JP2006302480A - 磁気記録媒体、その製造方法および磁気記録再生装置 - Google Patents

磁気記録媒体、その製造方法および磁気記録再生装置

Info

Publication number
JP2006302480A
JP2006302480A JP2005172199A JP2005172199A JP2006302480A JP 2006302480 A JP2006302480 A JP 2006302480A JP 2005172199 A JP2005172199 A JP 2005172199A JP 2005172199 A JP2005172199 A JP 2005172199A JP 2006302480 A JP2006302480 A JP 2006302480A
Authority
JP
Japan
Prior art keywords
alloy
nonmagnetic
layer
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005172199A
Other languages
English (en)
Inventor
Hiroshi Osawa
弘 大澤
Kenji Shimizu
謙治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005172199A priority Critical patent/JP2006302480A/ja
Priority to TW094124393A priority patent/TW200630977A/zh
Priority to CN2005800482978A priority patent/CN101120403B/zh
Priority to US11/884,652 priority patent/US20080193800A1/en
Priority to PCT/JP2005/020159 priority patent/WO2006090510A1/en
Publication of JP2006302480A publication Critical patent/JP2006302480A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

【課題】 より高記録密度に対応できる磁気記録媒体で、より高保持力を有してより低ノイズである磁気記録媒体、その製造方法および磁気記録再生装置を提供する。
【解決手段】 非磁性基板上に、少なくとも非磁性下地層、非磁性中間層、磁性層および保護層がこの順番で積層され、非磁性下地層の少なくとも一層がWV系合多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体。
【選択図】 図1

Description

本発明は、ハ−ドディスク装置などに用いられる磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置に関するものである。
磁気記録再生装置の1種であるハ−ドディスク装置(HDD)は、現在その記録密度が100Gbits/inにまで到達しおり、さらに今後も年率30%の記録密度の向上が続くと言われている。このために高記録密度に適した磁気記録用ヘッドの開発、磁気記録媒体の開発が進められている。ハ−ドディスク装置に用いられる磁気記録媒体は、高記録密度化が要求されており、これに伴い保磁力の向上、媒体ノイズの低減が求められている。ハ−ドディスク装置に用いられる磁気記録媒体としては、磁気記録媒体用の基板にスパッタリング法により金属膜を積層した構造が主流となっている。磁気記録媒体に用いられる基板としては、アルミニウム基板とガラス基板が広く用いられている。アルミニウム基板とは鏡面研磨したAl−Mg合金の基体上にNi−P系合金膜を無電解メッキで10μm程度の厚さに形成し、その表面を更に鏡面仕上げしたものである。ガラス基板にはアモルファスガラスと結晶化ガラスの2種類がある。どちらのガラス基板も鏡面仕上げしたものが用いられる。
現在一般的に用いられているハ−ドディスク装置用磁気記録媒体においては、非磁性基板上に非磁性下地層(Cr、Cr系合金等、Ni−Al系合金)、非磁性中間層(Co−Cr、Co−Cr−Ta系合金等)、磁性層(Co−Cr−Pt−Ta、Co−Cr−Pt−B系合金等)、保護膜(カ−ボン等)が順次成膜されており、その上に液体潤滑剤からなる潤滑膜が形成されている。
磁性層に用いられるCo−Cr−Pt−Ta系合金、Co−Cr−Pt−B系合金等はCoが主成分である合金である。Co合金はC軸に磁化容易軸をもつ六方最密構造(hcp構造)をとる。磁気記録媒体の記録方式には面内記録と垂直記録があり、一般的に磁性膜にはCo合金が用いられている。面内記録の場合、Co合金のC軸が非磁性基板に対して平行に配向しており、垂直媒体の場合、Co合金のC軸が非磁性基板に対して垂直に配向している。したがって、面内記録の場合、Co合金は(10・0)面あるは(11・0)面に配向していることが望ましい。
磁気記録媒体の高記録密度化には、媒体ノイズの低減が必要である。以下の非特許文献1には、媒体ノイズの低減はCo合金の平均結晶粒径と結晶粒径の分布を小さくすることが有効であることが理論式として記載されている。以下の非特許文献2には、Co合金の平均結晶粒径と結晶粒径の分布を小さくすることにより、媒体ノイズが低減し高記録密度に適した磁気記録媒体が作成できたことが記載されている。このように媒体ノイズの低減にはCo合金の平均結晶粒径と結晶粒径の分布を小さくすることが重要である。Co合金はCr合金の上にエピタキシャル成長することから、Cr合金の平均結晶粒径と結晶粒径の分布を小さくすることが、Co合金の平均結晶粒径と結晶粒径の分布を小さくすることに寄与することは容易に推察できる。
Crには、さまざま元素が添加され特性が向上することが報告されている。以下の特許文献1ではCrにTiを添加することが有効であると記載されている。以下の特許文献2ではCrにVを添加することが有効であると記載されている。以下の特許文献3ではCrにMo,Wを添加することが有効であると記載されている。以下の特許文献4と特許文献5では、下地層を、Crを主成分とする添加元素の異なる2層で構成することが有効であると記載されている。以下の特許文献6では、Crを主成分とする非磁性下地層に酸素や窒素を添加することが有効であると記載されている。
特開昭63−197018号公報 US4652499号明細書 特開昭63−187416号公報 特開平7−73427号公報 特開2000−322732号公報 特開平11−283235号公報 EP0704839号明細書 特開2003−123243号公報 ジャーナル・オブ・アプライド・フィジックス、87巻、5365〜5370ページ(J.Appl.Phys.vol.87,pp.5365−5370) ジャーナル・オブ・アプライド・フィジックス、87巻、5407〜5409ページ(J.Appl.Phys.vol.87,pp.5407−5409)
上記のように非磁性下地層には主としてCr合金が用いられている。非磁性下地層の改善により媒体ノイズを低減させる手法としては、Cr合金の平均結晶粒径の微細化や配向性の向上、Co合金との格子整合などが用いられてきた。非磁性下地層に用いられるCr合金はCrが主成分であるので、その特性は主としてCr固有の性質に起因してしまう。その結果として磁気記録媒体の非磁性下地層の設計を狭めてしまう結果となっている。
非磁性下地層にCr合金を用いる試みはいくつか提案されている。特許文献7では、B2構造を持つ合金(AlNi、AlCo,AlFe等)を非磁性下地膜として用いることで、磁性膜中の結晶粒径が小さくなり、ノイズが改善できることを提案しているが、Al−Ni合金では保持力を大きくしにくいこと、Al−Co合金では保持力角形比を大きくしにくいことから、結果として再生出力が小さくなるために高記録密度を行うためには課題を残していた。
特許文献8では、MgOなどの酸化物配向制御層上にMo,WあるいはMoTi系合金、WTi系合金を成膜することによりノイズが改善できることを提案しているが、MoやW単体あるいはMoTi系合金、WTi系合金ではノイズの低減に限界があり、50Gbits/inを超える記録密度には対応できない。
本発明は、上記事情に鑑みてなされたもので、より高記録密度に対応できる磁気記録媒
体で、より高保持力を有してより低ノイズである磁気記録媒体、その製造方法および磁気
記録再生装置を提供することを目的とする。
本発明者等は上記問題を解決するために、鋭意努力検討した結果、非磁性下地層として、多元体心立方結晶合金を用いることにより磁気記録再生装置の特性を向上できることを見出し、本発明を完成した。即ち本発明は以下に関する。
(1) 非磁性基板上に、少なくとも非磁性下地層、非磁性中間層、磁性層および保護層がこの順番で積層され、前記非磁性下地層の少なくとも一層が、A群から選ばれる少なくとも1つの元素と、B群から選ばれる少なくとも1つの元素と、C群から選ばれる少なくとも1つの元素によって構成される多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体。
A:Cr、V
B:Mo、W
C:Nb、Ta、Ti
(2) 非磁性基板上に、少なくとも非磁性下地層、安定化層、非磁性結合層、磁性層および保護層がこの順番で積層され、前記安定化層が前記磁性層に反強磁性結合した磁気記録媒体において、前記非磁性下地層の少なくとも一層が、A群から選ばれる少なくとも1つの元素と、B群から選ばれる少なくとも1つの元素と、C群から選ばれる少なくとも1つの元素によって構成される多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体。
A:Cr、V
B:Mo、W
C:Nb、Ta、Ti
(3) 前記非磁性下地層に用いられる多元体心立方結晶合金において、A群から選ばれる元素の合計の含有量が10〜60at%、B群から選ばれる元素の合計の含有量が10〜80at%、C群から選ばれる元素の合計の含有量が10〜60at%であることを特徴とする(1)または(2)に記載の磁気記録媒体。
(4)前記非磁性下地層に用いられる多元体心立方結晶合金が、体心立方結晶構造をとり、格子定数が3.05〜3.20Åであることを特徴とする(1)〜(3)のいずれかに記載の磁気記録媒体。
(5) 前記非磁性中間層は、CoCr系合金、CoCrPt系合金、Ru、Ru系合金、Re、Re系合金から選ばれるいずれか1種以上からなることを特徴とする(1)〜(4)のいずれか1つに記載の磁気記録媒体。
(6) 前記非磁性結合層は、Ru、Rh、Ir、Cr、Re、Ru系合金、Rh系合金、Ir系合金、Cr系合金、Re系合金から選ばれるいずれか1種からなり、かつ前記非磁性結合層の厚さが0.5〜1.5nmであることを特徴とする(1)〜(4)のいずれか1つに記載の磁気記録媒体。
(7) 前記安定化層は、CoCrZr系合金、CoCrTa系合金、CoRu系合金、CoCrRu系合金、CoCrPtZr系合金、CoCrPtTa系合金、CoPtRu系合金、CoCrPtRu系合金から選ばれるいずれか1種以上からなることを特徴とする(1)〜(4)のいずれか1つに記載の磁気記録媒体。
(8) 前記非磁性下地層は、Ti、Mo、Al、Ta、W、Ni、B、Si、MnおよびVから選ばれる1種以上とCrとからなるCr合金あるいはCrと、多元体心立方結晶合金からなる層を含む多層構造であることを特徴とする(1)〜(7)のいずれか1つに記載の磁気記録媒体。
(9) 前記非磁性下地層は、NiAl系合金、RuAl系合金と、多元体心立方結晶合金からなる層を含む多層構造であることを特徴とする(1)〜(7)のいずれか1つに記載の磁気記録媒体。
(10) 前記磁性層は、CoCrTa系合金、CoCrPtTa系合金、CoCrPtB系合金、CoCrPtBM系合金(M:Ta、Cu、Agから選ばれる1種以上)から選ばれる1種以上からなることを特徴とする(1)〜(9)のいずれか1つに記載の磁気記録媒体。
(11) 前記非磁性基板は、ガラス基板、シリコン基板から選ばれるいずれか1種であることを特徴とする(1)〜(10)のいずれか1項に記載の磁気記録媒体。
(12) 前記非磁性基板は、Al、Al合金、ガラス、シリコンから選ばれるいずれか1種からなる基体の表面に、NiPまたはNiP合金からなる膜を形成したものであることを特徴とする(1)〜(10)のいずれか1項に記載の磁気記録媒体。
(13) 非磁性基板上に、少なくとも非磁性下地層、非磁性中間層、磁性層および保護層がこの順番で積層される磁気記録媒体を製造する方法であって、前記非磁性下地層の少なくとも一層が多元体心立方結晶合金で構成される磁気記録媒体の製造方法。
(14) 非磁性基板上に、少なくとも非磁性下地層、安定化層、非磁性結合層、磁性層および保護層がこの順番で積層され、安定化層が磁性層に反強磁性結合した磁気記録媒体を製造する方法であって、前記非磁性下地層の少なくとも一層が多元体心立方結晶合金で構成される磁気記録媒体の製造方法。
(15) (1)〜(14)のいずれか1つに記載の磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えたことを特徴とする磁気記録再生装置。
本発明の磁気記録媒体は、非磁性基板上に、少なくとも非磁性下地層、非磁性中間層(非磁性中間層の代わり安定化層、非磁性結合層を用いることもできる。)、磁性層および保護層がこの順番で積層され、非磁性下地層の少なくとも一層が多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体であるので、ノイズの低減を実現することができる。その結果、高記録密度に適した磁気記録媒を得ることができる。
図1は、本発明の磁気記録媒体の第1の実施形態を示すもので、ここに示す磁気記録媒体10は、非磁性基板1の上に、非磁性下地層2、非磁性中間層3、磁性層4、保護層5、潤滑層6を順次積層させたものである。
図2は、本発明の磁気記録媒体の第2の実施形態を示すもので、ここに示す磁気記録媒体11は、非磁性基板1の上に、非磁性下地層2、安定化層7、非磁性結合層8、磁性層4、保護層5、潤滑層6を順次積層させたものである。図2に示した膜構成は、磁性層の熱揺らぎを防止するために考案された技術である。この技術を用いた磁気記録媒体では、上記2つの磁性層4の磁化方向が互いに逆になることにより、磁気的に記録再生に関与している部分は記録層全体の厚さよりも実質的には薄くなる。このためSNRの向上を図ることができる。一方、記録層全体の結晶粒子の体積は大きくなるために、熱的な不安定さの改善を図ることができる。
この技術を用いた媒体は、AFC媒体(AntiFerromagnetically−Coupled Media)、またはSFM(Synthetic Ferrimagnetic Media)と一般的に呼ばれている。ここでは、これらを総称してAFC媒体と呼ぶこととする。
本発明における非磁性基板1としては、Al、Al合金などの金属材料からなる基体上にNiPまたはNiP合金からなる膜が形成されたものを用いることができる。非磁性基板1としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなるものを用いてもよいし、この非金属材料からなる基体上にNiPまたはNiP合金の膜を形成したものを用いてもよい。非金属材料としては、表面平滑性の点から、ガラス、シリコンから選ばれるいずれか1種が好ましい。特に、コストおよび耐久性の点からガラスを用いるのが好ましい。ガラスとしては、結晶化ガラスまたはアモルファスガラスを用いることができる。アモルファスガラスとしては汎用のソーダライムガラス、アルミノほう珪酸ガラス、アルミノシリケートガラスを使用できる。結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミックス基板としては、汎用の酸化アルミニウム、窒化珪素などを主成分とする焼結体やそれらの繊維強化物が挙げられる。記録密度を高めるため、磁気ヘッドの低フライングハイト化が要求されていることから、非磁性基板1の表面平滑性を高めることが望ましい。すなわち、非磁性基板1は、表面平均粗さRaが2nm以下、好ましくは1nm以下であることが望ましい。
非磁性基板1は、その表面に、テクスチャー加工によりテクスチャー痕を形成することが好ましい。テクスチャー加工では、基板表面の平均粗さが、0.1nm以上0.7nm以下(より好ましくは0.1nm以上0.5nm以下、さらに好ましくは0.1nm以上0.35nm以下)となるようにするのが好ましい。磁気記録媒体の円周方向の磁気的異方性を強める点から、テクスチャー痕はほぼ円周方向に形成されているのが好ましい。非磁性基板1は、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下)であるのが好ましい。また、端面のチャンファー部の面取り部、側面部の少なくともいずれか一方の表面平均粗さRaを、10nm以下(より好ましくは9.5nm以下)とすることが、磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面粗さ測定装置P−12(KLM−Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。
非磁性基板上には、非磁性下地層2が形成される。非磁性下地層2の少なくとも1層には、多元体心立方結晶合金を用いる。本発明における非磁性下地層2に用いられる多元体心立方結晶合金は、A群から選ばれる少なくとも1つの元素と、B群から選ばれる少なくとも1つの元素と、C群から選ばれるすくなくとも1つの元素によって構成される多元体心立方結晶合金で構成されることを特徴とする。
A:Cr、V
B:Mo、W
C:Nb、Ta、Ti
A群から選ばれる元素の合計の含有量が10〜60at%、B群から選ばれる元素の合計の含有量が10〜80at%、C群から選ばれる元素の合計の含有量が10〜60at%であることが好ましい。
また、この多元体心立方結晶合金の格子定数が3.02〜3.14Åであることが好ましい。
CrにW、Mo、Vなどの元素を添加することは、格子乗数を広げる効果があり、Co合金とのマッチングをとるために従来より広く実施されてきた。しかしながら、近年、Co合金へのPt添加量の増大によるCo合金の格子定数の拡大や、Coよりも格子定数の大きいRu合金などを使用するようになり、さらに格子定数を拡げる必要がでてきた。Cr、W、Mo、Vはすべて同じbcc構造をとり、それらの格子乗数は、Crが2.88Å、Wが3.16Å、Moが3.14Å、Vが3.02Åであり、Pt添加量が8〜16at%のCo合金やRu合金と最適なマッチングを取るためには、CrやVでは小さ過ぎ、WやMoでは大き過ぎる。この問題を解決するためには、本発明者が特願2005−082053で提案したようにWやMoにVを添加して格子乗数を調整することが有効であり、最適なマッチングを達成することができる。
本発明ではこの考え方を発展させて、格子定数の大きいNb(3.30Å)、Ta(3.30Å)、Ti(3.31Å)、格子定数が中程度のMo,W、格子定数が小さいV、Crを組み合わせることにより格子定数が3.05〜3.14Åである多元体心立方結晶合金を作成し、最適なマッチングを達成することができる。さらに本実施例でしめすように、本発明の3元以上の多元体心立方結晶合金にした場合、3.20Åまで特性が改善することが確認された。
本発明における非磁性下地層2に用いられる多元体心立方結晶合金においては、補助的効果を有する元素を添加しても良い。添加元素としてはB,C,Al,Si,Mn,Cu,Ru,Hf,Reなどが例示される。添加元素の合計含有率は20at%以下であることが好ましい。合計含有率が20at%を超えると上述の配向調整膜の効果が低下してしまう。合計含有量の下限は、0.1at%であり、含有量が0.1at%未満では添加元素の効果が無くなる。とりわけ、Bを添加する効果は大きく、ノイズ低減に大きく寄与する。
本発明における非磁性下地層2が少なくとも2層以上により構成される場合は、非磁性中間層3側の1層に多元体心立方結晶合金が用いられるが、その他の層にはCr層、または、Ti、Mo、Al、Ta、W、Ni、B、Si、MnおよびVから選ばれる1種以上を含有するCr合金層を含むものを用いることができる。あるいは、NiAl系合金、RuAl系合金を含むものも用いることができる。
本発明における非磁性下地層2の膜厚は10Å〜300Åの範囲内であることが好ましい。非磁性下地層2の膜厚が10Å未満では、非磁性下地層2の結晶配向が十分ではなく保持力を低下させる。非磁性下地層2の膜厚が300Åを超えると磁性層4の円周方向の磁気異方性が低下してしまう。さらに好ましくは、多元体心立方結晶合金膜の膜厚が5Å〜100Åの範囲内であり、Cr層あるはCr合金層、あるいはNiAl系合金、RuAl系合金などの膜厚が5Å〜100Åの範囲内である方が、磁性層4の保持力、角型を向上させるために好ましい。 非磁性下地層2の多元体心立方結晶合金の結晶配向は、(100)面を優先配向面とするのが好ましい。その結果、非磁性下地層2の上に形成した磁性層4のCo合金の結晶配向がより強く(11・0)を示すので、磁気的特性例えば保持力(Hc)の向上効果、記録再生特性例えばSNRの向上効果が得られる。
本発明における非磁性中間層3には、直下の非磁性下地層2の、例えば(100)面と分に良く格子がマッチングするhcp構造である材料とするのが好ましい。例えば、CoCr系合金、CoCrPt系合金、Ru、Ru系合金、Re,Re系合金から選ばれるいずれか1種以上からなる含むものとすることが好ましい。非磁性中間層3の膜厚は10Å〜100Åの範囲内であることが好ましい。非磁性中間層3の膜厚が10Å未満では、非磁性下地層2の結晶配向が十分ではなく保持力を低下させる。非磁性中間層3の膜厚が100Åを超えると粒子が粗大化していまいノイズの増加を招く。
本発明における磁性層4は、Co−Cr−Ta系、Co−Cr−Pt系、Co−Cr−Pt−Ta系、Co−Cr−Pt−B−Ta系、Co−Cr−Pt−B−Cu系合金、Co−Cr−Pt−B−Ag系合金から選ばれた何れか1種を含むものとするのが好ましい。例えば、Co−Cr−Pt系合金の場合、Crの含有量は10at%〜27at%の範囲内、Ptの含有量は8at%〜16at%の範囲内とするのがSNR向上の点から好ましい。例えば、Co−Cr−Pt−B系合金の場合、Crの含有量は10at%〜27at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は1at%〜20at%の範囲内とするのがSNR向上の点から好ましい。例えば、Co−Cr−Pt−B−Ta系合金の場合、Crの含有量は10at%〜27at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は1at%〜20at%の範囲内、Taの含有量は1at%〜4at%の範囲内とするのがSNR向上の点から好ましい。例えば、Co−Cr−Pt−B−Cu系合金の場合、Crの含有量は10at%〜27at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は2at%〜20at%の範囲内、Cuの含有量は1at%〜10at%の範囲内とするのがSNR向上の点から好ましい。例えば、Co−Cr−Pt−B−Ag系合金の場合、Crの含有量は10at%〜27at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は2at%〜20at%の範囲内、Cuの含有量は1at%〜10at%の範囲内とするのがSNR向上の点から好ましい。
磁性層4の膜厚は10nm以上であれば熱揺らぎの観点から問題ないが、高記録密度への要求から40nm以下であるのが好ましい。40nmを越えると、磁性層4の結晶粒径が増大してしまい、好ましい記録再生特性が得られないからである。磁性層4は、多層構造としても良く、その材料は上記のなかから選ばれる何れかを用いた組み合わせとすることができる。磁性層4を多層構造とした場合、非磁性中間層3の直上は、Co−Cr−Pt−B−Ta系合金またはCo−Cr−Pt−B−Cu系合金またはCo−Cr−Pt−B系合金からなるものであるのが、記録再生特性の、SNR特性の改善の点からは好ましい。最上層は、Co−Cr−Pt−B−Cu系合金またはCo−Cr−Pt−B系合金からなるものであるのが、記録再生特性の、SNR特性の改善の点からは好ましい。
本発明における安定化層7は、CoCrZr系合金、CoCrTa系合金、CoRu系合金、CoCrRu系合金、CoCrPtZr系合金、CoCrPtTa系合金、CoPtRu系合金、CoCrPtRu系合金から選ばれるいずれか1種以上を含むものとするのが好ましい。安定化層7の膜厚は10Å〜50Åの範囲内であることが好ましい。安定化層7の膜厚が10Å未満では、安定化層7が磁化を持たなくなり、非磁性結合層8を挟んで磁性層4と反強磁性結合しなくなってしまう。安定化層7の膜厚が50Åを超えると粒子が粗大化していまいノイズの増加を招く。
本発明における非磁性結合層8は、Ru、Rh、Ir、Cr、Re、Ru系合金、Rh系合金、Ir系合金、Cr系合金、Re系合金から選ばれるいずれか1種を含むものとするのが好ましい。とりわけRuを用いることがさらに好ましい。Ruの膜厚は0.8nm前後であると反強磁性結合が極大になるので好ましい。
前記保護層5は、従来の公知の材料、例えば、カ−ボン、SiCの単体またはそれらを主成分とした材料を使用することができる。保護層5の膜厚は1nm〜10nmの範囲内であるのが高記録密度状態で使用した場合の、磁気的スペ−シングの低減または耐久性の点から好ましい。磁気的スペーシングとは、磁気ヘッドのリードライト素子と磁性層4との距離を表す。磁気的スペーシングが狭くなるほど電磁変換特性は向上する。なお、保護層5はヘッドのリードライト素子と磁性層4の間に存在するので、磁気的スペーシングを広げる要因となる。保護層上には必要に応じ例えばパ−フルオロポリエ−テルのフッ素系潤滑剤からなる潤滑層6を設けることができる。
本発明の磁気記録媒体の磁性層4は、1.05以上(より好ましくは1.1以上)である磁気的異方性指数(OR)を有しているものが好ましい。磁気異方性指数は、(円周方向の保持力/半径方向の保持力)で表される。磁気異方性指数が1.05以上であると、より磁気的特性例えば保磁力の向上効果、電磁変換特性、例えばSNR、PW50の向上効果が得られる。磁気的異方性指数は円周方向の保持力(Hc)と半径方向のHcの比として定義されるが、磁気記録媒体の保持力が高保持力化したために、磁気的異方性指数が低めに測定されたしまうことがある。
本発明においては、この点を補足するために、残留磁化量の磁気的異方性指数も合わせて使用する。残留磁化量の磁気的異方性指数(MrtOR)は、円周方向の残留磁化量(Mrt)と半径方向の、残留磁化量(Mrt)の比(MrtOR=円周方向のMrt/半径方向のMrt)で定義される。残留磁化量の磁気異方性指数が1.05以上、より好ましくは1.1以上であると、より磁気的特性例えば保磁力の向上効果、電磁変換特性、例えばSNR、PW50の向上効果が得られる。なお、ORおよびMrtORの値の上限は、理想的には磁性膜の全ての磁区が円周方向を向いた場合であり、この場合には磁気異方性指数の分母が0となり、無限大となる。磁気的異方性指数、および残留磁化量の磁気的異方性指数の測定にはVSM(Vibrating Sample Magnetometer)を使用する。
図3は、上記磁気記録媒体を用いた磁気記録再生装置の一例を示すものである。
図3に示す磁気記録再生装置12は、図1に示す構成の磁気記録媒体10または図2に示す構成の磁気記録媒体11と、磁気記録媒体10,11を回転駆動させる媒体駆動部13と、磁気記録媒体10,11に情報を記録再生する磁気ヘッド14と、この磁気ヘッド14を磁気記録媒体10,11に対して相対運動させるヘッド駆動部15と、記録再生信号処理系16とを備えて構成されている。記録再生信号処理系16は、外部から入力されたデ−タを処理して記録信号を磁気ヘッド14に送ったり、磁気ヘッド14からの再生信号を処理してデ−タを外部に送ることができるようになっている。本発明の磁気記録再生装置12に用いる磁気ヘッド14には、再生素子として巨大磁気抵抗効果(GMR)を利用したMR(magnetoresistance)素子だけでなく、トンネル磁気抵抗効果(TMR)を利用したGMR素子などを有した、より高記録密度に適した磁気ヘッドを用いることができる。
また、本発明の磁気記録再生装置12は、平均粗さが小さくまた微小うねりも小さい磁気記録媒体10,11を用いているので、電磁変換特性が向上しているのに加えて、スペーシングロスを低減させるために磁気ヘッドを低浮上状態で使用してもエラー特性が良好である磁気記録再生装置である。上記磁気記録再生装置12によれば、高記録密度に適した磁気記録媒体を製造することが可能となる。
次に本発明に係る磁気記録媒体の製造方法の一例を説明する。非磁性基板1には、上記(10)、(11)に示したいずれの材質を用いることができるが、一例として、Al基板にNiPメッキが12μm施された基板(以下、NiPメッキAl基板と呼ぶこととする。)を使用した場合を挙げる。
最初に、NiPメッキAl基板の表面に線密度が7500(本/mm)以上である条痕を形成するように、基板の表面にテクスチャー加工を施す。例えば、ガラス基板の表面に線密度が7500(本/mm)以上であるテクスチャー条痕が形成されるように、基板の表面に固定砥粒または/および遊離砥粒を用いた機械的加工(「メカニカルテクスチャー加工」ともいう。)により円周方向にテクスチャーを施す。例えば、基板の表面に研磨テープを押し付け接触させ、基板と研磨テープとの間に研磨砥粒を含む研磨スラリーを供給して、基板を回転させると供に、研磨テープを送ることによるテクスチャー加工をおこなう。
ここでの基板の回転は200rpm〜1000rpmの範囲内とすることができる。研磨スラリーの供給量は10ml/分〜100ml/分の範囲内とすることができる。研磨テープの送り速度は、1.5mm/分〜150mm/分の範囲内とすることができる。研磨スラリーに含まれる砥粒の粒径はD90(累積質量%が90質量%に相当する時の粒径値)で0.05μm〜0.3μmとすることができる。テープの押し付け力は1kgf〜15kgf(9.8N〜147N(相対圧))の範囲内とすることができる。線密度が7500(本/mm)以上(より好ましくは20000(本/mm)以上。)のテクスチャー条痕を形成するように、これらの条件を設定するのが好ましい。テクスチャー条痕が表面に形成されたNiPメッキAl基板の表面平均粗さRaは0.1nm〜1nm(1Å〜10Å)、好ましくは0.2nm〜0.8nm(2Å〜8Å)の範囲内とするのが望ましい。
オッシレーションを加えたテクスチャー加工を施すことができる。オッシレーションとは、テープを基板の円周方向に走行させると同時に、テープを基板の半径方向に揺動させる操作のことである。オッシレーションの条件は60回/分〜1200回/分とするのが好ましい。テクスチャー加工の方法としては、線密度が7500(本/mm)以上のテクスチャー条痕を形成する方法を用いることができ、前述したメカニカルテクスチャーによる方法以外に固定砥粒を用いた方法、固定砥石を用いた方法、レーザー加工を用いた方法を用いることができる。テクスチャー条痕の線密度は、例えば測定装置として、AFM(Atomic Force Microscope。Degital Instrument社(米国)製)を用いることができる。
線密度の測定条件は次のようにする。スキャン幅は1μm、スキャンレートは1Hz、測定数は256、モードはタッピングモードとする。試料であるガラス基板の半径方向にプローブを走査し、AFMのスキャン画像を得る。Flatten Orderの次数を2として平滑化処理のひとつであるPlane Fit Auto処理を、Scan画像に対してX軸とY軸とに実施して画像の平滑化補正を行う。平滑化補正済みの画像に対して、約0.5μm×約0.5μmのボックスを設定してその範囲の線密度を算出する。線密度はX軸中心線とY軸中心線の両方に沿ったゼロ交差点の総数を1mm当りに換算して算出する。すなわち、線密度は半径方向1mm当りのテクスチャー条痕の山と谷の数となる。
試料面内の各箇所を測定してその測定値の平均値、標準偏差を求める。その平均値をもってガラス基板の条痕の線密度とする。測定箇所の個数は、平均値、標準偏差を求められる個数とすることができる。たとえば、測定数は10点とすることができる。また、そのうちの最大値、最小値を除いた8点で平均値、標準偏差を求めると測定異常値を除くことができるので測定精度を向上させることができる。
NiPメッキAl基板を洗浄した後、成膜装置のチャンバ内に設置する。NiPメッキAl基板は、必要に応じて100〜400℃に加熱される。非磁性基板上に、非磁性下地層2、非磁性中間層3、磁性層4をスパッタ法(例えばDCあるいはRFマグネトロンスパッタリング法)により形成する。スパッタ法により上記各層を形成する際の操作条件は、例えば次の通りとすることができる。
NiPメッキAl基板上に各膜を形成するためのスパッタリングの条件は、例えば次のように設定する。成膜に用いるチャンバ内は真空度が10−4Pa〜10−7Paの範囲内となるまで排気する。チャンバ内にテクスチャー条痕が表面に形成されたガラス基板を収容して、スパッタ−用ガスとしてArガスを導入して放電させてスパッタ成膜をおこなう。このとき、供給するパワ−は0.2kW〜2.0kWの範囲内とし、放電時間と供給するパワ−を調節することによって、所望の膜厚を得ることができる。
以下、磁気記録媒体の形成方法の一例を示す。非磁性基板上に、多元体心立方結晶合金、Cr、Cr系合金などからなるスパッタリング用ターゲットを用いて、厚さ3〜1 5nmの非磁性下地層を形成する。
次いで、Ru系合金からなるスパッタリング用ターゲットを用いて、厚さ1〜10nmの非磁性中間層3を形成する。次いで、CoCrTa系合金、CoCrPt系合金、CoCrPtTa系合金、CoCrPtB系合金、CoCrPtBTa系合金、CoCrPtBCu系合金、CoRuTa系合金などからなるスパッタリング用ターゲットを用いて、磁性層4を10〜40nmの厚さで形成する。次いで、保護層5を従来の公知のスパッタ法、プラズマCVD法により1〜5nm形成する。次いで、必要に応じて、潤滑層6を従来の公知のスピン法、ディップ法により形成する。上記磁気記録媒体では、多元体心立方結晶合金からなる非磁性下地層2を備えているので、媒体ノイズを低減させることができる。
図3は、上記磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録再生装置12は、上記構成の磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部13と、磁気記録媒体10に情報を記録再生する磁気ヘッド14と、この磁気ヘッド14を磁気記録媒体10に対して相対運動させるヘッド駆動部15と、記録再生信号処理系16とを備えている。記録再生信号処理系16は、外部から入力されたデータを処理して記録信号を磁気ヘッド14に送ったり、磁気ヘッド14からの再生信号を処理してデータを外部に送ることができるようになっている。
磁気ヘッド14には、再生素子として巨大磁気抵抗効果(GMR)を利用したMR(magnetoresistance)素子だけでなく、トンネル磁気抵抗効果(TMR)を利用したTMR素子などを有する、高記録密度に適したヘッドを用いることができる。TMR素子を用いることによって、さらなる高密度記録化が可能となる。
上記磁気記録再生装置12によれば、非磁性下地層2に多元体心立方結晶合金を用いた磁気記録媒体10を備えているので、媒体ノイズを低減させることができる。
以下、具体例を示して本発明の作用効果を明確にする。
[実施例1]
Alからなる基体(外径95mm、内径25mm、厚さ1.270mm)の表面に、無電解メッキでNiP膜(厚さ12μm)を形成し、その表面にテクスチャー加工を施して表面平均粗さRaを0.5nmにした非磁性基板1を用いた。非磁性基板1をDCマグネトロンスパッタ装置(アネルバ社製C3010)のチャンバに収容し、チャンバを真空到達度が2×10−7Torr(2.7×10−5Pa)まで排気した後、非磁性基板1を250℃に加熱した。この基板上に、非磁性下地層2を設けた。非磁性下地層2は、Crからなる第1構成層(厚さ2nm)上に、CrVMoNb合金(Cr:50at%、V:20at%、Mo:20at%、Nb:10at%)からなる第2構成層(厚さ3nm)を有する多層構造とした。
次いで、Ruからなる非磁性中間層3(厚さ4nm)を形成した。
次いで、磁性層4を設けた。CoCrPtB合金(Co:60at%、Cr:25at%、Pt:14at%、B:6at%)からなる第一構成層(厚さ10nm)を形成した。さらにその直上にCoCrPtB合金(Co:60at%、Cr:10at%、Pt:15at%、B:15at%)からなる第二構成層(厚さ10nm)を形成した。
上記各層を形成する際には、スパッタガスとしてArを用い、その圧力は6mTorr(0.8Pa)とした。次いで、カーボンからなる保護層5(厚さ3nm)をCVDにより形成した。次いで、保護層5の表面に、パーフルオロポリエーテルからなる潤滑剤を塗布して潤滑層6(厚さ2nm)を形成し、磁気記録媒体10を得た。
その後グライドテスタ−を用いて、テスト条件のグライド高さを0.4μインチとして、グライドテストを行ない、合格した磁気記録媒体10をリ−ドライトアナライザ−RWA1632(GUZIK社(米国)製)を用いて記録再生特性を調べた。記録再生特性は、再生信号出力(TAA)、孤立波再生出力の半値幅(PW50)、SNR、オ−バライト(OW)などの電磁変換特性を測定した。記録再生特性の評価には、再生部に巨大磁気抵抗(GMR)素子を有する複合型薄膜磁気記録ヘッドを用いた。ノイズの測定は500kFCIのパタ−ン信号を書き込んだ時の、1MHzから375kFCI相当周波数までの積分ノイズを測定した。再生出力を250kFCIで測定し、SNR=20×log(再生出力/1MHzから375kFCI相当周波数までの積分ノイズ)として算出した。保磁力(Hc)および角形比(S*)の測定にはカ−効果式磁気特性測定装置(RO1900、日立電子エンジニアリング社(日本)製)を用いた。磁気的異方性指数(OR)、および残留磁化量の磁気的異方性指数(MrtOR)の測定にはVSM(BHV−35、理研電子社(日本)製)を用いた。
[実施例2−120]
非磁性下地層2の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表1〜5に示す組成、膜厚の合金を用いた他は実施例1と同様にして磁気記録媒体10を作製した。なお、表中で1Oeは約79A/mである。
Figure 2006302480
Figure 2006302480
Figure 2006302480
Figure 2006302480
Figure 2006302480
[比較例1−2]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表5に示す組成、膜厚の合金を用いた他は実施例1と同様にして磁気記録媒体を作製した。
[比較例3−6]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表6に示す組成の合金を用い、非磁性中間層としてRuの代わりにCoCrTa合金(Co:70at%、Cr:28at%、Ta:2at%)を用いた他は実施例1と同様にして磁気記録媒体を作製した。
Figure 2006302480
[実施例121]
Alからなる基体(外径95mm、内径25mm、厚さ1.270mm)の表面に、無電解メッキでNiP膜(厚さ12μm)を形成し、その表面にテクスチャー加工を施して表面平均粗さRaを0.5nmにした非磁性基板1を用いた。非磁性基板1をDCマグネトロンスパッタ装置(アネルバ社製C3010)のチャンバに収容し、チャンバを真空到達度が2×10−7Torr(2.7×10−5Pa)まで排気した後、非磁性基板1を250℃に加熱した。この基板上に、非磁性下地層2を設けた。非磁性下地層2は、Crからなる第1構成層(厚さ2nm)上に、CrVMoNb合金(Cr:30at%、V:10at%、Mo:30at%、Nb:30at%)からなる第2構成層(厚さ3nm)を有する多層構造とした。次いで、CoCrPtTa合金(Co:67at%、Cr:20at%、Pt:10at%、Ta:3at%)からなる安定化層7(厚さ3nm)を形成した。次いで、Ruからなる非磁性結合層8(厚さ0.8nm)を形成した。次いで、磁性層4を設けた。CoCrPtB合金(Co:60at%、Cr:25at%、Pt:14at%、B:6at%)からなる第一構成層(厚さ10nm)を形成した。さらにその直上にCoCrPtB合金(Co:60at%、Cr:10at%、Pt:15at%、B:15at%)からなる第二構成層(厚さ10nm)を形成した。上記各層を形成する際には、スパッタガスとしてArを用い、その圧力は6mTorr(0.8Pa)とした。次いで、カーボンからなる保護層5(厚さ3nm)をCVDにより形成した。次いで、保護層5の表面に、パーフルオロポリエーテルからなる潤滑剤を塗布して潤滑層6(厚さ2nm)を形成し、磁気記録媒体11を得た。
[実施例122−135]
非磁性下地層2の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表7に示す組成の合金を用いた他は実施例121と同様にして磁気記録媒体11を作製した。
Figure 2006302480
[比較例7−8]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表7に示す組成の合金を用いた他は実施例121と同様にして磁気記録媒体を作製した。
[比較例9−10]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表7に示す組成の合金を用い、安定化層としてCoCrPtTa合金の代わりにCoCrTa合金(Co:77at%、Cr:20at%、Ta:3at%)を用いた他は実施例121と同様にして磁気記録媒体11を作製した。
[実施例136]
ガラス基板(外径65mm、内径20mm、厚さ0.635mm)にテクスチャー加工を施し、表面平均粗さRaを0.3nmにした非磁性基板1を用いた。非磁性基板1をDCマグネトロンスパッタ装置(アネルバ社製C3010)のチャンバに収容し、チャンバを真空到達度が2×10−7Torr(2.7×10−5Pa)まで排気した後、非磁性基板1を250℃に加熱した。この基板上に、CoW合金(Co:50at%、W:50at%)からなる配向調整層(厚さ5nm)を形成した後、これを250℃に加熱した。次いで、配向調整層の表面を酸素ガスにさらした。酸素ガスの圧力は0.05Paとし、処理時間は5秒間とした。この基板上に、非磁性下地層2を設けた。非磁性下地層2は、Crからなる第1構成層(厚さ2nm)上に、CrVMoNb合金(Cr:10at%、V:30at%、Mo:30at%、Nb:30at%)からなる第2構成層(厚さ3nm)を有する多層構造とした。次いで、Ruからなる非磁性中間層3(厚さ4nm)を形成した。次いで、磁性層4を設けた。CoCrPtB合金(Co:60at%、Cr:25at%、Pt:14at%、B:6at%)からなる第一構成層(厚さ10nm)を形成した。さらにその直上にCoCrPtB合金(Co:60at%、Cr:10at%、Pt:15at%、B:15at%)からなる第二構成層(厚さ10nm)を形成した。
上記各層を形成する際には、スパッタガスとしてArを用い、その圧力は6mTorr(0.8Pa)とした。次いで、カーボンからなる保護層5(厚さ3nm)をCVDにより形成した。次いで、保護層5の表面に、パーフルオロポリエーテルからなる潤滑剤を塗布して潤滑層6(厚さ2nm)を形成し、磁気記録媒体10を得た。
[実施例137−149]
非磁性下地層2の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表8に示す組成、膜厚の合金を用いた他は実施例136と同様にして磁気記録媒体10を作製した。
Figure 2006302480
[比較例11−12]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表8に示す組成、膜厚の合金を用いた他は実施例136と同様にして磁気記録媒体を作製した。
[比較例13−14]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表8に示す組成の合金を用い、非磁性中間層としてRuの代わりにCoCrTa合金(Co:70at%、Cr:28at%、Ta:2at%)を用いた他は実施例136と同様にして磁気記録媒体を作製した。
[実施例150]
ガラス基板(外径65mm、内径20mm、厚さ0.635mm)にテクスチャー加工を施し、表面平均粗さRaを0.3nmにした非磁性基板1を用いた。非磁性基板1をDCマグネトロンスパッタ装置(アネルバ社製C3010)のチャンバに収容し、チャンバを真空到達度が2×10−7Torr(2.7×10−5Pa)まで排気した後、非磁性基板1を250℃に加熱した。この基板上に、CrTa合金(Cr:65at%、Ta:35at%)からなる配向調整層(厚さ5nm)を形成した後、これを250℃に加熱した。次いで、この基板上に、非磁性下地層2を設けた。非磁性下地層2は、RuAlからなる第1構成層(厚さ20nm)上に、CrVMoNb合金(Cr:10at%、V:30at%、Mo:30at%、Nb:30at%)からなる第2構成層(厚さ3nm)を有する多層構造とした。次いで、Ruからなる非磁性中間層3(厚さ4nm)を形成した。次いで、磁性層4を設けた。CoCrPtB合金(Co:60at%、Cr:25at%、Pt:14at%、B:6at%)からなる第一構成層(厚さ10nm)を形成した。さらにその直上にCoCrPtB合金(Co:60at%、Cr:10at%、Pt:15at%、B:15at%)からなる第二構成層(厚さ10nm)を形成した。
上記各層を形成する際には、スパッタガスとしてArを用い、その圧力は6mTorr(0.8Pa)とした。次いで、カーボンからなる保護層5(厚さ3nm)をCVDにより形成した。次いで、保護層5の表面に、パーフルオロポリエーテルからなる潤滑剤を塗布して潤滑層6(厚さ2nm)を形成し、磁気記録媒体10を得た。
[実施例151−163]
非磁性下地層2の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表9に示す組成、膜厚の合金を用いた他は実施例150と同様にして磁気記録媒体10を作製した。
Figure 2006302480
[比較例15−16]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表9に示す組成、膜厚の合金を用いた他は実施例150と同様にして磁気記録媒体を作製した。
[比較例17−18]
非磁性下地層の第二構成層であるCrVMoNb合金とその組成、膜厚の代わりに表9に示す組成の合金を用い、非磁性中間層としてRuの代わりにCoCrTa合金(Co:70at%、Cr:28at%、Ta:2at%)を用いた他は実施例150と同様にして磁気記録媒体を作製した。
実施例1〜149、比較例1〜14の格子定数、保持力(Hc)、角型比、磁気的異方性指数(OR)、および残留磁化量の磁気的異方性指数(MrtOR)、電磁変換特性の結果を表1〜表8に示す。なお、格子定数はX線測定装置のθ―2θ法を実施し、体心立方結晶の(200)ピーク位置から求めた。
実施例1〜108より、格子定数が3.05Å〜3.20Åで範囲であり、CrとVの合計の含有量が60at%以上か、Nbの含有量が60at%以上を除けばCrVMoNb合金(含むCrMoNb合金、VMoNb合金)においては、比較例と比較して優れた特性を示していることがわかる。図1に示すように格子定数が3.05Å〜3.20Åであれば、比較例と比較して優れた特性を示していることがわかる。3.05Å付近で特性の悪い例もあるが、これはCrとVの合計の含有量が60at%以上か、Nbの含有量が60at%以上である。図2より、CrとVの合計の含有量が10〜60at%であれば、優れた特性を示していることがわかる。図3よりMo含有量が10〜80at%であれば、優れた特性を示していることがわかる。図4よりNb含有量が10〜60at%であれば、優れた特性を示していることがわかる。図2,3,4において上記の領域に入っていても特性の悪い例もあるが、これは格子定数が3.05以下か、3.20以上、あるいは、CrとVの合計の含有量が60at%以上か、Nbの含有量が60at%以上の何れかに該当している。比較例1に示すようにCrVMoNb合金の膜厚が薄い範囲では結晶生長が十分では無く、保持力が低下してしまっている。比較例2に示すようにCrVMoNb合金の膜厚が厚い範囲では粒径が粗大かしてしまいSNRが低下してしまっている。
実施例109、110に示すようにCrVMoNb合金にBを添加することはSNRの向上に有効である。
実施例111〜120に示すように、CrVMoNb合金以外にも、CrVMoTa合金、CrVMoTi合金、CrVWNb合金、CrVWTa合金、CrVWTi合金おいても優れた特性が得られていることが分かる。また、B添加についても同様の効果が得られている。
比較例3、4は磁気記録媒体に一般的に用いられるCrMo合金、CrMoB合金を使用した場合であるが、CrMo合金、CrMoB合金はCrMoVNb合金などと比較すると格子定数が小さいために(Cr20Moで2.94Å)、Ruが(110)方向に十分にエピタキシャル成長しない。このために特性は大幅に劣化した結果となっている。CrMo合金、CrMoB合金を使用する場合は、比較例5、6に示したようにCoCrTa合金を使用することが一般的である。しかしながら、この場合でも、実施例と比較するとSNRが劣っていることが分かる。
実施例121〜135は、AFC媒体にCrVMoNb合金、CrVMoTa合金、CrVMoTi合金、CrVWNb合金、CrVWTa合金、CrVWTi合金を適用した事例である。いずれの場合も比較例よりも優れていることが分かる。比較例7、8は磁気記録媒体に一般的に用いられるCrMo合金、CrMoB合金を使用した場合であるが、CrMo合金、CrMoB合金はCrVMoNb合金などと比較すると格子定数が小さいために、CoCrPtTa合金が(110)方向に十分にエピタキシャル成長しない。このために特性は大幅に劣化した結果となっている。CrMo合金、CrMoB合金を使用する場合は、比較例9、10に示したようにCoCrTa合金を使用することが一般的である。しかしながら、この場合でも、実施例と比較するとSNRが劣っていることが分かる。
実施例136〜149は、非磁性基板1にガラス基板を用いた媒体にCrVMoNb合金、CrVMoTa合金、CrVMoTi合金、CrVWNb合金、CrVWTa合金、CrVWTi合金を適用した事例である。いずれの場合も比較例よりも優れていることが分かる。比較例11、12は磁気記録媒体に一般的に用いられるCrMo合金、CrMoB合金を使用した場合であるが、CrMo合金、CrMoB合金はCrVMoNb合金などと比較すると格子定数が小さいために、Ruが(110)方向に十分にエピタキシャル成長しない。このために特性は大幅に劣化した結果となっている。CrMo合金、CrMoB合金を使用する場合は、比較例13、14に示したようにCoCrTa合金を使用することが一般的である。しかしながら、この場合でも、実施例と比較するとSNRが劣っていることが分かる。
実施例150〜163(表9参照)は、非磁性基板1にガラス基板を用いた媒体に、Crの替わりにRuAlを用いて、CrVMoNb合金、CrVMoTa合金、CrVMoTi合金、CrVWNb合金、CrVWTa合金、CrVWTi合金を適用した事例である。いずれの場合も比較例よりも優れていることが分かる。比較例15、16は磁気記録媒体に一般的に用いられるCrMo合金、CrMoB合金を使用した場合であるが、CrMo合金、CrMoB合金はCrVMoNb合金などと比較すると格子定数が小さいために、Ruが(110)方向に十分にエピタキシャル成長しない。このために特性は大幅に劣化した結果となっている。CrMo合金、CrMoB合金を使用する場合は、比較例17、18に示したようにCoCrTa合金を使用することが一般的である。しかしながら、この場合でも、実施例と比較するとSNRが劣っていることが分かる。
本発明の垂直磁気記録媒体の第1の実施形態を示す断面図である。 本発明の垂直磁気記録媒体の第2の実施形態を示す断面図である。 本発明の磁気記録再生装置の一例を示す構成図である。
符号の説明
1・・・非磁性基板、2・・・非磁性下地層、3・・・非磁性中間層、4・・・磁性層、5・・・保護層、6・・・潤滑層、7・・・安定化層、8・・・非磁性結合層、10・・・磁気記録媒体、11・・・磁気記録媒体、12・・・磁気記録再生装置、13・・・媒体駆動部、14・・・磁気ヘッド、15・・・ヘッド駆動部、16・・・記録再生信号処理系

Claims (15)

  1. 非磁性基板上に、少なくとも非磁性下地層、非磁性中間層、磁性層および保護層がこの順番で積層され、前記非磁性下地層の少なくとも一層が、以下のA群から選ばれる少なくとも1つの元素と、B群から選ばれる少なくとも1つの元素と、C群から選ばれる少なくとも1つの元素によって構成される多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体。
    A:Cr、V
    B:Mo、W
    C:Nb、Ta、Ti
  2. 非磁性基板上に、少なくとも非磁性下地層、安定化層、非磁性結合層、磁性層および保護層がこの順番で積層され、前記安定化層が前記磁性層に反強磁性結合した磁気記録媒体において、前記非磁性下地層の少なくとも一層が、以下のA群から選ばれる少なくとも1つの元素と、B群から選ばれる少なくとも1つの元素と、C群から選ばれる少なくとも1つの元素によって構成される多元体心立方結晶合金で構成されることを特徴とする磁気記録媒体。
    A:Cr、V
    B:Mo、W
    C:Nb、Ta、Ti
  3. 前記非磁性下地層に用いられる多元体心立方結晶合金において、A群から選ばれる元素の合計の含有量が10〜60at%、B群から選ばれる元素の合計の含有量が10〜80at%、C群から選ばれる元素の合計の含有量が10〜60at%であることを特徴とする請求項1または2に記載の磁気記録媒体。
  4. 前記非磁性下地層に用いられる多元体心立方結晶合金が、体心立方結晶構造をとり、格子定数が3.05〜3.20Åであることを特徴とする請求項1〜3のいずれかに記載の磁気記録媒体。
  5. 前記非磁性中間層は、CoCr系合金、CoCrPt系合金、Ru、Ru系合金、Re、Re系合金から選ばれるいずれか1種以上からなることを特徴とする請求項1〜4のいずれか1項に記載の磁気記録媒体。
  6. 前記非磁性結合層は、Ru、Rh、Ir、Cr、Re、Ru系合金、Rh系合金、Ir系合金、Cr系合金、Re系合金から選ばれるいずれか1種からなり、かつ前記非磁性結合層の厚さが0.5〜1.5nmであることを特徴とする請求項1〜4のいずれか1項に記載の磁気記録媒体。
  7. 前記安定化層は、CoCrZr系合金、CoCrTa系合金、CoRu系合金、CoCrRu系合金、CoCrPtZr系合金、CoCrPtTa系合金、CoPtRu系合金、CoCrPtRu系合金から選ばれるいずれか1種以上からなることを特徴とする請求項1〜4のいずれか1項に記載の磁気記録媒体。
  8. 前記非磁性下地層は、Ti、Mo、Al、Ta、W、Ni、B、Si、MnおよびVから選ばれる1種以上とCrとからなるCr合金あるいはCrと、多元体心立方結晶合金からなる層を含む多層構造であることを特徴とする請求項1〜7のいずれか1項に記載の磁気記録媒体。
  9. 前記非磁性下地層は、NiAl系合金、RuAl系合金と、多元体心立方結晶合金からなる層を含む多層構造であることを特徴とする請求項1〜7のいずれか1項に記載の磁気記録媒体。
  10. 前記磁性層は、CoCrTa系合金、CoCrPtTa系合金、CoCrPtB系合金、CoCrPtBM系合金(M:Ta、Cu、Agから選ばれる1種以上)から選ばれる1種以上からなることを特徴とする請求項1〜9のいずれか1項に記載の磁気記録媒体。
  11. 前記非磁性基板は、ガラス基板、シリコン基板から選ばれるいずれか1種であることを特徴とする請求項1〜10のいずれか1項に記載の磁気記録媒体。
  12. 前記非磁性基板は、Al、Al合金、ガラス、シリコンから選ばれるいずれか1種からなる基体の表面に、NiPまたはNiP合金からなる膜を形成したものであることを特徴とする請求項1〜10のいずれか1項に記載の磁気記録媒体。
  13. 非磁性基板上に、少なくとも非磁性下地層、非磁性中間層、磁性層および保護層がこの順番で積層される磁気記録媒体を製造する方法であって、前記非磁性下地層の少なくとも一層が多元体心立方結晶合金で構成される磁気記録媒体の製造方法。
  14. 非磁性基板上に、少なくとも非磁性下地層、安定化層、非磁性結合層、磁性層および保護層がこの順番で積層され、安定化層が磁性層に反強磁性結合した磁気記録媒体を製造する方法であって、前記非磁性下地層の少なくとも一層が多元体心立方結晶合金で構成される磁気記録媒体の製造方法。
  15. 請求項1〜14のいずれか1項に記載の磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えたことを特徴とする磁気記録再生装置。

JP2005172199A 2005-02-25 2005-06-13 磁気記録媒体、その製造方法および磁気記録再生装置 Pending JP2006302480A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005172199A JP2006302480A (ja) 2005-02-25 2005-06-13 磁気記録媒体、その製造方法および磁気記録再生装置
TW094124393A TW200630977A (en) 2005-02-25 2005-07-19 Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
CN2005800482978A CN101120403B (zh) 2005-02-25 2005-10-27 磁记录介质、其制造方法以及磁记录和再现装置
US11/884,652 US20080193800A1 (en) 2005-02-25 2005-10-27 Magnetic Recording Medium, Production Method Thereof, and Magnetic Recording and Reproducing Apparatus
PCT/JP2005/020159 WO2006090510A1 (en) 2005-02-25 2005-10-27 Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005050878 2005-02-25
JP2005082053 2005-03-22
JP2005172199A JP2006302480A (ja) 2005-02-25 2005-06-13 磁気記録媒体、その製造方法および磁気記録再生装置

Publications (1)

Publication Number Publication Date
JP2006302480A true JP2006302480A (ja) 2006-11-02

Family

ID=37470566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172199A Pending JP2006302480A (ja) 2005-02-25 2005-06-13 磁気記録媒体、その製造方法および磁気記録再生装置

Country Status (2)

Country Link
JP (1) JP2006302480A (ja)
TW (1) TW200630977A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032326A (ja) * 2013-07-31 2015-02-16 昭和電工株式会社 磁気記録媒体、磁気記憶装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103815A1 (ja) * 2012-12-27 2014-07-03 キヤノンアネルバ株式会社 磁気記録媒体及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032326A (ja) * 2013-07-31 2015-02-16 昭和電工株式会社 磁気記録媒体、磁気記憶装置

Also Published As

Publication number Publication date
TW200630977A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
US6926977B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP3143611B2 (ja) 磁気薄膜媒体用の超薄核形成層および該層の製造方法
US20090130346A1 (en) Magnetic Recording Medium, Production Process Thereof, and Magnetic Recording and Reproducing Apparatus
US7006328B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7824785B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US6942933B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2008192249A (ja) 垂直磁気記録媒体、その製造方法および磁気記録再生装置
JP2007048397A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006302480A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
US20080166597A1 (en) Magnetic Recording Medium, Production Process Thereof, and Magnetic Recording and Reproducing Apparatus
CN101120403B (zh) 磁记录介质、其制造方法以及磁记录和再现装置
JP3588039B2 (ja) 磁気記録媒体および磁気記録再生装置
US20080193800A1 (en) Magnetic Recording Medium, Production Method Thereof, and Magnetic Recording and Reproducing Apparatus
US20060204792A1 (en) Magnetic recording medium, production process therefor, and magnetic recording and reproducing apparatus
JP2004086936A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2004152424A (ja) 磁気記録媒体、その製造方法、および磁気記録再生装置
JP3983813B2 (ja) ニッケル―アルミニウムまたは鉄―アルミニウムの下層を含んで成る磁気記録媒体
JP2006099948A (ja) 磁気記録媒体および磁気記録再生装置
JP3962415B2 (ja) 磁気記録媒体および磁気記録再生装置
JP4034290B2 (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006302482A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006302491A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2004046994A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2008226312A (ja) 垂直磁気記録媒体、その製造方法および磁気記録再生装置
JP2006286161A (ja) 磁気記録媒体及びその製造方法と磁気記録再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Effective date: 20080808

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A02