WO2014091879A1 - Qam変調通信システムの多値差動復号装置および方法 - Google Patents

Qam変調通信システムの多値差動復号装置および方法 Download PDF

Info

Publication number
WO2014091879A1
WO2014091879A1 PCT/JP2013/081010 JP2013081010W WO2014091879A1 WO 2014091879 A1 WO2014091879 A1 WO 2014091879A1 JP 2013081010 W JP2013081010 W JP 2013081010W WO 2014091879 A1 WO2014091879 A1 WO 2014091879A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
error correction
likelihood
signal
bit
Prior art date
Application number
PCT/JP2013/081010
Other languages
English (en)
French (fr)
Inventor
杉原 隆嗣
西本 浩
吉田 剛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/408,090 priority Critical patent/US9143273B2/en
Priority to JP2014551948A priority patent/JP5847335B2/ja
Priority to CN201380054085.5A priority patent/CN104737510B/zh
Priority to EP13862983.7A priority patent/EP2933970B1/en
Publication of WO2014091879A1 publication Critical patent/WO2014091879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03356Baseband transmission
    • H04L2025/03363Multilevel

Definitions

  • the present invention relates to a multilevel differential decoding apparatus and method for a QAM modulation communication system using QAM modulation, and more particularly to a novel for realizing decoding processing of differentially encoded multilevel modulated optical signals with a small circuit scale. Technology.
  • Non-Patent Document 2 a technique for inserting a pilot signal has been proposed in order to cope with a phase slip caused by phase noise caused by multi-level modulation transmission and to guarantee transmission performance.
  • a pilot signal when a pilot signal is inserted, the redundancy increases depending on the frequency of pilot insertion, which causes a problem that it becomes difficult to cope with a high transmission rate as the operation speed of the electric circuit increases.
  • differential encoding As another technique for dealing with phase slip.
  • This technique provides resistance to changes in absolute phase by giving information to transitions of consecutive signal points in the phase space of two I / Q signals orthogonal to each other. In this case, since no additional signal insertion is required, there is an advantage that the signal operation speed is not increased and the present invention is excellent in application to high-speed signal transmission.
  • Patent Document 2 Also known is a technique for receiving a differentially encoded modulated signal and generating likelihood for the received signal (see, for example, Patent Document 2, Patent Document 3, and Patent Document 4).
  • a technique for performing likelihood generation processing on each of the upper and lower bits of a received QAM (Quadrature Amplitude Modulation) signal vector is also known (for example, Patent Document 5, Patent Document 6, (See Patent Document 7).
  • differential decoding is performed on the MSB 2 bits.
  • a technique for performing decoding processing combining symbol rotation on the LSB side bit is also known (see, for example, Patent Document 8).
  • a digital coherent transmission technique using digital signal processing has attracted attention.
  • amplitude information using ADC Analog-to-Digital Converter
  • ADC Analog-to-Digital Converter
  • a conventional multi-level differential decoding apparatus and method of a QAM modulation communication system are designed to realize multi-level modulation technology using digital coherent technology, error correction technology, QAM modulation for the purpose of realizing optical communication with increased multi-level.
  • each of the likelihood generation techniques has been presented, there has been a problem that the reduction in the phase noise tolerance due to multi-level modulation cannot be effectively saved by error correction.
  • differential encoding and decoding techniques are applied to QAM modulation in order not to increase the circuit operation speed while avoiding the effect of phase slip.
  • the present invention has been made to solve the above-described problem, and a multi-level differential decoding apparatus of a QAM modulation communication system capable of realizing a differential decoding process applied to multi-level modulation with a small circuit scale, and The purpose is to obtain a method.
  • a multi-level differential decoding apparatus of a QAM modulation communication system includes a synchronous detection unit that receives a signal in which the upper 2 bits of N bits (N ⁇ 4) are subjected to differential encoding, An MSB coordinate rotation unit that performs coordinate rotation based on the information of the upper 2 bits of the received symbol of the received signal via the detection unit, and two sets of bit strings after coordinate rotation based on the upper 2 bits at different times An MSB symbol likelihood generator for generating likelihood for the upper 2 bits after differential decoding, and an LSB symbol likelihood for generating likelihood for lower bits consisting of lower N-2 bits of the received symbols of the received signal The error generation unit performs error correction decoding using the upper 2 bits and the lower bits of the likelihood generated from the MSB symbol likelihood generation unit and the LSB symbol likelihood generation unit.
  • a soft-decision error correction decoding unit for generating a signal, in which with a.
  • the differential decoding circuit is simply configured after the coordinate rotation process based on the information of the upper 2 bits representing the quadrant information, so that the differential decoding circuit can be simply configured regardless of the increase of the multi-value degree. be able to.
  • FIG. 1 is a functional block diagram showing a multilevel differential decoding apparatus of a QAM modulation communication system according to Embodiment 1 of the present invention, and shows a configuration of a receiver.
  • a multilevel differential decoding apparatus of a QAM modulation communication system includes a likelihood generation unit 10, a synchronous detection unit 11 that inputs a reception signal from a transmitter to the likelihood generation unit 10, and a bit LLR (Logarithm of Likelihood Ratio) generation unit 26 and soft decision error correction decoding unit 27.
  • LLR Logarithm of Likelihood Ratio
  • the likelihood generation unit 10 includes a quadrant information extraction unit 12, a delay unit 13, MSB coordinate rotation units 14a and 14b, an MSB symbol likelihood generation unit 15, an LSB coordinate rotation unit 24, and an LSB symbol likelihood generation unit. 25.
  • two broken line frames indicate application ranges of the signal at time t-1 (one symbol before) and the signal at time t (current symbol), respectively.
  • a broken line arrow from the quadrant information extraction unit 12 indicates coordinate rotation information corresponding to the quadrant of the signal at time t.
  • the quadrant information extraction unit 12 uses the MSB side bits (2 bits) from the reception signal at time t to extract quadrant information in which the reception signal exists, and the MSB coordinate rotation units 14a and 14b and the LSB coordinate rotation unit 24.
  • the MSB coordinate rotation unit 14 a inputs a received signal subjected to coordinate rotation according to quadrant information to the MSB symbol likelihood generation unit 15.
  • the delay unit 13 delays the received signal and inputs the received signal at time t-1 (one symbol before) to the MSB coordinate rotation unit 14b.
  • the MSB coordinate rotation unit 14 b performs coordinate rotation according to the quadrant information on the signal one symbol before and inputs the signal to the MSB symbol likelihood generation unit 15.
  • the MSB symbol likelihood generation unit 15 generates an MSB symbol likelihood by performing MSB differential decoding using two input signals, and inputs the MSB symbol likelihood to the bit LLR generation unit 26.
  • the LSB coordinate rotation unit 24 uses the quadrant information and the modulation method signal as input information to perform coordinate rotation on the LSB side bits (the N-2 bits on the lower side) of the received signal to generate LSB symbol likelihood.
  • the symbol likelihood generation unit 25 generates an LSB symbol likelihood from the input signal from the LSB coordinate rotation unit 24 and inputs the LSB symbol likelihood to the bit LLR generation unit 26.
  • the bit LLR generation unit 26 generates a bit LLR using the input signals from the MSB symbol likelihood generation unit 15 and the LSB symbol likelihood generation unit 25, and the soft decision error correction decoding unit 27 decodes using the bit LLR The decoded signal is generated.
  • FIG. 3 is an explanatory diagram showing an example of likelihood generation of MSB side bits (MSB symbols) according to Embodiment 1 of the present invention
  • FIG. 4 shows LSB side bits (LSB symbols) according to Embodiment 1 of the present invention. It is explanatory drawing which shows the example of likelihood generation of. 2 to 4, the MSB side 2 bits “00, 10, 11, 01” (refer to the inside of the broken line frame) of each signal point indicate information corresponding to each quadrant.
  • each received symbol is demodulated by the synchronous detection unit 11 as a complex signal having a certain signal bit width.
  • reception optical field regeneration processing and distortion equalization processing in the synchronous detection unit 11 can be realized by using normal digital coherent optical reception processing, and compensation of waveform distortion and polarization It is assumed that the separation of multiplexed signals is also realized by digital signal processing.
  • the quadrant information extraction unit 12 extracts quadrant information in which a received signal exists from the received signal at a certain time t using 2 bits on the MSB side.
  • the MSB coordinate rotation unit 14a performs coordinate rotation according to the quadrant information, and rearranges the received signals in a single quadrant.
  • the MSB coordinate rotation unit 14b performs the same coordinate rotation corresponding to the quadrant information of the reception signal at time t for the reception signal at time t-1 (one symbol before).
  • the signal point P3 in the third quadrant “11” at time t is rotated 180 degrees, rearranged at the signal point P1 in the first quadrant “00”, and at time t ⁇ 1.
  • a case where the signal point P4 in the fourth quadrant “01” is rotated by 180 degrees and rearranged at the signal point P2 in the second quadrant “10” is shown.
  • the rotation operation is a process for placing the reference point for likelihood generation only in the single quadrant (first quadrant).
  • the signal point of the received signal at time t is located in the second quadrant. In that case, it is rotated 90 degrees and rearranged in the first quadrant. In this case, the signal point of the received signal at time t ⁇ 1 is also rotated by 90 degrees.
  • the MSB symbol likelihood generation unit 15 generates a likelihood for DEQPSK (Differential Encoded Phase Shift Keying) based on only a single quadrant (first quadrant).
  • DEQPSK Different Encoded Phase Shift Keying
  • the MSB symbol likelihood generating unit 15 performs the Euclidean distance L1 from the virtual maximum likelihood points Q1 and Q2 (see the hatching circle) for the signal points P1 and P2 at two times t and t ⁇ 1, respectively.
  • the likelihood based on L2 is obtained, and the likelihood generation after differential decoding is performed from the likelihood and transition state of the two points P1 and P2, and the likelihood for the MSB side upper 2 bits is generated.
  • Likelihood generation processing after differential decoding using 2 bits can be realized by using a known DEQPSK demodulation technique.
  • the feature of signal point arrangement subjected to gray coding rotated 90 degrees for each quadrant is utilized. That is, as shown in FIG. 4, the LSB coordinate rotation unit 24 performs coordinate rotation based on the quadrant information “11” extracted for the signal point P3 at time t, and the first quadrant “00” (single Rearrange to signal point P1 in quadrant). Next, the LSB symbol likelihood generation unit 25 directly determines the LSB side likelihood (without performing the differential decoding process) from the Euclidean distance L1 from the virtual maximum likelihood point Q1.
  • bit LLR generation unit 26 calculates the code of the error correction code from each likelihood information (MSB symbol likelihood and LSB symbol likelihood) generated from the MSB symbol likelihood generation unit 15 and the LSB symbol likelihood generation unit 25.
  • a bit likelihood (bit LLR) corresponding to the word is generated and input to the soft decision error correction decoding unit 27.
  • the soft decision error correction decoding unit 27 generates a decoded signal after error correction decoding processing using the bit LLR.
  • the soft decision error correction decoding unit 27 In order for the soft decision error correction decoding unit 27 to perform decoding processing more correctly, it is desirable that the unit of the code word of the error correction code is known. In this case, since information on the frame positions constituting the error correction code is required, it is necessary to change the peripheral configuration of the soft decision error correction decoding unit 27A as shown in FIG. 5 (described later).
  • FIG. 5 is a functional block diagram showing another configuration example of the multilevel differential decoding apparatus of the QAM modulation communication system according to Embodiment 1 of the present invention.
  • the same components as those described above (see FIG. 1) are described above.
  • the same reference numerals are attached, or “A” is attached after the reference numerals, and the detailed description is omitted.
  • a synchronization signal detection unit 28 is inserted.
  • the MSB symbol likelihood generator 15A generates a frame head bit after differential decoding based on the frame head bit string included in the received signal, and inputs the frame head bit to the frame synchronization signal detector 28.
  • a frame synchronization signal detecting unit 28 is provided, and a frame position (for example, a pulse representing the head of the frame) constituting the error correction code is softly determined.
  • a frame position for example, a pulse representing the head of the frame
  • the frame synchronization signal detection unit 28 is inserted between the likelihood generation unit 10A and the soft decision error correction decoding unit 27A.
  • the differential decoding process and the frame synchronization signal detection process for frame position detection are performed as follows. Needless to say, this is not necessarily performed immediately before the soft decision error correction decoding unit 27A, and may be a function block (separate circuit) different from the likelihood generation unit 10A, and there is no particular problem in operation.
  • the MSB symbol likelihood generator 15A for generating the MSB side likelihood applies a special change as differential decoding means for QPSK in which only one signal is arranged in each quadrant as shown in FIG. It can be used as it is.
  • the LSB coordinate rotation unit 24 captures an external modulation scheme signal as input information related to the modulation scheme, and switches between using / not using the function on the LSB side, thereby enabling a differential decoding function for the QPSK signal. Therefore, it is possible to switch the operation with the differential decoding function for 16QAM signals, so that a plurality of modulation schemes can be supported.
  • the multilevel differential decoding apparatus of the QAM modulation communication system according to Embodiment 1 (FIGS. 1 to 4) of the present invention is different from the upper 2 bits of the transmission symbol of N bits (N ⁇ 4).
  • a synchronous detection unit 11 that receives a signal that has been subjected to dynamic coding, and an MSB coordinate rotation unit 14a that performs coordinate rotation based on the information of the upper 2 bits of the received symbols of the received signal via the synchronous detection unit 11, 14b, MSB symbol likelihood generator 15 for generating likelihoods for the upper 2 bits after differential decoding using two sets of bit strings after coordinate rotation based on the upper 2 bits at different times, and the upper 2 bits
  • the LSB symbol likelihood generating unit 25 that generates likelihood for the lower bits composed of the lower N-2 bits of the received symbols of the received signal
  • a soft-decision error correction decoding unit 27 that generates a decoded signal by performing error correction decoding process using the likelihood of
  • the LSB symbol likelihood generation unit 25 switches the operation of the lower-order bit likelihood generation function between used and unused, using the modulation method signal for switching the modulation method as input information.
  • the MSB coordinate rotation unit generates an MSB coordinate rotation unit 14a (first MSB coordinate rotation unit) that performs coordinate rotation on a received signal at a certain time t in order to generate two sets of bit strings, and a first MSB.
  • an MSB coordinate rotation unit 14b (second MSB coordinate rotation unit) that performs coordinate rotation on the received signal one symbol before (time t-1) from a certain time t is included. .
  • the multilevel differential decoding method of the QAM modulation communication system includes a reception step of receiving a signal in which the upper 2 bits of a transmission symbol are differentially encoded,
  • the MSB coordinate rotation step for rotating the coordinates based on the information of the upper 2 bits of the received symbol and the higher bit after differential decoding using two sets of bit strings after the coordinate rotation based on the upper 2 bits at different times MSB symbol likelihood generating step for generating likelihood for 2 bits, LSB symbol likelihood generating step for generating likelihood for lower bits consisting of lower N-2 bits of received symbols of the received signal, and upper 2 bits
  • a soft decision error correction decoding step of generating a decoded signal by performing error correction decoding processing using each likelihood of lower bits.
  • the operation of the lower-bit likelihood generation function is switched to used / unused with the modulation scheme signal for modulation scheme switching as input information.
  • the conventional apparatus needs to realize differential decoding considering a maximum of 16 combinations (4 values ⁇ 4 quadrants).
  • the differential decoding process using coordinate rotation, it becomes a likelihood generation process based on only a single quadrant (first quadrant), Since only four combinations (4 values ⁇ 1 quadrant) need to be considered, the circuit scale can be greatly reduced.
  • the differential decoding circuit can be easily configured regardless of the increase of the multi-value degree.
  • MSB side likelihood generation based on quadrant identification in the MSB symbol likelihood generation unit 15 and LSB side bit likelihood generation in the LSB symbol likelihood generation unit 25 are independently performed to perform a plurality of modulations.
  • Likelihood generation corresponding to the method can be realized by substantially the same circuit.
  • the multilevel differential decoding apparatus of the QAM modulation communication system according to Embodiment 1 (FIG. 5) of the present invention includes a frame synchronization signal detection unit 28 connected to the soft decision error correction decoding unit 27A.
  • a frame head bit string indicating the head of the error correction frame is assigned to the upper 2 bits subjected to differential encoding.
  • the MSB symbol likelihood generation unit 15A generates a frame head bit after differential decoding based on the frame head bit string and inputs the frame head bit to the frame synchronization signal detection unit 28.
  • the frame synchronization signal detection unit 28 The frame start position for error correction decoding is detected from the decoded frame start bit and input to the soft decision error correction decoding unit 27A.
  • the frame synchronization signal detection unit 28 is configured independently of the likelihood generation unit 10A, generates a frame head bit after differential decoding based on the frame head bit string, and generates an error from the frame head bit after differential decoding.
  • the frame start position for correction decoding is detected and input to the soft decision error correction decoding unit 27A.
  • the multilevel differential decoding method of the QAM modulation communication system includes a frame synchronization signal detection step that is executed before the soft decision error correction decoding step, and is received at the reception step.
  • the signal has a frame head bit string indicating the head of the error correction frame assigned to the upper 2 bits subjected to differential encoding, and the frame synchronization signal detection step performs a frame after differential decoding based on the frame head bit string.
  • a head bit is generated, a frame head position for error correction decoding is detected from the frame head bit after differential decoding, and the soft decision error correction decoding step generates a decoded signal using the frame head position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)

Abstract

 同期検波部を介した受信信号の上位2ビットの情報に基づいて座標回転を行うMSB座標回転部と、互いに異なる時間での座標回転後の2組のビット列を用いて差動復号後の上位2ビットに対する尤度を生成するMSBシンボル尤度生成部と、下位ビットについて尤度を生成するLSBシンボル尤度生成部と、上位2ビットおよび下位ビットの各尤度を用いて復号信号を生成する軟判定誤り訂正復号部と、を備えることで、多値変調に適用した差動復号処理を少ない回路規模で実現可能となる。

Description

QAM変調通信システムの多値差動復号装置および方法
 この発明は、QAM変調を用いたQAM変調通信システムの多値差動復号装置および方法に関し、特に、差動符号化された多値変調光信号の復号処理を少ない回路規模で実現するための新規な技術に関するものである。
 近年、光通信システムの大容量化に加えて、周波数利用効率の向上を目的として、多値変調の適用が活発化している。ただし、伝送容量増大を目的として多値度を高くしていった場合には、多値度の増加にともなって位相雑音耐力が低下することが知られている(たとえば、非特許文献1参照)。
 そこで、多値変調伝送によって生じる位相雑音に起因した位相スリップに対処して、伝送性能を保証するために、パイロット信号を挿入する技術が提案されている(たとえば、非特許文献2参照)。
 しかし、パイロット信号を挿入すると、パイロット挿入頻度によって冗長度が増加するので、電気回路の動作速度上昇をともない、高速の伝送速度への対応が難しくなるという問題が生じる。
 一方、位相スリップに対処するための他の技術として、差動符号化を使用することも知られている。この技術は、互いに直交する2つのI/Q信号の位相空間上での連続する信号点の遷移に情報を与えることにより、絶対位相の変化に対して耐性を持たせたものである。この場合、付加的な信号の挿入を必要としないので、信号動作速度上昇をともなうことがなく、高速信号伝送への適用に優れるという利点を有する。
 また、多値信号の復調処理に関連して、受信信号の上位ビットを信号座標の象限判定に使用し、下位ビットについては、上位ビットとは独立に尤度生成処理を行う技術も知られている(たとえば、特許文献1参照)。
 また、差動符号化された変調信号を受信し、受信信号について尤度を生成する技術も知られている(たとえば、特許文献2、特許文献3、特許文献4参照)。
 また、受信したQAM(Quadrature Amplitude Modulation:直交振幅変調)信号ベクトルの上位ビットと下位ビットとのそれぞれについて、尤度生成処理を行う技術も知られている(たとえば、特許文献5、特許文献6、特許文献7参照)。
 また、象限識別に対応したMSB(最上位ビット)側2ビットを差動符号化し、LSB(最下位ビット)側ビットをグレイ符号化する方式において、MSB側2ビットに対して差動復号を施すとともに、LSB側ビットに対してシンボル回転を組み合わせた復号処理を施す技術も知られている(たとえば、特許文献8参照)。
 さらに、100Gbps以上の伝送速度を実現する技術として、デジタル信号処理を用いたデジタルコヒーレント伝送技術が着目されている。
 この技術においては、ADC(Analog-to-Digital Converter)を用いた振幅情報を受信信号処理に適用可能なので、軟判定を用いた誤り訂正技術の併用が容易であり、受信性能を向上させることができる。
特開平08-288967号公報 特開平08-274747号公報 特開平06-177928号公報 特開2001-268147号公報 国際公開2005/109811号公報 特開2004-260712号公報 国際公開2008/001456号公報 特許第3822982号公報
T.Yoshida、et al.,「Digital signal processing for equalization of fiber nonlinearity in coherent receivers」OECC2012、5B1-3、2012. Y.Gao、et al.,「Cycle-slip resiilent carrier phase estimation for polarization multiplexed 16-QAM systems」OECC2012、4B2-4、2012.
 従来のQAM変調通信システムの多値差動復号装置および方法は、多値度を高めた光通信の実現を目的として、デジタルコヒーレント技術を用いた多値変調技術、誤り訂正技術、QAM変調時の尤度生成技術の各単独技術が提示されているものの、多値変調による位相雑音耐力の低下を誤り訂正で効果的に救うことができないという課題があった。
 具体的には、高速の多値変調信号の伝送を実現する際に、位相スリップの影響を回避しつつ回路動作速度を上昇させないために、QAM変調に差動符号化および復号化技術を適用するとともに、誤り訂正と組み合わせた場合の回路構成については、全く提示されていないという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、多値変調に適用した差動復号処理を少ない回路規模で実現可能なQAM変調通信システムの多値差動復号装置および方法を得ることを目的とする。
 この発明に係るQAM変調通信システムの多値差動復号装置は、Nビット(N≧4)の送信シンボルの上位2ビットに差動符号化が施された信号を受信する同期検波部と、同期検波部を介した受信信号の受信シンボルのうちの上位2ビットの情報に基づいて座標回転を行うMSB座標回転部と、互いに異なる時間での上位2ビットに基づく座標回転後の2組のビット列を用いて差動復号後の上位2ビットに対する尤度を生成するMSBシンボル尤度生成部と、受信信号の受信シンボルのうちの下位N-2ビットからなる下位ビットについて尤度を生成するLSBシンボル尤度生成部と、MSBシンボル尤度生成部およびLSBシンボル尤度生成部から生成された上位2ビットおよび下位ビットの各尤度を用いて誤り訂正復号処理を施して復号信号を生成する軟判定誤り訂正復号部と、を備えたものである。
 この発明によれば、象限情報を表す上位2ビットの情報に基づいて、座標回転処理後に差動復号処理を行うことにより、多値度の増加によらず、差動復号回路を簡易に構成することができる。
この発明の実施の形態1に係るQAM変調通信システムの多値差動復号装置を示す機能ブロック図である。 この発明の実施の形態1に用いられる多値信号点の配置例を示す説明図である。 この発明の実施の形態1によるMSB側ビットの尤度生成例を示す説明図である。 この発明の実施の形態1によるLSB側ビットの尤度生成例を示す説明図である。 この発明の実施の形態1に係るQAM変調通信システムの多値差動復号装置の他の構成例を示す機能ブロック図である。
 実施の形態1.
 以下、図面を参照しながら、この発明の実施の形態1について説明する。
 図1は、この発明の実施の形態1に係るQAM変調通信システムの多値差動復号装置を示す機能ブロック図であり、受信機の構成を示している。
 図1において、QAM変調通信システムの多値差動復号装置は、尤度生成部10と、送信機からの受信信号を尤度生成部10に入力する同期検波部11と、ビットLLR(Logarithm of Likelihood Ratio)生成部26と、軟判定誤り訂正復号部27と、により構成されている。
 尤度生成部10は、象限情報抽出部12と、遅延部13と、MSB座標回転部14a、14bと、MSBシンボル尤度生成部15と、LSB座標回転部24と、LSBシンボル尤度生成部25と、を備えている。
 なお、尤度生成部10内において、2つの破線枠は、時刻t-1(1シンボル前)の信号と、時刻t(現シンボル)の信号と、の各適用範囲をそれぞれ示している。
 また、象限情報抽出部12からの破線矢印は、時刻tの信号の象限に応じた座標回転情報を示している。
 象限情報抽出部12は、時刻tの受信信号のうち、MSB側ビット(2ビット)を用いて、受信信号が存在する象限情報を抽出して、MSB座標回転部14a、14bおよびLSB座標回転部24に入力する。
 MSB座標回転部14aは、象限情報に応じて座標回転を施した受信信号をMSBシンボル尤度生成部15に入力する。
 遅延部13は、受信信号を遅延させて、時刻t-1(1シンボル前)の受信信号をMSB座標回転部14bに入力する。MSB座標回転部14bは、1シンボル前の信号に対して、象限情報に応じた座標回転を施し、MSBシンボル尤度生成部15に入力する。
 MSBシンボル尤度生成部15は、2つの入力信号を用いてMSB差動復号を行うことにより、MSBシンボル尤度を生成し、ビットLLR生成部26に入力する。
 一方、LSB座標回転部24は、象限情報および変調方式信号を入力情報として、受信信号のうち、LSB側ビット(下位側のN-2ビット)に対して座標回転を施し、LSBシンボル尤度生成部25に入力する。シンボル尤度生成部25は、LSB座標回転部24からの入力信号からLSBシンボル尤度を生成し、ビットLLR生成部26に入力する。
 ビットLLR生成部26は、MSBシンボル尤度生成部15およびLSBシンボル尤度生成部25からの入力信号を用いてビットLLRを生成し、軟判定誤り訂正復号部27は、ビットLLRを用いて復号された復号信号を生成する。
 以下、図2~図4を参照しながら、図1に示したこの発明の実施の形態1の動作について、さらに具体的に説明する。
 図2はこの発明の実施の形態1に用いられる多値信号点の配置例を示す説明図であり、各信号点が4ビット(N=4)の場合を示している。
 また、図3はこの発明の実施の形態1によるMSB側ビット(MSBシンボル)の尤度生成例を示す説明図であり、図4はこの発明の実施の形態1によるLSB側ビット(LSBシンボル)の尤度生成例を示す説明図である。
 図2~図4において、各信号点のうちのMSB側2ビット「00、10、11、01」(破線枠内参照)は、各象限に対応した情報を示している。
 ここでは、象限を識別するMSB側2ビットが差動符号化された16QAM変調信号(4値変調)の復調処理を例にとって説明する。
 たとえば、図2のマッピングがなされた信号を想定すると、受信した各シンボルは、同期検波部11により、或る信号ビット幅を有する複素信号として復調される。
 なお、ここでは図示しないが、同期検波部11における受信光電界の再生処理および歪等化処理などは、通常のデジタルコヒーレント光受信処理を用いることによって実現可能であり、波形歪の補償および偏波多重信号の分離なども、デジタル信号処理によって実現されているものとする。
 まず、象限情報抽出部12は、或る時刻tの受信信号のうち、MSB側2ビットを用いて受信信号が存在する象限情報を抽出する。
 MSB座標回転部14aは、復号に際し、象限情報に応じた座標回転を行い、受信信号を単一象限に再配置する。同様に、MSB座標回転部14bは、時刻tの受信信号の象限情報に対応した同一の座標回転を、時刻t-1(1シンボル前)の受信信号に対しても行う。
 図3においては、時刻tでの第3象限「11」内の信号点P3に対して180度回転を行い、第1象限「00」内の信号点P1に再配置し、時刻t-1での第4象限「01」内の信号点P4に対して180度回転を行い、第2象限「10」内の信号点P2に再配置する場合が示されている。
 なお、上記回転動作は、尤度生成用の基準点を単一象限(第1象限)のみに配置するための処理であり、たとえば、時刻tの受信信号の信号点が第2象限に位置する場合には、90度回転を行い第1象限に再配置することになる。この場合、時刻t-1の受信信号の信号点に対しても90度回転が行われる。
 これにより、MSBシンボル尤度生成部15においては、単一象限(第1象限)のみを基準として、DEQPSK(Differential Encoded Quadrature Phase Shift Keying:差分符号化直交位相シフトキーイング)用の尤度が生成される。
 このとき、MSBシンボル尤度生成部15は、2つの時刻t、t-1での各信号点P1、P2に対して、それぞれ仮想最尤点Q1、Q2(ハッチング円参照)からのユークリッド距離L1、L2に基づく尤度を求め、2点P1、P2の尤度および遷移状態から差動復号後の尤度生成を行い、MSB側上位2ビットに対する尤度を生成する。
 2ビットを用いた差動復号後の尤度生成処理は、公知のDEQPSK復調技術を使用することにより実現可能である。
 一方、LSB側2ビットの復号については、象限ごとに90度回転したグレイ符号化が施されている信号点配置の特徴を活用する。
 すなわち、図4に示すように、LSB座標回転部24は、時刻tでの信号点P3に対して抽出された象限情報「11」に基づき座標回転を行い、第1象限「00」(単一象限)内の信号点P1に再配置する。
 次に、LSBシンボル尤度生成部25は、仮想最尤点Q1からのユークリッド距離L1から、LSB側尤度を直接(差動復号処理を行わずに)決定する。
 以下、ビットLLR生成部26は、MSBシンボル尤度生成部15およびLSBシンボル尤度生成部25から生成された各尤度情報(MSBシンボル尤度およびLSBシンボル尤度)から、誤り訂正符号の符号語に対応したビット尤度(ビットLLR)を生成して軟判定誤り訂正復号部27に入力する。
 最後に、軟判定誤り訂正復号部27は、ビットLLRを用いて誤り訂正復号処理した後の復号信号を生成する。
 このとき、軟判定誤り訂正復号部27において、復号処理をより正しく行うためには、誤り訂正符号の符号語の単位が既知であることが望ましい。この場合、誤り訂正符号を構成するフレーム位置の情報が必要となるので、図5(後述する)のように、軟判定誤り訂正復号部27Aの周辺構成を変更する必要がある。
 また、位相スリップが発生した際のフレーム位置情報の消失を防ぐためにも、差動符号化信号に対する上記復号化処理を適用することは有用である。この場合、送信機側において、たとえば、誤り訂正符号を構成するフレーム先頭のビット列(Frame Alignment Signal)をMSB側2ビットに割り当てて、差動符号化処理を行うことにより、位相スリップに対して耐力を有する誤り訂正符号およびフレームを構成することができる。
 図5はこの発明の実施の形態1に係るQAM変調通信システムの多値差動復号装置の他の構成例を示す機能ブロック図であり、前述(図1参照)と同様のものについては、前述と同一符号を付して、または符号の後に「A」を付して詳述を省略する。
 図5においては、尤度生成部10A内のMSBシンボル尤度生成部15Aと軟判定誤り訂正復号部27Aとの間に、誤り訂正符号のフレーム先頭パルス(誤り訂正フレーム先頭パルス)を生成するフレーム同期信号検出部28が挿入されている。
 この場合、MSBシンボル尤度生成部15Aは、受信信号に含まれるフレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成して、フレーム同期信号検出部28に入力する。
 図5に示すように、MSBシンボル尤度生成部15AによるMSB側復号処理後に、フレーム同期信号検出部28を設け、誤り訂正符号を構成するフレーム位置(たとえば、フレーム先頭を表すパルス)を軟判定誤り訂正復号部27Aに供給することにより、位相スリップに対して確実な耐力を有する誤り訂正復号処理を実現することができる。
 なお、ここでは、尤度生成部10Aと軟判定誤り訂正復号部27Aとの間にフレーム同期信号検出部28を挿入したが、フレーム位置検出のための差動復号処理およびフレーム同期信号検出処理は、軟判定誤り訂正復号部27Aの直前で行う必然性はなく、尤度生成部10Aとは別の機能ブロック(別回路)としてもよく、動作にも特に支障が生じないことは言うまでもない。
 また、MSB側の尤度を生成するMSBシンボル尤度生成部15Aは、図3のように、各象限にそれぞれ信号を1つのみ配置したQPSKに対する差動復号手段として、格別な変更を加えることなく、そのまま活用することができる。
 さらに、LSB座標回転部24は、たとえば、外部からの変調方式信号を、変調方式に関する入力情報として取り込み、LSB側の機能の使用/未使用を切り替えることにより、QPSK信号用の差動復号機能と、16QAM信号用の差動復号機能との動作切り替えが可能となるので、複数の変調方式に対応可能に構成することができる。
 以上のように、この発明の実施の形態1(図1~図4)に係るQAM変調通信システムの多値差動復号装置は、Nビット(N≧4)の送信シンボルの上位2ビットに差動符号化が施された信号を受信する同期検波部11と、同期検波部11を介した受信信号の受信シンボルのうちの上位2ビットの情報に基づいて座標回転を行うMSB座標回転部14a、14bと、互いに異なる時間での上位2ビットに基づく座標回転後の2組のビット列を用いて差動復号後の上位2ビットに対する尤度を生成するMSBシンボル尤度生成部15と、上位2ビットとは独立に、受信信号の受信シンボルのうちの下位N-2ビットからなる下位ビットについて尤度を生成するLSBシンボル尤度生成部25と、MSBシンボル尤度生成部15およびLSBシンボル尤度生成部25から生成された上位2ビットおよび下位ビットの各尤度を用いて誤り訂正復号処理を施して復号信号を生成する軟判定誤り訂正復号部27と、を備えている。
 また、LSBシンボル尤度生成部25は、変調方式切り替え用の変調方式信号を入力情報として、下位ビットの尤度生成機能の動作を使用/未使用に切り替える。
 MSB座標回転部は、2組のビット列を生成するために、或る時刻tの受信信号に対して座標回転を行うMSB座標回転部14a(第1のMSB座標回転部)と、第1のMSB座標回転部とは独立に、或る時刻tから1シンボル前(時刻t-1)の受信信号に対して座標回転を行うMSB座標回転部14b(第2のMSB座標回転部)と、を含む。
 さらに、この発明の実施の形態1に係るQAM変調通信システムの多値差動復号方法は、送信シンボルの上位2ビットに差動符号化が施された信号を受信する受信ステップと、受信信号の受信シンボルのうちの上位2ビットの情報に基づいて座標回転を行うMSB座標回転ステップと、互いに異なる時間での上位2ビットに基づく座標回転後の2組のビット列を用いて差動復号後の上位2ビットに対する尤度を生成するMSBシンボル尤度生成ステップと、受信信号の受信シンボルのうちの下位N-2ビットからなる下位ビットについて尤度を生成するLSBシンボル尤度生成ステップと、上位2ビットおよび下位ビットの各尤度を用いて誤り訂正復号処理を施して復号信号を生成する軟判定誤り訂正復号ステップと、を備えている。
 また、LSBシンボル尤度生成ステップは、変調方式切り替え用の変調方式信号を入力情報として、下位ビットの尤度生成機能の動作を使用/未使用に切り替える。
 これにより、たとえば16QAM変調(4値変調)の差動符号化を例にとった場合、従来装置では、最大で16通り(4値×4象限)の組み合わせを考慮した差動復号を実現する必要があるのに対し、この発明の実施の形態1によれば、座標回転を併用した差動復号処理を行うことによって、単一象限(第1象限)のみを基準とした尤度生成処理となり、4通り(4値×1象限)の組み合わせのみを考慮すればよくなるので、回路規模を大幅に削減することができる。
 すなわち、象限情報を表す上位2ビットの情報に基づいて、座標回転処理後に差動復号処理を行うことにより、多値度の増加によらず、差動復号回路を簡易に構成することができる。
 また、MSBシンボル尤度生成部15における象限識別に基づくMSB側ビットの尤度生成と、LSBシンボル尤度生成部25におけるLSB側ビットの尤度生成と、を独立に行うことにより、複数の変調方式に対応した尤度生成を概略同一回路にて実現することが可能となる。
 さらに、この発明の実施の形態1(図5)に係るQAM変調通信システムの多値差動復号装置は、軟判定誤り訂正復号部27Aに接続されたフレーム同期信号検出部28を備えており、同期検波部11で受信される信号には、差動符号化が施された上位2ビットに誤り訂正フレームの先頭を示すフレーム先頭ビット列が割り当てられている。
 この場合、MSBシンボル尤度生成部15Aは、フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成して、フレーム同期信号検出部28に入力し、フレーム同期信号検出部28は、差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出して、軟判定誤り訂正復号部27Aに入力する。
 または、フレーム同期信号検出部28は、尤度生成部10Aとは独立に構成され、フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成するとともに、差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出して、軟判定誤り訂正復号部27Aに入力する。
 さらに、この発明の実施の形態1に係るQAM変調通信システムの多値差動復号方法は、軟判定誤り訂正復号ステップの前に実行されるフレーム同期信号検出ステップを備え、受信ステップで受信される信号には、差動符号化が施された上位2ビットに誤り訂正フレームの先頭を示すフレーム先頭ビット列が割り当てられており、フレーム同期信号検出ステップは、フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成するとともに、差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出し、軟判定誤り訂正復号ステップは、フレーム先頭位置を用いて復号信号を生成する。
 このように、フレーム同期位置の検出を、MSB側ビットの差動復号後に行うことにより、位相スリップ耐性がさらに優れた誤り訂正復号を実現することができる。

Claims (8)

  1.  QAM変調を用いたQAM変調通信システムの多値差動復号装置であって、
     Nビット(N≧4)の送信シンボルの上位2ビットに差動符号化が施された信号を受信する同期検波部と、
     前記同期検波部を介した受信信号の受信シンボルのうちの上位2ビットの情報に基づいて座標回転を行うMSB座標回転部と、
     互いに異なる時間での前記上位2ビットに基づく座標回転後の2組のビット列を用いて差動復号後の前記上位2ビットに対する尤度を生成するMSBシンボル尤度生成部と、
     前記受信信号の受信シンボルのうちの下位N-2ビットからなる下位ビットについて尤度を生成するLSBシンボル尤度生成部と、
     前記MSBシンボル尤度生成部および前記LSBシンボル尤度生成部から生成された前記上位2ビットおよび前記下位ビットの各尤度を用いて誤り訂正復号処理を施して復号信号を生成する軟判定誤り訂正復号部と、
     を備えたQAM変調通信システムの多値差動復号装置。
  2.  前記LSBシンボル尤度生成部は、変調方式切り替え用の変調方式信号を入力情報として、下位ビットの尤度生成機能の動作を使用/未使用に切り替える請求項1に記載のQAM変調通信システムの多値差動復号装置。
  3.  前記MSB座標回転部は、前記2組のビット列を生成するために、
     或る時刻の受信信号に対して座標回転を行う第1のMSB座標回転部と、
     前記或る時刻から1シンボル前の受信信号に対して座標回転を行う第2のMSB座標回転部と、
     を含む請求項1または請求項2に記載のQAM変調通信システムの多値差動復号装置。
  4.  前記軟判定誤り訂正復号部に接続されたフレーム同期信号検出部を備え、
     前記同期検波部で受信される信号には、前記差動符号化が施された上位2ビットに誤り訂正フレームの先頭を示すフレーム先頭ビット列が割り当てられており、
     前記MSBシンボル尤度生成部は、前記フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成して、前記フレーム同期信号検出部に入力し、
     前記フレーム同期信号検出部は、前記差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出して、前記軟判定誤り訂正復号部に入力する請求項1から請求項3までのいずれか1項に記載のQAM変調通信システムの多値差動復号装置。
  5.  前記軟判定誤り訂正復号部に接続されたフレーム同期信号検出部を備え、
     前記同期検波部で受信される信号には、前記差動符号化が施された上位2ビットに誤り訂正フレームの先頭を示すフレーム先頭ビット列が割り当てられており、
     前記フレーム同期信号検出部は、前記フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成するとともに、前記差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出して、前記軟判定誤り訂正復号部に入力する請求項1から請求項3までのいずれか1項に記載のQAM変調通信システムの多値差動復号装置。
  6.  QAM変調を用いたQAM変調通信システムの多値差動復号方法であって、
     Nビット(N≧4)の送信シンボルの上位2ビットに差動符号化が施された信号を受信する受信ステップと、
     受信信号の受信シンボルのうちの上位2ビットの情報に基づいて座標回転を行うMSB座標回転ステップと、
     互いに異なる時間での前記上位2ビットに基づく座標回転後の2組のビット列を用いて差動復号後の前記上位2ビットに対する尤度を生成するMSBシンボル尤度生成ステップと、
     前記受信信号の受信シンボルのうちの下位N-2ビットからなる下位ビットについて尤度を生成するLSBシンボル尤度生成ステップと、
     前記上位2ビットおよび前記下位ビットの各尤度を用いて誤り訂正復号処理を施して復号信号を生成する軟判定誤り訂正復号ステップと、
     を備えたQAM変調通信システムの多値差動復号方法。
  7.  前記LSBシンボル尤度生成ステップは、変調方式切り替え用の変調方式信号を入力情報として、下位ビットの尤度生成機能の動作を使用/未使用に切り替える請求項6に記載のQAM変調通信システムの多値差動復号方法。
  8.  前記軟判定誤り訂正復号ステップの前に実行されるフレーム同期信号検出ステップを備え、
     前記受信ステップで受信される信号には、前記差動符号化が施された上位2ビットに誤り訂正フレームの先頭を示すフレーム先頭ビット列が割り当てられており、
     前記フレーム同期信号検出ステップは、前記フレーム先頭ビット列に基づき差動復号後のフレーム先頭ビットを生成するとともに、前記差動復号後のフレーム先頭ビットから誤り訂正復号用のフレーム先頭位置を検出し、
     前記軟判定誤り訂正復号ステップは、前記フレーム先頭位置を用いて前記復号信号を生成する請求項6または請求項7に記載のQAM変調通信システムの多値差動復号方法。
PCT/JP2013/081010 2012-12-14 2013-11-18 Qam変調通信システムの多値差動復号装置および方法 WO2014091879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/408,090 US9143273B2 (en) 2012-12-14 2013-11-18 Multi-level differential decoding device and method for quadrature amplitude modulation communication system
JP2014551948A JP5847335B2 (ja) 2012-12-14 2013-11-18 Qam変調通信システムの多値差動復号装置および方法
CN201380054085.5A CN104737510B (zh) 2012-12-14 2013-11-18 Qam调制通信系统的多级差分解码装置和方法
EP13862983.7A EP2933970B1 (en) 2012-12-14 2013-11-18 Multi-level differential decoding device and method for quadrature amplitude modulation communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273538 2012-12-14
JP2012-273538 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091879A1 true WO2014091879A1 (ja) 2014-06-19

Family

ID=50934175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081010 WO2014091879A1 (ja) 2012-12-14 2013-11-18 Qam変調通信システムの多値差動復号装置および方法

Country Status (5)

Country Link
US (1) US9143273B2 (ja)
EP (1) EP2933970B1 (ja)
JP (1) JP5847335B2 (ja)
CN (1) CN104737510B (ja)
WO (1) WO2014091879A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142145B2 (en) * 2015-11-27 2018-11-27 Cohda Wireless Pty Ltd. Wireless receiver
JPWO2017158725A1 (ja) * 2016-03-15 2019-01-17 三菱電機株式会社 対数尤度比算出回路、受信装置および対数尤度比算出方法
JP6456564B2 (ja) * 2016-09-01 2019-01-23 三菱電機株式会社 尤度生成装置、受信装置、尤度生成方法および光伝送システム
EP3588883B1 (en) * 2017-03-16 2021-07-14 Mitsubishi Electric Corporation Signal shaping device, shaping termination device, signal shaping method, and optical transmission method
CN106850499B (zh) * 2017-04-13 2023-03-24 桂林电子科技大学 一种角度差分qam解调方法和解调器
CN110071894B (zh) * 2018-01-22 2022-05-06 中兴通讯股份有限公司 一种信息处理方法和系统、发送装置及接收装置
JP7139371B2 (ja) * 2020-03-19 2022-09-20 アンリツ株式会社 誤り率測定装置及びデータ分割表示方法
US11398876B2 (en) 2021-02-19 2022-07-26 Ultralogic 6G, Llc Error detection and correction in 5G/6G pulse-amplitude modulation
US11387935B2 (en) 2021-02-19 2022-07-12 Ultralogic 6G, Llc Error detection and correction by modulation quality in 5G/6G
US11425744B2 (en) 2021-04-05 2022-08-23 Ultralogic 6G, Llc Cascaded scheduling requests for resource-efficient 5G and 6G
US11627592B2 (en) 2021-04-05 2023-04-11 Ultralogic 6G, Llc Resource-efficient polling and scheduling of 5G/6G uplink messages
KR20230026138A (ko) * 2021-08-17 2023-02-24 삼성전자주식회사 복수의 이전 신호들에 기초하여 dpsk를 수행하는 통신 장치 및 이의 동작 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177928A (ja) 1992-12-07 1994-06-24 N T T Idou Tsuushinmou Kk 検波器
JPH08274747A (ja) 1995-03-31 1996-10-18 Sony Corp データ復調装置およびデータ伝送方法
JPH08288967A (ja) 1995-04-17 1996-11-01 Toshiba Corp 伝送方式とその送受信装置及びトレリス復号器
JP2001268147A (ja) 2000-03-17 2001-09-28 Mitsubishi Electric Corp 復調器、受信機、および通信システム
JP2004194079A (ja) * 2002-12-12 2004-07-08 Nec Corp 多値qamを用いた無線装置及びしきい値推定方法
JP2004260712A (ja) 2003-02-27 2004-09-16 Mitsubishi Electric Corp 受信装置
WO2005109811A1 (ja) 2004-05-11 2005-11-17 Matsushita Electric Industrial Co., Ltd. 無線通信装置及び無線通信システム
JP3822982B2 (ja) 1997-08-05 2006-09-20 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング 直交振幅変調方式における差動デコード装置
WO2008001456A1 (fr) 2006-06-30 2008-01-03 Fujitsu Limited Procédé et dispositif de réception de signal à modulation multivaleur
WO2012070369A1 (ja) * 2010-11-26 2012-05-31 三菱電機株式会社 軟判定値生成回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114419B2 (ja) * 1989-04-12 1995-12-06 株式会社東芝 Qam通信システム
JPH1075274A (ja) * 1996-08-29 1998-03-17 Mitsubishi Electric Corp 軟判定復号器
JP3691936B2 (ja) * 1997-06-26 2005-09-07 株式会社東芝 多値直交振幅変調装置及び多値直交振幅変調方法
JP2005341258A (ja) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd 多値変調対応等化処理装置、受信信号処理システム、受信機及び多値変調対応等化処理方法
CN100512260C (zh) * 2005-07-08 2009-07-08 中兴通讯股份有限公司 时分同步码分多址系统中16qam的解调方法
US8724744B2 (en) * 2005-08-19 2014-05-13 General Instrument Corporation Method and apparatus for wide dynamic range reduction
JP5274363B2 (ja) 2009-05-08 2013-08-28 三菱電機株式会社 光受信装置および光受信方法
US8768181B2 (en) * 2009-10-09 2014-07-01 Mitsubishi Electric Corporation Differential code optical transmission and reception device
US9276794B2 (en) * 2011-05-20 2016-03-01 Broadcom Corporation High peak to average power ratio (PAPR) mitigation in high speed data networks using symbol mapping adjustment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177928A (ja) 1992-12-07 1994-06-24 N T T Idou Tsuushinmou Kk 検波器
JPH08274747A (ja) 1995-03-31 1996-10-18 Sony Corp データ復調装置およびデータ伝送方法
JPH08288967A (ja) 1995-04-17 1996-11-01 Toshiba Corp 伝送方式とその送受信装置及びトレリス復号器
JP3822982B2 (ja) 1997-08-05 2006-09-20 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング 直交振幅変調方式における差動デコード装置
JP2001268147A (ja) 2000-03-17 2001-09-28 Mitsubishi Electric Corp 復調器、受信機、および通信システム
JP2004194079A (ja) * 2002-12-12 2004-07-08 Nec Corp 多値qamを用いた無線装置及びしきい値推定方法
JP2004260712A (ja) 2003-02-27 2004-09-16 Mitsubishi Electric Corp 受信装置
WO2005109811A1 (ja) 2004-05-11 2005-11-17 Matsushita Electric Industrial Co., Ltd. 無線通信装置及び無線通信システム
WO2008001456A1 (fr) 2006-06-30 2008-01-03 Fujitsu Limited Procédé et dispositif de réception de signal à modulation multivaleur
WO2012070369A1 (ja) * 2010-11-26 2012-05-31 三菱電機株式会社 軟判定値生成回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAMI ABE ET AL.: "Sadogata PSK Hencho Hoshiki ni Okeru Nanhantei Fukugoho", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN C IEEJ TRANSACTIONS ON ELECTRONICS, INFORMATION AND SYSTEMS, vol. 111, no. 11, 1991, pages 563 - 568, XP008175897 *
T.YOSHIDA ET AL.: "Digital signal processing for equalization of fiber nonlinearity in coherent receivers", OECC2012, vol. 5B1-3, 2012
YGAO ET AL.: "Cycle-slip resiilent carrier phase estimation for polarization multiplexed 16-QAM systems", OECC2012, vol. 4B2-4, 2012

Also Published As

Publication number Publication date
CN104737510A (zh) 2015-06-24
EP2933970B1 (en) 2019-05-22
EP2933970A4 (en) 2016-07-27
JPWO2014091879A1 (ja) 2017-01-05
US20150139350A1 (en) 2015-05-21
JP5847335B2 (ja) 2016-01-20
EP2933970A1 (en) 2015-10-21
US9143273B2 (en) 2015-09-22
CN104737510B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
JP5847335B2 (ja) Qam変調通信システムの多値差動復号装置および方法
JP4194999B2 (ja) 後方互換的dvb−s規格送信システム
JP3926499B2 (ja) 畳み込み符号軟判定復号方式の受信装置
US10148390B2 (en) Rate adaptive turbo forward error correction
JP4884959B2 (ja) 光ディジタル伝送システムおよび方法
EP2840750B1 (en) Non-deterministic pilot symbol scheme
JP4927617B2 (ja) データ伝送装置および伝送符号の生成方法
CN101882957B (zh) 光接收装置以及光接收方法
EP2916507A1 (en) Method for digitally modulating a signal in a communication network
JP3421317B2 (ja) 誤り訂正符号器及び誤り訂正復号器並びに誤り訂正方式の伝送装置
JP6103610B2 (ja) Qamマッピング装置およびマッピング方法
US20220006682A1 (en) Systems And Methods For Transmitting And Receiving Auxiliary Data
JPH08288967A (ja) 伝送方式とその送受信装置及びトレリス復号器
EP3334065A1 (en) Block constellation selection modulation for overlaid information transmission
JP2023079257A (ja) 符号化回路、復号化回路、符号化方法、および復号化方法
WO2012122249A2 (en) Soft bit metric generation
WO2022152919A1 (en) Modulation and coding schemes
JP3854617B2 (ja) 誤り訂正符号器及び誤り訂正復号器並びに誤り訂正方式の伝送装置
CN116346239A (zh) 基于概率整形高阶qam相干光通信系统的矩形星座编码方法
JPH02218244A (ja) 多値qam差動論理通信方式
Johannisson et al. Practical Detection Schemes for Power Efficient Modulation Formats
WO2018059671A1 (en) Clock and data recovery in pam-4 transmission systems

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014551948

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408090

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013862983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE