌粒子10の連通孔13だけでなく、人工土壌粒子10の全体に導入することも可能である。そして、繊維が導入された人工土壌粒子10は、保水性が向上することは当然であるが、人工土壌粒子10の強度や耐久性も向上する。従って、保水性材料として導入される繊維は、補強材としても機能する。人工土壌粒子10に導入可能な繊維としては、例えば、ビニロン、ウレタン、ナイロン、アセテート等の合成繊維や、綿、羊毛、レーヨン、セルロース等の天然繊維が挙げられる。これらの繊維のうち、ビニロン及び綿が好ましい。さらに、繊維の形態としては、短繊維であることが好ましい。保水性材料を導入した人工土壌粒子10は、保水力が大きく向上するため、例えば、乾燥状態の外部環境で使用した場合でも長期間水を与えなくとも植物の枯れや育成不良を防止することができる。さらに、保水性材料の導入により、人工土壌粒子10の強度及び耐久性も向上するため、長期に亘って保水性を維持する相乗効果も期待できる。
 保水性材料として使用可能な高分子材料は、例えば、ポリアクリル酸塩系ポリマー、ポリスルホン酸塩系ポリマー、ポリアクリルアミド系ポリマー、ポリビニルアルコール系ポリマー、ポリアルキレンオキサイド系ポリマー等の合成高分子系保水性材料、ポリアスパラギン酸塩系ポリマー、ポリグルタミン酸塩系ポリマー、ポリアルギン酸塩系ポリマー、セルロース系ポリマー、デンプン等の天然高分子系保水性材料が挙げられる。これらの保水性材料は、二種以上を組み合わせて使用することも可能である。
 保水性材料である上記高分子材料を溶解させる溶媒は、使用する高分子材料に応じて溶解性の高いもの、すなわち、高分子材料と溶媒とで溶解度パラメータ(SP値)が近くなる組み合わせが適切に選択される。例えば、高分子材料のSP値と溶媒のSP値との差が5以下となるような組み合わせ(例:SP値が約10のニトロセルロースと、SP値が約14.5のメタノールとの組み合わせ)が選択される。そのような溶媒の例として、メタノール、エタノール、イソプロパノール、ブタノール、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。これらの溶媒は、二種以上を組み合わせて使用することも可能である。
 連通孔13の保水性を向上させる他の方法として、人工土壌粒子10を調製するに際し、原料であるフィラー12の一部又は全部に保水性フィラーを使用することが挙げられる。この場合、生成した人工土壌粒子10は、それ自体が保水性を有することになるので、保水性を向上させるための特別な後処理は不要となる。保水性フィラーには親水性フィラーや多孔質粒状物を使用することができ、親水性フィラーの例としては、ゼオライト、スメクタイト系鉱物、雲母系鉱物、タルク、シリカ、複水酸化物等が挙げられ、多孔質粒状物の例としては、発泡ガラス、多孔質金属、多孔質セラミック、高分子多孔体、親水性繊維等が挙げられる。
<人工土壌団粒体>
 図2は、本発明の人工土壌団粒体1の模式図である。同図では、人工土壌団粒体1を概念的に示している。本発明の人工土壌団粒体1は、人工土壌粒子10を団粒化したものである。人工土壌団粒体1は、プランター等の容器に充填した形態で使用される。
 人工土壌を用いて植物を栽培するにあたり、天然土壌と同等の植物育成力を達成するためには、人工土壌の保水性及び通気性を十分に高める必要がある。ここで、土壌の保水性は、土壌に含まれる水分と密接に関連する。土壌に含まれる水分は、土壌に保持されている状態により植物に利用できるものと、利用できないものとに分類される。一般に、土壌は様々な大きさの土壌粒子により構成され、土壌に含まれる水分は、土壌粒子間に形成される隙間に毛管現象等により保持される。土壌に含まれる水分は、土壌に対する吸着力に応じて、吸着力の弱いものから、重力水、毛管水、吸湿水に分類される。そして、土壌に含まれる水分のうち、植物が容易に利用することができる水分を本明細書では「易効水」と規定する。土壌の通気性は、土壌粒子間に形成される隙間の状態に関連する。植物の根の成長に必要な酸素を供給するためには、一定以上の気相率(土壌の全容積に対する空隙(気相)の割合)が必要となる。土壌の全容積とは、土壌の三相、つまり、気相、液相、及び固相を合わせたものである。植物栽培に適した土壌とするためには、土壌100ml当たりの易効水量と、土壌の気相率との関係を検討する必要があり、本発明の人工土壌団粒体1は、サブnmオーダー乃至サブμmオーダーの細孔11を有するフィラー12を複数集合し、フィラー12の間にサブμmオーダー乃至サブmmオーダーの連通孔13を形成した人工土壌粒子10を団粒化したことにより、易効水量と気相率との関係が適切なものとなる。
 人工土壌団粒体1は、複数の人工土壌粒子10により構成されており、それらが互いに接触していることは必須ではなく、一団粒体内でバインダー等を介して一定範囲内の相対的な位置関係が維持されていればよい。人工土壌団粒体1を構成する複数の人工土壌粒子10の間には空隙が形成され、外部から水分を吸収して空隙内で保持することができる。本明細書においては、この人工土壌粒子10間に形成される空隙を一次間隙2とする。
 易効水量及び気相率は、人工土壌団粒体1の団粒構造内に形成される一次間隙2のサイズと関係している。一次間隙2のサイズが大きくなり過ぎると、一次間隙2内で水分を保持する力が弱まり、重力に逆らって水分を団粒構造内に保持することができなくなる。その結果、易効水量が減少して気相率が高くなり、植物が利用できる水分が少なくなり、植物の枯死が発生し得る。一方、一次間隙2のサイズが小さくなり過ぎると、団粒構造内での水分の保持力が強くなる。その結果、易効水量が減少し、植物が容易に水分を利用できなくなる。また、土壌の気相率も低下し、植物に湿害が発生し易くなる。つまり、一次間隙2とは、植物に利用可能な水分を多く保持する保水性間隙として機能するものである。一次間隙2のサイズ(図2に示す一次間隙2のサイズsの平均値)は、人工土壌粒子10やバインダーの種類、組成、造粒条件により変化し得るが、通常、μmオーダー乃至mmオーダーであり、例えば、1μm~1mmに調整される。一次間隙2の好ましいサイズは2~500μmであり、より好ましくは5~100μmである。
 また、一次間隙2のサイズは、人工土壌団粒体1を構成する人工土壌粒子10の粒径分布とも関係している。一次間隙2を適切なサイズにするためには、人工土壌粒子10の粒径分布を5~1000μmの範囲、好ましくは10~500μmの範囲に調整する。人工土壌粒子10の粒径分布が5~1000μmの範囲よりブロードになると、一次間隙2を安定した状態で形成できなくなる虞がある。
 さらに、一次間隙2のサイズは、人工土壌団粒体1を構成する人工土壌粒子10のサイズzとも関係している。一次間隙2を適切なサイズにするためには、人工土壌粒子10のサイズzの平均値(平均粒径)を20~500μm、好ましくは30~300μmに調整する。人工土壌粒子10の平均粒径が20μmより小さいと、一次間隙2の孔径が小さくなり過ぎて、一次間隙2の水分を保持する力が大きくなり、植物が水分を利用し難くなる。また、人工土壌粒子10の平均粒径が500μmより大きくなると、一次間隙2のサイズが大きくなり過ぎて、一次間隙2の水分を保持する力が弱くなり、重力により水分が一次間隙2から流失し易くなる。
 ところで、人工土壌団粒体1をプランター等の容器に充填し、実際の使用形態である人工土壌培地とすると、人工土壌団粒体1間に隙間が形成されることになる。本明細書においては、この人工土壌団粒体1間に形成される隙間を、上述の人工土壌粒子10間に形成される一次間隙2と区別し、二次間隙とする。二次間隙は水分を保持するとともに、人工土壌培地の通気性に重要な役割を果たす。二次間隙は所謂粗間隙であり、間隙のサイズが大きいため、二次間隙に入った水分は重力水として人工土壌培地から排出され易く、水分の排出された空間が人工土壌培地の通気性を確保する空間となる。これに対して、一次間隙2は間隙のサイズが小さいため、一次間隙2に入った水分は重力水として排出されにくく、一次間隙2に保持される。この一次間隙2に保持される水分により、植物は長期間水を利用することができる。
 人工土壌団粒体1間の二次間隙は植物が根を張り、根から酸素を取り入れる空間となるため、二次間隙が不足し、人工土壌培地の通気性が悪化すると、植物に湿害が発生することがある。一方、人工土壌培地の通気性が高くなり過ぎると、保水量が低下し、植物が利用できる水分が少なくなる。従って、人工土壌団粒体1間の二次間隙を適度に保つため、人工土壌団粒体1のサイズを適切なサイズに設定する必要がある。人工土壌団粒体1のサイズ(図2に示す人工土壌団粒体1のサイズwの平均値)は、0.2~10mmであり、好ましくは0.5~10mmであり、より好ましくは1~10mmである。人工土壌団粒体1のサイズが0.2mm未満の場合、二次間隙が小さくなって人工土壌団粒体1と水分との吸着性が強まり、排水性が低下して、植物に湿害が発生することがある。その結果、栽培する植物は根から酸素を吸収し難くなり、根腐れを起こす虞がある。一方、人工土壌団粒体1のサイズが10mmを超えると、二次間隙が大きくなって人工土壌団粒体1と水分との吸着性が弱まり、重力により水分が過剰に排出される。これにより、植物が水分を吸収し難くなったり、人工土壌培地が疎になって植物が横倒れする虞がある。
 人工土壌団粒体1のサイズ、人工土壌粒子10間の一次間隙2のサイズ、及び人工土壌粒子10の粒径は、例えば、光学顕微鏡観察及び画像処理法を用いて測定することができる。本実施形態では、以下の測定法により、人工土壌団粒体1のサイズ、一次間隙2のサイズ、及び人工土壌粒子10の粒径を測定した。先ず、測定対象の人工土壌粒子をスケールとともに顕微鏡で観察し、その顕微鏡画像を画像処理ソフト(二次元画像解析処理ソフトウェア「WinROOF」、三谷商事株式会社製)を使用して取得する。画像から100個の人工土壌団粒体又は人工土壌粒子を選択し、人工土壌団粒体、一次間隙、又は人工土壌粒子の輪郭をトレースする。トレースした図形の周長から、相当円の直径を算出する。夫々の人工土壌団粒体、一次間隙、又は人工土壌粒子から求めた相当円の直径(100個)の平均を平均サイズ(単位:ピクセル)とする。そして、平均サイズを顕微鏡画像中のスケールと比較し、単位長さ(μmオーダー乃至mmオーダー)に変換して、人工土壌団粒体のサイズ、一次間隙のサイズ、又は人工土壌粒子の粒径を算出する。
 人工土壌団粒体1は、複数の人工土壌粒子10を団粒化することにより構成され、その団粒化方法としては、人工土壌粒子10の粒状化方法に記載した方法と同様の方法により実施することができる。本発明の人工土壌団粒体1は、人工土壌粒子10をバインダーで造粒したり、高分子ゲル化剤でゲル化させて団粒体としているため、人工土壌粒子10間の一次間隙2がバインダーや高分子ゲル化剤により固定化される。従って、人工土壌団粒体1で構成した人工土壌培地は、十分な強度を有している。このため、土壌の締固め等が発生して、易効水量及び通気性の低下等が生じることが無く、長期に亘って植物に必要な量の易効水を供給することができる。なお、人工土壌団粒体1を構成する際に、人工土壌粒子10として異なる種類の人工土壌粒子を使用してもよい。また、人工土壌粒子10とともに、肥料、顔料、香料、殺菌剤、抗菌剤、消臭剤、殺虫剤等の添加物を混合して団粒化することも可能である。さらに、人工土壌団粒体1を構成するに際し、一次間隙2に保水性材料を導入することも可能である。この場合、人工土壌粒子10への保水性材料の導入と同様の方法で、同様の保水性材料を導入することができる。
<人工土壌団粒体の保水性及び通気性>
 土壌は、様々な大きさの土壌粒子により構成され、土壌粒子間に形成される隙間に、毛管現象等により水分が保持されている。土壌が水分を保持する力は、pF値として表される。pF値とは、水柱の高さで表した土壌水分の吸引圧の常用対数値のことであり、土壌中の水分が土壌の毛管力によって引き付けられている強さの程度を表す値である。pF値が2.0のとき、水柱100cmの圧力に相当する。pF値は土壌と水分の吸着の強さを表すものでもあり、土壌と水分の吸着力が弱いとpF値は低くなり、植物の根が水分を吸収し易い状態となる。一方、土壌と水分の吸着力が強いとpF値は高くなり、植物の根が水分を吸収するためには大きな力を要する。土壌中の隙間に空気が存在せず、全て水で充たされているときの状態がpF値0であり、100℃の熱乾状態の土壌であり、土壌と化合した水しか存在しない状態がpF値7となる。植物が根から吸収できる土壌中の水分は、降雨又は灌水後、通常24時間後に土壌中に残っている水分(pF1.7)から、植物が萎れ始める初期萎れ点(pF3.8)までの水分である。一般の土壌の場合、植物を栽培可能なpF値、所謂易効水の範囲は1.7~2.7である。しかし、本発明者らが実際に植物の栽培を行うと、pF値が2.3を超える場合、植物の生育性が低下する傾向があることが明らかとなった。そこで、本発明においては、人工土壌培地の易効水の範囲を1.7~2.3に規定する。pF値は、pFメータ(テンシオメーター)を用いて測定することができる。
 本発明においては、pF1.7~2.3の範囲における保水量(易効水量)を、人工土壌団粒体100ml当たりの体積含水率(VWC1.7~2.3)として表す。VWC1.7~2.3(%)は、乾燥状態の人工土壌団粒体1の質量Wdと、pF1.7のときの人工土壌団粒体1の質量W1.7、及びpF2.3のときの人工土壌団粒体1の質量W2.3を夫々計測し、以下の式(1)から算出される。
  VWC1.7~2.3(%) = 〔(W2.3-Wd)/100-(W1.7-Wd)/100〕 × 100 ・・・ (1)
 この式において、例えば、右辺の(W2.3-Wd)は人工土壌団粒体1に含まれるpF2.3のときの保水量を重量(mg)で表しているが、水の比重は1であるため、(W2.3-Wd)の値(mg)はそのままpF2.3のときの保水量の体積(ml)と見なすことができる。本発明の人工土壌団粒体1では、pF1.7~2.3の範囲における体積含水率(%)が10~40%、好ましくは13~30%、より好ましくは20~30%に調整されている。
 一般に、植物が土壌中の水分を利用して成長するためには、pF1.7~2.3の範囲における体積含水率(%)を10%以上に維持する必要がある。つまり、pF1.7~2.3の範囲における体積含水率(%)を10%以上に長期間維持できれば、灌水の頻度を少なくしても植物の生育性が低下せず、灌水等のメンテナンスを減らすことができる。本発明の人工土壌培地は、上記したように、一次間隙及び二次間隙を備えているため、人工土壌培地内に水を長期間保持することができる。この構成により、人工土壌培地のpF1.7~2.3の範囲における体積含水率(%)を上記範囲に設定すると、一次間隙及び二次間隙に易効水が効果的に保持されるため、pF1.7~2.3の範囲における体積含水率(%)を長期間10%以上に維持することができ、灌水等のメンテナンスを減らすことができる。
 また、植物が成長するためには、土壌の気相率を適切に調整する必要がある。例えば、pF値が低い場合に含水率が高いと植物の湿害が発生し易くなる。従って、pF値が低い場合でも土壌の通気性を一定以上に維持することが必要である。pF値が低い場合の土壌の通気性を示す指標は、pF1.5における気相率で表される。pF1.5とは、1日あたり30~50mm以上灌水後、通常24時間後に土壌中に残っている水分(重力による排水が略終了した状態)の状態をいう。土壌に植栽した植物を十分に生育させるためには、pF1.5における気相率を20%以上に設定する必要がある。本発明の人工土壌団粒体1は、pF1.5における気相率が20~80%、好ましくは20~60%に調整されている。その結果、本発明の人工土壌培団粒体1は、人工土壌の体積含水率及び気相率が高い次元でバランスされ、天然土壌にはない独自の機能を有する付加価値の高い人工土壌を実現し得るものとなる。すなわち、植物が利用可能な水分(易効水)を最適に確保できるため、植物に対する水遣り回数を低減したり、植物の種類に応じた最適な栽培スケジュールを実現することが可能となる。
 以下、本発明の人工土壌団粒体の実施例について説明する。
<人工土壌粒子の作製>
 フィラーとしてゼオライト及びハイドロタルサイトを使用し、アルギン酸塩としてアルギン酸ナトリウムを使用し、多価金属イオン水溶液として5%塩化カルシウム水溶液を使用した。和光純薬工業株式会社製の試薬アルギン酸ナトリウムを水に溶解させて濃度0.5%の水溶液を調製し、アルギン酸ナトリウム0.5%水溶液100重量部に株式会社エコウェル製の人工ゼオライト「琉球ライト600」10重量部、及び和光純薬工業株式会社製の試薬ハイドロタルサイト10重量部を添加して混合した。混合液を5%塩化カルシウム水溶液中に1滴/秒の速度で滴下した。滴下した液滴が粒子状にゲル化した後、粒子状ゲルを回収して水洗し、55℃に設定した乾燥機で24時間乾燥させた。乾燥を終えた粒子状ゲルを乳鉢で粉砕し、粉砕したものを篩にかけて、75μmオーバー、106μmアンダーの粒径に分級し、人工土壌粒子を得た。この人工土壌粒子は、サブnmオーダー乃至サブμmオーダーの細孔を有するフィラーが複数集合し、フィラーの間にサブμmオーダー乃至サブmmオーダーの連通孔が形成されたものであった。
<人工土壌団粒体の作製>
 人工土壌粒子100mlに20%酢酸ビニルエマルジョン水溶液(酢酸ビニルエマルジョン:コニシ株式会社製ボンド木工用)50mlを加え、酢酸ビニルエマルジョン水溶液を人工土壌粒子全体に、浸透させ、80℃、48時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩にかけて、0.25mmオーバー、2mmアンダーの粒径に分級し、人工土壌団粒体を得た。得られた人工土壌団粒体は、人工土壌団粒体を構成する人工土壌粒子間にμmオーダー乃至mmオーダーの空隙を有していた。
<人工土壌団粒体の体積含有率及び気相率の測定>
 pF1.7~2.3の範囲における人工土壌団粒体の体積含有率を、上述の「人工土壌団粒体の保水性及び通気性」の項目で説明した式(1)から求めた。
 また、pF1.5における人工土壌団粒体の気相率を、以下の手順で求めた。人工土壌団粒体からなる人工土壌培地を水道水に24時間浸漬して飽和含水状態にした試料を作成し、この試料をさらに1時間静置した。試料の重量水を流下させ、pFメータ(テンシオメ-タ)により試料のpF値が1.5を示したのを確認後、試料の形状を出来るだけ維持しながら100mL試料用円筒に採取し、大起理化工業株式会社製のデジタル実容積測定装置「DIK-1150」にセットして測定した値を、pF1.5における人工土壌団粒体の気相率とした。
 測定の結果、人工土壌団粒体のpF1.7~2.3の範囲における体積含水率は14%であり、pF1.5における気相率は40%であった。この体積含水率及び気相率は、本発明の範囲に含まれるものであった。
(人工土壌団粒体の一次間隙のサイズの測定)
 人工土壌粒子及び人工土壌団粒体の作製手順、並びに人工土壌団粒体の一次間隙について、以下に説明する。
<人工土壌粒子の作製>
 フィラーとしてゼオライトを使用し、アルギン酸塩としてアルギン酸ナトリウムを使用し、多価金属イオン水溶液として5%塩化カルシウム水溶液を使用した。和光純薬工業株式会社製の試薬アルギン酸ナトリウムを水に溶解させて濃度0.5%の水溶液を調製し、アルギン酸ナトリウム0.5%水溶液100重量部に株式会社エコウェル製の人工ゼオライト「琉球ライト600」20重量部を添加して混合した。混合液を5%塩化カルシウム水溶液中に1滴/秒の速度で滴下した。滴下した液滴が粒子状にゲル化した後、粒子状ゲルを回収して水洗し、55℃に設定した乾燥機で24時間乾燥させた。乾燥を終えた粒子状ゲルを乳鉢で粉砕し、粉砕したものを篩にかけて、0.1mmオーバー、0.25mmアンダーの粒径に分級し、人工土壌粒子を得た。
<人工土壌団粒体の作製>
 人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、20%酢酸ビニルエマルジョン水溶液(酢酸ビニルエマルジョン:コニシ株式会社製ボンド木工用)50mlに混合し、80℃、48時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩により分級して約3mmの粒径の人工土壌団粒体を作製した。
<人工土壌団粒体の一次間隙>
 本発明の人工土壌団粒体が多孔質構造を備えていることを確認するため、水銀圧入法による孔径分布の測定を行った。図3は、水銀圧入法による本発明の人工土壌団粒体の孔径分布の測定結果を示すグラフである。本発明の人工土壌団粒体においては、図3に示す3つのピークが確認された。約30nm付近のピークはフィラーどうしの間に形成される微少な間隙であると推測され、約700nm付近のピークは連通孔であると推測され、約20μm付近のピークは一次間隙であると推測される。このように、本発明の人工土壌団粒体は、サブμmオーダー乃至サブmmオーダーの連通孔と、μmオーダー乃至mmオーダーの一次間隙を有しており、フィラーが有するサブnmオーダー乃至サブμmオーダーの細孔と合わせて、少なくとも三次のサイズ分布を備えた独特の多孔質構造を有することが確認された。
(人工土壌団粒体におけるラディシュの生育性)
 本発明の人工土壌団粒体を用いてラディシュの生育性を評価する試験を実施した。
<人工土壌粒子の作製>
 下記の表1~3に記載される配合(重量部)に従って、フィラーとして陽イオン交換能が付与された材料(陽イオン交換材料)であるゼオライト(琉球ライトCEC600、株式会社エコウェル製)、ベントナイト(カサネン工業株式会社製)、及び陽イオン交換性樹脂(オルガノ株式会社製)のうちの少なくとも一つと、陰イオン交換能が付与された材料(陰イオン交換材料)であるハイドロタルサイト(和光純薬工業株式会社製)、及び陰イオン交換性樹脂(オルガノ株式会社製)のうちの少なくとも一つとをバインダーにより固めて実施例1~23、並びに比較例1~6に使用する人工土壌粒子を作製した。バインダーには、アルギン酸ナトリウム(和光純薬工業株式会社製)、アルギン酸カリウム(株式会社キミカ製)、寒天(和光純薬工業株式会社製)又はキサンタンガム(ソアキサン(登録商標)XG550、エムアールシー ポリサッカライド株式会社製)とローカストビーンガム(ソアローカスト(登録商標)A120、エムアールシー ポリサッカライド株式会社製)との混合剤を使用した。
 アルギン酸ナトリウム及びアルギン酸カリウムを使用する場合、アルギン酸ナトリウム0.5%水溶液又はアルギン酸カリウム1%水溶液にフィラーを添加し、ミキサー(SM-L57:三洋電機株式会社製)を用いて3分間撹拌し、得られた混合液を、多価金属イオン水溶液である5%塩化カルシウム水溶液に滴下してゲル化物を生成した。生成したゲル化物を液から回収し、洗浄した後、55℃に設定した乾燥機で24時間乾燥させて人工土壌粒子を作製した。
 寒天、及びキサンタンガムとローカストビーンガムとの混合剤を使用する場合、1%寒天溶液、又は0.5%キサンタンガムと0.5%ローカストビーンガムとの混合溶液に、フィラーを添加して80℃以上に昇温させて多糖類を溶解した後、常温まで冷却してゲル化物を生成した。生成したゲル化物を50℃に設定した乾燥機で24時間乾燥させ、その固まりを粉砕し、篩により分級して人工土壌粒子を作製した。
<人工土壌団粒体の作製>
 下記の表1~3に記載される粒径分布を有する人工土壌粒子を、バインダーにより固めて実施例1~23、並びに比較例1~6の人工土壌団粒体を作製した。バインダーには、コニシ株式会社製の酢酸ビニル樹脂系接着剤「ボンド(登録商標)木工用」、ポリエチレン混合エマルジョン(セポルジョン(登録商標)G315、住友精化株式会社製)、寒天(和光純薬工業株式会社製)、アクリルアミド(和光純薬工業株式会社製)、ウレタン樹脂エマルジョン(ハマナカ株式会社製 布・フェルト用クラフトボンド)、及びエチルセルロース(日進化成株式会社製)を使用した。上記各バインダーを使用した場合の人工土壌団粒体の作製方法を以下に示す。表1~3では、使用した団粒化用バインダーを「+」で表している。
 バインダーとして酢酸ビニル樹脂系接着剤を使用する場合(実施例1~15、及び21~23、並びに比較例1~6)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、20%酢酸ビニルエマルジョン水溶液50mlに混合し、80℃、48時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩により分級して人工土壌団粒体を作製した。
 バインダーとしてポリエチレン混合エマルジョンを使用する場合(実施例16)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、20%ポリエチレン混合エマルジョン溶液50mlに混合した。得られた混合物を造粒機に導入して団粒化し、100℃、24時間で乾燥させて人工土壌団粒体を作製した。
 バインダーとして寒天を使用する場合(実施例17)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子100mlを、1%寒天(和光純薬工業株式会社製)の80℃溶解液50mlに混合し、常温まで冷却してゲル化物を生成した。生成したゲル化物を50℃に設定した乾燥機で24時間乾燥させ、その固まりを粉砕し、粉砕したものを篩により分級して人工土壌団粒体を作製した。
 バインダーとしてアクリルアミドを使用する場合(実施例18)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、10%アクリルアミド溶液50mlに混合し、80℃、24時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩により分級して人工土壌団粒体を作製した。
 バインダーとしてウレタン樹脂エマルジョンを使用する場合(実施例19)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、10%ウレタン樹脂エマルジョン溶液50mlに混合し、80℃、24時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩により分級して人工土壌団粒体を作製した。
 バインダーとしてエチルセルロースを使用する場合(実施例20)の人工土壌団粒体の作製方法を以下に説明する。得られた人工土壌粒子を水に浸漬して飽和含水状態にした後、1時間放置して重力水を流下させた。この含水させた人工土壌粒子100mlを、10%エチルセルロース溶液50mlに混合し、80℃、24時間で乾燥させて固化させた。固化してブロック状になった人工土壌粒子の塊を乳鉢で粉砕し、粉砕したものを篩により分級して人工土壌団粒体を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<試験内容>
(1)人工土壌粒子又は人工土壌団粒体のサイズ
 人工土壌粒子又は人工土壌団粒体を篩によって予め所定のサイズに分級し、分級したものについて画像処理を用いた測定法でサイズを測定し、これを試料として使用した。
 人工土壌粒子及び人工土壌団粒体のサイズは、上述の「人工土壌団粒体」の項目で説明した光学顕微鏡観察及び画像処理法を用いて測定した。
(2)陽イオン交換容量
 富士平工業株式会社製の汎用抽出・ろ過装置「CEC-10 Ver.2」を用いて人工土壌粒子の抽出液を作製し、これを陽イオン交換容量測定用試料とした。そして、富士平工業株式会社製の土壌・作物体総合分析装置「SFP-3」を用いて、人工土壌粒子の陽イオン交換容量(CEC)を測定した。
(3)陰イオン交換容量
 人工土壌粒子2gに0.05M硝酸カルシウム溶液20mLを添加し、1時間攪拌した。溶液を室温で1分間遠心分離(10,000rpm)し、上清を測定用試料とした。測定用試料について、紫外可視分光光度計を用いて波長410nmの吸光度を測定し、硝酸カルシウム濃度を求めた。求めた硝酸カルシウム濃度とブランクの硝酸カルシウム濃度との差から、硝酸態窒素の重量当たりの吸着量を算出し、これを比重で換算し、容積当たりの陰イオン交換容量(AEC)とした。
(4)易効水の体積含水率
 テンシオメ-タにより各試料のpF値を測定し、pF値1.7からpF値2.3に変化する易効水量を計測した。pF1.7~2.3の範囲における体積含水率は、「人工土壌団粒体の保水性及び通気性」の項目で説明した式(1)から求められる。
(5)pF値1.5における気相率
 試料である人工土壌団粒体の重量水を流下させ、pFメータ(テンシオメ-タ)により試料のpF値が1.5を示したのを確認後、試料の形状をできるだけ維持しながら100mL試料用円筒に採取し、大起理化工業株式会社製のデジタル実容積測定装置「DIK-1150」にセットして測定した値をpF値1.5における気相率とした。
(6)ラディシュの生育性
 ラディッシュの種を上層表面に播種して上面灌水(1回/日)を行い、ラディシュの生育性を評価した。ラディシュの生育性は、目視により観察し、良好なものを○、不良なものを△、発芽しなかったものを×とした。
<試験結果>
 表1~3に示すように、実施例1~23の人工土壌団粒体は、pF1.7~2.3の範囲における体積含水率が10~40%の範囲に調整され、且つ、pF1.5における気相率が20~80%の範囲に調整されていることから、ラディシュの生育性は良好であった。これに対して、比較例1~6の人工土壌団粒体は、pF1.7~2.3の範囲における体積含水率及びpF1.5における気相率の少なくとも何れかが上記適正範囲から外れているため、ラディシュの生育性は不良となり、特に、比較例1は、体積含水率及び気相率の範囲が何れも上記適正範囲から外れているため、発芽さえしなかった。また、本発明の人工土壌団粒体は、連通孔及び一次間隙を備えているため、pF1.7~2.3の範囲における体積含水率及びpF1.5における気相率を上記範囲に容易に調整することができ、また品質的にも安定していた。このように、本発明の人工土壌団粒体は、体積含水率及び気相率が高い次元でバランスされており、植物工場等で利用可能な付加価値の高い製品となり得ることが示された。
 本発明の人工土壌団粒体、及び人工土壌培地は、植物工場等で使用される人工土壌に利用可能であるが、その他の用途として、施設園芸用土壌、緑化用土壌、成型土壌、土壌改良剤、インテリア用土壌等にも利用可能である。
 1    人工土壌団粒体
 2    一次間隙
 10   人工土壌粒子
 11   細孔
 12   フィラー
 13   連通孔

Claims (8)

  1.  サブnmオーダー乃至サブμmオーダーの細孔を有するフィラーが複数集合してなり、前記フィラーの間にサブμmオーダー乃至サブmmオーダーの連通孔が形成された人工土壌粒子を団粒化した人工土壌団粒体であって、
     pF1.7~2.3の範囲における体積含水率が10~40%であり、且つ、pF1.5における気相率が20~80%である人工土壌団粒体。
  2.  前記人工土壌粒子の間に、μmオーダー乃至mmオーダーの一次間隙が形成されている請求項1に記載の人工土壌団粒体。
  3.  前記一次間隙のサイズは、5~100μmである請求項2に記載の人工土壌団粒体。
  4.  0.2~10mmのサイズを有する請求項1~3の何れか一項に記載の人工土壌団粒体。
  5.  前記人工土壌粒子は、5~1000μmの粒径分布を有する請求項1~4の何れか一項に記載の人工土壌団粒体。
  6.  前記細孔にイオン交換能を付与してある請求項1~5の何れか一項に記載の人工土壌団粒体。
  7.  保水性材料を含む請求項1~6の何れか一項に記載の人工土壌団粒体。
  8.  請求項1~7の何れか一項に記載の人工土壌団粒体を使用した人工土壌培地。
PCT/JP2013/084226 2012-12-28 2013-12-20 人工土壌団粒体、及び人工土壌培地 WO2014103919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014554406A JP6034879B2 (ja) 2012-12-28 2013-12-20 人工土壌団粒体、及び人工土壌培地
EP13867446.0A EP2939525A4 (en) 2012-12-28 2013-12-20 ARTIFICIAL SOIL AGGREGATES AND ARTIFICIAL SOIL SUBSTRATE
US14/650,975 US20150313102A1 (en) 2012-12-28 2013-12-20 Artificial soil aggregate and artificial soil medium
CN201380066233.5A CN104869805A (zh) 2012-12-28 2013-12-20 人工土壤团粒体及人工土壤培养基

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012286523 2012-12-28
JP2012-286523 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103919A1 true WO2014103919A1 (ja) 2014-07-03

Family

ID=51021003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084226 WO2014103919A1 (ja) 2012-12-28 2013-12-20 人工土壌団粒体、及び人工土壌培地

Country Status (6)

Country Link
US (1) US20150313102A1 (ja)
EP (1) EP2939525A4 (ja)
JP (1) JP6034879B2 (ja)
KR (1) KR20150083915A (ja)
CN (1) CN104869805A (ja)
WO (1) WO2014103919A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789231A (zh) * 2015-04-16 2015-07-22 青岛农业大学 一种土壤保水组合物
WO2016039249A1 (ja) * 2014-09-08 2016-03-17 東洋ゴム工業株式会社 人工土壌粒子の製造方法、及び人工土壌粒子
WO2016056598A1 (ja) * 2014-10-08 2016-04-14 東洋ゴム工業株式会社 人工土壌培地、及び人工土壌培地の製造方法
JP2018184833A (ja) * 2015-04-03 2018-11-22 日本工営株式会社 土壌侵食防止用土壌散布材および土壌侵食防止用土壌散布材収容物セット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104021A1 (ja) * 2012-12-26 2014-07-03 株式会社栄和プランニング 切り花の保水剤及び保存方法
JP5755282B2 (ja) * 2013-05-09 2015-07-29 東洋ゴム工業株式会社 人工土壌粒子、及び人工土壌粒子の製造方法
CN105254224B (zh) * 2015-09-11 2018-08-31 深圳市铁汉生态环境股份有限公司 一种人造土壤团粒体及其制备方法
CN110122269B (zh) * 2019-06-18 2021-08-24 大连地拓环境科技有限公司 一种高陡边坡喷播用团粒剂及其应用方法
CN115703640B (zh) * 2021-08-13 2024-06-14 同济大学 一种分子筛微球材料、制备方法及一种扬声器
NL2030688B1 (en) * 2022-01-25 2023-01-27 Ministry Of Water Resources Ministry Of Transp National Energy Administration Nanjing Hydraulic Rese An irrigation method for improving soil water holding capacity and reducing co2 emissions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323892A (en) 1976-08-18 1978-03-04 Sekisui Plastics Manufacture of absorbent mass granules
JPS6295138A (ja) * 1985-10-18 1987-05-01 Nitto Electric Ind Co Ltd 保水材
JPH05176643A (ja) * 1991-12-27 1993-07-20 Shigeru Masuda 植物栽培用培地
JP2000336356A (ja) 1999-05-27 2000-12-05 Okutama Kogyo Co Ltd 団粒構造ゼオライトおよびそれを用いた育苗培土
JP2002080284A (ja) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd 無機多孔質体
JP2002335747A (ja) * 2001-05-18 2002-11-26 Tetra Co Ltd 緑化用植生基盤材、植生ユニット、及び、これらを用いた特殊空間の緑化方法
JP2003092924A (ja) * 2001-09-21 2003-04-02 Sumitomo Forestry Co Ltd 養液栽培による植物栽培方法
JP2005318891A (ja) * 2004-04-09 2005-11-17 Ohbayashi Corp 緑化用土壌および緑化用土壌の製造方法ならびに緑化用土壌を用いた緑化方法
JP2013078293A (ja) * 2011-10-05 2013-05-02 Toyo Tire & Rubber Co Ltd 保水性団粒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295137A (ja) * 1985-10-18 1987-05-01 Nitto Electric Ind Co Ltd 保水材
JP2001161159A (ja) * 1999-12-07 2001-06-19 Tetra Co Ltd 緑化構造物及び構造物の緑化方法
JP3782732B2 (ja) * 1999-12-22 2006-06-07 株式会社荏原製作所 土壌のpF値の測定方法、並びに灌水制御方法及び灌水制御装置
US7739833B2 (en) * 2006-02-10 2010-06-22 Ramsey W Gene Foamed vitroeous materials for agricultural applications
JP2008178387A (ja) * 2006-12-26 2008-08-07 Katsuro Matsuda 固形培地耕用の養液栽培装置及び養液栽培方法
DE102008032033A1 (de) * 2008-07-07 2010-01-14 E&W Greenland Gmbh Materialverbund und Formkörper aus Polymermaterial und porösem Träger sowie deren Herstellung und Anwendung
US20150128671A1 (en) * 2012-06-29 2015-05-14 Toyo Tire & Rubber Co., Ltd. Artificial soil and method of making the same
KR20150043477A (ko) * 2012-09-27 2015-04-22 도요 고무 고교 가부시키가이샤 인공 토양 입자, 인공 토양 단립체, 인공 토양 성형체, 및 상기 인공 토양 성형체를 사용한 녹화용 시트, 벽면 녹화 패널, 및 원예용 블록
KR20150094745A (ko) * 2013-01-11 2015-08-19 도요 고무 고교 가부시키가이샤 인공 토양 배지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323892A (en) 1976-08-18 1978-03-04 Sekisui Plastics Manufacture of absorbent mass granules
JPS6295138A (ja) * 1985-10-18 1987-05-01 Nitto Electric Ind Co Ltd 保水材
JPH05176643A (ja) * 1991-12-27 1993-07-20 Shigeru Masuda 植物栽培用培地
JP2000336356A (ja) 1999-05-27 2000-12-05 Okutama Kogyo Co Ltd 団粒構造ゼオライトおよびそれを用いた育苗培土
JP2002080284A (ja) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd 無機多孔質体
JP2002335747A (ja) * 2001-05-18 2002-11-26 Tetra Co Ltd 緑化用植生基盤材、植生ユニット、及び、これらを用いた特殊空間の緑化方法
JP2003092924A (ja) * 2001-09-21 2003-04-02 Sumitomo Forestry Co Ltd 養液栽培による植物栽培方法
JP2005318891A (ja) * 2004-04-09 2005-11-17 Ohbayashi Corp 緑化用土壌および緑化用土壌の製造方法ならびに緑化用土壌を用いた緑化方法
JP2013078293A (ja) * 2011-10-05 2013-05-02 Toyo Tire & Rubber Co Ltd 保水性団粒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2939525A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039249A1 (ja) * 2014-09-08 2016-03-17 東洋ゴム工業株式会社 人工土壌粒子の製造方法、及び人工土壌粒子
JPWO2016039249A1 (ja) * 2014-09-08 2017-04-27 東洋ゴム工業株式会社 人工土壌粒子の製造方法、及び人工土壌粒子
WO2016056598A1 (ja) * 2014-10-08 2016-04-14 東洋ゴム工業株式会社 人工土壌培地、及び人工土壌培地の製造方法
JPWO2016056598A1 (ja) * 2014-10-08 2017-04-27 東洋ゴム工業株式会社 人工土壌培地、及び人工土壌培地の製造方法
JP2018184833A (ja) * 2015-04-03 2018-11-22 日本工営株式会社 土壌侵食防止用土壌散布材および土壌侵食防止用土壌散布材収容物セット
CN104789231A (zh) * 2015-04-16 2015-07-22 青岛农业大学 一种土壤保水组合物

Also Published As

Publication number Publication date
KR20150083915A (ko) 2015-07-20
US20150313102A1 (en) 2015-11-05
JP6034879B2 (ja) 2016-11-30
EP2939525A1 (en) 2015-11-04
JPWO2014103919A1 (ja) 2017-01-12
EP2939525A4 (en) 2016-08-17
CN104869805A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6034879B2 (ja) 人工土壌団粒体、及び人工土壌培地
WO2014050765A1 (ja) 人工土壌粒子、人工土壌団粒体、人工土壌成型体、並びに当該人工土壌成型体を使用した緑化用シート、壁面緑化パネル、及び園芸用ブロック
JP5913452B2 (ja) 人工土壌培地
JP6209053B2 (ja) 植物育成培地、及び植物育成キット
WO2015072549A1 (ja) 人工土壌培地
JP5591389B2 (ja) 人工土壌粒子、及び人工土壌団粒体
JP2015130797A (ja) 人工土壌培地
JP2017018075A (ja) 人工土壌培地用固化剤、及び人工土壌培地の調製方法
JP5755282B2 (ja) 人工土壌粒子、及び人工土壌粒子の製造方法
JP6165259B2 (ja) 人工土壌粒子、及び人工土壌培地
JP6034634B2 (ja) 人工土壌成型体、緑化用シート、壁面緑化パネル、及び園芸用ブロック
WO2017122444A1 (ja) 人工土壌培地
JP6218374B2 (ja) 人工土壌粒子、及び人工土壌培地
JP6218375B2 (ja) 人工土壌粒子、及び人工土壌培地
JP6254384B2 (ja) 人工土壌培地
WO2016056598A1 (ja) 人工土壌培地、及び人工土壌培地の製造方法
JP2015019652A (ja) 人工土壌粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015394

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650975

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014554406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013867446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013867446

Country of ref document: EP