WO2014091737A1 - 高炉羽口から酸素を吹込む設備及び高炉操業方法 - Google Patents

高炉羽口から酸素を吹込む設備及び高炉操業方法 Download PDF

Info

Publication number
WO2014091737A1
WO2014091737A1 PCT/JP2013/007216 JP2013007216W WO2014091737A1 WO 2014091737 A1 WO2014091737 A1 WO 2014091737A1 JP 2013007216 W JP2013007216 W JP 2013007216W WO 2014091737 A1 WO2014091737 A1 WO 2014091737A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
nitrogen
pipe
blast furnace
valve
Prior art date
Application number
PCT/JP2013/007216
Other languages
English (en)
French (fr)
Inventor
侯寿 森
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2014551886A priority Critical patent/JP5888435B2/ja
Priority to CN201380064670.3A priority patent/CN104854249B/zh
Priority to KR1020157012417A priority patent/KR101671139B1/ko
Priority to BR112015013245-6A priority patent/BR112015013245B1/pt
Publication of WO2014091737A1 publication Critical patent/WO2014091737A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Definitions

  • the present invention relates to a facility and a blast furnace operation for injecting oxygen from a blast furnace tuyere equipped with a lance capable of injecting pulverized coal from a blast furnace tuyere into the blast furnace and injecting oxygen from the vicinity of the pulverized coal injecting position. Regarding the method.
  • the low reducing material ratio operation also called the low RAR operation, which is performed by blowing the reducing material from the blast furnace tuyere, RAR is an abbreviation of “Reducing Agent Ratio”. (Reducing the total amount of reductant blown from the blast furnace tuyere and coke charged from the top of the furnace) is strongly promoted.
  • the reducing material blown from the blast furnace tuyere pulverized coal is mainly used.
  • oxygen is blown from the lance blowing the pulverized coal to the vicinity of the pulverized coal blowing position. Is considered.
  • fuel gas such as blast furnace gas and coke oven gas generated in the site
  • gas such as combustion-supporting gas, that is, oxygen and inert gas such as nitrogen
  • one kind of gas is designed to flow through one pipe, and the place where mixing with different gases occurs is limited to equipment such as a combustion burner or gas mixing equipment. Yes.
  • the other gas is mixed into one pipe, and as a result, troubles such as abnormal combustion in the pipe and a decrease in gas purity occur depending on the gas type. This is because of this. Therefore, it should be avoided that two or more gases are mixed into one pipe.
  • As a method of replacing the gas in the pipe connect the pipe of inert gas such as nitrogen to the pipe to be replaced and supply the inert gas so that the gas concentration in the pipe does not cause abnormal combustion.
  • a gas replacement method for example, as described in Patent Document 1, a region having a high inert gas concentration is locally formed in the pipe, and air is used so as not to come into contact with the gas remaining in the pipe.
  • a gas holder is installed in the middle of the pipe toward the gas usage destination, and the gas is shut off to the gas usage destination in an emergency.
  • the gas is temporarily stored in the gas holder until the gas does not flow downstream.
  • shut-off valve opening / closing control for example, as described in Patent Document 3 and Patent Document 4, a purge nitrogen pipe is connected to a pipe through which fuel gas flows, and the shut-off valve and flow rate are connected to the nitrogen pipe.
  • a method has been proposed in which regulating valves are installed and the shutoff valves and flow regulating valves are controlled.
  • Japanese Patent No. 4781032 JP 2011-6576 A Japanese Patent Publication No. 50-40085 Japanese Patent No. 4744349
  • Patent Document 1 or Patent Document 2 since the gas replacement method described in Patent Document 1 or Patent Document 2 performs gas replacement in a state where the supply of gas is stopped by one shutoff valve, it may cause a power failure or a large earthquake.
  • the power source of the shut-off valve fails, there is a risk that the smooth gas replacement operation is hindered.
  • the oxygen pipe is first purged with an inert gas such as nitrogen.
  • the purge nitrogen piping that is always connected to the fuel gas piping is configured with one flow rate adjustment valve and the most downstream side (connection end side). If the shut-off valve is closed or damaged for any reason, the pressure in the fuel gas pipe is always higher than the pressure in the purge nitrogen pipe. In this case, the fuel system gas is mixed into the nitrogen piping side, and in this state, for example, if the nitrogen piping side is replaced with air for maintenance, abnormal combustion may occur.
  • a purge nitrogen pipe is always connected to the oxygen pipe, and a single shut-off valve is used for nitrogen.
  • troubles such as blast furnace gas mixed into the oxygen pipe or blast furnace gas or oxygen mixed into the nitrogen pipe may occur.
  • the present invention has been made paying attention to the above problems, and in the operation of blowing pulverized coal into the blast furnace tuyere with a lance and also blowing oxygen from the lance in the vicinity of the blowing position, oxygen supply
  • the blast furnace tuyeres from the blast furnace tuyeres can be surely prevented from mixing gas in the blast furnace into the oxygen piping, and gas and oxygen in the blast furnace into the nitrogen piping.
  • An object of the present invention is to provide a facility for blowing oxygen into a blast furnace and a method for operating a blast furnace.
  • the facility for blowing oxygen into the blast furnace from the blast furnace tuyere and the method for operating the blast furnace according to the present invention can be applied to the oxygen pipe even when the valve power source fails in the operation of blowing pulverized coal and oxygen with a lance.
  • An object of the present invention is to prevent the mixing of gas in the blast furnace.
  • the gist of the present invention for solving the above problems is as follows.
  • a lance capable of blowing pulverized coal and oxygen into the blast furnace from the blast furnace tuyere, an oxygen pipe connected to the lance and supplying oxygen to the lance, and a flow rate adjustment provided in the oxygen pipe
  • a nitrogen pipe provided with a nitrogen shut-off valve, and an oxygen provided in the oxygen pipe upstream from a connection position between the oxygen pipe and the nitrogen pipe.
  • a shutoff valve and a control device that controls opening and closing of the oxygen shutoff valve and the nitrogen shutoff valve. The control device closes the nitrogen shutoff valve when the oxygen shutoff valve is open, and Equipment for injecting oxygen from the blast furnace tuyere that opens the nitrogen shut-off valve when the valve is closed.
  • the nitrogen pipe includes a check valve, two nitrogen cutoff valves arranged upstream of the check valve, and a nitrogen diffusion valve arranged between the two nitrogen cutoff valves.
  • a control device that performs opening / closing control of the two oxygen shut-off valves and the two nitrogen shut-off valves, and the control device includes the two nitrogen shut-off valves when the two oxygen shut-off valves are open.
  • the nitrogen pipe is provided with a check valve and a nitrogen flow opening / closing mechanism that is arranged upstream of the check valve and that causes nitrogen to flow through the nitrogen pipe when a power source fails.
  • Equipment for injecting oxygen from the blast furnace tuyeres Equipment for injecting oxygen from the blast furnace tuyeres.
  • the nitrogen flow opening / closing mechanism is disposed between two nitrogen shut-off valves that open when a power source fails and the two nitrogen shut-off valves, and when the power source fails
  • the oxygen flow shut-off mechanism is provided between the two oxygen shut-off valves that are closed when a power source fails and between the two oxygen shut-off valves in the oxygen pipe.
  • (1), (3), (4) and (6) provided with a receiver tank having the above and a nitrogen main pipe shut-off valve which is disposed upstream of the receiver tank and which is closed when a power source fails.
  • FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied.
  • a plurality of blast furnace tuyere 3 are provided in the circumferential direction on the side wall of the blast furnace 1, and each blast furnace tuyere 3 is connected to a blow pipe 2 for blowing hot air. 4 is installed.
  • a space called a raceway 5 is formed by the hot air supplied from the blow pipe 2, and charcoal is burned mainly in this space.
  • the pulverized coal that has passed through the blast furnace tuyere 3 from the lance 4 and is blown into the raceway 5 is combusted with coke and its volatile components and fixed carbon, and remains unburned, generally called char and ash.
  • the assembly is discharged from the raceway as unburned char.
  • the pulverized coal blown into the raceway 5 from the blast furnace tuyere 3 is heated by radiant heat transfer from the flame in the raceway 5, and the temperature rapidly rises due to radiant heat transfer and conduction heat transfer.
  • the thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame, and the combustion temperature reaches 1400 to 1700 ° C.
  • the pulverized coal and oxygen are blown in parallel from the lance 4
  • the pulverized coal comes into contact with O 2 and burns, and the pulverized coal is heated and heated by the combustion heat.
  • the pulverized coal starts burning near the lance, and the combustion rate also increases.
  • the lance 4 is configured to be able to blow pulverized coal and oxygen into the blast furnace tuyere 3.
  • the lance 4 is a so-called single pipe lance, two sets of a lance for blowing pulverized coal and a lance for blowing oxygen are used, and pulverized coal and oxygen are blown into the blast furnace tuyere 3.
  • the lance 4 is a so-called double pipe lance in which a small diameter blowing pipe is inserted inside a large diameter blowing pipe, for example, pulverized coal is blown from the inner blowing pipe, and the inner blowing pipe is used. And oxygen is blown from the gap between the outer blowing pipes.
  • the pulverized coal and oxygen blowing in the double pipe lance may be reversed, but it is preferable to bring oxygen and pulverized coal closer to facilitate combustion.
  • a lance capable of injecting pulverized coal and oxygen means that pulverized coal and oxygen preferably flow through different flow paths in the lance pipe, and pulverized coal and oxygen are supplied from the lance outlet to the blast furnace tuyere.
  • oxygen is blown in the vicinity of the blowing position of pulverized coal using two double pipe lances.
  • oxygen is blown only from the lance in order to bring pulverized coal and oxygen closer to each other, and oxygen is not enriched in the blown air.
  • pulverized coal and oxygen are blown from the lance 4.
  • the pulverized coal injection may be stopped.
  • it is also necessary to stop the supply of oxygen quickly remove the remaining oxygen from the oxygen pipe for supplying oxygen to the lance 4, and replace (purge) with an inert gas such as nitrogen. This is because if the oxygen supply is simply stopped, the blast furnace gas containing CO flows back into the oxygen pipe and reacts with oxygen remaining in the oxygen pipe to cause abnormal combustion.
  • FIG. 2 is a schematic diagram of equipment for injecting pulverized coal and oxygen from the blast furnace tuyere of FIG. 1 into the blast furnace.
  • the oxygen blowing equipment (equipment for blowing oxygen from the blast furnace tuyere) 100 includes a lance 4, an oxygen pipe 7 through which oxygen supplied to the lance 4 flows, a nitrogen pipe 8 connected to the oxygen pipe 7, and an oxygen pipe. 7 is provided with an oxygen flow shut-off mechanism 70 (various valves) provided at 7, a nitrogen flow opening / closing mechanism 80 (various valves) provided at the nitrogen pipe 8, and a controller 30 that controls the various valves.
  • the oxygen pipe 7 means a pipe through which oxygen flows, and includes an oxygen main pipe 11, an oxygen assembly header 12, an oxygen branch pipe 13, an oxygen branch pipe 14, a flexible hose 15, and an oxygen connection pipe 16.
  • the nitrogen pipe 8 means a pipe through which nitrogen flows, and includes a nitrogen main pipe 24, a nitrogen assembly header 25, and a nitrogen branch pipe 26.
  • oxygen 40 is supplied to the oxygen main pipe 11, and oxygen flows through the oxygen pipe 7 toward the blast furnace tuyere 3.
  • the direction of the oxygen flow toward the blast furnace tuyere 3 is the downstream direction, and the opposite is the upstream direction.
  • nitrogen 50 is supplied to the nitrogen main pipe 24 and flows through the nitrogen pipe 8 toward the oxygen pipe 7.
  • the direction of the nitrogen flow toward the oxygen pipe 7 is the downstream direction, and the opposite is the upstream direction.
  • the pulverized coal PC is supplied to the lance 4 together with the high pressure gas (high pressure N 2 ) from a pulverized coal storage hopper (not shown), and the amount of blown coal is adjusted by the pulverized coal flow rate adjustment valve 6.
  • high pressure N 2 high pressure gas
  • a pulverized coal storage hopper not shown
  • the amount of blown coal is adjusted by the pulverized coal flow rate adjustment valve 6.
  • air is sent from a blower (not shown) to the hot air furnace, and hot air is supplied from there. If necessary, oxygen is added to the hot air upstream of the hot air furnace in the air flow.
  • a high-pressure oxygen supply pipe (oxygen main pipe 11) arranged at the uppermost stream of the oxygen pipe 7 is branched by the oxygen assembly header 12 by the number of the blast furnace tuyere 3 and connected to the oxygen branch pipe 13.
  • 40 is supplied from the oxygen main pipe 11 and distributed to each lance 4 (each blast furnace tuyere 3).
  • each lance 4 each blast furnace tuyere 3
  • each oxygen branch pipe 13 is branched into two oxygen branch pipes 14, and each oxygen branch pipe 14 is connected to an oxygen connection pipe 16 via a flexible hose 15. Oxygen is supplied from the connecting pipe 16 to each double pipe lance 4.
  • the oxygen blowing facility 100 includes a plurality of lances 4 corresponding to the blast furnace tuyere 3 and an oxygen supply pipe (oxygen main pipe 11) for supplying oxygen to the lance 4 as a collective header 12.
  • a plurality of oxygen branch pipes 13 formed by branching to each other, an oxygen flow rate adjustment valve 21 provided in each of the plurality of oxygen branch pipes 13, and connected to each oxygen branch pipe 13 upstream of the oxygen flow rate adjustment valve 21
  • the nitrogen pipe 8 is also provided.
  • the oxygen connection pipe 16 includes two connection pipe cutoff valves 17 at the lance 4 side, that is, at the downstream end of the oxygen connection pipe 16, and a connection pipe check valve 18 is provided upstream of the connection pipe cutoff valves 17.
  • a connecting pipe diffusion valve 19 is connected between the two connecting pipe cutoff valves 17.
  • the oxygen branch pipe 14 is provided with a branch pipe cutoff valve 20 at the flexible hose 15 side, that is, at the upstream end.
  • the oxygen branch pipe 13 is provided with an oxygen flow blocking mechanism 70, which exhibits the function of blocking the oxygen flow in the oxygen pipe when the power source fails. It is. As shown in FIG.
  • the oxygen branch pipe 13 includes an oxygen flow rate adjustment valve 21 on the oxygen branch pipe 14 side, that is, on the downstream end, and two oxygen cutoff valves 22 are interposed on the upstream side of the oxygen flow rate adjustment valve 21.
  • the oxygen diffusion valve 23 is connected between the two oxygen cutoff valves 22.
  • the oxygen flow shut-off mechanism 70 includes two oxygen shut-off valves 22, an oxygen diffusion valve 23, and a control device 30.
  • the two oxygen shut-off valves 22 and the oxygen diffusion valve 23 are controlled by a power source. When the power source fails, the two oxygen shut-off valves 22 are closed and the oxygen diffusion valve 23 is opened. Is a normally closed on-off valve that is opened by a power source, and the oxygen diffusion valve 23 is a normally-open on-off valve that is closed by a power source.
  • a nitrogen pipe 8 is connected to the oxygen blowing equipment 100 in order to purge the oxygen branch pipe 14 and the oxygen connection pipe 16 with nitrogen as an inert gas, for example.
  • nitrogen is distributed from the high-pressure nitrogen main pipe 24 to the oxygen branch pipe 13 through the nitrogen assembly header 25 and the nitrogen branch pipe 26.
  • the number of nitrogen branch pipes 26 is also 40.
  • Each of the 40 nitrogen branch pipes 26 passes through a nitrogen check valve 27, and the oxygen branch pipe corresponding to each of the nitrogen branch pipes 26 between the oxygen flow rate adjusting valve 21 and the downstream oxygen cutoff valve 22. 13 is connected.
  • the nitrogen check valve 27 prevents oxygen from flowing from the oxygen branch pipe 13 into the nitrogen branch pipe 26.
  • the nitrogen branch opening / closing mechanism 80 is provided in the nitrogen branch pipe 26, and the nitrogen flow opening / closing mechanism 80 exhibits a function of flowing nitrogen into the nitrogen pipe 8 when the power source fails.
  • the nitrogen branch pipe 26 is provided with two nitrogen cutoff valves 28 at the nitrogen check valve 27 side, that is, at the end of the connection side to the oxygen branch pipe 13, and two nitrogen cutoff valves are provided.
  • a nitrogen diffusion valve 29 is connected between the valves 28.
  • the nitrogen flow opening / closing mechanism 80 includes two nitrogen cutoff valves 28, a nitrogen diffusion valve 29, and a control device 30, and the two nitrogen cutoff valves 28 and the nitrogen diffusion valve 29 are opened / closed by a power source. When the power source fails, the two nitrogen shut-off valves 28 are opened and the nitrogen diffusion valve 29 is closed.
  • the oxygen blowing facility 100 preferably further includes a receiver tank 31 connected to the nitrogen pipe 8 upstream from the nitrogen cutoff valve 28 and a nitrogen main pipe cutoff valve 32 disposed upstream of the receiver tank 31. .
  • the receiver tank 31 is connected to the nitrogen main pipe 24, and the nitrogen main pipe cutoff valve 32 is arranged in the nitrogen main pipe 24.
  • the nitrogen main shutoff valve 32 is a valve that is opened and closed by a power source, and is closed when the power source fails.
  • the receiver tank 31 is filled with nitrogen, and the volume of the receiver tank 31 is 3 to 5 times the pipe volume from the downstream to the entire blast furnace tuyere 3.
  • the receiver tank 31 preferably includes a pressure gauge PG in addition to the pressure gauge PT, and further includes facilities such as a safety valve 33 and a drain drain 34.
  • the receiver tank 31 may be disposed in the nitrogen branch pipe 26 upstream of the nitrogen shutoff valve 28 downstream of the nitrogen assembly header 25.
  • the volume of the receiver tank 31 may be 3 to 5 times the pipe volume from the downstream to one blast furnace tuyere 3, but it corresponds to the number of blast furnace tuyere 3.
  • a radix receiver tank 31 is required. In the form shown in FIG. 2, the receiver tank 31 has a large volume, but only one is sufficient.
  • the various valves of the oxygen blowing equipment 100 can be controlled by the control device 30, and in particular, the oxygen flow rate adjustment valve 21, the oxygen cutoff valve 22, the oxygen diffusion valve 23, and the nitrogen cutoff.
  • the control device 30 performs opening / closing control and opening degree control of the valve 28, the nitrogen diffusion valve 29, and the nitrogen main shutoff valve 32.
  • oxygen In the normal operation of the blast furnace 1, that is, the ironmaking operation, oxygen must be blown from the lance 4 together with the pulverized coal. Therefore, oxygen must be supplied downstream from the oxygen branch pipe 14. Therefore, as shown in FIG. 3, the two oxygen cutoff valves 22 are opened, the oxygen diffusion valve 23 is closed, the two nitrogen cutoff valves 28 are closed, and the nitrogen diffusion valve 29 is opened. Then, the opening degree of the oxygen flow rate adjustment valve 21 is controlled. In this state, nitrogen is not supplied from the nitrogen branch pipe 26 to the oxygen branch pipe 14, and only oxygen is supplied from the oxygen branch pipe 13 to the oxygen branch pipe 14.
  • the upstream oxygen cutoff valve 23 blocks the supply of oxygen to the downstream side. That is, if the oxygen blowing facility 100 is provided with two oxygen shutoff valves 22 and an oxygen diffusion valve 23 provided in the oxygen pipe 7 between the two oxygen shutoff valves 22, the downstream The supply of oxygen to the side can be reliably shut off. As a result, it is possible to prevent oxygen from being mixed into the nitrogen branch pipe 26 side, and the possibility of troubles due to malfunction of the valve operation can be reduced.
  • the flow rate adjusting valve 21 is provided in the oxygen pipe 7 connected to the lance 4 and through which oxygen supplied to the lance 4 flows.
  • a nitrogen pipe 8 is connected to the oxygen pipe 7, two oxygen shutoff valves 22 are provided upstream of the connection position between the oxygen pipe 7 and the nitrogen pipe 8, and between the two oxygen shutoff valves 22 of the oxygen pipe 7. Is provided with an oxygen diffusion valve 23. Therefore, when purging oxygen in the oxygen pipe 7 downstream from the connection position with nitrogen, for example, when the two oxygen shut-off valves 22 are closed and the oxygen diffusion valve 23 is opened, the oxygen pipe 7 and the nitrogen pipe 8 are opened. It is possible to supply and purge only nitrogen downstream from the connection position, and to prevent the blast furnace gas from being mixed into the oxygen pipe 7.
  • the nitrogen pipe 8 has a nitrogen check valve 27, two nitrogen cutoff valves 28 arranged upstream of the nitrogen check valve 27, and nitrogen arranged between the two nitrogen cutoff valves 28.
  • a release valve 29 is provided. Therefore, for example, when purging oxygen in the oxygen pipe 7 downstream from the connection position with nitrogen, the two oxygen cutoff valves 22 are closed and the oxygen diffusion valve 23 is opened, and the two nitrogen cutoff valves are opened.
  • opening 28 and closing the nitrogen diffusion valve 29 only nitrogen can be supplied and purged downstream from the connection position of the nitrogen pipe, and gas in the blast furnace can be mixed into the oxygen pipe 7. It is possible to prevent blast furnace gas and oxygen from being mixed into the nitrogen pipe 8.
  • the two nitrogen shut-off valves 28 are closed and nitrogen is diffused. If the valve 29 is opened, the two oxygen shut-off valves 22 are opened, and the oxygen diffusion valve 23 is closed, only oxygen can be supplied downstream from the connection position of the nitrogen pipe 8. It is possible to prevent oxygen from being mixed therein.
  • the control device 30 closes the two nitrogen cutoff valves 28 when the two oxygen cutoff valves 22 are open, and opens the two nitrogen cutoff valves 28 when the two oxygen cutoff valves 22 are closed. By doing so, oxygen can be supplied downstream from the connecting position of the oxygen pipe 7 and the nitrogen pipe 8 or purged with nitrogen. At that time, gas in the blast furnace is mixed in the oxygen pipe 7. In addition, it is possible to prevent blast furnace gas and oxygen from being mixed into the nitrogen pipe 8. That is, the control device 30 closes at least one nitrogen cutoff valve 28 when all (two) of the oxygen cutoff valves 22 are open and closes the nitrogen cutoff valve when at least one oxygen cutoff valve 22 is closed. If all (2) of 28 are opened, oxygen can be supplied downstream from the connection position or purged with nitrogen.
  • FIG. 4 shows the valve operations of the oxygen shutoff valve 22, the oxygen diffusion valve 23, the nitrogen cutoff valve 28, the nitrogen diffusion valve 29, and the nitrogen main shutoff valve 32 when the power source fails (down in the figure).
  • the control device 30 detects the failure of the valve power source, that is, compressed air, and closes the oxygen cutoff valve 22 when the power source failure is detected.
  • the oxygen diffusion valve 23 is opened, the nitrogen cutoff valve 28 is opened, the nitrogen diffusion valve 29 is closed, and the nitrogen main cutoff valve 32 is closed.
  • the control device 30 may become inoperable in some cases.
  • the oxygen cutoff valve 22 is closed when there is no power source, the oxygen diffusion valve 23 is opened when there is no power source, the nitrogen cutoff valve 28 is opened when there is no power source, and the nitrogen diffusion valve 29 is not provided with a power source. Since the time closing and nitrogen main shutoff valve 32 is closed when there is no power source, when the valve power source fails, the valves open and close as shown in FIG.
  • the oxygen flow shut-off mechanism 70 functions to close one of the oxygen shut-off valves 22 on the upstream side, and when the oxygen flow is shut off, the upstream pipe of the oxygen shut-off valve 22 is connected. It is possible to prevent the blast furnace gas from flowing back into the interior.
  • the blast furnace gas can be more reliably prevented from flowing back into the piping upstream of the oxygen shut-off valve 22, and It is possible to prevent oxygen from being mixed into the pipe 8.
  • the nitrogen flow opening / closing mechanism 80 functions to open the two nitrogen cutoff valves 28 and close the nitrogen diffusion valve 29.
  • the two oxygen cutoff valves 22 are closed and the oxygen diffusion valve 23 is closed.
  • the downstream side of the connection position of the nitrogen pipe 8 is purged with nitrogen, and it is possible to prevent the blast furnace gas from being mixed into the oxygen pipe 7. If two shutoff valves 22 and 28 are provided in each of the oxygen pipe 7 and the nitrogen pipe 8, and if the diffusion valves 23 and 29 are provided between them, leakage occurs from one of the shutoff valves in one pipe for some reason.
  • FIG. 5 shows the operation of each valve when the power source of the valve fails and the change over time of the pressure in the receiver tank 31.
  • the oxygen cutoff valve 22 is closed, the oxygen diffusion valve 23 is opened, and the nitrogen cutoff valve 28 is opened.
  • the operation is performed so that the nitrogen diffusion valve 29 is closed and the nitrogen main shutoff valve 32 is closed. Therefore, when the power source fails, supply of oxygen from the oxygen branch pipe 13 to the oxygen branch pipe 14 is stopped, and supply of nitrogen from the nitrogen branch pipe 26 to the oxygen branch pipe 14 becomes possible.
  • the nitrogen main shutoff valve 32 since the nitrogen main shutoff valve 32 is closed, it is not possible to supply new nitrogen to the nitrogen main 24, but the nitrogen stored in the receiver tank 31 is removed from the nitrogen main 24, the nitrogen assembly header. 25, and supplied to the oxygen branch pipe 14 through the nitrogen branch pipe 26. With this supply, the pressure in the receiver tank 31 gradually decreases.
  • the capacity in the receiver tank 31 is equal to or slightly larger than the pipe volume from the receiver tank 31 to the lance 4 of the blast furnace tuyere 3 on the downstream side. The degree is sufficient.
  • the valve power source is electric power, it may be assumed that the blast furnace itself is stopped (rested) due to the failure of the valve power source.
  • the pressure in the blast furnace may be zero (atmospheric pressure). In such a case, since nitrogen from the receiver tank 31 passes through the oxygen branch pipe 13 and the oxygen branch pipe 14 and is blown into the blast furnace 1, the tank capacity is set to 3 to 5 times the pipe volume to be replaced. It is preferable to do.
  • this capacity is determined by the shape of the piping such as the ease of gas accumulation, the actual flow of nitrogen from the receiver tank 31 to the lance 4 of the whole blast furnace tuyere 3 and the relationship between the nitrogen concentration in the piping and the cumulative flow rate You may make it set from.
  • the downstream side can be quickly purged with nitrogen from the connection position between the oxygen pipe 7 and the nitrogen pipe 8 even when the valve power source is in failure. Mixing of gas into the oxygen pipe 7 can be prevented, and nitrogen does not flow more than necessary, so that excessive cooling of the blast furnace tuyere 3 can also be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

 微粉炭及び酸素をランスを通じて高炉羽口から高炉内に吹込む設備において、ランスに接続する酸素配管中に高炉炉内ガスが混入したり、窒素配管中に高炉炉内ガスや酸素が混入したりすることを防止する。 酸素吹込み設備100は、ランス4と、酸素遮断弁22が設けられた酸素配管7と、流量調整弁21と、窒素遮断弁28が設けられた窒素配管8と、酸素遮断弁22及び窒素遮断弁28の開閉制御を行う制御装置30と、を備える。酸素配管7はランス4に接続され、ランス4に酸素40を供給する。窒素配管8は、酸素流れにおける酸素流量調整弁21より上流で酸素配管7に接続される。酸素遮断弁22は、酸素流れにおける、酸素配管7と窒素配管8との接続位置より上流で酸素配管7に設けられている。制御装置30は、酸素遮断弁22が開の場合に窒素遮断弁28を閉とし、酸素遮断弁22が閉の場合に窒素遮断弁28を開とする。

Description

高炉羽口から酸素を吹込む設備及び高炉操業方法
 本発明は、高炉羽口から高炉内に微粉炭を吹込むと共に、該微粉炭の吹込位置近傍から酸素を吹込むことが可能なランスを備えた高炉羽口から酸素を吹込む設備及び高炉操業方法に関する。
 近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。そこで、最近の高炉操業では、高炉羽口からも還元材を吹込んで行う低還元材比操業(低RAR操業とも呼ばれ、RARは、"Reducing Agent Ratio"の略で、銑鉄1t製造当たりの、高炉羽口からの吹込み還元材と炉頂から装入されるコークスの合計量を低くする操業を意味する)が強力に推進されている。高炉羽口から吹込まれる還元材には、主として微粉炭が使用される。この高炉羽口から高炉内に吹込まれる微粉炭の燃焼性を向上させ、還元材比を低減するために、微粉炭を吹込むランスから、当該微粉炭の吹込位置近傍に酸素を吹込むことが考えられている。
 一方、製鉄所においては、一般的に、所内で発生する高炉ガスやコークス炉ガスなどの燃料系ガス、支燃性ガスつまり酸素や、窒素などの不活性ガスといった気体は、配管設備によって輸送されている。この場合、基本的に、1本の配管には1種の気体を流すように設計されており、異種気体との混合が発生する場所は、燃焼バーナやガス混合設備などの設備に限定されている。なぜならば、異種気体の配管同士の接続を常時行うことによって、一方の配管へもう一方の気体が混入し、その結果、ガス種によっては配管内での異常燃焼、ガス純度低下などのトラブルが生じることを考慮しているからである。従って、1本の配管に2種以上の気体が混入することは回避すべきである。例えば、ランスに酸素を供給する配管への酸素の供給を停止する場合には、酸素の供給停止後、高炉の炉内ガスが酸素配管に流入すると異常燃焼の虞がある。従って、酸素配管への酸素の供給停止後、酸素配管を窒素などの不活性ガスでパージ(不活性ガスに置換)する必要がある。
 配管内の気体を置換する方法としては、窒素などの不活性ガスの配管を置換対象となる配管に接続して不活性ガスを供給し、配管内の気体濃度が異常燃焼などを引き起こさない範囲になったことを確認し、その後、配管内での作業環境を構築するために、新たな種類の気体、例えば空気を配管内に供給する方法がある。その方法では、作業効率を考慮すると、配管内を安全にかつ短時間でガス置換することが好ましい。そのようなガス置換方法として、例えば、特許文献1に記載されるように、配管内に局所的に不活性ガス濃度の高い領域を形成し、配管内に残留する気体と接触しないように空気を供給して置換する方法がある。また、配管内の気体濃度が異常燃焼などを防ぐために、特許文献2に記載されるように、気体利用先に向かう配管の途中にガスホルダーを設置し、緊急時に気体利用先へ気体が遮断されるまで、一時的にガスホルダーでガスを貯留して下流側に気体を流さないようにする方法もある。
 上記いずれの方法においても、気体の置換を行う。その場合には、接続する配管の最下流側(接続端側)に遮断弁が設置されている形態がよく知られている。この遮断弁の開閉の動作は、流入先の配管内を流れる気体の圧力や流量などの状態情報を元に制御される。このような遮断弁開閉制御としては、例えば、特許文献3や特許文献4に記載されるように、燃料系ガスが流れる配管にパージ用の窒素配管を接続し、この窒素配管に遮断弁と流量調整弁を設置して、それら遮断弁と流量調整弁を制御する方法が提案されている。
特許第4781032号公報 特開2011-6576号公報 特公昭50-40085号公報 特許第4744349号公報
 しかしながら、特許文献1又は特許文献2に記載されるガス置換方法は、1個の遮断弁によって気体の供給を停止した状態で気体の置換を行うものであるため、停電や大地震などの原因で遮断弁の動力源が失陥した場合、気体の円滑な置換作業が阻害される虞がある。例えば、前述のように、高炉羽口にランスから微粉炭と酸素を供給している場合で、その酸素配管への酸素の供給が停止すると、まず酸素配管を窒素などの不活性ガスでパージする必要があるが、弁動力源の失陥により、不活性ガスの遮断弁が開かず、酸素配管内に不活性ガスを送れない場合には、高炉炉内ガスが酸素配管中に混入し、異常燃焼の生じる虞がある。特にランスを用いて、微粉炭と酸素を高炉羽口から高炉内へ吹込む高炉操業においては、酸素の供給が停止しても、酸素配管内に残留した酸素を速やかに窒素などの不活性ガスに置換して酸素を取り除く必要がある。なぜならば、酸素配管にCOを含む高炉ガスが逆流し、残留した酸素と反応して異常燃焼を起こす虞があるからである。
 特許文献3や特許文献4に記載される方法では、何れも燃料系ガスの配管に常時接続されるパージ用窒素配管の弁構成が、1個の流量調整弁と最下流側(接続端側)の1個の遮断弁で構成されており、何らかの原因で遮断弁の閉不良や破損が発生した場合や、燃料系ガスの配管内圧力がパージ用窒素の配管内圧力より常時高い状態となっている場合には、燃料系ガスの窒素配管側への混入が発生してしまい、その状態で、例えばメンテナンスのために窒素配管側を空気置換すると異常燃焼が発生する虞がある。すなわち、高炉羽口部にランスで微粉炭を吹込み、その吹込位置近傍に同じくランスから酸素を吹込む設備において、酸素配管にパージ用窒素の配管を常時接続し、1個の遮断弁で窒素流れを制御する場合には、酸素配管中に高炉炉内ガスが混入したり、窒素配管中に高炉炉内ガスや酸素が混入したりするというトラブルが発生する虞がある。
 本発明は、上記のような問題点に着目してなされたものであり、高炉羽口部にランスで微粉炭を吹込み、その吹込位置近傍に同じくランスから酸素を吹込む操業において、酸素供給を止める場合に、酸素配管中に高炉炉内ガスが混入したり、窒素配管中に高炉炉内ガスや酸素が混入したりすることを確実に防止することを可能とする高炉羽口から高炉内に酸素を吹込む設備及び高炉操業方法を提供することを目的とするものである。また、本発明に係る高炉羽口から高炉内に酸素を吹込む設備及び高炉操業方法は、ランスで微粉炭及び酸素を吹込む操業において、弁動力源が失陥した場合でも、酸素配管中への高炉炉内ガスの混入を防止することが可能とすることを目的とする。
 上記課題を解決するための本発明の要旨は以下の通りである。
(1)高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、前記ランスに接続され、該ランスに酸素を供給する酸素配管と、前記酸素配管に設けられた流量調整弁と、前記流量調整弁より上流で前記酸素配管に接続され、窒素遮断弁が設けられた窒素配管と、前記酸素配管と前記窒素配管との接続位置より上流で前記酸素配管に設けられた酸素遮断弁と、前記酸素遮断弁及び前記窒素遮断弁の開閉制御を行う制御装置と、を備え、前記制御装置は、前記酸素遮断弁が開の場合に前記窒素遮断弁を閉とし、前記酸素遮断弁が閉の場合に前記窒素遮断弁を開とする高炉羽口から酸素を吹込む設備。
(2)高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、前記ランスに接続され、該ランスに酸素を供給する酸素配管と、前記酸素配管に設けられた流量調整弁と、前記流量調整弁より上流で前記酸素配管に接続された窒素配管と、前記酸素配管と前記窒素配管との接続位置より上流で前記酸素配管に設けられた2個の酸素遮断弁と、前記2個の酸素遮断弁の間で前記酸素配管に設けられた酸素放散弁と、を備える高炉羽口から酸素を吹込む設備。
(3)前記窒素配管は、逆止弁と、前記逆止弁より上流に配置される2個の窒素遮断弁と、前記2個の窒素遮断弁の間に配置される窒素放散弁と、を備える上記(2)に記載の高炉羽口から酸素を吹込む設備。
(4)前記2個の酸素遮断弁と前記2個の窒素遮断弁の開閉制御を行う制御装置を備え、前記制御装置は、前記2個の酸素遮断弁が開の場合に前記2個の窒素遮断弁を閉とし、前記2個の酸素遮断弁が閉の場合に前記2個の窒素遮断弁を開とする上記(3)に記載の高炉羽口から酸素を吹込む設備。
(5)高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、前記ランスに接続され、該ランスに酸素を供給する酸素配管と、前記酸素配管に設けられた流量調整弁と、前記流量調整弁より上流で前記酸素配管に接続された窒素配管と、前記酸素配管と前記窒素配管との接続位置より上流で、前記酸素配管に設けられ、動力源が失陥した場合に、前記酸素配管の酸素流れを遮断する酸素流れ遮断機構と、を備える高炉羽口から酸素を吹込む設備。
(6)前記窒素配管は、逆止弁と、前記逆止弁より上流に配置され、動力源が失陥した場合に、前記窒素配管に窒素を流す窒素流れ開閉機構と、を備える上記(5)に記載の高炉羽口から酸素を吹込む設備。
(7)前記窒素流れ開閉機構は、動力源が失陥した場合に開動作する2個の窒素遮断弁と、前記2個の窒素遮断弁の間に配置され、動力源が失陥した場合に閉動作する窒素放散弁と、を備える上記(6)に記載の高炉羽口から酸素を吹込む設備。
(8)前記酸素流れ遮断機構は、動力源が失陥した場合に閉動作する2個の酸素遮断弁と、前記酸素配管に前記2個の酸素遮断弁の間に設けられ、動力源が失陥した場合に開動作する酸素放散弁と、を有する上記(5)~(7)のいずれか1項に記載の高炉羽口から酸素を吹込む設備。
(9)前記窒素遮断弁または前記窒素流れ開閉機構より上流で前記窒素配管に接続されるレシーバータンクであって、該レシーバータンクから前記高炉羽口までの配管容積の3~5倍となる容積を有するレシーバータンクと、該レシーバータンクの上流側に配置され、動力源が失陥した場合に閉動作する窒素本管遮断弁と、を備える上記(1),(3),(4)及び(6)~(8)のいずれか1項に記載の高炉羽口から酸素を吹込む設備。
(10)上記(1)~(9)のいずれか1項に記載の高炉羽口から酸素を吹込む設備を用いて、高炉内に微粉炭及び酸素を吹込む高炉操業方法。
 本発明の高炉羽口から酸素を吹込む設備及び高炉操業方法によれば、窒素配管と酸素配管との接続位置より下流に窒素のみを供給して、酸素配管を窒素でパージすることができ、酸素の供給を止める場合や弁動力源が失陥する場合であっても、酸素配管中に高炉炉内ガスが混入することを確実に防止することが可能となる。
本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。 図1の高炉羽口から高炉内に酸素を吹込む設備を示す模式図である。 図2の制御装置によるシーケンスの説明図である。 図2の酸素吹込み設備による動力源失陥時の弁作動状態の説明図である。 図2の酸素吹込み設備による動力源失陥時のシーケンスの説明図である。
 次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。高炉1の側壁には周方向に高炉羽口3が複数設けられており、各高炉羽口3には、熱風を送風するためのブローパイプ2が接続され、このブローパイプ2を貫通してランス4が設置されている。高炉羽口3の熱風送風方向先方には、ブローパイプ2から供給される熱風によってレースウエイ5と呼ばれる空間が形成され、主として、この空間で炭材の燃焼が行われる。ランス4から高炉羽口3を通過し、レースウエイ5内に吹込まれた微粉炭は、コークスと共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャーとして排出される。
 高炉羽口3からレースウエイ5内に吹込まれた微粉炭は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱され、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400~1700℃に達する。ランス4から微粉炭と酸素を平行に吹込んだ場合、微粉炭がOと接触して燃焼し、その燃焼熱によって微粉炭が加熱、昇温する。これによりランスに近い位置で微粉炭が燃焼を開始し、燃焼率も上昇する。
 本実施形態では、このように微粉炭の燃焼性を向上するため、ランスを用いて、微粉炭の吹込位置近傍に酸素を吹込む。ランス4は、高炉羽口3に微粉炭及び酸素を吹込み可能な構成となっている。例えば、ランス4が所謂単管ランスである場合には、微粉炭を吹込むランスと酸素を吹込むランスとの2本セットとし、微粉炭及び酸素を高炉羽口3内に吹込む。また、ランス4が、大径の吹込み管の内側に小径の吹込み管を差し込んだ所謂二重管ランスである場合には、例えば内側吹込み管から微粉炭を吹込み、内側吹込み管と外側吹込み管の隙間から酸素を吹込む。二重管ランスにおける微粉炭と酸素の吹込みは、この逆であってもよいが、酸素と微粉炭を接近させてより燃焼しやすい状態とするのが好ましい。
 微粉炭及び酸素を吹き込むことが可能なランスとは、ランス管内で、微粉炭と酸素とが好ましくはそれぞれ別の流路を流れ、ランス出口部から微粉炭と酸素が高炉羽口部に供給され、高炉内に微粉炭と酸素を吹込むことを可能とするランスを意味する。本実施形態では、二重管ランスを2本用いて、夫々、微粉炭の吹込位置近傍に酸素を吹込む。なお、本実施形態では、微粉炭と酸素を接近させるためにランスからのみ酸素を吹込み、送風には酸素を富化しない。しかしながら、必要に応じて送風に酸素を富化することも可能である。
 高炉の通常操業では、ランス4からは微粉炭と酸素が吹き込まれる。操業を中断する場合や、微粉炭吹き込み設備の動力供給が事故などによって停止する場合には、微粉炭の吹込みを停止する場合がある。その場合、酸素の供給も停止し、ランス4に酸素を供給する酸素配管から、残留した酸素を速やかに取り除き、窒素などの不活性ガスに置換(パージ)する必要がある。なぜならば、単に酸素供給を停止したのみでは、酸素配管にCOを含む高炉ガスが逆流し、酸素配管内に残留した酸素と反応して異常燃焼を起こす虞があるためである。仮に、高炉ガスの逆流を防ぐためにランス4に酸素を流したままにしたとしても、高温下で金属が酸化される可能性があるので、設備保全上好ましくない。このような状況は、通常の微粉炭吹込み停止操作時のみならず、設備トラブルによって、微粉炭吹込みや酸素吹込みが停止した場合にも起こりうる。特に、ランス4に微粉炭と酸素を同時に供給する場合、速やか、且つ、安全、確実に酸素配管内を窒素等の不活性ガスで置換する必要がある。本実施形態では、例えば以下の構成により、この置換を可能とする。
 図2は、図1の高炉羽口から高炉内に微粉炭及び酸素吹込む設備の模式図である。酸素吹込み設備(高炉羽口から酸素を吹込む設備)100は、ランス4、該ランス4に供給される酸素が流れる酸素配管7、該酸素配管7に接続された窒素配管8と、酸素配管7に設けられる酸素流れ遮断機構70(各種弁)及び窒素配管8に設けられる窒素流れ開閉機構80(各種弁)と、各種弁を制御する制御装置30と、を備える。本実施形態においては、酸素配管7は、酸素が流れる配管を意味し、酸素本管11、酸素集合ヘッダー12、酸素枝管13、酸素支管14、フレキシブルホース15、及び、酸素接続管16を有する。窒素配管8は、窒素が流れる配管を意味し、窒素本管24、窒素集合ヘッダー25、及び、窒素枝管26を有する。
 通常操業において、酸素40が酸素本管11に供給されて、高炉羽口3に向けて酸素が酸素配管7を流れる。本実施形態では、酸素配管7において、高炉羽口3に向かう酸素流れの方向を下流方向とし、その逆を上流方向とする。また、酸素の供給を停止する場合には、窒素50が窒素本管24に供給され、酸素配管7に向けて窒素配管8を流れる。本実施形態では、窒素配管8において、酸素配管7に向かう窒素流れの方向を下流方向とし、その逆を上流方向とする。
 微粉炭PCは、図示しない微粉炭貯留ホッパーから高圧ガス(高圧N)と共にランス4に供給され、微粉炭流量調整弁6によって吹込み量が調整される。ブローパイプ2(図1参照)へは、図示しないブロワから熱風炉に空気が送られ、そこから熱風が供給される。必要に応じて、熱風へ酸素を添加する場合には、空気流れにおける熱風炉より上流で行われる。
 酸素配管7の最上流に配置された、高圧の酸素供給配管(酸素本管11)は、高炉羽口3の個数分酸素集合ヘッダー12で分岐されて酸素枝管13に接続されており、酸素40は、酸素本管11から供給されて、各ランス4(各高炉羽口3)に分配される。例えば、高炉羽口3の数が40である場合、酸素枝管13は計40本ある。本実施形態では、ランス4を2本用いるので、各酸素枝管13を2本の酸素支管14に分岐し、各酸素支管14はフレキシブルホース15を介して酸素接続管16に接続され、各酸素接続管16から各二重管ランス4に酸素を供給する。酸素吹込み設備100は、高炉羽口3に対応する複数のランス4と、該ランス4に酸素を供給するために酸素供給配管(酸素本管11)が集合ヘッダー12で、各高炉羽口3に分岐されて形成される複数の酸素枝管13と、該複数の酸素枝管13の各々に設けられる酸素流量調整弁21と、酸素流量調整弁21の上流側で各酸素枝管13に接続された窒素配管8と、を備えることにもなる。
 酸素接続管16は、ランス4側、即ち、酸素接続管16の下流側端部に2個の接続管遮断弁17を備え、それら接続管遮断弁17の上流側に接続管逆止弁18が介装され、2個の接続管遮断弁17の間に接続管放散弁19が接続されている。また、酸素支管14には、フレキシブルホース15側、即ち上流側端部に支管遮断弁20が介装されている。酸素枝管13には、酸素流れ遮断機構70が設けられており、酸素流れ遮断機構70は、動力源が失陥した場合に、前記酸素配管中の前記酸素流れを遮断する機能を発揮するものである。図2に示すように、酸素枝管13は、酸素支管14側、即ち下流側端部に酸素流量調整弁21を備え、酸素流量調整弁21の上流側に2個の酸素遮断弁22が介装され、2個の酸素遮断弁22の間に酸素放散弁23が接続されている。酸素流れ遮断機構70は、2個の酸素遮断弁22、酸素放散弁23、及び、制御装置30を含んでおり、この2個の酸素遮断弁22、及び、酸素放散弁23は、動力源によって開閉動作する開閉弁であって、動力源が失陥したときには、2個の酸素遮断弁22は閉となり、酸素放散弁23は開となる。は、動力源によって開動作する常時閉の開閉弁であり、酸素放散弁23は、動力源によって閉動作する常時開の開閉弁である。
 酸素吹込み設備100には、例えば酸素支管14及び酸素接続管16内を不活性ガスである窒素でパージするために窒素配管8が接続されている。この窒素配管8において、窒素は、高圧の窒素本管24から窒素集合ヘッダー25、窒素枝管26を経て、酸素枝管13に分配される。例えば、高炉羽口3の数が40個、酸素枝管13が40本である場合、窒素枝管26も40本である。この40本ある窒素枝管26の各々は、窒素逆止弁27を経て、前記酸素流量調整弁21と下流側の酸素遮断弁22の間で、窒素枝管26の各々に対応する酸素枝管13に接続されている。窒素逆止弁27によって、酸素枝管13から窒素枝管26に酸素が流入してくることが防がれる。
 窒素枝管26には、窒素流れ開閉機構80が設けられており、窒素流れ開閉機構80は、動力源が失陥した場合に、窒素配管8中に窒素を流す機能を発揮するものである。図2に示すように、窒素枝管26には、窒素逆止弁27側、つまり酸素枝管13への接続側端部に2個の窒素遮断弁28が介装され、2個の窒素遮断弁28の間に窒素放散弁29が接続されている。窒素流れ開閉機構80は、2個の窒素遮断弁28、窒素放散弁29、及び、制御装置30を含み、2個の窒素遮断弁28、及び、窒素放散弁29は、動力源によって開閉動作する開閉弁であって、動力源が失陥したときには、2個の窒素遮断弁28は開となり、窒素放散弁29は閉となる。
 酸素吹込み設備100は、窒素遮断弁28より上流で窒素配管8に接続されるレシーバータンク31と、該レシーバータンク31の上流に配置される窒素本管遮断弁32と、を更に備えることが好ましい。図2に示す形態では、レシーバータンク31は窒素本管24に接続され、窒素本管24に窒素本管遮断弁32が配置されている。窒素本管遮断弁32は、動力源によって開閉動作する弁であって、動力源が失陥したときに閉となる。レシーバータンク31には窒素が充満しており、レシーバータンク31の容積は、それより下流から全高炉羽口3までの配管容積の3~5倍となっている。
 上記の構成により、動力源失陥時に、レシーバータンク31から高炉羽口3までの配管の全てに窒素が供給される。なお、レシーバータンク31から高炉羽口3までの配管とは、レシーバータンク31から高炉羽口3までのランス4と酸素配管7と窒素配管8との配管に相当する。また、レシーバータンク31は、圧力計PTの他に圧力ゲージPGを備え、更に安全弁33や、ドレン抜き34といった設備を有することが好ましい。
 図2に示す形態ではなく、窒素集合ヘッダー25の下流で、窒素遮断弁28より上流の窒素枝管26にレシーバータンク31を配置してもよい。その場合には、レシーバータンク31の容積は、それより下流から1個の高炉羽口3までの配管容積の3~5倍とすればよいことになるが、高炉羽口3の個数に相当する基数のレシーバータンク31が必要となる。図2に示す形態では、レシーバータンク31は、容積が大きくなるが1基で足りる。
 動力が供給されている間の通常操業において、酸素吹込み設備100の各種弁は、制御装置30によって制御可能としており、特に酸素流量調整弁21、酸素遮断弁22、酸素放散弁23、窒素遮断弁28、窒素放散弁29、窒素本管遮断弁32は、開閉制御や開度制御が制御装置30によって行われる。高炉1の通常操業、即ち製銑操業では、微粉炭と共にランス4から酸素を吹込まなければならないので、酸素支管14より下流側には酸素が供給されていなければならない。そのため、図3に示すように、2個の酸素遮断弁22を開、酸素放散弁23を閉とすると共に、2個の窒素遮断弁28を閉、窒素放散弁29を開とし、必要に応じて酸素流量調整弁21の開度制御を行う。この状態では、窒素枝管26から酸素支管14に窒素は供給されず、酸素支管14には酸素枝管13から酸素のみが供給される。
 この状態から、高炉の操業を停止するなどの理由で、酸素支管14より下流側への酸素の供給を停止する場合には、図3に示すように、2個の酸素遮断弁22を閉、酸素放散弁23を開とすると共に、2個の窒素遮断弁28を開、窒素放散弁29を閉とする。この状態では、酸素支管14には酸素枝管13から酸素が供給されず、窒素枝管26から酸素支管14に窒素が供給され、酸素配管7と窒素配管8との接続位置より下流側は窒素でパージされる。このとき、例えば、下流側の酸素遮断弁22が完全に閉動作しなくても、酸素放散弁23から酸素が放散されて窒素により置換され、下流側への酸素の供給が遮断される。また、その状態で、酸素放散弁23が完全に開動作しなくても、上流側の酸素遮断弁23によって下流側への酸素の供給が遮断される。すなわち、酸素吹込み設備100に、2個の酸素遮断弁22と、該2個の酸素遮断弁22の間で酸素配管7に設けられた酸素放散弁23と、が設けられていれば、下流側への酸素の供給が確実に遮断できる。その結果、窒素枝管26側に酸素が混入することを防止することができるなど、弁動作の不具合によるトラブル発生の可能性も低減できる。
 酸素支管14より下流側への酸素の供給を停止した状態から、再び、酸素支管14より下流側に酸素を供給する場合には、図3に示すように、再び、2個の酸素遮断弁22を開、酸素放散弁23を閉とすると共に、2個の窒素遮断弁28を閉、窒素放散弁29を開とし、必要に応じて酸素流量調整弁21の開度制御を行う。これにより、酸素支管14より下流側にパージされていた窒素は、供給される酸素によって高炉羽口3内に吹込まれ、次いで酸素がランス4から吹込まれる。
 このように、本実施形態の酸素吹込み設備100では、ランス4に接続し、該ランス4に供給される酸素が流れる酸素配管7に流量調整弁21を設け、流量調整弁21の上流側で酸素配管7に窒素配管8を接続し、該酸素配管7と窒素配管8との接続位置の上流に2個の酸素遮断弁22を設けると共に、酸素配管7の2個の酸素遮断弁22の間には酸素放散弁23を設けてある。そのため、接続位置より下流の酸素配管7の酸素を窒素でパージする場合には、例えば2個の酸素遮断弁22を閉とすると共に酸素放散弁23を開とすると、酸素配管7と窒素配管8との接続位置より下流側に窒素のみを供給してパージすることができ、酸素配管7中に高炉炉内ガスが混入するのを防止することが可能となる。
 また、窒素配管8には、窒素逆止弁27と、窒素逆止弁27の上流側に配置される2個の窒素遮断弁28と、2個の窒素遮断弁28の間に配置される窒素放散弁29とが備えられている。そのため、例えば、接続位置より下流側の酸素配管7の酸素を窒素でパージする場合には、2個の酸素遮断弁22を閉とすると共に酸素放散弁23を開とし、2個の窒素遮断弁28を開とすると共に窒素放散弁29を閉とすれば、窒素配管の接続位置より下流側に窒素のみを供給してパージすることができ、酸素配管7中に高炉炉内ガスが混入したり、窒素配管8中に高炉炉内ガスや酸素が混入したりするのを防止することが可能となる。加えて、例えば、接続位置より下流が窒素でパージされている状態から、窒素配管8の接続位置より下流に酸素を供給する場合には、2個の窒素遮断弁28を閉とすると共に窒素放散弁29を開とし、2個の酸素遮断弁22を開とすると共に酸素放散弁23を閉とすれば、窒素配管8の接続位置より下流に酸素のみを供給することが可能となり、窒素配管8中に酸素が混入するのを防止することが可能となる。
 制御装置30は、2個の酸素遮断弁22が開の場合に2個の窒素遮断弁28を閉とし、2個の酸素遮断弁22が閉の場合に2個の窒素遮断弁28を開とすることにより、酸素配管7と窒素配管8との接続位置より下流側に酸素を供給したり、窒素でパージしたりすることができ、その際、酸素配管7中に高炉炉内ガスが混入したり、窒素配管8中に高炉炉内ガスや酸素が混入したりすることを防止することができる。すなわち、制御装置30は、酸素遮断弁22の全て(2個)が開の場合に少なくとも1個の窒素遮断弁28を閉とし、少なくとも1個の酸素遮断弁22が閉の場合に窒素遮断弁28の全て(2個)を開とすれば、接続位置より下流側に酸素を供給したり、窒素でパージしたりすることができる。
 次に、動力源が失陥(図ではダウン)したときの酸素遮断弁22、酸素放散弁23、窒素遮断弁28、窒素放散弁29、窒素本管遮断弁32の弁動作を図4に示す。例えば、これらの弁の動力源が圧縮空気であるような場合には、制御装置30が弁動力源、即ち圧縮空気の失陥を検出し、動力源失陥検出時には、酸素遮断弁22を閉、酸素放散弁23を開、窒素遮断弁28を開、窒素放散弁29を閉、窒素本管遮断弁32を閉動作する。これに対し、弁の動力源が電力であるような場合には、場合によっては制御装置30も動作不能となる場合がある。そのような場合であっても、酸素遮断弁22は動力源なし時閉、酸素放散弁23は動力源なし時開、窒素遮断弁28は動力源なし時開、窒素放散弁29は動力源なし時閉、窒素本管遮断弁32は動力源なし時閉であるから、弁動力源の失陥時には、各弁は図4のように開閉動作する。
 動力源の失陥時に、酸素流れ遮断機構70が機能して、酸素遮断弁22のうちの上流側の1個が閉となると共に、酸素流れが遮断すると、酸素遮断弁22の上流側の配管内へ高炉炉内ガスが逆流してくるのを防止することが可能となる。2個の酸素遮断弁22が閉となると共に酸素放散弁23が開となると、酸素遮断弁22の上流側の配管内へ高炉炉内ガスが逆流することをより確実に防止できる上に、窒素配管8中に酸素が混入したりすることを防止することができる。
 また、窒素流れ開閉機構80が機能して、2個の窒素遮断弁28が開となると共に窒素放散弁29が閉となり、同時に2個の酸素遮断弁22が閉となると共に酸素放散弁23が開となると、窒素配管8の接続位置より下流側が窒素でパージされ、酸素配管7中に、高炉炉内ガスが混入することを防止することが可能となる。酸素配管7及び窒素配管8の各々に遮断弁22,28を2個ずつ設けると共に、その間に放散弁23,29を設けると、何らかの原因で、1本の配管における遮断弁の1個からリークが発生した場合でも、もう1個の遮断弁でガスの混合を防止し、合わせて放散弁23,29よりリークしたガスを放散するため、リークしたガスが2個の遮断弁間に充満して元圧まで加圧されることを防ぐことが可能となり、異なるガス同士が混合される虞をより一層低減することが可能となる。
 図5は、弁の動力源が失陥したときの各弁の動作と、レシーバータンク31内の圧力の経時変化を示す。例えば、前述のようにランス4から微粉炭と酸素を吹込む通常操業の状態から、動力源に失陥が生じると、酸素遮断弁22が閉、酸素放散弁23が開、窒素遮断弁28が開、窒素放散弁29が閉、窒素本管遮断弁32が閉となるように動作する。よって、動力源の失陥時に、酸素枝管13から酸素支管14への酸素の供給が停止されると共に、窒素枝管26からは酸素支管14への窒素の供給が可能となる。このとき、窒素本管遮断弁32は閉じているので、窒素本管24への新たな窒素の供給は望めないが、レシーバータンク31内に貯留されている窒素が窒素本管24、窒素集合ヘッダー25、窒素枝管26を経て酸素支管14に供給される。この供給に伴ってレシーバータンク31内の圧力は次第に低下する。
 高炉1内が、通常操業のように高圧状態であれば、レシーバータンク31内の容量は、レシーバータンク31から下流側の高炉羽口3のランス4までの配管体積と同等か、それより少し多い程度でよい。しかしながら、弁動力源が電力であるような場合、弁動力源の失陥に伴って、高炉自体が停止(休風)状態となっている場合も想定される。高炉が停止(休風)状態となっている場合には、高炉内の圧力がゼロ(大気圧)となっている可能性がある。このような場合には、レシーバータンク31からの窒素は酸素枝管13や酸素支管14を通過して高炉1内に吹込まれるので、タンク容量を置換対象の配管容積の3~5倍に設定することが好ましい。この容量は、ガス溜まりの発生しやすさなどの配管形状などで決まるため、実際に窒素をレシーバータンク31から全高炉羽口3のランス4に流して配管内の窒素濃度と累計流量との関係から設定するようにしてもよい。そして、そのようにすることで、弁動力源の失陥時にあっても、酸素配管7と窒素配管8との接続位置から下流側を窒素で速やかにパージすることができ、これにより高炉炉内ガスの酸素配管7への混入を防止することができる上に、必要以上に窒素は流れないため、過剰な高炉羽口3の冷却も防止することができる。
 1   高炉
 2   ブローパイプ
 3   高炉羽口
 4   ランス
 5   レースウエイ
 6   微粉炭流量調整弁
 7   酸素配管
 8   窒素配管
 11  酸素本管
 12  酸素集合ヘッダー
 13  酸素枝管
 14  酸素支管
 15  フレキシブルホース
 16  酸素接続管
 17  接続管遮断弁
 18  接続管逆止弁
 19  接続管放散弁
 20  支管遮断弁
 21  酸素流量調整弁
 22  酸素遮断弁
 23  酸素放散弁
 24  窒素本管
 25  窒素集合ヘッダー
 26  窒素枝管
 27  窒素逆止弁
 28  窒素遮断弁
 29  窒素放散弁
 30  制御装置
 31  レシーバタンク
 32  窒素本管遮断弁
 33  安全弁
 34  ドレン抜き
 40  酸素
 50  窒素
 70  酸素流れ遮断機構
 80  窒素流れ開閉機構
 100 酸素吹込み設備
 

Claims (10)

  1.  高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、
     前記ランスに接続され、該ランスに酸素を供給する酸素配管と、
     前記酸素配管に設けられた流量調整弁と、
     前記流量調整弁より上流で前記酸素配管に接続され、窒素遮断弁が設けられた窒素配管と、
     前記酸素配管と前記窒素配管との接続位置より上流で前記酸素配管に設けられた酸素遮断弁と、
     前記酸素遮断弁及び前記窒素遮断弁の開閉制御を行う制御装置と、を備え、
     前記制御装置は、前記酸素遮断弁が開の場合に前記窒素遮断弁を閉とし、前記酸素遮断弁が閉の場合に前記窒素遮断弁を開とする高炉羽口から酸素を吹込む設備。
  2.  高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、
     前記ランスに接続され、該ランスに酸素を供給する酸素配管と、
     前記酸素配管に設けられた流量調整弁と、
     前記流量調整弁より上流で前記酸素配管に接続された窒素配管と、
     前記酸素配管と前記窒素配管との接続位置より上流で前記酸素配管に設けられた2個の酸素遮断弁と、
     前記2個の酸素遮断弁の間で前記酸素配管に設けられた酸素放散弁と、を備える高炉羽口から酸素を吹込む設備。
  3.  前記窒素配管は、逆止弁と、前記逆止弁より上流に配置される2個の窒素遮断弁と、前記2個の窒素遮断弁の間に配置される窒素放散弁と、を備える請求項2に記載の高炉羽口から酸素を吹込む設備。
  4.  前記2個の酸素遮断弁と前記2個の窒素遮断弁の開閉制御を行う制御装置を備え、
     前記制御装置は、前記2個の酸素遮断弁が開の場合に前記2個の窒素遮断弁を閉とし、前記2個の酸素遮断弁が閉の場合に前記2個の窒素遮断弁を開とする請求項3に記載の高炉羽口から酸素を吹込む設備。
  5.  高炉羽口から微粉炭及び酸素を高炉内に吹込むことが可能なランスと、
     前記ランスに接続され、該ランスに酸素を供給する酸素配管と、
     前記酸素配管に設けられた流量調整弁と、
     前記流量調整弁より上流で前記酸素配管に接続された窒素配管と、
     前記酸素配管と前記窒素配管との接続位置より上流で、前記酸素配管に設けられ、動力源が失陥した場合に、前記酸素配管の酸素流れを遮断する酸素流れ遮断機構と、を備える高炉羽口から酸素を吹込む設備。
  6.  前記窒素配管は、逆止弁と、前記逆止弁より上流に配置され、動力源が失陥した場合に、前記窒素配管に窒素を流す窒素流れ開閉機構と、を備える請求項5に記載の高炉羽口から酸素を吹込む設備。
  7.  前記窒素流れ開閉機構は、動力源が失陥した場合に開動作する2個の窒素遮断弁と、前記2個の窒素遮断弁の間に配置され、動力源が失陥した場合に閉動作する窒素放散弁と、を備える請求項6に記載の高炉羽口から酸素を吹込む設備。
  8.  前記酸素流れ遮断機構は、動力源が失陥した場合に閉動作する2個の酸素遮断弁と、前記酸素配管に前記2個の酸素遮断弁の間に設けられ、動力源が失陥した場合に開動作する酸素放散弁と、を有する請求項5~7のいずれか1項に記載の高炉羽口から酸素を吹込む設備。
  9.  前記窒素遮断弁または前記窒素流れ開閉機構より上流で前記窒素配管に接続されるレシーバータンクであって、該レシーバータンクから前記高炉羽口までの配管容積の3~5倍となる容積を有するレシーバータンクと、
     該レシーバータンクの上流側に配置され、動力源が失陥した場合に閉動作する窒素本管遮断弁と、を備える請求項1,3,4及び6~8のいずれか1項に記載の高炉羽口から酸素を吹込む設備。
  10.  請求項1~9のいずれか1項に記載の高炉羽口から酸素を吹込む設備を用いて、高炉内に微粉炭及び酸素を吹込む高炉操業方法。
     
PCT/JP2013/007216 2012-12-11 2013-12-09 高炉羽口から酸素を吹込む設備及び高炉操業方法 WO2014091737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014551886A JP5888435B2 (ja) 2012-12-11 2013-12-09 高炉羽口から酸素を吹込む設備及び高炉操業方法
CN201380064670.3A CN104854249B (zh) 2012-12-11 2013-12-09 从高炉风口吹入氧气的设备和高炉操作方法
KR1020157012417A KR101671139B1 (ko) 2012-12-11 2013-12-09 고로 송풍구로부터 산소를 취입하는 설비 및 고로 조업 방법
BR112015013245-6A BR112015013245B1 (pt) 2012-12-11 2013-12-09 instalação para injetar oxigênio a partir de uma ventaneira de alto-forno e método de operação de alto-forno

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-270093 2012-12-11
JP2012-270092 2012-12-11
JP2012270093 2012-12-11
JP2012270092 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091737A1 true WO2014091737A1 (ja) 2014-06-19

Family

ID=50934045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007216 WO2014091737A1 (ja) 2012-12-11 2013-12-09 高炉羽口から酸素を吹込む設備及び高炉操業方法

Country Status (6)

Country Link
JP (1) JP5888435B2 (ja)
KR (1) KR101671139B1 (ja)
CN (1) CN104854249B (ja)
BR (1) BR112015013245B1 (ja)
TW (1) TWI557230B (ja)
WO (1) WO2014091737A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220106651A1 (en) * 2020-10-06 2022-04-07 Midrex Technologies, Inc. Oxygen Injection For Reformer Feed Gas For Direct Reduction Process
CN114369693A (zh) * 2022-01-12 2022-04-19 新疆八一钢铁股份有限公司 一种富氧高炉供氧系统、供氧方法及其控制方法
CN116300677A (zh) * 2023-03-23 2023-06-23 沈阳科维润工程技术有限公司 一种高炉风口局部富氧炉况均匀调剂装置及其使用方法
JP7508020B2 (ja) 2021-11-26 2024-07-01 Jfeスチール株式会社 高炉羽口接続管の異常検出方法および異常検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697563B (zh) * 2019-09-26 2020-07-01 中國鋼鐵股份有限公司 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243704A (ja) * 1990-02-20 1991-10-30 Sumitomo Metal Ind Ltd 高炉羽口粉体吹き込み操業法
JPH05320726A (ja) * 1992-05-26 1993-12-03 Sumitomo Metal Ind Ltd 高炉への微粉炭吹込管の詰まり防止装置
JP2000226609A (ja) * 1999-02-08 2000-08-15 Nkk Corp ランスの異常監視方法
JP2001031247A (ja) * 1999-07-26 2001-02-06 Nkk Corp 粉粒体の気流搬送方法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038147C (zh) * 1995-03-20 1998-04-22 北京科技大学 一种高炉氧煤喷吹氧气的气体供应及控制装置
CN102155626B (zh) * 2010-12-30 2012-10-24 安阳钢铁股份有限公司 一种氧气管道、球罐投用新方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243704A (ja) * 1990-02-20 1991-10-30 Sumitomo Metal Ind Ltd 高炉羽口粉体吹き込み操業法
JPH05320726A (ja) * 1992-05-26 1993-12-03 Sumitomo Metal Ind Ltd 高炉への微粉炭吹込管の詰まり防止装置
JP2000226609A (ja) * 1999-02-08 2000-08-15 Nkk Corp ランスの異常監視方法
JP2001031247A (ja) * 1999-07-26 2001-02-06 Nkk Corp 粉粒体の気流搬送方法及び装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220106651A1 (en) * 2020-10-06 2022-04-07 Midrex Technologies, Inc. Oxygen Injection For Reformer Feed Gas For Direct Reduction Process
US11920204B2 (en) * 2020-10-06 2024-03-05 Midrex Technologies, Inc. Oxygen injection for reformer feed gas for direct reduction process
JP7508020B2 (ja) 2021-11-26 2024-07-01 Jfeスチール株式会社 高炉羽口接続管の異常検出方法および異常検出装置
CN114369693A (zh) * 2022-01-12 2022-04-19 新疆八一钢铁股份有限公司 一种富氧高炉供氧系统、供氧方法及其控制方法
CN114369693B (zh) * 2022-01-12 2023-02-14 新疆八一钢铁股份有限公司 一种富氧高炉供氧系统、供氧方法及其控制方法
CN116300677A (zh) * 2023-03-23 2023-06-23 沈阳科维润工程技术有限公司 一种高炉风口局部富氧炉况均匀调剂装置及其使用方法

Also Published As

Publication number Publication date
TWI557230B (zh) 2016-11-11
KR20150067764A (ko) 2015-06-18
TW201441375A (zh) 2014-11-01
CN104854249B (zh) 2017-03-01
BR112015013245A2 (pt) 2017-07-11
BR112015013245B1 (pt) 2019-11-05
CN104854249A (zh) 2015-08-19
JP5888435B2 (ja) 2016-03-22
JPWO2014091737A1 (ja) 2017-01-05
KR101671139B1 (ko) 2016-10-31

Similar Documents

Publication Publication Date Title
JP5888435B2 (ja) 高炉羽口から酸素を吹込む設備及び高炉操業方法
JP4979615B2 (ja) 燃焼器及び燃焼器の燃料供給方法
US20150184594A1 (en) Systems and methods to maintain stability of fuel flow in gas turbine engines
JP6939705B2 (ja) 水素燃焼ボイラ
CN103409169A (zh) 气化装置及以水煤浆或粉煤为原料的在线投料方法
KR20090064385A (ko) 가공대상물들의 열적 디버링 장치
JP4546482B2 (ja) ガスタービン設備、低カロリガス供給設備および当該ガスのカロリ上昇抑制方法
EA013661B1 (ru) Способ интеграции доменной печи и устройства разделения газов воздуха
US20120234008A1 (en) Gas supply device and exhaust gas power generation system
ES2913641T3 (es) Planta de alto horno y proceso de parada
JP2014169825A (ja) 高炉ガス焚きボイラにおける高炉吹き抜け時の燃料制御方法および装置
KR102125365B1 (ko) 열풍로 시스템
JP4779400B2 (ja) 高炉への還元性ガス吹込制御装置
JP6604343B2 (ja) 予熱ガス吹込み方法、高炉操業方法および酸素高炉の操業方法
JP2007263410A (ja) 廃棄物溶融炉の羽口吹込方法及び吹込装置
JP2007170245A (ja) ガスタービン設備、低カロリガス供給設備および当該ガスのカロリ上昇抑制方法
JP2016094647A (ja) 高炉設備のガス置換装置
JP6468272B2 (ja) 高炉の羽口吹き込みランスにおけるランス保護方法
CN220788477U (zh) 气化烘炉投料一体化装置
WO2019070053A1 (ja) ガス供給システム及びガス遮断方法
CN214468615U (zh) 一种煤气混合燃烧装置
KR101868155B1 (ko) 가열 장치
JP2013001910A (ja) 高炉への還元材吹込み装置および方法
JPH0610059A (ja) 燃焼制御装置
JP2004020091A (ja) 燃料供給経路に不活性ガスを導入する経路を接続したリジェネバーナおよびその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551886

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012417

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015/07133

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013245

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13862329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015013245

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150608