TWI697563B - 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法 - Google Patents

鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法 Download PDF

Info

Publication number
TWI697563B
TWI697563B TW108134929A TW108134929A TWI697563B TW I697563 B TWI697563 B TW I697563B TW 108134929 A TW108134929 A TW 108134929A TW 108134929 A TW108134929 A TW 108134929A TW I697563 B TWI697563 B TW I697563B
Authority
TW
Taiwan
Prior art keywords
steel billet
zone
gas
inert gas
heating
Prior art date
Application number
TW108134929A
Other languages
English (en)
Other versions
TW202113088A (zh
Inventor
白智仁
謝豐帆
李健暘
陳威宇
鄭獻華
柯文彬
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW108134929A priority Critical patent/TWI697563B/zh
Application granted granted Critical
Publication of TWI697563B publication Critical patent/TWI697563B/zh
Publication of TW202113088A publication Critical patent/TW202113088A/zh

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)

Abstract

本發明有關於一種鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法。此鋼胚加熱爐包含爐體與氣體系統。爐體包含預熱區、加熱區和均熱區,而氣體系統包含燃氣供給單元、空氣供給單元與惰性氣體供給單元。其次,爐體更包含設置於加熱區與均熱區的複數個燃燒單元,且此些燃燒單元之每一者具有複數個燃燒器。藉由燃氣供給單元與空氣供給單元,鋼胚加熱爐可有效加熱鋼胚,或者藉由惰性氣體供給單元,此鋼胚加熱爐可有效抑制鋼胚表面脫碳層的增厚,進而提升鋼胚之品質。

Description

鋼胚加熱爐及抑制鋼胚表面脫碳層之厚 度增加的方法
本發明係有關一種鋼胚加熱爐,特別是提供一種可有效抑制鋼胚表面脫碳層增厚之鋼胚加熱爐與方法。
於鋼鐵製程中,鋼鐵原料係先熔煉鍛造為鋼胚,再依據產品之規格要求,進一步對鋼胚進行一系列之熱處理製程和軋延製程。其中,依據鋼胚溫度之不同,軋延製程可區分為熱軋製程與冷軋製程。於熱軋製程中,鋼胚係先被加熱至高溫,以降低鋼胚之軋延阻抗,而使軋延設備可大幅裁減鋼胚,以滿足規格要求。當鋼胚係高溫時,鋼胚表面易與環境氣氛反應,而降低其品質。舉例而言,當鋼胚於鋼胚加熱爐中加熱,且鋼胚加熱爐之爐氛含有過多的空氣時,鋼胚表面易與空氣中之氧氣反應,而增加鋼胚之表面脫碳層的厚度。據此,鋼胚加熱爐之燃燒單元的空燃比須精準被控制,以避免爐氛含有過多之空氣。一般而言,當爐氛之氧含量不小於0.5%時,鋼胚之表面脫碳層易增厚。
然而,當鋼胚之加熱製程須暫停時,鋼胚係靜置於鋼胚加熱爐中,以待製程重啟。其中,為避免鋼胚係持須被加熱,與殘留之燃氣因高溫自燃,鋼胚加熱爐之部分燃燒器須關閉,並以空氣冷卻。如此一來,所通入之冷卻空氣將導致鋼胚表面之脫碳層增厚,而降低其品質。
有鑑於此,亟須提供一種鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法,以改進習知表面脫碳層無法有效被抑制的缺陷。
因此,本發明之一態樣是在提供一種鋼胚加熱爐,此鋼胚加熱爐中之燃燒單元係連結特定之氣體系統,而可依據製程狀況,供給含有燃氣與空氣之混合氣體或惰性氣體至燃燒單元的燃燒器。
本發明之另一態樣是提供一種抑制鋼胚表面脫碳層之厚度增加的方法,其係利用前述之鋼胚加熱爐來加熱鋼胚。鋼胚加熱爐因產線突發設備異常長時間停機需要暫停加熱時,此鋼胚加熱爐可抑制鋼胚之表面脫碳層厚度增加。
根據本發明之一態樣,提出一種鋼胚加熱爐。此鋼胚加熱爐包含爐體及氣體系統。爐體包含預熱區、均熱區、加熱區與複數個燃燒單元。其中,加熱區設置於預熱區與均熱區之間,且此些燃燒單元分別設置於加熱區與均熱區中。每一個燃燒單元包含複數個燃燒器。
氣體系統連接每一個燃燒單元,且氣體系統包含燃氣供給單元、空氣供給單元與惰性氣體供給單元。燃氣供給單元係配置以經由燃氣管路供給燃氣至每一個燃燒單元中。空氣供給單元係配置以經由空氣管路供給空氣至每一個燃燒單元中,其中空氣管路不連通燃氣管路。惰性氣體供給單元係配置以經由惰性氣體管路供給惰性氣體至每一個燃燒單元中,其中惰性氣體管路分別連接燃氣管路與空氣管路。此氣體系統係配置以供給混合氣體或惰性氣體至每一個燃燒單元中,且此混合氣體包含燃氣與空氣。
依據本發明之一實施例,前述之燃氣管路設有燃氣閥,且惰性氣體管路與燃氣管路之連接位置係介於燃氣閥與每一個燃燒單元中。前述之空氣管路設有空氣閥,且惰性氣體管路與空氣管路之連接位置係介於空氣閥與每一個燃燒單元中。
依據本發明之另一實施例,前述之惰性氣體管路分別藉由第一惰性氣體子管路與第二惰性氣體子管路連接燃氣管路與空氣管路,其中第一惰性氣體子管路設有第一氣體閥,且第二惰性氣體子管路設有第二氣體閥。
依據本發明之又一實施例,前述之惰性氣體包含氮氣。
依據本發明之再一實施例,此鋼胚加熱爐更包含複數個測溫單元、複數個位置偵測單元與複數個監視單元。其中,此些測溫單元係設置於均熱區中,此些位置偵測 單元係設置於預熱區與均熱區中,且此些監視單元係設置於爐體之爐壁外側。
依據本發明之又另一實施例,此鋼胚加熱爐更包含冷卻氣體供給系統,且此冷卻氣體供給系統係配置以供給惰性氣體至測溫單元、位置偵測單元與監視單元的每一者。
根據本發明之另一態樣,提出一種抑制鋼胚表面脫碳層之厚度增加的方法。此方法係先放置鋼胚於前述之鋼胚加熱爐的預熱區中,並移動鋼胚,以使鋼胚依序通過加熱區與均熱區,而可對鋼胚進行加熱製程。此加熱製程係關閉惰性氣體管路,並供給混合氣體至設置於加熱區與均熱區的燃燒單元,以藉由此些燃燒單元來加熱鋼胚。於進行加熱製程之期間,當鋼胚加熱爐需要暫停加熱時,停止移動鋼胚,且對鋼胚進行中止製程。其中,此中止製程係停止供給混合氣體至位於加熱區之一部分的燃燒單元與位於均熱區之一部分的燃燒單元,並經由惰性氣體管路、燃氣管路與空氣管路供給惰性氣體至位於加熱區之此部分的燃燒單元與位於均熱區之此部分的燃燒單元。
依據本發明之一實施例,於進行中止製程時,於加熱區中,前述部分的燃燒單元與鋼胚之距離係小於剩餘部分的燃燒單元與鋼胚之距離,且於均熱區中,前述部分的燃燒單元與鋼胚之距離係小於剩餘部分的燃燒單元與鋼胚之距離。
依據本發明之另一實施例,於進行中止製程時,持續供給混合氣體至位於加熱區之前述剩餘部分的燃燒單元與位於均熱區之前述剩餘部分的燃燒單元。
依據本發明之又一實施例,當前述之中止製程停止進行時,移動鋼胚,並對鋼胚進行加熱製程。
應用本發明鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法,其係利用特定之氣體系統來供給含有燃氣與空氣之混合氣體或惰性氣體至加熱爐之燃燒單元,而可有效地加熱鋼胚,並於暫停加熱時,可有效地抑制鋼胚表面脫碳層之增厚。另外,本案可藉由冷卻氣體供給系統導入惰性氣體至增設的測溫單元、位置偵測單元與監視單元,以利用惰性氣體來冷卻與吹淨此些單元。
100‧‧‧方法
110/120/130/140/150/160/170‧‧‧操作
200‧‧‧加熱爐
200a/200b/200c/200d/200e‧‧‧殼板
201/203/205‧‧‧鋼胚
210/220‧‧‧燃燒單元
211/221‧‧‧燃燒器
300‧‧‧氣體系統
310‧‧‧燃氣供給單元
310a/310b/320a/320b/330a/330b‧‧‧控制閥
331a/331b/331c‧‧‧旁通閥
321‧‧‧空氣供給單元
323‧‧‧熱交換器
325‧‧‧流量計
330‧‧‧惰性氣體供給單元
510A/510B/511/520A/520B/521‧‧‧折線
A1/B1/B2/C1/C2/D1/D2/E1/E2‧‧‧子區
B‧‧‧下區
D‧‧‧方向
d1/d2/d3‧‧‧深度
I‧‧‧預熱區
II‧‧‧加熱區
III‧‧‧均熱區
T‧‧‧上區
為了對本發明之實施例及其優點有更完整之理解,現請參照以下之說明並配合相應之圖式。必須強調的是,各種特徵並非依比例描繪且僅係為了圖解目的。相關圖式內容說明如下:〔圖1〕係繪示依照本發明之一實施例之抑制鋼胚表面脫碳層之厚度增加的方法之流程示意圖。
〔圖2A〕係繪示依照本發明之一些實施例之鋼胚加熱爐的立體示意圖。
〔圖2B〕係繪示依照本發明之一些實施例之鋼胚加熱爐的剖切側視圖。
〔圖2C〕係繪示依照本發明之一些實施例之鋼胚加熱爐的氣體系統之示意圖。
〔圖3A〕係顯示依照本發明之實施例1之鋼胚表面的金相組織顯微照片。
〔圖3B〕係顯示依照本發明之比較例1之鋼胚表面的金相組織顯微照片。
〔圖4A〕係顯示依照本發明之實施例2之鋼胚表面的金相組織顯微照片。
〔圖4B〕係顯示依照本發明之比較例2之鋼胚表面的金相組織顯微照片。
〔圖5A〕係顯示依照本發明之應用例之不同線徑的盤元之表面脫碳深度和最大脫碳深度佔線徑百分比的折線圖。
〔圖5B〕係顯示依照本發明之比較應用例之不同線徑的盤元之表面脫碳深度和最大脫碳深度佔線徑百分比的折線圖。
以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。
請參照圖1與圖2A,其中圖1係繪示依照本發明之一實施例之抑制鋼胚表面脫碳層之厚度增加的方法之流程示意圖,且圖2A係繪示依照本發明之一些實施例之鋼胚 加熱爐的立體示意圖。於方法100中,初始鋼胚201係先放置於鋼胚加熱爐200之預熱區I中,以對鋼胚進行加熱製程,如操作110與操作120所示。
請同時參照圖2A與圖2B,其中圖2B係繪示依照本發明之一些實施例之鋼胚加熱爐的剖切側視圖,且圖2B係沿著圖2A後述之第一子區A1與第二子區B1的界面來剖切。鋼胚加熱爐200包含爐體(未標示)與氣體系統300(如圖2C所示)。爐體係一殼體,且爐體包含預熱區I、加熱區II與均熱區III。爐體可由相對之上殼板200a和下殼板200b、相對之側殼板200c和200d,以及相對之前殼板(未標示)與後殼板200e所組成,其中前殼板係位於預熱區I,而後殼板200e係位於均熱區III中。如圖2A所示,雖然本案之上殼板200a具有凹陷與凸起之構型,惟本發明不以此為限,本案所屬技術領域具有通常知識者可根據加熱爐之配置與設計需求,調整上殼板200a為平板狀或其他適當之形狀。
其次,爐體具有上區T與下區B。在一些實施例中,上區T與下區B係藉由鋼胚之輸送裝置(例如:動樑(walking beam)等)來區分。在一些實施例中,上區T與下區B係藉由鋼胚來區分。換言之,鋼胚之上方區域為上區T,而鋼胚之下方區域為下區B。在其他實施例中,上區T與下區B之分隔亦可根據實際之需求及/或設計來調整。依據上區T與下區B,加熱區II更可區分為第一子區A1、第二子區B1、第三子區(未標示)與第四子區B2,而均熱區III可區分為第五子區C1、第六子區D1、第七子區E1、第八子區C2、 第九子區D2與第十子區E2。其中,第一子區A1、第二子區B1、第五子區C1、第六子區D1與第七子區E1係位於上區T,而第三子區、第四子區B2、第八子區C2、第九子區D2與第十子區E2係位於下區B。
再者,加熱區II之上區T係均分為前述之第一子區A1與第二子區B1,且第三子區和第四子區分別相對於第一子區A1與第二子區B1。均熱區III之上區T係均分為第五子區C1、第六子區D1與第七子區E1,且第八子區C2、第九子區D2與第十子區E2分別相對於第五子區C1、第六子區D1與第七子區E1。可理解的是,前述之分區係虛擬之區域配置,每個區域之間並不具有實體之分隔板件。
於此鋼胚加熱爐200中,未被加熱之初始鋼胚201係經由預熱區I之入口爐門(未繪示)進入鋼胚加熱爐200中,以進行加熱製程。然後,沿著方向D,已開始被加熱但未完成加熱之處理鋼胚203係藉由輸送裝置依序來通過加熱區II與均熱區III。當加熱製程完成(即處理鋼胚203已被加熱至設定溫度)時,所形成之再加熱鋼胚205係經由均熱區III之出口爐門(未繪示)離開鋼胚加熱爐200。如圖2A所示,雖然初始鋼胚201與再加熱鋼胚205係沿著相同之方向於相異之殼板進出鋼胚加熱爐200,但本發明不以此為限,在其他實施例中,初始鋼胚201與再加熱鋼胚205可沿著相反之方向於相同之殼板進出鋼胚加熱爐。
請繼續參照圖2A與圖2B。鋼胚加熱爐200更包含複數個燃燒單元210與220,燃燒單元210係位於上區T, 而燃燒單元220係位於下區B。燃燒單元210與220分別設置於加熱區II與均熱區III中,且每一個燃燒單元210與220分別包含複數個燃燒器211與221。
於加熱區II之上區T中,燃燒單元210係設置於上殼板200a,以向處理鋼胚203噴射火焰。由於上殼板200a於加熱區II具有一凸起結構,故燃燒單元210可設置於此凸起結構之斜側面上,而可朝向處理鋼胚203噴射火焰。較佳地,由於預熱區I未設置燃燒器,故設置於斜側面之燃燒單元210的燃燒器211所噴射出的火焰除具有朝下之分向量外,其亦具有朝向預熱區I的分向量,而有助於提升預熱區I之溫度。在其他實施例中,燃燒單元210亦可設置於此凸起結構之水平頂面(即燃燒單元210係僅朝下向處理鋼胚203噴射火焰)。
為提升加熱區II之上區T的溫度均一性,第一子區A1與第二子區B1均設有燃燒器單元210。舉例而言,此些燃燒器單元210之每一者均具有5個燃燒器211。惟,本發明不以此為限,在其他實施例中,依據加熱區II之尺寸配置及/或燃燒器211之規格,燃燒單元210亦可具有其他適當數量之燃燒器211。
於加熱區II之下區B中,為了避免火焰之高溫損壞輸送裝置,燃燒單元220係設置於側殼板200c與側殼板200d上。如此一來,燃燒單元220之燃燒器221的火焰係朝向處理鋼胚203的延伸方向,而非直接朝向處理鋼材203。在一些具體例中,燃燒單元220之每一者均具有3個燃燒器 221。在其他實施例中,燃燒單元220可具有適當數量之燃燒器221。
依據前述之內容可知,燃燒器211之火焰係直接朝向處理鋼胚203,而燃燒器221之火焰並非朝向處理鋼胚203,故燃燒器211對於處理鋼胚203的加熱能力係大於燃燒器221對於處理鋼胚的加熱能力。可理解的是,本文所述之「加熱能力」係指燃燒器對於單位面積之鋼胚的升溫速率,較佳之加熱能力代表鋼胚可於較短時間被燃燒器加熱至設定溫度。在一些應用例中,基於爐體之設計,燃燒單元210之燃燒器211與處理鋼胚203的距離可小於燃燒單元220之燃燒器221與處理鋼胚203的距離。據此,在此些應用例中,相較於燃燒器221,燃燒器211對於處理鋼胚203的溫度具有較大之影響。
於均熱區III中,位於上區T之燃燒單元210與位於下區B之燃燒單元220均係設置於後殼板200e上。為了提升均熱區III之溫度均一性,第五子區C1至第七子區E1的每一者均設有燃燒單元210,且第八子區C2至第十子區E2的每一者均設有燃燒單元220。舉例而言,每一個燃燒單元220可具有4個燃燒器221。在其他實施例中,每一個燃燒單元220亦可具有適當數量之燃燒器221。由於均熱區III並非主要加熱區段,故燃燒單元210較佳不直接朝向再加熱鋼胚205噴射火焰。因此,燃燒單元210不設置於上殼板200a上。另外,為避免燃燒器211干擾再加熱鋼胚205之退出,燃燒器211不設置於側殼板200c或200d上。
由於加熱鋼板205係承載於輸送裝置上,且上區T與下區B可以輸送裝置來分隔,故由於輸送裝置之分隔,位於上區T之燃燒器211對於再加熱鋼胚205的加熱能力係大於位於下區B之燃燒器221的加熱能力。在一些應用例中,基於爐體之設計,燃燒單元210之燃燒器211與再加熱鋼胚205的距離可小於燃燒單元220之燃燒器221與再加熱鋼胚205的距離。據此,在此些應用例中,相較於燃燒器221,燃燒器211對於再加熱鋼胚205的溫度均一性具有較大之影響。
請同時參照圖2A與圖2C,其中圖2C係繪示依照本發明之一些實施例之鋼胚加熱爐的氣體系統之示意圖。燃燒器211與221之每一者均連接氣體系統300。可理解的是,雖然圖2C係繪示燃燒器211,惟燃燒器221亦具有相同之氣體供給系統,故圖2C之燃燒器211亦可替換為燃燒器221。氣體系統300可包含燃氣供給單元310、空氣供給單元321與惰性氣體供給單元330。
燃氣供給單元310係經由燃氣管路供給燃氣至燃燒單元211中,且燃氣可包含焦爐氣(Coke Oven Gas;COG)。其中,燃氣管路可設有燃氣流量控制閥(Flow Control Valve;FCV)310a與電磁控制閥(Solenoid Valve;SOV)310b。一般而言,為了避免燃氣流量控制閥310a與電磁控制閥310b的開閥影響燃氣之流場,相較於電磁控制閥310b,燃氣流量控制閥310a係設置於上游位置(即燃氣流量控制閥310a較靠近燃氣供給單元310)。
空氣供給單元321係經由空氣管路供給空氣至燃燒器211中,且空氣管路不連通燃氣管路。其中,空氣管路具有第一空氣子管路與第二空氣子管路。第一空氣子管路設有空氣流量控制閥320a,而第二空氣子管路設有電磁控制閥320b。經由第一空氣子管路,空氣供給單元321所供給之空氣係作為燃燒器211之燃燒空氣(combustion air),以供火焰燃燒使用。經由第二空氣子管路,空氣供給單元321所供給之空氣係作為燃燒器211之中央空氣(center air),以供與前述之燃氣混合,而點燃火焰。
為精準控制燃燒器211之空燃比,空氣管路可設有流量計325。空氣供給單元321可為鼓風機或其他適當之裝置。當空氣供給單元321所提供之空氣係高溫氣體時,空氣可先經過熱交換器323,以回收空氣之熱能。
惰性氣體供給單元330係經由惰性氣體管路供給惰性氣體至燃燒器211中。在一些具體例中,惰性氣體可包含但不限於氮氣、其他適當之惰性氣體與此些惰性氣體之任意混合。惰性氣體管路可包含第一惰性氣體子管路與第二惰性氣體子管路。第一惰性氣體子管路設有電磁控制閥330a,且連通燃氣管路,其中第一惰性氣體子管路與燃氣管路的連接位置係介於電磁控制閥310b與燃燒器211之間。第二惰性氣體子管路設有電磁控制閥330b,且連通第二空氣子管路,其中第二惰性氣體子管路與第二空氣子管路的連接位置係介於電磁控制閥320b與燃燒器211之間。
請同時參照圖1、圖2A與圖2C。於進行加熱製程(即操作120)時,燃氣供給單元310與空氣供給單元321係供給具有燃氣與空氣之混合氣體至燃燒器211中,故燃氣流量控制閥310a、電磁控制閥310b、空氣流量控制閥320a與電磁控制閥320b均係開啟的。然而,惰性氣體供給單元330不會供給惰性氣體至燃燒器211中,故電磁控制閥330a與330b係關閉的。一般而言,在一些應用例中,加熱製程可於900℃至1200℃下進行,且鋼胚之在爐時間(即初始鋼胚201進入鋼胚加熱爐200至再加熱鋼胚205退出鋼胚加熱爐200的時間)可為70分鐘至90分鐘。在其他應用例中,加熱製程可於900℃至1100℃下進行,且鋼胚之在爐時間可為可進行80分鐘至90分鐘。較佳地,鋼胚之在爐時間係大於60分鐘,以避免鋼胚之均溫性較差。
於進行操作120時,當製程須暫停時,現場操作人員須進一步判斷加熱製程是否須暫停,如操作130所示。當加熱製程須暫停時,對鋼胚加熱爐200中之鋼胚進行中止製程,如操作140所示。當進行中止製程時,停止移動鋼胚加熱爐200中之處理鋼胚203。然後,為保持鋼胚加熱爐200中之溫度,並避免處理鋼胚203與再加熱鋼胚205的溫度持續增加,故基於前述加熱能力之強弱,上區T之燃燒單元210係關閉的,而下區B之燃燒單元220係持續燃燒的。據此,對於連結燃燒單元210之氣體系統300,關閉其燃氣管路上之電磁控制閥310b,並關閉其第一空氣子管路上之空氣流量控制閥320a與第二空氣子管路上的電磁控制 閥320b。進一步地,為避免所關閉之上區T的燃燒單元210之燃燒器211過熱,對於連結燃燒單元210之氣體系統300,開啟其第一惰性氣體子管路上的電磁控制閥330a與第二惰性氣體子管路上的電磁控制閥330b,以使惰性氣體可進一步經由燃氣管路與第二空氣子管路流入燃燒單元210之燃燒器211。如此一來,燃燒器211可藉由惰性氣體來冷卻,且惰性氣體所產生之正壓可防止回火(避免爐氛倒流),以確保爐體安全。再者,所導入之惰性氣體亦可於處理鋼胚203與加熱鋼胚205之表面形成保護膜,以隔絕空氣接觸鋼胚表面,進而可於中止製程時抑制脫碳層之增厚。另外,於中止製程時,除了下區B之燃燒單元220的燃燒器221燃燒所需的空氣外,鋼胚加熱爐200沒有額外之空氣通入,故鋼胚表面之脫碳層更不易增厚。
由於鋼胚加熱爐200之高溫易導致燃氣自燃,其危險性較高,故於中止製程時,為避免電磁控制閥330a失效,第一惰性氣體子管路可額外設置具有旁通閥331a之旁通管路,以確保惰性氣體可經由燃氣管路通入燃燒器211中。其次,為進一步驅趕燃氣管路中之燃氣,第一惰性氣體子管路亦可選擇性地設置旁通閥331b與331c,以降低燃氣因高溫自燃的可能性。
隨著中止製程之進行,現場操作人員可進一步判斷障礙是否排除,如操作150所示。若障礙尚未排除,持續進行中止製程(即操作140)。若障礙排除時,重新對鋼胚加熱爐200中之鋼胚進行加熱製程,如操作160所示。
當進行操作160時,先關閉電磁控制閥330a與電磁控制閥330b,再開啟電磁控制閥310b、空氣流量控制閥320a與電磁控制閥320b,並以燃燒器211點燃火焰。然後,以移動裝置移動處理鋼胚203,而可重新進行加熱製程。當處理鋼胚203達到設定溫度時,即可獲得所需之再加熱鋼胚205,如操作170。其中,於前述之中止製程時,由於鋼胚加熱爐200中不通入額外之空氣,且所導入之惰性氣體可於處理鋼胚204的表面形成保護膜,故可抑制所製得再加熱鋼胚205之表面脫碳層的成長。
於進行前述之操作130時,若加熱製程不須暫停,持續對鋼胚加熱爐200中之鋼胚進行加熱製程,以進一步製得再加熱鋼胚205,如操作160和操作170所示。
請同時參照圖2A與圖2B。於使用前述之鋼胚加熱爐200來製作再加熱鋼胚205時,為了監測初始鋼胚201之進入位置,預熱區I可設有位置偵測單元(未繪示)。舉例而言,位置偵測單元可包含但不限於雷射偵測器(CMD)及/或其他適當之位置偵測器。在一些實施例中,位置偵測單元之數量可為一個或複數個,以偵測初始鋼胚201是否到達指定位置。在一些具體例中,雷射偵測器之雷射發送器(或雷射接收器)可設置於上殼板200a,而對應之雷射接收器(或雷射發送器)可設置於下殼板200b的相對位置。
相同於前述,為了確認再加熱鋼胚205之位置與其退出情形,均熱區III亦可設有位置偵測單元。位置偵測單元之種類、數量與設置例示均如前所述,在此不另贅述。
為了避免鋼胚加熱爐200之高溫損壞前述之位置偵測單元,鋼胚加熱爐200可設有連結前述惰性氣體供給單元330(如圖2C所示)之冷卻氣體供給系統,而可藉由惰性氣體來冷卻位置偵測單元。其次,所導入之惰性氣體亦可吹淨位置偵測單元,以確保偵測準確性。可理解的是,由於鋼胚加熱爐200係保持一定之高溫,故冷卻氣體供給系統係不間斷地對位置偵測單元供給惰性氣體。
再者,為了確保再加熱鋼胚205之溫度已達到設定溫度時,故均熱區III可設有測溫單元(未繪示)。舉例而言,測溫單元可包含但不限於鋼胚測溫器(pyrometer),及/或其他適當之測溫單元。在一些實施例中,測溫單元之數量可為一個或複數個。基於燃燒單元210之火焰噴射方向,測溫單元可設置於後殼板200e上,且對準再加熱鋼胚205。相同地,前述之冷卻氣體供給系統亦不間斷地對測溫單元供給惰性氣體,以冷卻與吹淨測溫單元。
此外,為監控初始鋼胚201、處理鋼胚203與再加熱鋼胚205的情形與爐內狀況,鋼胚加熱爐200之爐體可設置監視單元(未繪示)。舉例而言,監視單元可包含但不限於監視器(ITV),及/或其他適當之監視單元。在一些實施例中,監視單元之數量可為一個或複數個。較佳地,監視單元可設置於側殼板200c和200d上,且設置於上區T中。更佳地,監視單元可設置於側殼板200c和200d之外側。其中,可理解的是,雖然監視單元係設置於側殼板200c和200d之外側,惟側殼板200c和200d上可設有相應之觀測窗,以供 監視單元透過觀測窗來監控鋼胚。相同地,前述之冷卻氣體供給系統亦不間斷地對監視單元供給惰性氣體,以冷卻並吹淨監視單元。
在一些具體例中,測溫單元之數量可為3個,位置偵測單元之數量可為9個,且監視單元之數量可為6個,而用以冷卻吹淨測溫單元、位置偵測單元與監視單元之惰性氣體的總流量可為13Nm3/hr至30Nm3/hr。
在一些應用例中,於中止加熱時,本案前述之鋼胚加熱爐與抑制鋼胚表面脫碳層之厚度增加的方法藉由導入惰性氣體來形成保護膜,並減少空氣之額外導入,而有效避免鋼胚表面之脫碳層持續增厚,進而可提升所製得再加熱鋼胚之品質,以滿足應用需求。
在其他應用例中,藉由前述冷卻氣體供給系統之設置,測溫單元、位置偵測單元與監視單元之每一者可藉由所導入之惰性氣體來有效冷卻與吹淨,而可提升其使用壽命。再者,冷卻空氣之減少使用亦可有效避免鋼胚表面脫碳層之厚度增加。
以下利用實施例以說明本發明之應用,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
實施例1
實施例1係持續對直棒碳鋼胚(碳含量為0.55重量百分比)進行加熱製程,並以氮氣來冷卻所設置之每一個 測溫單元、位置偵測單元與監視單元。當直棒碳鋼胚之溫度到達1050℃時,退出直棒碳鋼胚,並觀察其金相顯微組織(結果如圖3A所示)。其中,鋼胚之在爐時間為90分鐘。
依據圖3A所顯示之內容可知,實施例1之直棒碳鋼胚的表面脫碳率係小於1.3%。其中,表面脫碳率係以下式(I)來計算。
Figure 108134929-A0101-12-0018-1
比較例1
比較例1係使用與實施例1相同之加熱條件來加熱相同規格之直棒碳鋼胚,兩者之差異在於比較例1係使用壓縮空氣來冷卻所設置之每一個測溫單元、位置偵測單元與監視單元。當直棒碳鋼胚之溫度到達1050℃時,退出直棒碳鋼胚,並觀察其金相顯微組織(結果如圖3B所示)。
依據圖3B所顯示之內容可知,實施例1之直棒碳鋼胚的表面脫碳率係大於1.3%,且其脫碳層之深度d1明顯大於實施例1之脫碳層的深度。
實施例2
實施例2係使用與實施例1相同之加熱條件來加熱相同規格之直棒碳鋼胚,兩者之差異在於實施例2係短暫進行中止製程。於進行中止製程時,停止供給燃氣與空氣至鋼胚加熱爐之上區的燃燒單元,並改變為供給氮氣至上區的燃燒單元之燃燒器。
經1小時後,停止供給氮氣至上區的燃燒單元之燃燒器,並重新供給燃氣與空氣至上區的燃燒單元之燃燒器,以重啟加熱製程。待直棒碳鋼胚的溫度達到1050℃時,退出直棒碳鋼胚,並觀察其金相顯微組織(結果如圖4A所示)。
依據圖4A所顯示之內容可知,實施例2之直棒碳鋼胚的脫碳層之深度d2係0.16公釐。
比較例2
比較例2係使用與實施例2相同之加熱條件來加熱相同規格之直棒碳鋼胚,兩者之差異在於進行中止製程時,比較例2僅停止燃氣與作為燃燒器之燃燒空氣(combustion air)的空氣,且不通入氮氣。換言之,比較例2係使用持續供給空氣至燃燒器的中央空氣管路,以冷卻燃燒器。
於進行中止製程1小時後,重啟加熱製程。待直棒碳鋼胚的溫度達到1050℃時,退出直棒碳鋼胚,並觀察其金相顯微組織(結果如圖4B所示)。
依據圖4B所顯示之內容可知,比較例2之直棒碳鋼胚的脫碳層之深度d3係0.30公釐。
應用例
應用例係將前述實施例2之方法實際應用於鋼鐵廠之直棒鋼胚加熱爐中,其中當鋼胚加熱爐需要暫停時,應用例係使用氮氣來冷卻燃燒器。
然後,量測所製得之盤元的最大脫碳深度,並計算其平均脫碳深度與最大脫碳深度佔線徑之百分比,其結果如圖5A所示。其中,折線510A代表平均脫碳深度,折線510B代表最大脫碳深度,且折線511代表最大脫碳深度佔線徑百分比。
比較應用例
比較應用例係將前述比較例2之方法實際應用於鋼鐵廠之直棒鋼胚加熱爐中,其中當鋼胚加熱爐需要暫停時,比較應用例僅通入空氣至中央空氣管路。
相同地,量測所製得之盤元的最大脫碳深度,並計算其平均脫碳深度與最大脫碳深度佔線徑之百分比,其結果如圖5B所示。其中,折線520A代表平均脫碳深度,折線520B代表最大脫碳深度,且折線521代表最大脫碳深度佔線徑百分比。
依據圖5A與圖5B所顯示之內容可知,對於不同線徑之盤元,應用例可使最大脫碳深度均小於0.2公釐,惟比較應用例所製得之盤元的最大脫碳深度係大於0.2公釐。其次,對於線徑為φ22之盤元,比較應用例所製得之盤元的脫碳層已佔線徑之91%。
顯然,於實際應用時,本案之方法(即應用例)可有效抑制表面脫碳層之厚度增加,而可減少脫碳層之厚度,進而大幅提升盤元之品質。
依據前述之說明可知,本案之鋼胚加熱爐中的燃燒單元之燃燒器係利用特定之氣體系統來供給含有燃氣與空氣的混合氣體或惰性氣體,而可燃燒混合氣體,以有效地加熱鋼胚,或者於鋼胚加熱爐須暫停加熱時,可於鋼胚表面形成惰性氣體保護層,以避免鋼胚表面接觸空氣,進而有效抑制表面脫碳層的厚度增加。
其次,本案之鋼胚加熱爐可包含冷卻氣體供給系統,以對增設之測溫單元、位置偵測單元與監視單元提供惰性氣體,而可冷卻並吹淨此些單元,以延長其使用壽命,並提升其量測準確性。其中,由於不使用空氣來冷卻此些監測單元,故可減少鋼胚加熱爐中之空氣量,而有效避免鋼胚表面脫碳層之厚度增加。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200‧‧‧加熱爐
200c/200d‧‧‧殼板
201/203/205‧‧‧鋼胚
210/220‧‧‧燃燒單元
211/221‧‧‧燃燒器
A1/B1/B2/C1/C2/D1/D2/E1/E2‧‧‧子區
B‧‧‧下區
D‧‧‧方向
I‧‧‧預熱區
II‧‧‧加熱區
III‧‧‧均熱區
T‧‧‧上區

Claims (9)

  1. 一種鋼胚加熱爐,包含:一爐體,包含:一預熱區;一均熱區;一加熱區,設置於該預熱區與該均熱區之間;以及複數個燃燒單元,分別設置於該加熱區與該均熱區中,其中每一該些燃燒單元包含複數個燃燒器;以及一氣體系統,連接每一該些燃燒單元,其中該氣體系統包含:一燃氣供給單元,配置以經由一燃氣管路供給一燃氣至每一該些燃燒單元中;一空氣供給單元,配置以經由一空氣管路供給一空氣至每一該些燃燒單元中,其中該空氣管路不連通該燃氣管路;以及一惰性氣體供給單元,配置以經由一惰性氣體管路供給一惰性氣體至每一該些燃燒單元中,其中該惰性氣體管路分別連接該燃氣管路與該空氣管路,且其中該氣體系統係配置以供給一混合氣體或該惰性氣體至每一該些燃燒單元中,且該混合氣體包含該燃氣與該空氣。
  2. 如申請專利範圍第1項所述之鋼胚加熱爐,其中:該燃氣管路設有一燃氣閥,該惰性氣體管路與該燃氣管路之一連接位置係介於該燃氣閥與每一該些燃燒單元中;且該空氣管路設有一空氣閥,該惰性氣體管路與該空氣管路之一連接位置係介於該空氣閥與每一該些燃燒單元中。
  3. 如申請專利範圍第1項所述之鋼胚加熱爐,其中該惰性氣體管路分別藉由一第一惰性氣體子管路與一第二惰性氣體子管路連接該燃氣管路與該空氣管路,該第一惰性氣體子管路設有一第一氣體閥,且該第二惰性氣體子管路設有一第二氣體閥。
  4. 如申請專利範圍第1項所述之鋼胚加熱爐,其中該惰性氣體包含氮氣。
  5. 如申請專利範圍第1項所述之鋼胚加熱爐,更包含:複數個測溫單元,設置於該均熱區中;複數個位置偵測單元,設置於該預熱區與該均熱區中;以及複數個監視單元,設置於該爐體之一爐壁外側。
  6. 如申請專利範圍第5項所述之鋼胚加熱爐,更包含:一冷卻氣體供給系統,配置以供給該惰性氣體至該些測溫單元、該些位置偵測單元與該些監視單元的每一者。
  7. 一種抑制鋼胚表面脫碳層之厚度增加的方法,包含:放置一鋼胚於如申請專利範圍第1至6項中之任一項所述之鋼胚加熱爐的該預熱區中,其中該鋼胚係放置於鋼胚加熱爐的一輸送裝置上;利用該輸送裝置移動該鋼胚,以使該鋼胚依序通過該加熱區與該均熱區,並對該鋼胚進行一加熱製程,其中該加熱製程包含:關閉該惰性氣體管路,並供給該混合氣體至設置於該加熱區與該均熱區之該些燃燒單元,以藉由該些燃燒單元來加熱該鋼胚;以及於進行該加熱製程之期間,當該鋼胚加熱爐需要暫停加熱時,停止移動該鋼胚,且對該鋼胚進行一中止製程,其中該中止製程包含:停止供給該混合氣體至位於該加熱區之一部分的該些燃燒單元與位於該均熱區之一部分的該些燃燒單元,並經由該惰性氣體管路、該燃氣管路與該空氣管路供給該惰性氣體至位於該加熱區之該部分的 該些燃燒單元與位於該均熱區之該部分的該些燃燒單元,且分別於該加熱區與該均熱區中,該部分的該些燃燒單元與該鋼胚之一距離係小於一剩餘部分的該些燃燒單元與該鋼胚之一距離;其中分別位於該加熱區與該均熱區之該部分的該些燃燒單元均係位於該輸送裝置之上,且分別位於該加熱區與該均熱區之該剩餘部分的該些燃燒單元均係位於該輸送裝置之下。
  8. 如申請專利範圍第7項所述之抑制鋼胚表面脫碳層之厚度增加的方法,於進行該中止製程時,持續供給該混合氣體至位於該加熱區之該剩餘部分的該些燃燒單元與位於該均熱區之該剩餘部分的該些燃燒單元。
  9. 如申請專利範圍第7項所述之抑制鋼胚表面脫碳層之厚度增加的方法,當該中止製程停止進行時,移動該鋼胚,並對該鋼胚進行該加熱製程。
TW108134929A 2019-09-26 2019-09-26 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法 TWI697563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108134929A TWI697563B (zh) 2019-09-26 2019-09-26 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108134929A TWI697563B (zh) 2019-09-26 2019-09-26 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法

Publications (2)

Publication Number Publication Date
TWI697563B true TWI697563B (zh) 2020-07-01
TW202113088A TW202113088A (zh) 2021-04-01

Family

ID=72602241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134929A TWI697563B (zh) 2019-09-26 2019-09-26 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法

Country Status (1)

Country Link
TW (1) TWI697563B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196809A (zh) * 2021-12-21 2022-03-18 新疆八一钢铁股份有限公司 一种降低钢坯加热脱碳的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047739A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
TW201441375A (zh) * 2012-12-11 2014-11-01 Jfe Steel Corp 從高爐風嘴吹入氧氣之設備、以及高爐作業方法
US20180237877A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Mitigating liquid metal embrittlement in zinc-coated press hardened steels
CN109266830A (zh) * 2018-09-29 2019-01-25 邯郸钢铁集团有限责任公司 一种控制高碳钢轨脱碳层深度的加热生产方法
WO2019131813A1 (ja) * 2017-12-27 2019-07-04 Jfeスチール株式会社 電縫溶接鋼管および電縫溶接鋼管の製造方法
CN110172555A (zh) * 2019-06-27 2019-08-27 上海交通大学 一种改善钢的表层抗氢脆性能的脱碳工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047739A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
TW201441375A (zh) * 2012-12-11 2014-11-01 Jfe Steel Corp 從高爐風嘴吹入氧氣之設備、以及高爐作業方法
US20180237877A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Mitigating liquid metal embrittlement in zinc-coated press hardened steels
WO2019131813A1 (ja) * 2017-12-27 2019-07-04 Jfeスチール株式会社 電縫溶接鋼管および電縫溶接鋼管の製造方法
CN109266830A (zh) * 2018-09-29 2019-01-25 邯郸钢铁集团有限责任公司 一种控制高碳钢轨脱碳层深度的加热生产方法
CN110172555A (zh) * 2019-06-27 2019-08-27 上海交通大学 一种改善钢的表层抗氢脆性能的脱碳工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196809A (zh) * 2021-12-21 2022-03-18 新疆八一钢铁股份有限公司 一种降低钢坯加热脱碳的方法

Also Published As

Publication number Publication date
TW202113088A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
TWI697563B (zh) 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法
US2666003A (en) Treating strip
CN102925833B (zh) 一种采用连续热处理炉生产铍青铜带材的方法
KR100964904B1 (ko) 소둔로용 가열장치
CN105026598B (zh) 熔融镀锌钢板的制造方法及连续熔融镀锌装置
JP2007092140A (ja) 鋼帯連続処理設備における均熱炉操業方法およびその均熱炉
JPS59205412A (ja) 加工物の熱処理方法及び装置
US10788208B2 (en) Method for preheating a fluid upstream of a furnace
KR20180064497A (ko) 용융 아연 도금 강판의 제조 방법
KR101486909B1 (ko) 스테인리스 주조품 고용화 및 표면 광휘 열처리 방법
JP6697418B2 (ja) 高温ガスワイピング装置
JPS61213324A (ja) 鉄系積層製品の連続焼鈍・ブルーイング装置
JP5268303B2 (ja) 加熱炉の降温方法及び加熱炉
TWI685570B (zh) 鐵鋼製品的加熱裝置及鐵鋼製品的加熱方法
CN207741587U (zh) 一种处理钒钛还原回转窑废气的装置
JPH02112818A (ja) ステンレス鋼帯の加熱温度の制御方法
US2799605A (en) Continuous heating of steel strip
JP2009092328A (ja) 加熱炉の炉内雰囲気制御方法
CN113390571B (zh) 一种高效在线排查无氧化炉辐射管破裂的方法
CN114015839B (zh) 一种不锈钢结构加工的热应力释放方法
JPS6238410B2 (zh)
JPS6160902B2 (zh)
CN109196278A (zh) 蓄热式燃烧器装置及其运转方法
JPS60135530A (ja) 鋼帯の連続焼なまし方法
JPH0553848B2 (zh)