WO2014103815A1 - 磁気記録媒体及びその製造方法 - Google Patents
磁気記録媒体及びその製造方法 Download PDFInfo
- Publication number
- WO2014103815A1 WO2014103815A1 PCT/JP2013/083830 JP2013083830W WO2014103815A1 WO 2014103815 A1 WO2014103815 A1 WO 2014103815A1 JP 2013083830 W JP2013083830 W JP 2013083830W WO 2014103815 A1 WO2014103815 A1 WO 2014103815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic recording
- recording medium
- layer
- film
- orientation control
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 31
- 239000000956 alloy Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 44
- 239000000758 substrate Substances 0.000 claims description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010409 thin film Substances 0.000 abstract description 3
- 241001253177 Anisotes Species 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 71
- 239000010408 film Substances 0.000 description 70
- 239000013078 crystal Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 229910005335 FePt Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011241 protective layer Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical group [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000001552 radio frequency sputter deposition Methods 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 229910018979 CoPt Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- -1 or the like Substances 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7369—Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
- G11B5/737—Physical structure of underlayer, e.g. texture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
Definitions
- the present invention relates to a magnetic recording medium mounted on various magnetic recording devices and a manufacturing method thereof.
- Perpendicular magnetic recording is used as a technology for realizing high density magnetic recording.
- a material for forming the magnetic recording layer of the perpendicular magnetic recording medium for example, a granular magnetic film is used.
- an aluminum or glass substrate is used in terms of strength and impact resistance.
- the crystal of the L1 0 type ordered alloy is (001) -oriented in order to have high magnetocrystalline anisotropy.
- the orientation control layer is provided with a NaCl structure or CsCl structure for enhancing the crystal orientation of the L1 0 type ordered alloy.
- MgO film having a NaCl structure lattice matching is high, it has been widely used as an alignment control layer with respect to L1 0 type ordered alloy.
- Patent Document 1 discloses that an L1 0 type rule can be obtained even for a thin film of 3 nm or less by providing a cubic conductive compound layer such as strontium titanate, indium tin oxide, or titanium nitride as an underlayer of the MgO film.
- a technique for forming an MgO film exhibiting excellent orientation controllability with respect to an alloy is disclosed.
- the conductive compound layer which is the base layer of the MgO film, is formed by the DC sputtering method instead of the RF sputtering method having a low film formation rate.
- the film is formed by reactive sputtering while introducing a reactive gas such as a gas or nitrogen gas.
- the present invention solves the above problems, a magnetic recording medium having a high coercive force using a magnetic anisotropy of the large L1 0 type ordered alloy magnetic recording layer, a magnetic recording medium can be produced with good reproducibility and high throughput It aims at providing the manufacturing method.
- the magnetic recording medium of the present invention for solving the above-rules having a metal base layer, an orientation control layer formed on the metal base layer, an L1 0 type structure formed on the orientation control layer
- a magnetic recording medium comprising a magnetic recording layer made of an alloy, wherein the metal underlayer has a face-centered cubic structure.
- the method of manufacturing a magnetic recording medium of the present invention includes the steps of forming a metal backing layer on a substrate, forming an orientation control layer on the metal underlayer, L1 0 type structure on the orientation control layer And a step of forming a magnetic recording layer made of an ordered alloy comprising: a metal underlayer having a face-centered cubic structure.
- the present invention by using a metal underlayer that can be formed in a short time with good reproducibility as the underlayer of the orientation control layer, even if the thickness of the orientation control layer is reduced, a high crystal magnetic difference is achieved. can be deposited a magnetic recording layer composed of L1 0 type ordered alloy having anisotropic, it is possible to produce with good reproducibility high throughput magnetic recording medium having high coercivity.
- FIG. 1 is a plan view showing a magnetic recording medium manufacturing apparatus preferably used in the present invention.
- the manufacturing apparatus in FIG. 1 is an in-line film forming apparatus.
- the in-line type means an apparatus in which a substrate is transferred through a plurality of connected chambers.
- a plurality of chambers 110 to 131 are connected endlessly along a rectangular outline via a gate valve.
- the substrate 1 is mounted on the carrier 10 in the load lock chamber 111, and the carrier 10 sequentially passes through the chambers 112 to 130, and the substrate 1 is collected in the unload lock chamber 131.
- Each of the chambers 111 to 131 is a vacuum container that is evacuated by a dedicated or dual-purpose exhaust system.
- the chambers 112, 116, 123, 127 are direction change chambers provided with a direction change mechanism that changes the transport direction of the carrier 10 by 90 degrees. Except for the chambers 116, 123 and 127, the chambers 113 to 130 are processing chambers for performing various processes. Specifically, a soft magnetic layer forming chamber 114 for forming a soft magnetic layer on the substrate 1, a metal underlayer forming chamber 115 for forming a metal underlayer on the substrate 1 on which the soft magnetic layer is formed, and a metal underlayer An orientation control layer forming chamber 118 for forming an orientation control layer on the formed substrate 1, a magnetic recording layer forming chamber 124 for forming a magnetic recording layer on the substrate 1 on which the orientation control layer is formed, and a magnetic recording layer are formed.
- a substrate heating chamber 125 having a mechanism for heating the substrate 1 and a protective layer forming chamber 129 for forming a protective layer on the magnetic recording layer.
- Other processing chambers include a substrate cooling chamber for cooling the substrate 1 and a substrate transfer chamber for changing the substrate 1.
- the carrier 10 is processed after the substrate 1 is unloaded.
- the film forming process on the substrate 1 is performed using a sputtering (hereinafter also referred to as sputtering) method.
- the sputtering chamber has an exhaust system, a gas introduction system for introducing a process gas, a target provided with a surface to be sputtered exposed in an internal space, a power source for applying a discharge voltage, and a target behind the target. It is mainly composed of a magnet mechanism.
- Each processing chamber is configured symmetrically with respect to the carrier 10 (substrate 1) as a reference, and has a configuration capable of forming films on both surfaces of the substrate 1 held on the carrier 10 simultaneously. While the process gas is introduced, the film forming chamber is maintained at a predetermined pressure by the exhaust system, and the power source connected to the target holder is operated in this state. As a result, a discharge is generated in the vicinity of the target, the target is sputtered, the sputtered target material reaches the substrate 1, and a predetermined film is formed on the surface of the substrate 1. Note that only the orientation control layer forming chamber 118 uses an RF power source as a sputtering power source, and a DC power source is used in the other film forming chambers.
- FIG. 2 is a diagram showing a cross-sectional structure of the magnetic recording medium 7 according to the present invention.
- a soft magnetic layer 2 In the magnetic recording medium 7, a soft magnetic layer 2, a metal underlayer 3, an orientation control layer 4, a magnetic recording layer 5, and a protective layer 6 are sequentially deposited on a substrate 1.
- the present invention is not limited to this embodiment, and a layer made of another material is provided between the substrate 1 and the soft magnetic layer 2, between the soft magnetic layer 2 and the metal underlayer 3, or magnetically. It can also be used by being additionally deposited on top of the recording layer 5.
- the substrate As a material of the substrate 1, in addition to soda lime glass, chemically strengthened aluminosilicate, Al—Mg alloy substrate electrolessly plated with nickel phosphorus, ceramic made of silicon, borosilicate glass, or the like, or glass glazing was applied. A nonmagnetic rigid substrate made of ceramics or the like can be used.
- FeCo alloy FeTa alloy, Co alloy or the like
- the material of the protective layer 6 is, for example, diamond-like carbon, carbon nitride, silicon nitride or the like.
- the metal underlayer 3 is selected from a metal group having a face-centered cubic structure. Specifically, it is selected from Ag, Al, Au, Cu, Ir, Ni, Pt, Pd, and Rh having a face-centered cubic structure. Or it consists of an alloy which has a face centered cubic structure containing at least one of these.
- Material group of the metal base layer 3 takes a face-centered cubic structure at ambient temperature and pressure, because the lattice constant of approximately 0.353nm ⁇ 0.410nm, a of L1 0 type ordered alloy, b-axis length 0. Good lattice matching with 385 nm.
- the metal underlayer 3 according to the present invention can be formed by a DC sputtering method having a high film formation rate, and it is not necessary to introduce a reactive gas.
- the metal underlayer 3 can be formed.
- the alignment control layer 4 used to improve the crystallinity of the L1 0 type ordered alloy.
- MgO having an L1 0 type ordered alloy lattice matching with a good NaCl structure is preferably used.
- an element other than MgO may be included as long as the NaCl structure of MgO is maintained.
- the element added to MgO include a metal element having at least one element selected from the group such as Nb, Mo, Ru, Ta, and W and having a melting point of 2000 ° C. or higher. By adding these metal elements, the particle diameter of the MgO film can be reduced.
- the magnetic recording layer 5 L1 0 type ordered alloy.
- the magnetic recording layer Ag, Au may be added a third element such as Cu.
- the magnetic recording layer 5 includes a material that segregates at the grain boundary of the magnetic crystal grain, An oxide such as SiO 2 , TiO 2 , MgO, or a carbon-based nonmetallic element may be added.
- Example 1 A magnetic recording medium 7 having a laminated structure shown in FIG. 1 was produced.
- a CoTaZr film having a thickness of 40 nm was formed as the soft magnetic layer 2 and a Pd film having a thickness of 3 nm was formed as the metal underlayer 3 on the glass substrate 1.
- the metal underlayer 3 was formed using a DC sputtering method in an Ar gas atmosphere at a pressure of 0.6 Pa.
- an orientation control layer 4 made of an MgO film with a thickness of 20 nm and a Fe film with a thickness of 3 nm and a Pt film with a thickness of 3 nm are laminated as a magnetic recording layer 5, respectively, and a protective layer is formed thereon.
- a carbon film having a thickness of 3 nm was sequentially formed. Further, by heating the substrate of the magnetic recording layer 5 after the deposition of about 500 ° C., the Fe film and the Pt film formed by laminating a magnetic recording layer 5 was set to L1 0 type FePt ordered alloy film.
- sputtering was heated Fe film and the Pt film after laminating by single layer and L1 0 type FePt ordered alloy film, using an alloy target of Fe and Pt, or Fe and heated to L1 0 type FePt ordered alloy film may be formed after the co-sputtering of using Pt separate targets respectively.
- Example 2 In Example 2, the thickness of the orientation control layer 4 was set to 5 nm, and the magnetic recording medium 7 was manufactured in the same manner as in Example 1 except for the thicknesses of other films and film formation conditions.
- Example 3 the magnetic recording medium 7 was manufactured in the same manner as in Example 1 except that the thickness of the metal underlayer 3 was 10 nm, and the thicknesses and conditions of other films were the same.
- Comparative Example 1 In Comparative Example 1, the metal underlayer 3 was not formed, and the magnetic recording medium 7 was produced in the same manner as in Example 1 except for the thickness of other films and the film forming conditions.
- Comparative Example 2 In Comparative Example 2, a magnetic film was formed in the same manner as in Example 2 except that a Cr film having a body-centered cubic structure was formed to a thickness of 10 nm instead of the Pd film having a face-centered cubic structure as the metal underlayer 3. A recording medium 7 was produced.
- Table 1 shows the film thickness of the orientation control layer 4 and the material and film thickness of the metal underlayer 3 of the magnetic recording media 7 of Examples 1 to 3 and Comparative Examples 1 and 2, and the coercive force of the magnetic recording medium 7.
- the coercive force was measured using a polar Kerr effect measuring apparatus BH-800UVHD manufactured by Neoarc Co., Ltd.
- the coercive force of the magnetic recording medium of Example 1 is 8927 Oe, which is higher than the coercive force of 5300 Oe of the magnetic recording medium of Comparative Example 1 without the Pd film as the metal underlayer 3.
- the coercive force maintains a high value of 7100 Oe. This is a higher value than Comparative Example 1 in which there is no Pd film and the MgO film thickness is 20 nm. It can be seen that a sufficiently large coercive force is obtained as the magnetic recording medium 7 even when the MgO film thickness is reduced by forming the Pd film as the metal underlayer 3.
- Example 3 where the Pd film thickness was increased to 10 nm, the coercive force was 8333 Oe. Even if the Pd film thickness is increased, a high coercive force is maintained.
- the probability that atoms constituting the metal underlayer 3 permeate the orientation control layer 4 and diffuse into the magnetic recording layer 5 is increased.
- the metal underlayer 3 having a cubic structure it is possible to suppress deterioration of the magnetic characteristics of the magnetic recording layer 5 even when atoms constituting the metal underlayer 3 diffuse into the magnetic recording layer 5.
- substrate 2 soft magnetic layer 3: metal underlayer 4: orientation control layer 5: magnetic recording layer 6: protective layer 7: magnetic recording medium 10: carrier 111: load lock chambers 112, 116, 123, 127: direction change Chamber 114: Soft magnetic layer forming chamber 115: Metal underlayer forming chamber 118: Orientation control layer forming chamber 124: Magnetic recording layer forming chamber 125: Substrate heating chamber 129: Protective layer forming chamber 131: Unload lock chamber
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
図1に示す積層構成の磁気記録媒体7を作製した。先ず、ガラス基板1上に、軟磁性層2として膜厚が40nmのCoTaZr膜を、金属下地層3として膜厚が3nmのPd膜を成膜した。金属下地層3は圧力0.6PaのArガス雰囲気中でDCスパッタ法を用いて成膜した。その上部に、膜厚が20nmのMgO膜からなる配向制御層4と、磁気記録層5として膜厚が3nmのFe膜と膜厚が3nmのPt膜をそれぞれ1層積層し、その上部に保護層6として膜厚が3nmのカーボン膜を順次成膜した。また、磁気記録層5を成膜後に基板を500℃程度に加熱することで、磁気記録層5として積層したFe膜とPt膜とをL10型FePt規則合金膜とした。
実施例2では、配向制御層4の膜厚を5nmとし、他の膜の厚み及び成膜条件等は全て実施例1と同様の方法で磁気記録媒体7を作製した。
実施例3では、金属下地層3の膜厚を10nmと、他の膜の厚み及び成膜条件等は全て実施例1と同様の方法で磁気記録媒体7を作製した。
比較例1では、金属下地層3を成膜せず、他の膜の厚み及び成膜条件等は全て実施例1と同様の方法で磁気記録媒体7を作製した。
比較例2では、金属下地層3として面心立方構造を有するPd膜の代わりに体心立方構造を有するCr膜を10nmの厚さに成膜した以外は、実施例2と同様の方法で磁気記録媒体7を作製した。
2:軟磁性層
3:金属下地層
4:配向制御層
5:磁気記録層
6:保護層
7:磁気記録媒体
10:キャリア
111:ロードロック室
112,116,123,127:方向転換室
114:軟磁性層形成室
115:金属下地層形成室
118:配向制御層形成室
124:磁気記録層形成室
125:基板加熱室
129:保護層形成室
131:アンロードロック室
Claims (6)
- 金属下地層と、
前記金属下地層上に形成された配向制御層と、
前記配向制御層上に形成されたL10型構造を有する規則合金からなる磁気記録層と、を備えた磁気記録媒体であって、
前記金属下地層は面心立方構造を有することを特徴とする磁気記録媒体。 - 前記金属下地層は、Ag、Al、Au、Cu、Ir、Ni、Pt、Pd、Rhのうちの1種、又は1種以上を含む合金を用いて構成されていることを特徴とする請求項1記載の磁気記録媒体。
- 前記配向制御層はMgOを主成分とすることを特徴とする請求項1又は2に記載の磁気記録媒体。
- 基板上に金属下地層を形成する工程と、
前記金属下地層上に配向制御層を形成する工程と、
前記配向制御層上にL10型構造を有する規則合金からなる磁気記録層を形成する工程と、を有する磁気記録媒体の製造方法であって、
前記金属下地層は面心立方構造を有することを特徴とする磁気記録媒体の製造方法。 - 前記金属下地層は、Ag、Al、Au、Cu、Ir、Ni、Pt、Pd、Rhのうちの1種、又は1種以上を含む合金を用いて構成されていることを特徴とする請求項4記載の磁気記録媒体の製造方法。
- 前記配向制御層はMgOを主成分とすることを特徴とする請求項4又は5に記載の磁気記録媒体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014554350A JP5981564B2 (ja) | 2012-12-27 | 2013-12-18 | 磁気記録媒体及びその製造方法 |
US14/655,226 US20150348579A1 (en) | 2012-12-27 | 2013-12-18 | Magnetic recording medium and method for manufacturing the same |
CN201380068621.7A CN104885154B (zh) | 2012-12-27 | 2013-12-18 | 磁记录介质及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-284686 | 2012-12-27 | ||
JP2012284686 | 2012-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014103815A1 true WO2014103815A1 (ja) | 2014-07-03 |
Family
ID=51020902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083830 WO2014103815A1 (ja) | 2012-12-27 | 2013-12-18 | 磁気記録媒体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150348579A1 (ja) |
JP (1) | JP5981564B2 (ja) |
CN (1) | CN104885154B (ja) |
TW (1) | TWI549124B (ja) |
WO (1) | WO2014103815A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966093B1 (en) | 2016-12-28 | 2018-05-08 | Western Digital Technologies, Inc. | Heat assisted magnetic recording head gimbal assembly and hard disk drive using same |
CN109208047A (zh) * | 2018-08-08 | 2019-01-15 | 北京麦戈龙科技有限公司 | 一种烧结钕铁硼磁体的镀层结构及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004213869A (ja) * | 2002-12-20 | 2004-07-29 | Fuji Electric Device Technology Co Ltd | 垂直磁気記録媒体およびその製造方法 |
WO2010109822A1 (ja) * | 2009-03-23 | 2010-09-30 | 昭和電工株式会社 | 熱アシスト磁気記録媒体及び磁気記録再生装置 |
WO2011021652A1 (ja) * | 2009-08-20 | 2011-02-24 | 昭和電工株式会社 | 熱アシスト磁気記録媒体及び磁気記憶装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG121841A1 (en) * | 2002-12-20 | 2006-05-26 | Fuji Elec Device Tech Co Ltd | Perpendicular magnetic recording medium and a method for manufacturing the same |
JP2006302480A (ja) * | 2005-02-25 | 2006-11-02 | Showa Denko Kk | 磁気記録媒体、その製造方法および磁気記録再生装置 |
JP2009032356A (ja) * | 2007-07-30 | 2009-02-12 | Showa Denko Kk | 垂直磁気記録媒体、その製造方法および磁気記録再生装置 |
SG10201408031RA (en) * | 2008-03-19 | 2015-01-29 | Hoya Corp | Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media and method for preparation thereof |
JP2012048784A (ja) * | 2010-08-26 | 2012-03-08 | Hitachi Ltd | 垂直磁気記録媒体及びその製造方法 |
JP5127957B2 (ja) * | 2010-11-26 | 2013-01-23 | 株式会社東芝 | 磁気記録媒体、その製造方法、及び磁気記録再生装置 |
JP5786347B2 (ja) * | 2011-02-02 | 2015-09-30 | 富士電機株式会社 | 熱アシスト記録装置用の磁気記録媒体およびその製造方法 |
JP5145437B2 (ja) * | 2011-03-02 | 2013-02-20 | 株式会社日立製作所 | 磁気記録媒体 |
JP6083163B2 (ja) * | 2012-09-11 | 2017-02-22 | 富士電機株式会社 | 垂直磁気記録媒体およびその製造方法 |
-
2013
- 2013-12-18 US US14/655,226 patent/US20150348579A1/en not_active Abandoned
- 2013-12-18 WO PCT/JP2013/083830 patent/WO2014103815A1/ja active Application Filing
- 2013-12-18 JP JP2014554350A patent/JP5981564B2/ja active Active
- 2013-12-18 CN CN201380068621.7A patent/CN104885154B/zh active Active
- 2013-12-24 TW TW102147970A patent/TWI549124B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004213869A (ja) * | 2002-12-20 | 2004-07-29 | Fuji Electric Device Technology Co Ltd | 垂直磁気記録媒体およびその製造方法 |
WO2010109822A1 (ja) * | 2009-03-23 | 2010-09-30 | 昭和電工株式会社 | 熱アシスト磁気記録媒体及び磁気記録再生装置 |
WO2011021652A1 (ja) * | 2009-08-20 | 2011-02-24 | 昭和電工株式会社 | 熱アシスト磁気記録媒体及び磁気記憶装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150348579A1 (en) | 2015-12-03 |
TW201503119A (zh) | 2015-01-16 |
JPWO2014103815A1 (ja) | 2017-01-12 |
CN104885154A (zh) | 2015-09-02 |
CN104885154B (zh) | 2018-10-12 |
JP5981564B2 (ja) | 2016-08-31 |
TWI549124B (zh) | 2016-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8133332B2 (en) | Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording | |
US9899050B2 (en) | Multiple layer FePt structure | |
JP6439869B2 (ja) | 磁気記録媒体の製造方法 | |
WO2011087007A1 (ja) | 垂直磁気記録媒体及びその製造方法 | |
WO2010064724A1 (ja) | 磁気ディスク及びその製造方法 | |
JP6083163B2 (ja) | 垂直磁気記録媒体およびその製造方法 | |
JP2005190517A (ja) | 垂直磁気記録媒体及び磁気記憶装置 | |
JP2004178753A (ja) | 垂直磁気記録媒体 | |
EP1783748A1 (en) | Deposition of enhanced seed layer using tantalum alloy based sputter target | |
WO2016024403A1 (ja) | 磁気記録媒体 | |
US20080226950A1 (en) | Perpendicular magnetic recording medium and method of manufacturing the medium | |
JP2008091024A (ja) | 垂直磁気記録媒体 | |
JP2911782B2 (ja) | 磁気記録媒体及びその製造方法 | |
JP5981564B2 (ja) | 磁気記録媒体及びその製造方法 | |
JP2007164941A (ja) | 垂直磁気記録媒体 | |
US20120114975A1 (en) | Sputtering Targets And Recording Materials Of Hard Disk Formed From The Sputtering Target | |
WO2017122575A1 (ja) | 磁気記録媒体 | |
WO2016024378A1 (ja) | 磁気記録媒体の製造方法 | |
WO2015001768A1 (ja) | 磁気記録媒体の製造方法 | |
JP2007102833A (ja) | 垂直磁気記録媒体 | |
JP2008097824A (ja) | 垂直磁気記録媒体およびその製造方法 | |
JP2003022523A (ja) | 垂直磁気記録媒体およびその製造方法 | |
JP2007164845A (ja) | 磁気記録媒体及びその製造方法 | |
US20160247531A1 (en) | Magnetic storage disc based on exchange-bias | |
US20160247529A1 (en) | Magnetic storage disc based on exchange-bias |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866876 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014554350 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14655226 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13866876 Country of ref document: EP Kind code of ref document: A1 |