WO2014098525A1 - 케이블형 이차전지 및 이의 제조 방법 - Google Patents

케이블형 이차전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2014098525A1
WO2014098525A1 PCT/KR2013/011965 KR2013011965W WO2014098525A1 WO 2014098525 A1 WO2014098525 A1 WO 2014098525A1 KR 2013011965 W KR2013011965 W KR 2013011965W WO 2014098525 A1 WO2014098525 A1 WO 2014098525A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
current collector
cable
active material
type secondary
Prior art date
Application number
PCT/KR2013/011965
Other languages
English (en)
French (fr)
Inventor
권요한
김제영
정혜란
이상영
최근호
길은혜
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014555515A priority Critical patent/JP5990818B2/ja
Priority to EP13834366.0A priority patent/EP2768063B1/en
Priority to CN201380003458.6A priority patent/CN104011923B/zh
Priority to US14/199,255 priority patent/US9496533B2/en
Publication of WO2014098525A1 publication Critical patent/WO2014098525A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a cable type secondary battery and a method for manufacturing the same, and more particularly, to a cable type secondary battery free of deformation including a hollow core portion into which a gel polymer electrolyte is injected.
  • Secondary batteries known as the representative of electrochemical devices, are devices that convert external electrical energy into chemical energy and store it, and then generate electricity when needed.
  • the secondary battery is called a "rechargeable battery,” meaning that it can be recharged several times.
  • the secondary battery provides both economic and environmental advantages compared to the primary battery that is used once.
  • Such secondary batteries are known as lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer).
  • a secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a metal can or cylindrical laminate such as a cylinder or a square, and then injecting an electrolyte.
  • a certain space for mounting them is essentially required, which brings limitations to the development of a portable device.
  • Patent Document 1 a linear battery such as a cable type battery having a very large ratio of length to diameter of a cross-sectional area has been proposed to achieve such a demand.
  • the cable-type secondary battery has a horizontal cross section of a predetermined shape, the inner electrode formed extending in the longitudinal direction, the electrolyte layer which is a passage of ions formed on the outer surface of the inner electrode; An outer electrode formed to surround the inner electrode and the electrolyte layer; And a protective film disposed around the external electrode.
  • a cable type secondary battery has a linear structure and flexibility at the same time, so it is not only free of deformation, but also has a high battery rate because a plurality of internal electrodes are provided inside a pipe type external electrode.
  • the liquid electrolyte is mainly used, not only the organic solvent is likely to be volatilized, but also combustion and leakage of the electrolyte may occur due to an increase in the ambient temperature and the temperature of the battery itself.
  • the polymer electrolyte is used as the electrolyte, there is another problem in that the electrolyte is difficult to flow into the electrode active material, so that the resistance of the battery increases and the capacity characteristics and cycle characteristics are lowered.
  • the present invention provides a cable-type secondary battery that is free of deformation by including a hollow core portion into which a gel polymer electrolyte is injected, thereby preventing leakage of electrolyte and improving battery safety.
  • the present invention provides a method for manufacturing the cable type secondary battery.
  • An internal electrode including an internal current collector having an open structure formed surrounding the outer surface of the hollow core part, and an internal electrode active material layer formed on a surface of the internal current collector;
  • An external electrode having an external electrode active material layer formed surrounding the outer surface of the separation layer and an external current collector formed surrounding the outer surface of the external electrode active material layer;
  • a cable type secondary battery 1 having a horizontal cross section of a predetermined shape and extending in the longitudinal direction, including a protective film.
  • the hollow core portion in which the gel polymer electrolyte is injected by including the hollow core portion in which the gel polymer electrolyte is injected, it is possible not only to prevent leakage of the electrolyte, but also to form a stable interface between the electrode and the electrolyte, thereby manufacturing a cable type secondary battery having safety and high performance characteristics. Can be.
  • FIG. 1 and 2 are cross-sectional views of a cable type secondary battery manufactured according to an embodiment of the present invention.
  • 4A and 4B are graphs of the results of measuring electrochemical safety according to Experimental Example 2 of the present invention.
  • the gel polymer electrolyte injected into the hollow core part includes an organic electrolyte solution including an ionic salt and a crosslinked polymer.
  • the ionic salt included in the organic electrolyte is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , Or one or two or more lithium salts selected from CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate and lithium 4-phenylborate.
  • the organic electrolyte is ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC ), Methylformate (MF), gamma-butyrolactone ( ⁇ -BL; butyrolactone), sulfolane (sulfolane), methylacetate (MA), and methylpropionate (MP) 1 type, or 2 or more types of organic electrolyte solution chosen from is mentioned.
  • the crosslinked polymer may include a (co) polymer obtained by polymerization of a monomer having two or more functional groups or a monomer having two or more functional groups and a polar monomer having one functional group in the presence of a thermal initiator.
  • the thermal initiator may include benzoyl peroxide, or AIBN (azobisisobutyronitrile), and may be included in an amount of about 3 wt% or less, specifically about 0.5 to about 3 wt%, based on the total weight of the monomers.
  • AIBN azobisisobutyronitrile
  • the monomer having two or more functional groups may include trimetholpropane ethoxylate triacrylate, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, divinylbenzene, polyester dimethacrylate, divinyl ether, It may include one or two or more monomers selected from the group consisting of trimethylolpropane, trimethylolpropane trimethacrylate and ethoxylated bisphenol A dimethacrylate.
  • the polar monomer having one functional group may be methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate, ethylene glycol methyl ether acrylate, ethylene glycol methyl ether methacrylate, acryl
  • One or two or more monomers selected from the group consisting of ronitrile, vinyl acetate, vinyl chloride and vinyl fluoride may be included.
  • the crosslinked polymer may be included in an amount of about 2 to 5 wt% based on the total weight of the organic electrolyte. If the content of the crosslinked polymer is less than 2% by weight, the gel electrolyte may not be formed and thus may not be maintained. If the content of the crosslinked polymer is more than 5% by weight, the ion conductivity of the gel electrolyte is high. Decreases.
  • the gel polymer electrolyte component before the crosslinking reaction is excellent in fluidity, so that the gel polymer electrolyte component can be introduced into the hollow core part of the battery through the injection, and thus the internal electrode, the separation layer, and the outside Not only can the electrode not only be uniformly distributed, but also lithium ions within the battery can be easily moved, thereby reducing battery resistance, improving battery life and rate characteristics.
  • the internal current collector of the cable-type secondary battery is formed in an open structure with a portion partially opened to facilitate penetration of the electrolyte injected into the hollow core part.
  • the internal current collector may be used as long as the structure of the open structure portion as an interface, and any structure having an open structure free of movement of materials from inside to outside through the interface, for example, a wound wire-type house It may be one type or two or more types of mixed structure selected from the whole and mesh type current collector.
  • the internal current collector serves to collect electrons generated by the electrochemical reaction of the active material or to supply electrons required for the electrochemical reaction, and in general, a metal such as copper or aluminum may be used.
  • a metal such as copper or aluminum may be used.
  • a cable type secondary battery having a relatively higher flexibility than a case of using a metal such as copper or aluminum It can manufacture.
  • the light weight of the battery can be achieved as compared with the metal current collector.
  • the conductive material polyacetylene, polyaniline, polypyrrole, polythiophene and polysulfuritride, indium thin oxide (ITO), silver, palladium and nickel may be used.
  • the conductive polymer may be one compound selected from polyacetylene, polyaniline, polypyrrole, polythiophene, and polysulfuritride or two or more polymers.
  • the inner electrode of the cable type secondary battery may be a cathode or an anode
  • the outer electrode may be a cathode or an anode corresponding to the inner electrode.
  • the electrode active material layer of the present invention acts to move ions through the current collector, and the movement of these ions is caused by interaction through occlusion of ions from the electrolyte layer and release of ions into the electrolyte layer.
  • the internal active material layer is natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active material layers selected from the group consisting of a complex of the metals (Me) and carbon.
  • the internal current collector in the form of a linear wire is prepared, and then, an electroplating method, an anodizing process, a dip coating method, or an active material is included to maintain a constant interval.
  • the electrode slurry may be coated with an inner active material layer on the surface of the inner current collector by using a method such as discontinuous extrusion coating through an extruder.
  • one or more wires are wound in a coil form or the like using the manufactured linear wires, or one or more wire composites in which two or more wires are twisted in a spiral shape are wound in a coil form, thereby forming an internal electrode of a cable type secondary battery.
  • the separation layer may use a separator.
  • the porous layer made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer materials;
  • a porous substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfite and polyethylene naphthalene;
  • a porous substrate formed of a mixture of inorganic particles and a binder polymer may be used.
  • the external electrode of the cable type secondary battery may be a positive electrode or a negative electrode corresponding to the internal electrode.
  • the electrode active material layer is LiCoO 2, LiNiO 2, LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiMnCoO 2 , and LiNi 1-xyz Co x M1 y M2 z O 2
  • the external current collector may use a pipe current collector, a wound wire current collector, a wound sheet current collector or a mesh current collector, and in particular, such a current collector Is not limited.
  • the external current collector is stainless steel, aluminum, nickel, titanium, calcined carbon, copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Al, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
  • the cable type secondary battery forms a protective film which is an insulator on the outermost surface of the outer current collector to protect the electrode against moisture and external shock in the air.
  • a conventional polymer resin including a moisture barrier layer may be used.
  • aluminum (Al) or a liquid crystal polymer having excellent moisture barrier performance may be used as the moisture barrier layer, and the polymer resin may be PET, PVC, HDPE, or an epoxy resin.
  • the cable type secondary battery of the present invention may include an internal electrode composed of a plurality of electrodes, or a plurality of internal electrodes formed on a surface of a separation layer.
  • An inner electrode in which at least two electrodes including an inner current collector 320 formed surrounding the outer surface of the hollow core part and an inner electrode active material layer 330 formed on a surface of the inner current collector are disposed in parallel with each other;
  • a separation layer 340 formed surrounding the outer surfaces of the two or more internal electrodes
  • An external electrode having an external electrode active material layer 350 formed surrounding the outer surface of the separation layer and an external current collector 360 formed surrounding the outer surface of the external electrode active material layer; And a protective film 370, the cable type secondary battery 2 having a horizontal cross section of a predetermined shape and extending in the longitudinal direction (see FIG. 1).
  • An inner current collector 420 formed surrounding the outer surface of the hollow core part, an inner electrode active material layer 430 formed on the surface of the inner current collector, and a separation layer 440 formed surrounding the outer surface of the inner electrode active material layer Internal electrodes in which at least two electrodes having () are arranged in parallel with each other;
  • An external electrode including an external electrode active material layer 450 formed surrounding the outer surface of the separation layer and an external current collector 460 formed surrounding the outer surface of the external electrode active material layer; And a cable-shaped secondary battery 3 having a horizontal cross section of a predetermined shape including a protective film 470 and extending in the longitudinal direction (see FIG. 2).
  • the cable-type secondary battery of the present invention includes one or more internal electrodes, thereby making it easy to adjust the balance between the negative electrode and the positive electrode and include a plurality of electrodes, thereby preventing the possibility of a short circuit.
  • An inner current collector having an open structure including a hollow core part, an inner electrode active material layer formed on the inner current collector surface, a separation layer formed on an outer surface of the inner electrode including the inner electrode active material layer and the inner current collector, and an outer surface of the separation layer Preparing an electrode assembly having an external electrode including an formed external electrode active material layer and an external current collector, and having a horizontal cross section of a predetermined shape and extending in a length direction;
  • a cable-type secondary battery comprising inserting the at least one electrode assembly in a heat shrink protective film and the primary heating around the heat shrink protective film in close contact with the heat shrink protective film on the outer surface of the electrode assembly.
  • It provides a method of manufacturing a cable-type secondary battery comprising the step of forming a gel polymer electrolyte core portion through the secondary cross-heating reaction of the monomer in the electrolyte solution by heating the cable-type secondary battery containing the injected gel polymer electrolyte solution.
  • the primary heating is carried out at a temperature condition of 80 ⁇ 130 °C the heat shrink protective film is shrinkable, the secondary heating is 40 ⁇ to advance the thermal crosslinking reaction of the monomer present in the gel polymer electrolyte solution It can be carried out under 60 °C temperature conditions.
  • the step of injecting the gel polymer electrolyte solution may be performed using a method of injecting a needle by inserting the injection needle into the hollow core of the cable cell.
  • an electrolyte layer is provided between an internal electrode and an external electrode, and these electrolyte layers must isolate the internal electrode and the external electrode to prevent a short circuit, so that a gel polymer electrolyte or a solid polymer electrolyte having a certain level of mechanical properties is required.
  • the thickness of the electrolyte layer has to be increased in order to supply lithium ions to the electrode active material layer sufficiently. As a result, the gap between the electrodes increases, but the resistance increases, thereby degrading battery performance.
  • the gel polymer electrolyte inside the hollow core of the cable type secondary battery, leakage of the electrolyte can be prevented, and the gel polymer is partially formed through the internal electrode of the structure.
  • the lithium ion source can be uniformly supplied and exchanged from the electrolyte, thereby forming a stable interface between the electrode and the electrolyte, thereby further improving the performance of the battery.
  • the cable-type secondary battery of the present invention includes an internal electrode composed of a plurality of electrodes, the balance between the negative electrode and the positive electrode can be easily adjusted, and the plurality of electrodes can be provided to prevent the possibility of a short circuit.
  • a coin-type battery was manufactured by using stainless steel as a working electrode, lithium metal as a counter electrode, and then injecting the gel polymer electrolyte between the electrodes.
  • a coin-type battery was manufactured in the same manner as in Example 1, except that Ni-Sn-plated copper was used as the measurement electrode.
  • a coin-type battery was manufactured in the same manner as in Example 1, except that the electrolyte consisting of only the organic electrolyte of Example 1 was injected instead of the gel polymer electrolyte of Example 1.
  • a coin-type battery was manufactured in the same manner as in Comparative Example 1, except that Ni-Sn-plated copper was used as the measurement electrode.
  • the gel polymer electrolyte of Example 1 and the organic electrolyte of Comparative Example 1 showed similar characteristics, and showed excellent electrochemical stability up to 5V.
  • Example 2 and Comparative Example 2 were charged with a constant current to 5 mV even with a 0.5C current mill, and then kept constant at 5 mV at a constant voltage, and the charging was terminated when the current density reached 0.005C. At the time of discharge, the discharge was completed in CC mode to 1.5 V even with a current mill of 0.1 C.
  • 4A and 4B show graphs normalized by charging and discharging under the same conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 겔 폴리머 전해질이 주입된 중공형 코어부; 상기 중공형 코어부의 외면을 둘러싸며 형성된 내부집전체와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비한 내부전극; 상기 내부전극의 외면을 둘러싸며 형성된 분리층; 상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체를 구비한 외부전극; 및 보호피막을 포함하는, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지를 제공한다.

Description

케이블형 이차전지 및 이의 제조 방법
본 발명은 케이블형 이차전지 및 이의 제조 방법에 관한 것으로, 구체적으로 겔 폴리머 전해질이 주입된 중공형 코어부를 포함하는 변형이 자유로운 케이블형 이차전지 및 이의 제조 방법에 관한 것이다.
전기화학소자 중 대표적으로 알려진 이차전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치이다. 상기 이차전지는 여러 번 충전할 수 있다는 뜻으로 "충전식 전지(rechargeable battery)"라고 하며, 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다. 이러한 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 알려져 있다.
한편, 무선통신 기술이 점차 발전함에 따라, 노트북 및 핸드폰과 같은 휴대용 장치 또는 자동차 부속품 등의 경량화가 요구되고 있으며, 이에 따라 이들 장치의 에너지원으로 사용하는 이차전지에 대한 수요가 증가하고 있다.
이차전지는 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형 등의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착한 다음 전해질을 주입시켜 제조된다. 이와 같이, 이차전지는 대부분 원통형, 각형 또는 파우치형 구조로 형성되기 때문에, 이들을 장착하기 위한 일정한 공간을 필수적으로 요구하고 있어, 휴대용 장치의 개발에 제약을 가져온다.
최근 형태의 변형이 용이한 신규한 형태의 이차전지가 요구되고 있으며, 이러한 요구를 달성하기 위해, 단면적 직경에 대하여 길이의 비가 매우 큰 선형전지, 예컨대 케이블형 전지가 제안되고 있다(특허문헌 1).
구체적으로, 상기 케이블형 이차전지는 소정 형상의 수평 단면을 가지며, 길이 방향으로 연장되어 형성된 내부 전극, 상기 내부 전극 외면에 형성된 이온의 통로가 되는 전해질층; 상기 내부전극과 전해질층을 둘러싸며 형성된 외부전극; 및 상기 외부전극의 둘레에 배치되는 보호피막으로 구성된다. 이러한 케이블형 이차전지는 선형의 구조를 가지면서 동시에 가요성을 갖고 있어 변형이 자유로울 뿐만 아니라, 파이프형 외부전극 내부에 복수개의 내부전극을 구비하기 때문에 높은 전지 레이트를 갖는다. 또한, 내부전극의 개수를 조절함으로써, 내부전극과 외부전극과의 용량 밸런스의 조절이 용이하고, 내부전극에 전해질층이 형성되어 있기 때문에, 전극 간 단락(short)을 방지할 수 있는 이점이 있다.
하지만, 상기 케이블형 이차전지는 액체 상태의 전해액이 주로 사용되기 때문에, 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소 및 전해액 누액 등이 발생하여, 전지의 안정성 측면에서 취약하다는 단점이 있다. 이를 개선하기 위해, 전해액으로 폴리머 전해질을 이용하는 경우, 전극 활물질로의 전해질의 유입이 어려워 전지의 저항이 증가하고, 용량 특성 및 사이클 특성이 저하되는 또 다른 문제점이 있다.
이에, 종래 전해질이 누액을 방지하고, 전극과 전해질 간의 안정된 계면을 형성하여, 전지 성능을 향상시킬 수 있는 새로운 구성의 전해질 주입된 케이블형 이차전지의 개발이 시급하다.
본 발명에서는 겔 폴리머 전해질이 주입된 중공형 (hollow) 코어부를 포함함으로써, 전해액의 누액을 방지하여 전지 안전성이 개선된, 변형이 자유로운 케이블형 이차전지를 제공한다.
또한, 본 발명에서는 상기 케이블형 이차전지의 제조 방법을 제공한다.
본 발명의 일 구현예에 따르면, 본 발명에서는
겔 폴리머 전해질이 주입된 중공형 코어부;
상기 중공형 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부집전체와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비한 내부전극;
상기 내부전극의 외면을 둘러싸며 형성된 분리층;
상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체를 구비한 외부전극; 및
보호피막을 포함하는, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지(1)를 제공한다.
본 발명에서는 겔 폴리머 전해질이 주입된 중공형 코어부를 포함함으로써, 전해질의 누액을 방지할 수 있을 뿐만 아니라, 전극과 전해질간의 안정된 계면을 형성하여, 안전성 및 고성능 특성을 갖는 케이블형 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1 및 도 2는 본 발명의 일 구현예에 따라 제조된 케이블형 이차전지의 단면도이다.
도 3은 본 발명의 실험예 1에 따른 전기화학적 안정성을 측정한 결과 그래프이다.
도 4a 및 도 4b는 본 발명의 실험예 2에 따른 전기화학적 안전성을 측정한 결과 그래프이다.
구체적으로, 본 발명의 일 구현예에 있어서 상기 중공형 코어부에 주입된 겔 폴리머 전해질은 이온성염을 포함하는 유기 전해액과, 가교 고분자를 포함한다.
이때, 상기 유기 전해액에 포함되는 이온성염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 4-페닐붕산리튬 중에서 선택된 1종 또는 2종 이상의 리튬염일 수 있다.
또한, 상기 유기 전해액은 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 및 메틸프로피오네이트(MP; methylpropionate)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 유기 전해액을 들 수 있다.
또한, 상기 가교 고분자는 열 개시제 존재 하에서, 2 개 이상의 관능기를 가지는 단량체, 또는 2개 이상의 관능기를 가지는 단량체와 1개의 관능기를 가지는 극성 단량체의 중합 반응에 의해 얻어진 (공)중합체를 포함할 수 있다.
이때, 상기 열 개시제는 벤조일 퍼옥사이드, 또는 AIBN(azobisisobutyronitrile)을 포함할 수 있으며, 상기 단량체들의 전체 중량을 기준으로 약 3 중량% 이하, 구체적으로 약 0.5 내지 약 3 중량%로 포함될 수 있다.
또한, 상기 2개 이상의 관능기를 가지는 단량체는 트리메티롤프로판 에톡시레이트 트리아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 디비닐벤젠, 폴리에스테르 디메타크릴레이트, 디비닐에테르, 트리메틸올프로판, 트리메틸올프로판 트리메타크릴레이트 및 에톡시레이티드 비스페놀 A 디메타크릴레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 단량체를 포함할 수 있다. 또한, 상기 1 개의 관능기를 가지는 극성 단량체는 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 에틸렌 글리콜 메틸에테르아크릴레이트, 에틸렌 글리콜 메틸에테르메타아크릴레이트, 아크릴로니트릴, 비닐아세테이트, 비닐클로라이드 및 비닐플로라이드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 단량체를 포함할 수 있다.
상기 가교 고분자는 유기 전해액 전체 중량을 기준으로 약 2~5 중량%의 함량으로 포함될 수 있다. 만약, 가교 고분자의 함량이 2 중량% 미만인 경우 겔형의 전해질이 형성되지 않아 그 형태를 유지하지 못하고 흐를 수 있고, 가교 고분자 함량이 5 중량%를 초과하는 경우 고분자 함량이 높아 겔 전해질의 이온전도도가 감소한다.
종래 케이블형 이차전지에 사용된 고분자 전해질의 경우에는 이온전도도가 충족되더라도 리튬 이온의 반응 속도가 매우 느려 전지 성능 구현에 저해가 되고, 전해질 자체의 유동성이 부족하여 전지내 중공형 코어부로 주액을 통해 형성하기 어려운 문제가 있다. 반면에, 본 발명의 겔 폴리머 전해질을 이용하는 경우에는 가교 반응 전의 겔 폴리머 전해질 성분의 유동성이 뛰어나서 전지내 중공형 코어부에 주액을 통해 겔 폴리머 전해질 성분의 유입이 가능하여 내부 전극, 분리층, 외부전극으로 균일하게 절해질을 분포시킬 수 있을 뿐만 아니라, 전지 내의 리튬 이온의 이동이 용이하여 전지 저항 감소, 전지 수명 특성 및 속도(rate) 특성이 향상되는 효과를 얻을 수 있다.
또한, 본 발명의 일 구현예에 있어서 상기 케이블형 이차전지의 내부집전체는 중공형 코어부에 주입된 전해질의 침투가 용이하도록 일부가 개구된 열린 구조로 형성된다. 구체적으로, 상기 내부집전체는 개구된 구조 부분을 경계면으로 하고, 이러한 경계면을 통과하여 내부에서 외부로의 물질의 이동이 자유로운 형태의 열린 구조라면 모두 이용 가능한데, 예를 들면, 권선된 와이어형 집전체 및 메쉬형 집전체 중에서 선택된 1종 또는 2종 이상의 혼합형 구조일 수 있다.
이때, 상기 내부집전체는 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학 반응에 필요한 전자를 공급하는 역할을 하는 것으로, 일반적으로 구리나 알루미늄 등의 금속을 사용할 수 있으나, 본 발명에서는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자 등으로 이루어질 수 있으며, 이들로 한정되는 것은 아니다.
즉, 상기 내부집전체로 도전재로 표면처리된 비전도성 고분자 또는 전도성 고분자로 이루어진 고분자 전도체를 사용하는 경우, 구리나 알루미늄과 같은 금속을 사용하는 경우보다 가요성이 상대적으로 우수한 케이블형 이차전지를 제조할 수 있다. 또한, 금속 집전체에 비하여 전지의 경량성을 달성할 수도 있다. 이때, 상기 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드, ITO(Indum Thin Oxide), 은, 팔라듐 및 니켈 등을 사용할 수 있다. 또한, 상기 전도성 고분자로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 중에서 선택된 1종의 화합물 또는 2종 이상의 고분자를 사용할 수 있다.
상기 본 발명의 일 구현예에 있어서 상기 케이블형 이차전지의 내부전극은 음극 또는 양극일 수 있으며, 외부전극은 상기 내부전극과 대응하는 양극 또는 음극일 수 있다. 그리고 본 발명의 전극 활물질층은 집전체를 통해서 이온을 이동시키는 작용을 하고, 이들 이온의 이동은 전해질층으로부터의 이온의 흡장 및 전해질층으로의 이온의 방출을 통한 상호작용에 의한다.
구체적으로, 본 발명의 케이블형 이차전지의 내부전극이 음극인 경우, 상기 내부 활물질층은 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질층을 포함할 수 있다.
본 발명에서는 상기 선형의 와이어 형태의 내부집전체를 준비한 다음, 전기도금(electroplating) 방법, 양극산화처리(anodic oxidation process) 방법, 딥코팅(dip coating) 방법 또는 일정한 간격을 유지하기 위해서는 활물질을 포함하는 전극슬러리를 압출기를 통하여 불연속적으로 압출코팅하는 방법 등을 이용하여 상기 내부집전체 표면에 내부활물질층을 코팅할 수 있다.
이때, 상기 제조된 선형 와이어를 이용하여 하나 이상의 와이어가 코일 형태 등으로 권선되거나, 둘 이상의 와이어가 서로 나선형 모양으로 꼬여 형성된 하나 이상의 와이어 복합체가 코일 형태 등으로 권선됨으로써, 케이블형 이차전지의 내부 전극으로 사용될 수도 있다.
또한, 본 발명의 일 구현예에 있어서 상기 분리층은 세퍼레이터를 사용할 수도 있다. 만약, 상기 분리층이 세퍼레이터인 경우에는, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재를 사용할 수 있다.
또한, 본 발명의 일 구현예에 있어서, 상기 케이블형 이차전지의 외부전극은 상기 내부전극과 대응하는 양극 또는 음극일 수 있다.
본 발명의 케이블형 이차전지의 외부전극이 양극인 경우, 전극 활물질층은 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z = 1이다) 로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 양극 활물질층으로 이루어질 수 있다.
또한, 본 발명의 일 구현예에 있어서, 상기 외부집전체는 파이프형 집전체, 권선된 와이어형 집전체, 권선된 시트형 집전체 또는 메쉬형 집전체를 이용할 수 있으며, 특별히 이러한 집전체로 그 형태가 제한되지는 않는다.
상기 외부집전체는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Al, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조될 수 있다.
또한, 본 발명의 일 구현예에 있어서, 케이블형 이차전지는 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 외부집전체의 최외면에 절연체인 보호피막을 형성한다. 상기 보호피막으로는 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다. 일례로 상기 수분 차단층으로는 수분 차단 성능이 우수한 알루미늄 (Al) 이나 액정 고분자가 사용 가능하고, 또한 상기 고분자 수지는 PET, PVC, HDPE 또는 에폭시 수지가 사용 가능하다.
또한, 본 발명의 케이블형 이차전지는 복수의 전극으로 이루어진 내부전극을 구비하거나, 분리층이 표면에 형성된 다수의 내부전극을 구비할 수 있다.
구체적으로, 본 발명에서는
겔 폴리머 전해질이 주입된 중공형 코어부(310);
상기 중공형 코어부의 외면을 둘러싸며 형성된 내부집전체(320)와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층(330)을 구비한 2개 이상의 전극이 서로 평행하게 배치된 내부전극;
상기 2개 이상의 내부전극의 외면을 둘러싸며 형성된 분리층(340);
상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층(350)과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체(360)를 구비한 외부전극; 및 보호피막(370)을 포함하는, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지(2)를 제공한다(도 1 참조).
또한, 본 발명의 또 다른 구현예에서는
겔 폴리머 전해질이 주입된 중공형 코어부(410);
상기 중공형 코어부의 외면을 둘러싸며 형성된 내부집전체(420)와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층(430)과, 상기 내부전극 활물질층의 외면을 둘러싸며 형성된 분리층(440)을 구비한 2개 이상의 전극이 서로 평행하게 배치된 내부전극;
상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층(450)과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체(460)를 구비하는 외부전극; 및 보호피막(470)을 포함하는 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지(3)를 제공한다 (도 2 참조).
이와 같이, 본 발명의 케이블형 이차전지는 하나 이상의 내부 전극을 포함함으로써, 음극과 양극의 밸런스 조정이 용이하고 다수의 전극을 구비하므로 단락의 가능성을 방지할 수 있다.
또한, 본 발명에서는 또 다른 일 구현예에서,
중공형 코어부를 포함하는 열린 구조의 내부집전체, 상기 내부집전체 표면에 형성된 내부전극 활물질층, 상기 내부전극 활물질층과 내부 집전체를 포함하는 내부 전극 외면에 형성된 분리층, 상기 분리층 외면에 형성된 외부 전극 활물질층과 외부 집전체를 포함하는 외부 전극을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계;
열수축 보호 피막에 상기 하나 이상의 전극 조립체를 삽입한 후에 열수축 보호 피막 주위에 1차 가열하여 전극조립체의 외면에 열수축된 보호피막을 밀착하는 단계를 포함하는 케이블형 이차전지의 제조 방법에 있어서,
겔 폴리머 전해질 코어부를 형성할 수 있는 가교 반응 전의 겔 폴리머 전해질 용액을 제조하는 단계;
상기 밀착 단계 후에, 상기 케이블형 이차전지 내부의 중공형 코어부에 겔 폴리머 전해질 용액을 주입하는 단계;
상기 겔 폴리머 전해질 용액이 주입된 케이블형 이차전지의 전해질 주입구를 실링하는 단계; 및
주액된 상기 겔 폴리머 전해질 용액이 있는 케이블형 이차전지를 2차 가열하여 전해질 용액 내 모노머의 열가교 반응을 통해 겔 폴리머 전해질 코어부를 형성하는 단계를 포함하는 케이블형 이차전지의 제조 방법을 제공한다.
상기 본 발명의 방법에 있어서, 1차 가열은 열수축 보호 피막이 수축 가능한 80~130℃의 온도 조건에서 수행하고, 2차 가열은 겔 폴리머 전해질 용액에 존재하는 모노머의 열가교 반응을 진행시키기 위해 40~60℃ 온도 조건하에서 수행할 수 있다.
또한, 상기 겔 폴리머 전해질 용액을 주입하는 단계는 주사 바늘을 케이블 전지 내부의 중공형 코어부에 삽입하여 주액하는 방법을 이용하여 수행할 수 있다.
종래 케이블형 이차전지는 내부전극과 외부전극 사이에 전해질층을 구비하고 이들 전해질층은 단락을 방지하기 위하여 내부전극과 외부전극을 격리시켜야 하므로 일정한 수준의 기계적 물성을 갖는 겔형 고분자 전해질이나 고체 고분자 전해질을 사용할 필요가 있다. 그러나 이러한 겔형 고분자 전해질이나 고체 고분자 전해질은 리튬이온 소스의 공급 성능이 낮기 때문에, 전극 활물질층에 리튬이온을 충분히 공급하기 위해서 전해질층의 두께가 증가될 수밖에 없었으며, 이러한 전해질층의 두께의 증가에 의해서 전극간의 간격이 벌어지면서 오히려 저항이 증가하여 전지성능의 저하하는 문제가 있다.
이에, 본 발명에서는 전술한 바와 같이 케이블형 이차전지의 중공형 코어부 내부에 겔 폴리머 전해질을 포함함으로써, 전해질의 누액을 방지할 수 있을 뿐만 아니라, 일부가 개구된 구조의 내부 전극을 통해 겔 폴리머 전해질로부터 리튬 이온 소스를 균일하게 공급 및 교환할 수 있어, 전극과 전해질간의 안정된 계면을 형성하여, 전지의 성능을 보다 향상시킬 수 있다. 또한, 본 발명의 케이블형 이차전지는 복수의 전극으로 이루어진 내부전극을 구비하므로, 음극과 양극의 밸런스 조정이 용이하고, 다수의 전극을 구비하므로 단락의 가능성을 방지할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
97.5g의 유기 전해액 (1M LiPF6, EC:PC=1:1)과 2.5g의 트리메티롤프로판 에톡시레이트 트리아크릴레이트 (TMPEOTA)를 균일하게 혼합한 후, 열 개시제인 벤조일 퍼옥사이드를 0.025g 을 첨가하였다. 상기 혼합물을 유리판에 캐스팅하고, 50℃ 오븐에서 3 시간 동안 자외선을 조사하여 가교 고분자를 포함하는 겔 폴리머 전해질을 제조하였다.
스테인리스 스틸을 측정 전극 (working electrode)으로 하고, 리튬 금속을 대전극으로 한 다음, 상기 전극들 사이에 상기 겔 폴리머 전해질을 주입하여 코인형 전지를 제조하였다.
실시예 2.
Ni-Sn이 도금된 구리를 측정 전극으로 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코인형 전지를 제조하였다.
비교예 1.
상기 실시예 1의 겔 폴리머 전해질 대신, 상기 실시예 1의 유기 전해액만으로 이루어진 전해액을 주입하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인형 전지를 제조하였다.
비교예 2.
Ni-Sn이 도금된 구리를 측정 전극으로 이용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 코인형 전지를 제조하였다.
실험예 1. 전기화학 안전성 실험
상기 실시예 1 및 비교예 1의 코인형 전지에 대한 한 전기화학적 안정성을 측정하였다. 즉, 5 mV/S 스캔율 (scan rate)로 하여 6 V까지 선형 주사 전압 전류법 (Linear Sweep Voltammetry, LSV)를 통해 전기화학적 안정성을 측정하였다. 그 결과를 도 3에 나타내었다.
상기 도 3에 따르면, 실시예 1의 겔 폴리머 전해질과 비교예 1의 유기 전해액은 유사한 특성을 보이며, 5V까지 우수한 전기화학적 안정성을 나타내는 것을 알 수 있었다.
실험예 2. 전기화학 안정성 실험
상기 실시예 2 및 비교예 2의 반쪽 전지에 대해 0.5C의 전류 밀로도 5 mV까지 정전류 충전한 후, 정전압으로 5mV로 일정하게 유지시켜 전류 밀도가 0.005C가 되면 충전을 종료하였다. 방전 시 0.1C의 전류 밀로도 1.5V까지 CC 모드로 방전을 완료하였다. 동일한 조건으로 충방전하여 표준화한 그래프를 도 4a 및 4b에 나타내었다.
도 4a 및 4b를 살펴보면, 비교예 2의 전지보다 실시예 2의 겔 폴리머 전해질을 이용한 전지의 초기 효율이 매우 향상된 결과를 보이는 것을 확인할 수 있었다. 이는 Ni-Sn 전극과 겔 폴리머 전해질 간의 계면 안정성이 향상되어 초기 효율이 향상된 것으로 판단된다.
부호의 설명
300,400: 케이블형 이차전지
310,410: 중공형 코어부
320,420: 내부집전체
330,430: 내부전극 활물질층
340,440: 분리층
350,450: 외부전극 활물질층
360,460: 외부집전체
370,470: 보호피막

Claims (22)

  1. 겔 폴리머 전해질이 주입된 중공형 코어부;
    상기 중공형 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부집전체와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비한 내부전극;
    상기 내부전극의 외면을 둘러싸며 형성된 분리층;
    상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체를 구비한 외부전극; 및
    보호피막을 포함하는, 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지.
  2. 청구항 1에 있어서,
    상기 중공형 코어부에 주입된 겔 폴리머 전해질은 이온성염을 포함하는 유기 전해액과, 가교 고분자를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  3. 청구항 2에 있어서,
    상기 이온성염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 4-페닐붕산리튬 중에서 선택된 1종 또는 2종 이상의 리튬염인 것을 특징으로 하는 케이블형 이차전지.
  4. 청구항 2에 있어서,
    상기 유기 전해액은 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸포르메이트, 감마-부티로락톤, 설포레인, 메틸아세테이트, 및 메틸프로피오네이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 유기 전해액인 것을 특징으로 하는 케이블형 이차전지.
  5. 청구항 2에 있어서,
    상기 가교 고분자는 열 개시제 존재 하에서, 2 개 이상의 관능기를 가지는 단량체, 또는 2개 이상의 관능기를 가지는 단량체와 1개의 관능기를 가지는 극성 단량체의 중합 반응에 의해 얻어진 공중합체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  6. 청구항 5에 있어서,
    상기 열 개시제는 벤조일 퍼옥사이드, 또는 AIBN (Azobisisobutyronitrile)을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  7. 청구항 5에 있어서,
    상기 2개 이상의 관능기를 가지는 단량체는 트리메티롤프로판 에톡시레이트 트리아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 디비닐벤젠, 폴리에스테르 디메타크릴레이트, 디비닐에테르, 트리메틸올프로판, 트리메틸올프로판 트리메타크릴레이트 및 에톡시레이티드 비스페놀 A 디메타크릴레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 단량체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  8. 청구항 5에 있어서,
    상기 1 개의 관능기를 가지는 극성 단량체는 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 에틸렌 글리콜 메틸에테르아크릴레이트, 에틸렌 글리콜 메틸에테르메타아크릴레이트, 아크릴로니트릴, 비닐아세테이트, 비닐클로라이드 및 비닐플로라이드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 단량체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  9. 청구항 2에 있어서,
    상기 가교 고분자는 유기 전해액 전체 중량을 기준으로 약 2~5 중량%의 함량으로 포함되는 것을 특징으로 하는 케이블형 이차전지.
  10. 청구항 1에 있어서,
    상기 내부집전체는 권선된 와이어형 집전체 및 메쉬형 집전체 중에서 선택된 1종 또는 2종 이상의 혼합형 구조인 것을 특징으로 하는 케이블형 이차전지.
  11. 청구항 1에 있어서,
    상기 내부집전체는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 이루어진 군으로부터 선택된 것을 특징으로 하는 케이블형 이차전지.
  12. 청구항 1에 있어서,
    상기 내부전극은 음극 또는 양극이고,
    상기 외부전극은 내부전극과 대응하는 양극 또는 음극인 것을 특징으로 하는 케이블형 이차전지.
  13. 청구항 12에 있어서,
    상기 내부전극이 음극인 경우, 상기 내부 활물질층은 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물; 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질층을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  14. 청구항 1에 있어서,
    상기 분리층은 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
  15. 청구항 14에 있어서,
    상기 세퍼레이터는 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재인 것을 특징으로 하는 케이블형 이차전지.
  16. 청구항 1 또는 청구항 12에 있어서,
    상기 외부전극이 양극인 경우, 상기 외부전극 활물질층은 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z = 1이다) 로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 양극 활물질층인 것을 특징으로 하는 케이블형 이차전지.
  17. 청구항 1에 있어서,
    상기 외부집전체는 파이프형 집전체, 권선된 와이어형 집전체, 권선된 시트형 집전체 또는 메쉬형 집전체인 것을 특징으로 하는 케이블형 이차전지.
  18. 청구항 1에 있어서,
    상기 외부집전체는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Al, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  19. 청구항 1에 있어서,
    상기 보호피막은 수분 차단층이 포함된 고분자 수지로 이루어진 것을 특징으로 하는 케이블형 이차전지.
  20. 겔 폴리머 전해질이 주입된 중공형 코어부;
    상기 중공형 코어부의 외면을 둘러싸며 형성된 내부집전체와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비한 2개 이상의 전극이 서로 평행하게 배치된 내부전극;
    상기 2개 이상의 내부전극의 외면을 둘러싸며 형성된 분리층;
    상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체를 구비한 외부전극; 및 보호피막을 포함하는, 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지.
  21. 겔 폴리머 전해질이 주입된 중공형 코어부;
    상기 중공형 코어부의 외면을 둘러싸며 형성된 내부집전체와, 상기 내부집전체의 표면에 형성된 내부전극 활물질층과, 상기 내부전극 활물질층의 외면을 둘러싸며 형성된 분리층을 구비한 2개 이상의 전극이 서로 평행하게 배치된 내부전극;
    상기 분리층의 외면을 둘러싸며 형성된 외부전극 활물질층과 상기 외부전극 활물질층의 외면을 둘러싸며 형성된 외부집전체를 구비하는 외부전극; 및 보호피막을 포함하는 수평 단면을 가지고 길이 방향으로 연장된 케이블형 이차전지.
  22. 중공형 코어부를 포함하는 열린 구조의 내부집전체, 상기 내부집전체 표면에 형성된 내부전극 활물질층, 상기 내부전극 활물질층과 내부 집전체를 포함하는 내부 전극 외면에 형성된 분리층, 상기 분리층 외면에 형성된 외부 전극 활물질층과 외부 집전체를 포함하는 외부 전극을 구비하며, 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계;
    열수축 보호 피막에 상기 하나 이상의 전극 조립체를 삽입한 후에 열수축 보호 피막 주위에 1차 가열하여 전극조립체의 외면에 열수축된 보호피막을 밀착하는 단계를 포함하는 케이블형 이차전지의 제조 방법에 있어서,
    겔 폴리머 전해질 코어부를 형성할 수 있는 가교 반응 전의 겔 폴리머 전해질 용액을 제조하는 단계;
    상기 밀착 단계 후에, 상기 케이블형 이차전지 내부의 중공형 코어부에 겔 폴리머 전해질 용액을 주입하는 단계;
    상기 겔 폴리머 전해질 용액이 주입된 케이블형 이차전지의 전해질 주입구를 실링하는 단계; 및
    주액된 상기 겔 폴리머 전해질 용액이 있는 케이블형 이차전지를 2차 가열하여 전해질 용액 내 모노머의 열가교 반응을 통해 겔 폴리머 전해질 코어부를 형성하는 단계를 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조 방법.
PCT/KR2013/011965 2012-12-21 2013-12-20 케이블형 이차전지 및 이의 제조 방법 WO2014098525A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014555515A JP5990818B2 (ja) 2012-12-21 2013-12-20 ケーブル型二次電池及びその製造方法
EP13834366.0A EP2768063B1 (en) 2012-12-21 2013-12-20 Cable-type secondary battery and method for manufacturing same
CN201380003458.6A CN104011923B (zh) 2012-12-21 2013-12-20 线缆型二次电池及其制备方法
US14/199,255 US9496533B2 (en) 2012-12-21 2014-03-06 Cable-type secondary battery and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120151107A KR101548789B1 (ko) 2012-12-21 2012-12-21 케이블형 이차전지 및 이의 제조 방법
KR10-2012-0151107 2012-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/199,255 Continuation US9496533B2 (en) 2012-12-21 2014-03-06 Cable-type secondary battery and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2014098525A1 true WO2014098525A1 (ko) 2014-06-26

Family

ID=50932943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011965 WO2014098525A1 (ko) 2012-12-21 2013-12-20 케이블형 이차전지 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US9496533B2 (ko)
EP (1) EP2768063B1 (ko)
JP (1) JP5990818B2 (ko)
KR (1) KR101548789B1 (ko)
CN (1) CN104011923B (ko)
WO (1) WO2014098525A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530533A (ja) * 2014-10-02 2017-10-12 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178590A1 (ko) 2013-04-29 2014-11-06 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
JP6037579B2 (ja) 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池
WO2014182059A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 케이블형 이차전지
JP6240176B2 (ja) * 2013-05-07 2017-11-29 エルジー・ケム・リミテッド 二次電池用電極、その製造方法、それを含む二次電池、及びケーブル型二次電池
WO2014182062A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR101465166B1 (ko) 2013-05-07 2014-11-25 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
EP3244476B1 (en) * 2015-02-09 2019-12-11 LG Chem, Ltd. Cable type secondary battery
CN106025240A (zh) * 2016-07-26 2016-10-12 陕西科技大学 一种锂离子电池负极用核壳结构的C/SnO2/CNT复合材料的制备方法
US20180151887A1 (en) * 2016-11-29 2018-05-31 GM Global Technology Operations LLC Coated lithium metal negative electrode
TWI825144B (zh) * 2018-08-10 2023-12-11 美商思達利醫藥公司 第二型轉麩醯胺酸酶(tg2)抑制劑
WO2020067017A1 (ja) * 2018-09-27 2020-04-02 株式会社村田製作所 糸電池及びコネクタ付き糸電池
IL288632B2 (en) * 2019-06-06 2023-06-01 Evonik Operations Gmbh In situ polymerized polymer electrolyte for lithium ion batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099903A (ko) * 2004-04-12 2005-10-17 경상대학교산학협력단 실형태의 가변형 전지
JP2011126975A (ja) * 2009-12-16 2011-06-30 Honda Motor Co Ltd 皮膜付イオンゲル及びその製造方法
KR20110089819A (ko) * 2010-02-01 2011-08-09 주식회사 엘지화학 케이블형 이차전지
KR20110127972A (ko) * 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
KR20120000744A (ko) * 2010-06-28 2012-01-04 주식회사 엘지화학 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989300A (en) * 1997-06-05 1999-11-23 Eshraghi; Ray R. Process of producing electrochemical products or energy from a fiberous electrochemical cell
JPH11135100A (ja) * 1997-08-29 1999-05-21 Denso Corp 巻回電極電池およびその製造方法
US20020136958A1 (en) * 2001-01-17 2002-09-26 Park Chi-Kyun High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
JP2002222666A (ja) * 2001-01-25 2002-08-09 Ngk Insulators Ltd リチウム二次電池
TW560102B (en) * 2001-09-12 2003-11-01 Itn Energy Systems Inc Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design
TWI283493B (en) * 2003-05-30 2007-07-01 Lg Chemical Ltd Rechargeable lithium battery using separator partially coated with gel polymer
JP5349324B2 (ja) * 2006-12-21 2013-11-20 エルジー・ケム・リミテッド ゲルポリマー電解質用組成物及びこれから製造されたゲルポリマー電解質とこれを含む電気化学素子
KR101283488B1 (ko) 2010-02-01 2013-07-12 주식회사 엘지화학 케이블형 이차전지
KR101322694B1 (ko) * 2010-06-14 2013-10-28 주식회사 엘지화학 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
KR101322695B1 (ko) * 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
KR101351898B1 (ko) * 2010-10-21 2014-01-22 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
KR101423688B1 (ko) * 2010-11-04 2014-07-25 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
US9005808B2 (en) * 2011-03-01 2015-04-14 Uchicago Argonne, Llc Electrode materials for rechargeable batteries
WO2013055190A1 (ko) * 2011-10-13 2013-04-18 주식회사 엘지화학 케이블형 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099903A (ko) * 2004-04-12 2005-10-17 경상대학교산학협력단 실형태의 가변형 전지
JP2011126975A (ja) * 2009-12-16 2011-06-30 Honda Motor Co Ltd 皮膜付イオンゲル及びその製造方法
KR20110089819A (ko) * 2010-02-01 2011-08-09 주식회사 엘지화학 케이블형 이차전지
KR20110127972A (ko) * 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
KR20120000744A (ko) * 2010-06-28 2012-01-04 주식회사 엘지화학 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2768063A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530533A (ja) * 2014-10-02 2017-10-12 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
US10276893B2 (en) 2014-10-02 2019-04-30 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
EP2768063B1 (en) 2018-03-07
KR101548789B1 (ko) 2015-09-01
CN104011923A (zh) 2014-08-27
EP2768063A1 (en) 2014-08-20
US20140186673A1 (en) 2014-07-03
US9496533B2 (en) 2016-11-15
CN104011923B (zh) 2016-11-16
KR20140082044A (ko) 2014-07-02
EP2768063A4 (en) 2016-04-06
JP5990818B2 (ja) 2016-09-14
JP2015509645A (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2014098525A1 (ko) 케이블형 이차전지 및 이의 제조 방법
WO2013055188A1 (ko) 케이블형 이차전지
WO2013062334A1 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
WO2014035192A1 (ko) 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
WO2013062337A2 (ko) 케이블형 이차전지
WO2013055185A2 (ko) 케이블형 이차전지
WO2011145882A2 (ko) 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
WO2013055186A1 (ko) 케이블형 이차전지
WO2013055190A1 (ko) 케이블형 이차전지
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2012026669A2 (ko) 케이블형 이차전지
WO2013062336A1 (ko) 케이블형 이차전지
WO2012002646A2 (ko) 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
WO2012026670A2 (ko) 케이블형 이차전지
WO2019054729A1 (ko) 고체 전해질을 포함하는 전고체 전지용 전극
WO2013062335A1 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
WO2012060561A2 (ko) 케이블형 이차전지 및 그의 제조방법
WO2014077635A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2013066117A1 (ko) 케이블형 이차전지
WO2013055187A1 (ko) 케이블형 이차전지
WO2015080499A1 (ko) 케이블형 이차전지
WO2013089498A1 (ko) 케이블형 이차전지
WO2014077633A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2013042939A2 (ko) 케이블형 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013834366

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014555515

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE