WO2019131813A1 - 電縫溶接鋼管および電縫溶接鋼管の製造方法 - Google Patents

電縫溶接鋼管および電縫溶接鋼管の製造方法 Download PDF

Info

Publication number
WO2019131813A1
WO2019131813A1 PCT/JP2018/047972 JP2018047972W WO2019131813A1 WO 2019131813 A1 WO2019131813 A1 WO 2019131813A1 JP 2018047972 W JP2018047972 W JP 2018047972W WO 2019131813 A1 WO2019131813 A1 WO 2019131813A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
mass
steel pipe
electric resistance
Prior art date
Application number
PCT/JP2018/047972
Other languages
English (en)
French (fr)
Inventor
河端 良和
牧男 郡司
Original Assignee
Jfeスチール株式会社
Jfe溶接鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, Jfe溶接鋼管株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019533138A priority Critical patent/JP6649531B2/ja
Priority to CN201880084274.XA priority patent/CN111511946B/zh
Priority to US16/958,736 priority patent/US11512361B2/en
Priority to EP18894950.7A priority patent/EP3733894B8/en
Priority to KR1020207021308A priority patent/KR102390423B1/ko
Publication of WO2019131813A1 publication Critical patent/WO2019131813A1/ja
Priority to US18/047,331 priority patent/US20230079323A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0073Butt welding of long articles advanced axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to an electric resistance welded steel pipe, and more particularly to an electric resistance welded steel pipe which is excellent in fatigue durability after rapid rapid heating and quenching treatment and can be suitably used as a material for a hollow stabilizer or the like.
  • the present invention also relates to a method of manufacturing the electric resistance welded steel pipe.
  • the hollow parts including the above-mentioned hollow stabilizer are usually manufactured by cold-forming a steel pipe into a desired shape and then quenching or hardening-tempering to obtain the required strength.
  • a steel pipe a seamless steel pipe, an electric resistance welded steel pipe, and a drawn steel pipe obtained by cold drawing them are mainly used.
  • ERW welded steel pipes are widely used as materials for hollow parts because they are relatively inexpensive and are excellent in dimensional accuracy and surface quality without drawing processing (Patent Documents 1 to 3).
  • One of the causes for the lack of fatigue durability is the lack of hardenability in the ERW welds.
  • hollow parts are generally manufactured by cold-forming a steel pipe and then hardening it. Therefore, if the quenching in the ERW welded portion of the ERW welded steel pipe is insufficient, the hardness (quenched hardness) of the ERW welded portion after quenching is determined by the base metal portion (portion other than the ERW welded portion). It is lower than it.
  • Such a lack of hardening hardness in the electric resistance welded portion is particularly caused when the electric resistance welded steel pipe is heated rapidly for a short time by electric heating and subjected to a hardening treatment (hereinafter referred to as "rapid short time heating hardening treatment”) Make it manifest.
  • This "rapid short-time heat-quenching treatment" is widely used because it is effective to suppress decarburization at the time of heating in addition to high productivity.
  • Patent Document 4 That is, among the quenching conditions, the heating rate, the maximum reaching temperature, the soaking time, and the primary cooling rate to the quenching start temperature are adjusted according to the bond width (corresponding to the decarburized layer width) of the electric resistance welded portion. It is a method.
  • C carbon
  • C (carbon) capable of securing sufficient hardening hardness diffuses from the base material to the electric resistance welded portion at the time of heating, and as a result, the hardness of the electric resistance welded portion after hardening increases.
  • the fatigue resistance of the obtained member is improved.
  • Patent Document 4 has a problem that it can be applied only to a steel pipe having a narrow bond width, such as a hot finish ERW welded steel pipe.
  • a steel pipe having a narrow bond width such as a hot finish ERW welded steel pipe.
  • a general as-welded welded steel pipe having a bond width of 40 ⁇ m or more there is no suitable short-term heating condition that can fully recarburize the welded joint.
  • recarburization is possible by extending the heating time, but in that case, decarburization can not be prevented by increasing the heating time. Therefore, in the said method, in hardening of the member which has general bond width, there existed a problem that improvement of hardening hardness and prevention of decarburization in an electric resistance welding part can not be reconciled.
  • the present invention has been made in view of the above-mentioned circumstances, and it is possible to achieve both improvement of the hardening hardness and prevention of decarburization in the electric resistance welded portion even if the bond width is 40 ⁇ 10 -6 m or more. It is an object of the present invention to provide an ERW welded steel pipe which is excellent in fatigue durability after rapid hardening treatment for a short time. Another object of the present invention is to provide a method of manufacturing the electric resistance welded steel pipe.
  • rapid short-time heat-quenching treatment means that the maximum heating temperature is 900 ° C. or more, and the average heating rate between room temperature and the maximum heating temperature is 10 ° C./s or more, 900 ° C. or more It refers to a hardening treatment in which the time of residence in the temperature range of 1 min.
  • heating time needs to be extended to perform sufficient recarburization to improve the quenching hardness in the ERW welds, Charcoal will be produced.
  • heating may be performed in an atmosphere that does not cause decarburization, but as described above, since it is necessary to perform quenching in the heating step in the quenching process, an atmosphere that does not cause decarburization is used In order to do so, various measures are required.
  • heat treatment prior to rapid rapid heating and quenching treatment, heat treatment (normalization) is performed under an appropriate condition according to the bond width in an atmosphere that does not cause decarburization, thereby preventing decarburization while performing electric resistance sewing. A sufficient amount of carbon can be diffused into the weld.
  • the ERW welded steel pipe subjected to the above heat treatment has a high quenching hardness in the ERW welded portion after the rapid short-time heat-quenching treatment, and has excellent fatigue durability.
  • the present invention has been completed based on the above findings, and the gist configuration is as follows.
  • the component composition is, by mass%, Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less,
  • the component composition is, by mass%, The resistance welded steel pipe according to the above 1 or 2, further containing one or both of Nb: 0.2% or less and V: 0.2% or less.
  • the component composition is, by mass%, The electric resistance welded steel pipe according to any one of the above 1 to 3, which further contains Ca: 0.0050% or less.
  • N N content in the above (1) (wt%)
  • Ti is the Ti content (mass%), respectively
  • C * 1 C 0 - ( C 0 -0.09) erf (h ') ...
  • N N content in the above (1) (wt%)
  • Ti is the Ti content (mass%), respectively
  • C * 1 C 0 - ( C 0 -0.09) erf (h ') ...
  • the component composition is, by mass%, Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, 5.
  • the component composition is, by mass%, The method for producing an electric resistance welded steel pipe according to any one of the above 5 to 7, further containing one or both of Nb: 0.2% or less and V: 0.2% or less.
  • the component composition is, by mass%, The method for producing an ERW welded steel pipe according to any one of the above 5 to 8, further containing Ca: 0.0050% or less.
  • the electric resistance welded steel pipe of the present invention can be extremely suitably used as a raw pipe for hollow parts such as a hollow stabilizer.
  • the electric resistance welded steel pipe of the present invention is characterized in that a steel plate having the above-described composition is used as a base material.
  • a steel plate having the above-described composition is used as a base material.
  • “%” in description of the following component composition represents “mass%", unless it refuses.
  • the component composition of the steel plate used as a raw material when manufacturing the electric resistance welded steel pipe can be the same as the component composition of the base material of the electric resistance welded steel pipe.
  • C 0.15 to 0.40%
  • C is a useful element which forms a solid solution to increase the strength of the steel and precipitates as one or both of carbide and carbonitride to enhance the strength after tempering.
  • the C content is made 0.15% or more, preferably 0.20% or more.
  • the toughness after the quenching treatment decreases. Therefore, the C content is 0.40% or less, preferably 0.35% or less.
  • Si 0.05 to 0.50% Si is an element that acts as a deoxidizer. In order to obtain the effect, the content needs to be 0.05% or more. Therefore, the Si content is 0.05% or more, preferably 0.10% or more. On the other hand, even if it is contained in excess of 0.50%, the deoxidizing effect is saturated, so the effect corresponding to the content can not be expected, which is economically disadvantageous, and inclusions are likely to be generated during electric resistance welding. Adversely affect the integrity of the ERW welds. Therefore, the Si content is 0.50% or less, preferably 0.30% or less.
  • Mn 0.30 to 2.00%
  • Mn is an element which is solid-solved to increase the strength of the steel and to improve the hardenability of the steel.
  • the Mn content is 0.30% or more.
  • the Mn content is 2.00% or less, preferably 1.60% or less.
  • Al 0.01 to 0.10%
  • Al is an element that acts as a deoxidizing agent, has the effect of fixing N and securing the amount of solid solution B effective for improving the hardenability.
  • the Al content is set to 0.01% or more, preferably 0.02% or more.
  • the Al content is 0.10% or less, preferably 0.05% or less.
  • Ti acts as an N fixing element, and has an effect of securing a solid solution B amount effective for improving the hardenability. Further, Ti precipitates as fine carbides, suppresses coarsening of crystal grains at the time of welding and heat treatment, and contributes to the improvement of toughness. In order to obtain the above effect, the Ti content is made 0.001% or more, preferably 0.02% or more. On the other hand, when the Ti content exceeds 0.04%, the formation of inclusions becomes remarkable and the toughness decreases. Therefore, the Ti content is 0.04% or less, preferably 0.03% or less.
  • B 0.0005 to 0.0050%
  • B is an effective element for improving the hardenability of steel.
  • B also has the effect of strengthening grain boundaries and has the effect of preventing quenching and cracking.
  • the B content is made 0.0005% or more, preferably 0.0010% or more.
  • the B content exceeds 0.0050%, the above effect is saturated and it is economically disadvantageous.
  • the B content exceeds 0.0050%, coarse B-containing precipitates are generated to lower the toughness. Therefore, the B content is made 0.0050% or less, preferably 0.0025% or less.
  • N 0.0010 to 0.0100%
  • N is an element which combines with alloy elements in steel to form nitrides and carbonitrides and contributes to securing the strength after tempering. In order to acquire the said effect, N content is made into 0.0010% or more. On the other hand, if the N content exceeds 0.0100%, the nitride becomes coarse, and the toughness and the fatigue life decrease. Therefore, the N content is made 0.0100% or less.
  • the component composition of the steel plate in one embodiment of the present invention can consist of the above-mentioned elements, the balance of Fe and unavoidable impurities.
  • content of an unavoidable impurity is not specifically limited, It is preferable to suppress content of P, S, and O each independently in the following range.
  • P 0.020% or less
  • P is an element that adversely affects weld cracking resistance and toughness. Therefore, it is preferable to suppress P content as an unavoidable impurity to 0.020% or less, and it is more preferable to suppress to 0.015% or less.
  • P is an impurity element, and the lower its content, the better, so the lower limit of the P content is not limited and may be 0. However, excessive reduction can lead to increased costs. Therefore, from the viewpoint of cost reduction, the P content is preferably 0.001% or more, and more preferably 0.005% or more.
  • S 0.010% or less
  • S is an element which is present as sulfide-based inclusions in steel and reduces the workability, toughness, and fatigue life of a steel pipe and increases the reheat cracking susceptibility. Therefore, it is preferable to suppress S content as an unavoidable impurity to 0.010% or less, and it is more preferable to suppress to 0.005% or less.
  • S is an impurity element, and the lower its content, the better, so the lower limit of the S content is not limited and may be 0. However, excessive reduction can lead to increased costs. Therefore, from the viewpoint of cost reduction, the S content is preferably 0.0005% or more, and more preferably 0.0010% or more.
  • O 0.005% or less
  • O is an element which is mainly present as an oxide-based inclusion in steel and reduces the workability, toughness and fatigue life of a steel pipe. Therefore, it is preferable to suppress O content as an unavoidable impurity to 0.005% or less, and it is more preferable to suppress to 0.0021% or less.
  • O is an impurity element, and the lower the content, the better, so the lower limit of the O content is not limited and may be 0. However, excessive reduction can lead to increased costs. Therefore, from the viewpoint of cost reduction, the O content is preferably 0.0005% or more, and more preferably 0.0010% or more.
  • the above component composition may optionally contain one or more selected from the group consisting of Cr, Mo, W, Ni, and Cu, in the following contents: it can.
  • Cr 1.0% or less
  • Cr is an element having the function of forming fine carbides and increasing the strength in addition to the improvement of the hardenability.
  • the Cr content exceeds 1.0%, the above-mentioned effect is saturated and it is economically disadvantageous, and inclusions are easily generated at the time of ERW welding, which adversely affects the soundness of the ERW welded portion. . Therefore, when adding Cr, the Cr content is made 1.0% or less, preferably 0.30% or less.
  • the lower limit of the Cr content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Cr, the Cr content is preferably 0.05% or more, preferably 0.10% or more. More preferable.
  • Mo 1.0% or less
  • Mo is an element having the function of forming fine carbides and increasing the strength in addition to the improvement of the hardenability.
  • the Mo content exceeds 1.0%, the effect is saturated and economically disadvantageous, and coarse carbides are formed to lower the toughness. Therefore, when adding Mo, the Mo content is made 1.0% or less, preferably 0.30% or less.
  • the lower limit of the Mo content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Mo, the Mo content is preferably 0.05% or more, preferably 0.10% or more. More preferable.
  • W 1.0% or less W is an element having the effect of improving the balance between hardness and toughness after temper treatment, in addition to the improvement of the hardenability.
  • the W content exceeds 1.0%, the effect is saturated and it is economically disadvantageous. Therefore, when adding W, the W content is set to 1.0% or less, preferably 0.30% or less.
  • the lower limit of the W content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of W, the W content is preferably 0.05% or more, preferably 0.10% or more. More preferable.
  • Ni 1.0% or less
  • Ni is an element which contributes to the improvement of toughness in addition to the improvement of hardenability.
  • the Ni content exceeds 1.0%, the above-mentioned effect is saturated to be economically disadvantageous and the processability is lowered. Therefore, when adding Ni, the Ni content is made 1.0% or less, preferably 0.50% or less.
  • the lower limit of the Ni content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Ni, the Ni content is preferably 0.05% or more, preferably 0.10% or more. More preferable.
  • Cu 1.0% or less
  • Cu is an element effective in preventing delayed fracture in addition to the improvement of the hardenability.
  • the Cu content exceeds 1.0%, the above effect is saturated, which is economically disadvantageous and the processability is lowered. Therefore, when adding Cu, the Cu content is 1.0% or less, preferably 0.30% or less.
  • the lower limit of the Cu content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Cu, the Cu content is preferably 0.05% or more, and 0.10% or more More preferable.
  • the above component composition may further optionally contain one or both of Nb and V in the following content.
  • Nb 0.2% or less
  • Nb is an element that forms carbides and contributes to increase in strength, and can be selected and contained as necessary. However, if the Nb content exceeds 0.2%, the effect is saturated and it is economically disadvantageous. Therefore, when Nb is added, the Nb content is 0.2% or less.
  • the lower limit of the Nb content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Nb, the Nb content is preferably 0.01% or more.
  • V 0.2% or less
  • Nb is an element that forms carbides and contributes to increase in strength, and can be selected and contained as necessary. However, if the V content exceeds 0.2%, the effect is saturated and it is economically disadvantageous. Therefore, when adding V, the V content is 0.2% or less.
  • the lower limit of the V content is not particularly limited, but it is preferable to set the V content to 0.01% or more from the viewpoint of sufficiently obtaining the addition effect of V.
  • the above-mentioned component composition can further optionally contain Ca in the following content.
  • Ca 0.0050% or less
  • Ca is an element that controls the form of inclusions such as sulfides and improves the processability, and can be contained as necessary. However, if the Ca content exceeds 0.0050, the cleanliness of the steel decreases. Therefore, when adding Ca, the Ca content is made 0.0050% or less, preferably 0.0010% or less.
  • the lower limit of the Ca content is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of Ca, the Ca content is preferably made 0.0001% or more, preferably 0.0003% or more. More preferable.
  • N in the above-mentioned formula (1) shows N content (mass%)
  • Ti shows Ti content (mass%), respectively.
  • B is an element having the effect of improving hardenability, but when it is combined with N and precipitated as BN, the hardenability improving effect is significantly reduced. If the Ti content and the N content do not satisfy the following expression (1), the fixation of N by Ti is insufficient, and the amount of solid solution B can not be secured at the time of quenching.
  • C 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, Ti: 0.001 to 0.04%, B: 0.0005 to 0.0050%, N: 0.0010-0.100%, Optionally selected from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Ni: 1.0% or less, and Cu: 1.0% or less 1 or 2 or more, Optionally one or both of Nb: 0.2% or less and V: 0.2% or less, and Optionally, Ca: not more than 0.0050%,
  • the balance consists of Fe and unavoidable impurities, and A steel plate having a component composition in which the Ti content and the N content satisfy the above equation (1) can be used.
  • the electric resistance welded steel pipe of the present invention is characterized in that the bond width and the C content of the electric resistance welded portion satisfy the following conditions.
  • the ERW welded steel pipe is manufactured by forming a steel plate as a raw material to form a substantially cylindrical open pipe, and then abutting end portions of the open pipe to perform electric seam welding.
  • a carbon reduction layer having a C content lower than that of the base metal is formed. The width of the reduced carbon layer and the C content in the reduced carbon layer greatly affect the properties of the ERW welded steel pipe.
  • the width of the decarburized layer is observed by analyzing the amount of C with an EPMA (Electron Probe Micro Analyzer) as shown in the upper drawing of FIG. 1 or by nital etching of the welded portion as shown in the middle part of FIG. It is possible to measure by various methods, such as a method of measuring the width of the white layer. However, if the amount of C is less than 0.30%, and if it is an ERW welded steel pipe which has been subjected to only heat treatment at a temperature of less than 800 ° C., the metal flow etching shown in the lower part of FIG. By doing this, the width of the bond, which is a region where no segregation line is observed, can be measured relatively easily and clearly.
  • EPMA Electro Probe Micro Analyzer
  • the width (bond width) of this bond portion matches well with the width of the decarburized layer measured by the above-mentioned method.
  • the width of the reduced carbon layer measured by EPMA or the width of the white layer observed by nital etching is used as the bond width.
  • the bond width 40 ⁇ 10 ⁇ 6 m or more, 120 ⁇ 10 ⁇ 6 m or less
  • the bond width is preferably narrow. Therefore, the bond width is set to 120 ⁇ 10 ⁇ 6 m or less.
  • the bond width is set to 40 ⁇ 10 ⁇ 6 m or more.
  • the bond width may be measured by the method described above, and specifically, can be measured by the method described in the examples.
  • Patent Document 4 The technique described in Patent Document 4 can be applied only to a steel pipe having a narrow bond width in order to enable sufficient recarburization in rapid rapid heating and quenching treatment. Therefore, in Patent Document 4, processing such as diameter reduction rolling is performed on the steel pipe to narrow the bond width. Even if a general steel pipe having a bond width of 40 ⁇ 10 -6 m or more is subjected to the quenching treatment described in Patent Document 4 without processing such as diameter reduction rolling, the conditions of the present invention are satisfied. Steel pipes can not be manufactured.
  • [C content] C 0 -C 1 0.05 mass% or less
  • the minimum C content of the ERW weld C 1 (mass%)
  • the C content of the steel plate which is the base material The difference from C 0 (% by mass), C 0 -C 1 is 0.05% by mass or less, preferably 0.04% by mass or less.
  • the lower limit of C 0 -C 1 is not particularly limited because C 0 -C 1 is preferably as low as possible from the viewpoint of securing the hardening hardness of the electric resistance welded portion. However, usually, since C 0> is C 1, C 0 -C 1 may be greater than 0 wt%. Further, from the viewpoint of easiness of production, C 0 -C 1 is preferably 0.01% by mass or more, and more preferably 0.02% by mass or more.
  • C 1 is the C content in the electric resistance welded portion from the outer surface of the steel pipe at a position of 200 ⁇ m (depth 200 ⁇ m) in the thickness direction along the pipe circumferential direction It can be determined by measuring with EPMA.
  • Total decarburization depth 50 ⁇ 10 ⁇ 6 m or less
  • the depths of all the decarburized layers in the inner surface layer and the outer surface layer of the electric resistance welded steel pipe are respectively 50 ⁇ 10 ⁇ 6 m or less, preferably 30 ⁇ 10 ⁇ 6 m or less.
  • the lower limit of the total decarburization depth is not limited.
  • the depth of all decarburized layers in the inner surface layer and the outer surface layer is preferably 6 ⁇ 10 ⁇ 6 m or more, and 12 ⁇ 10 ⁇ 6 m or more. More preferable.
  • the depth of the entire decarburized layer is affected by the heat treatment conditions, decarburization can be prevented and the total decarburized layer depth can be made within the above range by performing the normalization under the conditions described later.
  • the decarburized layer depth is also affected by the decarburized layer depth of the steel strip used as the material of the ERW welded steel pipe. Therefore, for example, when using a heat-rolled steel plate as a material, it is preferable to lower the winding temperature at the time of manufacturing the heat-rolled steel plate or to perform high-pressure descaling to reduce the scale thickness.
  • the depth of the total decarburized layer can be measured according to the “measuring method by a microscope” defined in JIS G 0558 “Depcarburized layer depth measuring method of steel”. Specific measurement can be performed by the method described in the examples.
  • the outer diameter (D) of the electric resistance welded steel pipe of the present invention is not particularly limited and can be set to any value.
  • the outer diameter is preferably 20 mm or more. Moreover, it is preferable that the said outer diameter shall be 40 mm or less.
  • the thickness (t) of the electric resistance welded steel pipe of the present invention is not particularly limited, and can be set to any value.
  • the thickness is preferably 2 mm or more, and the thickness is preferably 8 mm or less.
  • the ratio (t / D) of the wall thickness t to the outer diameter D is preferably 0.14 or more.
  • the ratio (t / D) is preferably 0.28 or less.
  • the electric resistance welded steel pipe of the present invention can be obtained by performing electric resistance welding on a steel plate as a material to form an electric resistance welded steel pipe, and standardizing the electric resistance welded steel pipe under specific conditions. Each step will be specifically described below.
  • steel sheet As a steel plate as a raw material, if it is a steel plate which has the said component composition, although a hot rolled steel plate and a cold-rolled steel plate arbitrary ones can be used, it is preferable to use a hot rolled steel plate.
  • the term "steel plate” as used herein also includes "steel strip”.
  • ERW welding The steel sheet is subjected to ERW welding to form an ERW welded steel pipe.
  • the method of ERW welding is not particularly limited, generally, after the steel plate is roll-formed to form a substantially cylindrical open pipe, ends of the open pipe are butted and ERW welded.
  • the butt surfaces are generally formed from as-sheared surfaces, but it is also preferable to finish by cutting from the viewpoint of preventing welding defects.
  • the electric resistance welding is preferably performed by high frequency resistance welding, but from the viewpoint of preventing surface flaws, induction heating is preferred rather than the contact electrode type.
  • the convex portion does not remain.
  • the descaling can be performed by any method such as pickling.
  • the bond width of the ERW welded steel pipe shall be 40 ⁇ 10 ⁇ 6 m or more and 120 ⁇ 10 ⁇ 6 m or less.
  • the depth of all decarburized layers in both the inner surface layer and the outer surface layer of the electric resistance welded steel pipe shall be 50 ⁇ 10 ⁇ 6 m or less.
  • the equation (2) is an equation for calculating the C content at the center position of the bond width after normalizing based on the diffusion of C during the normalizing. Therefore, the minimum C content (C * 1 ) in the electric resistance welded portion after normalizing can be estimated by using the above-mentioned equation (2). Therefore, by selecting the heating condition according to the bond width so that C 0 -C * 1 is 0.05% by mass or less, the actual minimum value of the electric resistance welded portion in the electric resistance welded steel pipe after normalizing C content: A difference between C 1 (mass%) and C content of the steel plate: C 0 (mass%), C 0 -C 1 can be made 0.05 mass% or less.
  • the normalizing can be performed by any method as long as the above conditions are satisfied.
  • the steel pipe may be heated to the maximum heating temperature: T, held at the maximum heating temperature (soaking), and then cooled.
  • the conditions for the cooling are not particularly limited, and may be determined according to the composition of the steel pipe and the heating temperature.
  • the average cooling rate from the start of cooling to 650 ° C. is preferably 10 ° C./s or less. If the average cooling rate from the start of cooling to 650 ° C. is 10 ° C./s or less, it is possible to obtain a structure which is composed of one or both of ferrite and pearlite and does not contain a hard phase.
  • cooling from the viewpoint of preventing decarburization, it is preferable to perform cooling in a first atmosphere or a second atmosphere described later until reaching at least 650 ° C., and until reaching at least 450 ° C. It is more preferable to perform cooling in a first atmosphere or a second atmosphere described later during the period.
  • the normalizing can be performed using any equipment as long as the above atmosphere can be used, but it is preferable to use a continuous heat treatment furnace (continuous furnace) from the viewpoint of productivity. From the viewpoint of atmosphere control, it is preferable to use a bright annealing furnace generally used for bright annealing as the heat treatment.
  • the normalizing needs to be performed in an atmosphere that does not cause decarburization. If the atmosphere is not appropriate, decarburization of the base material portion, which is a supply source of carbon for recarburizing to the electric resistance welded portion, proceeds, and recarburization to the electric resistance welded portion does not proceed.
  • the following two atmospheres can be mentioned as an atmosphere which does not produce the above-mentioned decarburization.
  • the above-mentioned normalizing is composed of CO, CO 2 , H 2 , H 2 O, and a gas neutral to C and Fe, and the following equations (3) and (4) It can be done in a filling atmosphere.
  • P CO P CO2 ⁇ K ⁇ a ⁇ C ...
  • G c ⁇ is the free energy of C in the austenite phase
  • G c gr is the free energy of C in the graphite
  • ⁇ FeC ⁇ is an interaction coefficient between C and Fe in the austenite phase
  • W MC ⁇ is an interaction coefficient between C and the element A in the austenite phase.
  • the reason why the parameters in the austenite phase are used is that, when a steel pipe made of a steel plate having the above-described composition is subjected to normalizing, the microstructure of the steel becomes a microstructure substantially consisting of austenite single phase. is there.
  • the mole fractions of C, Si, Mn, and Cr in the austenite phase are equal to the mole fractions of each element in the steel. Therefore, in the calculation of the equations (3) and (4), the value of the mole fraction in the steel can be used as the mole fraction in the austenite phase.
  • the austenite single phase structure is formed by the normalizing, the microstructure of the steel before the normalizing can be an arbitrary structure.
  • the atmosphere can be prepared by any method without particular limitation, but in general, it can be prepared by removing CO 2 and H 2 O from a gas obtained by incomplete combustion of methane, propane or the like. it can.
  • the aforementioned "neutral gas to C and Fe" for example, can be used one or both of N 2 and Ar.
  • the sintered semi, the mole fraction in the atmosphere, H 2: 0 ⁇ 10% , O 2: 80ppm comprises less, and the balance of H 2 O and N 2, and, It can carry out in the atmosphere whose dew point is 0 ° C or less.
  • H 2 is a component that can be optionally added, and the molar fraction thereof may be zero.
  • H 2 is a component having an effect of suppressing oxidation and decarburization of a steel pipe, it is preferable to add it.
  • the mole fraction of H 2 is preferably 1% or more, and more preferably 2% or more.
  • the mole fraction of H 2 is 10% or less, preferably 7% or less, and more preferably 5% or less.
  • O 2 and H 2 O are components that cause decarburization. Furthermore, O 2 and H 2 O oxidize iron to form an oxide scale, and in the case of significant oxidation, it leads to a decrease in surface properties such as an increase in surface roughness. Therefore, it is desirable that the amounts of O 2 and H 2 O in the atmosphere be small. Specifically, when the mole fraction of O 2 exceeds 80 ppm, the above-mentioned adverse effect becomes remarkable, so the mole fraction of O 2 is 80 ppm or less, preferably 40 ppm or less, more preferably 20 ppm or less. With respect to H 2 O, the above-mentioned adverse effect becomes significant when the dew point exceeds 0 ° C.
  • the dew point is made 0 ° C. or less, preferably ⁇ 20 ° C. or less, more preferably ⁇ 40 ° C. or less.
  • the dew point is preferably ⁇ 60 ° C. or higher, and more preferably ⁇ 50 ° C. or higher, from the viewpoint of easiness of adjusting the atmosphere.
  • the electric resistance welded steel pipe of the present invention can be manufactured by the above procedure.
  • the electric resistance welded steel pipe obtained in this manner is excellent in fatigue durability after rapid rapid heating and quenching and can be suitably used as a material for a hollow stabilizer or the like.
  • the electric resistance welded steel pipe manufactured as described above can be used for any application. As an example, it can be used as a material of hollow parts such as the hollow stabilizer as described above.
  • the electric resistance welded steel pipe be subjected to processing for processing into a desired member shape, and then subjected to rapid short time heating and quenching treatment.
  • processing for processing into a desired member shape, and then subjected to rapid short time heating and quenching treatment.
  • rapid short time heating and quenching treatment Although arbitrary processing can be used as said processing, it is preferable to use cold processing.
  • the above-mentioned rapid short-time heat-quenching treatment is the time during which the maximum heating temperature is 900 ° C. or more and the average heating rate between room temperature and the maximum heating temperature is 10 ° C./s or more and 900 ° C. or more. Perform on condition of less than 1 min.
  • the heating in the said hardening can be performed by arbitrary methods, for example, high frequency heating and conduction heating can be used.
  • the quenching start temperature Tq in the rapid short time heating and quenching treatment is a temperature higher than the Ar3 transformation point of the electric resistance welded portion. If Tq is below the Ar3 transformation point of the ERW weld, ferrite transformation or bainite transformation occurs before the start of quenching (quenching), and the ERW weld can not be made to have a 100% martensite structure. . And as a result, desired hardening hardness can not be ensured but fatigue durability falls.
  • the Ar3 transformation point of the electric resistance welded portion is a value calculated using the following equation (5). This value is shifted to a higher temperature side than the actual Ar3 transformation point, so it is a value on the safe side in determining the quenching initiation temperature.
  • the above equation for calculating the Ac3 transformation point is cited from Leslie Iron and Steel Science (translated by Koda, 1985: Maruzen, p. 273).
  • the cooling rate at the time of hardening should just be the cooling conditions which can produce 100% martensitic structure.
  • the cooling conditions under which a 100% martensitic structure can be obtained depend on the component composition of the steel sheet which is the material, but in the present invention, from the quenching initiation temperature: Tq, the average cooling rate: 30 ° C./s or more, preferably 80 ° C. It is preferable to cool to room temperature by 1 / s or more.
  • a cooling medium obtained by adding a polymer to water or water for quenching (secondary cooling) in the quenching treatment.
  • oil cooling may be employed in order to suppress the generation of quenching cracks, deformation at the time of quenching, and residual stress.
  • a tempering treatment may be optionally performed to improve the toughness.
  • the heating temperature (tempering temperature) in the tempering treatment is preferably 150 to 450 ° C. If the heating temperature is less than 150 ° C., desired toughness may not be secured. On the other hand, if the heating temperature exceeds 450 ° C., the hardness may be reduced, and the desired durability may not be ensured.
  • an electric resistance welded steel pipe was manufactured in the following procedure. First, the hot rolled steel sheet was pickled to remove scale. Then, the hot-rolled steel plate was cold-rolled continuously to form a substantially cylindrical open pipe. Then, the end portions of the open pipe were butted and welded by high frequency resistance welding to form a seam welded steel pipe. The outer diameter of the obtained electric resistance welded steel pipe was 25.4 mm, and the thickness was 4.5 mm.
  • the bond width of the electric resistance welded portion was adjusted to the values shown in Tables 2 and 3 by changing the welding conditions.
  • collected the test piece for structure
  • the test piece for structure observation was cut out so that a cross section perpendicular to the longitudinal (pipe axis) direction of the electric resistance welded steel pipe would be an observation surface. The cross section of the cut-out test piece was polished.
  • each of the obtained electric resistance welded steel pipes (before normalizing) is subjected to the inner surface layer and the outer surface according to the “measurement method with a microscope” defined in JIS G 0558 “Method for measuring depth of decarburized layer of steel”.
  • the depth of all decarburized layers in both of the surface was measured.
  • the measurement cut the electric resistance welded steel pipe at the longitudinal center, and adopted the maximum value of the decarburized layer depth in the cross section.
  • the depth of the ferrite decarburized layer was also measured by the same method. The measurement results are shown in Tables 2 and 3.
  • the normalizing comprises the following steps (1) to (3). (1) From room temperature to the maximum heating temperature: T (° C.), heating at an average heating rate: 5 (° C./s). (2) The maximum heating temperature: maintained at a predetermined soaking time at T (° C.). (3) Cooling to room temperature, average cooling rate: 3 (° C./s).
  • the time t (s) defined as the time during which the steel pipe is held in the temperature range between (T-50K) and T during the steps (1) to (3) is shown in Tables 2 and 3. I did it. In Tables 2 and 3, the maximum heating temperature T is shown not in terms of absolute temperature (K) but in degrees Celsius (° C.) for the sake of simplicity.
  • the atmosphere in Table 4 corresponds to the first atmosphere described above, and consists of CO, CO 2 , H 2 , H 2 O, and N 2 .
  • N 2 is a gas neutral to C and Fe.
  • the atmosphere in Table 5 corresponds to the second atmosphere described above, and includes H 2 , O 2 , H 2 O, and the balance N 2 .
  • the amount of H 2 O is shown as the dew point.
  • the minimum C content of the ERW welded portion was measured.
  • the measurement method was as follows. In addition, the said measurement was implemented before the hardening process mentioned later.
  • the C content in the electric resistance welded portion of the obtained electric resistance welded steel pipe was determined based on the result of the EPMA measurement.
  • the measurement position was a position of 200 ⁇ m (depth 200 ⁇ m) in the thickness direction from the outer surface in a cross section including the electric seam welded portion perpendicular to the longitudinal direction of the steel pipe.
  • the said measurement was performed in the following procedures. First, a sample was cut out from the ERW steel pipe so that the cross section perpendicular to the longitudinal direction was at the measurement position.
  • an EPMA measurement was performed in a line having a bond width of +200 ⁇ m in the circumferential direction around the bond portion, and the X-ray intensity derived from C was measured.
  • an average value A of X-ray intensities in a range of ⁇ bond width ⁇ 0.4 was obtained with the bond portion at the center.
  • the average value B of the X-ray intensities in the range from the position separated 20 ⁇ m from the end of the bond portion to the position separated 80 ⁇ m among the lines was determined.
  • the measurement position of the average strength B corresponds to the base material portion.
  • the above measurement was performed on three cross sections, and the average value of A and the average value of B in the three cross sections were determined.
  • the minimum C content of the electric resistance welded portion: C 1 was calculated as the C content of the steel plate: C 0 ⁇ (average value of A) / (average value of B).
  • Tables 6 and 7 show values of C 0 -C 1 which is the difference between the minimum C content of the electric resistance welded portion obtained: C 1 and the C content of the steel plate: C 0 .
  • the C content of the steel sheet: as C 0 used the value of C content shown in Table 1.
  • the actual measured values of C 0 -C 1 in Tables 6 and 7 agree well with the calculated values of C 0 -C * 1 in Tables 2 and 3. From this, it is understood that when the normalizing atmosphere is within the range of the present invention, the minimum C content of the electric resistance welded portion after normalizing can be estimated using the equation (2).
  • the Vickers hardness in the base material portion: Hv 0 and the Vickers hardness in the electric resistance welded portion: Hv 1 were measured for each of the electric resistance welded steel pipes after the quenching treatment.
  • the measurement results are shown in Tables 6 and 7.
  • the measurement method was as follows.
  • a test piece for measuring hardness is obtained from the obtained ERW welded steel pipe, and the Vickers hardness (HV 0.5) is measured with a Vickers hardness meter (load: 4.9 N) in the thickness direction for the ERW welded part and the base material part.
  • the measurement was carried out at a pitch of 0.2 mm from the outer surface and the inner surface to 1 mm, respectively, and the obtained values were arithmetically averaged to determine the hardness of the electric resistance welded portion and base material of each steel pipe.
  • Test fatigue test A test material for fatigue test (length in the axial direction of the pipe: 250 mm) was taken from the electric resistance welded steel pipe after tempering and subjected to torsional fatigue test of both swings in accordance with JIS Z 2273. The stress .tau. For steel pipes using A, B, E, F, G, I, and J, 380 MPa, steel plate no. In a steel pipe using C, D, and H, it was 470 MPa. The fracture condition was observed after the torsion fatigue test, and the case where an abnormal crack was shown along the electric resistance welded portion was evaluated as x, and the case where other cracks were shown was evaluated as ⁇ . Tables 6 and 7 show the evaluation results and the number of repetitions until breakage: Nf.
  • FIG. 3 shows the difference between the minimum C content of the electric resistance welded portion: C 1 (% by mass) and the C content of the steel plate: C 0 (% by mass), C 0 -C 1 and the electric resistance after tempering welds of Vickers hardness: Vickers hardness Hv 1 and the base material part: the difference between Hv 0, is a graph showing a relationship between Hv 0 -Hv 1.
  • Each point in FIG. 3 is a white circle when an abnormal crack is shown along the ERW weld in the above-mentioned torsion fatigue test, and a black circle is drawn when no abnormal crack is shown along the ERW weld. did.
  • FIG. 4 is a calculated value of the minimum C content of the electric resistance welded portion obtained by the equation (2): C * 1 (mass%) and the C content of the steel sheet: C 0 (mass%) the difference, the C 0 -C * 1 the horizontal axis is a plot of the C 0 -C 1 is a measured value as the vertical axis.
  • the minimum C content of the ERW welds calculated using equation (2): ERW welding measured by C * 1 It can be seen that it is in good agreement with the lowest C content of part: C 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

急速短時間加熱焼入れ処理後の疲労耐久性に優れる電縫溶接鋼管を提供する。 特定の成分組成を有する鋼板を母材とし、ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有する電縫溶接鋼管であって、前記電縫溶接部の最低C含有量:C1(質量%)と前記鋼板のC含有量:C0(質量%)との差、C0-C1が0.05質量%以下であり、かつ、前記電縫溶接鋼管の内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である、電縫溶接鋼管。

Description

電縫溶接鋼管および電縫溶接鋼管の製造方法
 本発明は、電縫溶接鋼管に関し、特に、急速短時間加熱焼入れ処理後の疲労耐久性に優れ、中空スタビライザー等の素材として好適に用いることができる電縫溶接鋼管に関する。また本発明は、前記電縫溶接鋼管の製造方法に関する。
 近年、地球環境保全の観点から、自動車の排気ガス規制が強化され、燃費向上のために自動車車体の軽量化が推進されている。車体の軽量化の一つの方法として、最近では、中実部品を中空部品に変更することが指向されている。この傾向は、コーナリング時における車体のローリング抑制や、高速走行時の安定性を向上させるために用いられるスタビライザーにおいても例外ではない。すなわち、棒鋼を用いた中実スタビライザーから、鋼管を用いた中空スタビライザーへの転換が行われ、車体の軽量化が図られている。
 前記中空スタビライザーを初めとする中空部品は、通常、鋼管を冷間で所望の形状に成形した後、要求される強度を得るために焼入れまたは焼入れ焼戻しを施すことによって製造される。前記鋼管としては、継目無鋼管、電縫溶接鋼管、およびそれらを冷間で引抜加工した引抜鋼管が主に用いられている。なかでも電縫溶接鋼管は、比較的安価であり、しかも引抜加工せずとも寸法精度や表面の品質に優れることから、前記中空部品用素材として広く利用されている(特許文献1~3)。
特公平01-058264号公報 特公昭61-045688号公報 特開平06-093339号公報 特開2009-197327号公報
 しかしながら、最近では更なる車体の軽量化が指向され、また、中空部品に加わる応力も一層高くなる傾向にある。そのため、特許文献1~3に記載されているような従来の電縫溶接鋼管では、疲労耐久性、とくに電縫溶接部の疲労耐久性が不足する場合が生じてきた。
 疲労耐久性が不足する原因の一つは、電縫溶接部における焼入れ性の不足である。上述したように、一般的に中空部品は、鋼管を冷間で成形した後、焼入れを施して製造される。したがって、電縫溶接鋼管の電縫溶接部における焼入れが不足していると、焼入れ後における電縫溶接部の硬さ(焼入れ硬さ)が、母材部(電縫溶接部以外の部分)に比べて低くなる。このような電縫溶接部における焼入れ硬さの不足は、電縫溶接鋼管を通電加熱により急速短時間加熱して焼入れ処理(以下、「急速短時間加熱焼入れ処理」という)を施す場合に、特に顕在化する。
 この「急速短時間加熱焼入れ処理」は、生産性が高いことに加えて、加熱時の脱炭を抑制することにも有効であるため、広く用いられている。
 もちろん、焼入れ時の脱炭を防止する方法としては、急速加熱を行って加熱時間を短縮する方法以外にも、脱炭を起こさないように適切に調整された雰囲気中で加熱を行う方法が知られている。しかし、そのような脱炭を起こさない雰囲気は、一般に人体に有害で中毒を生じさせることに加え、爆発の危険が高いため、取り扱いが容易ではない。また、焼入れを行うためには、加熱炉から被処理部材を素早く取り出して冷却に供する必要があるが、そのような素早い取り出しにおいても炉内からの雰囲気ガスの漏洩や、炉内への大気の侵入が起こらないように特別な工夫が必要となる。とくに、中空スタビライザーのように長く、複雑な形状の部品を焼入れする場合、そのような工夫は容易ではない。
 上記の理由から、脱炭防止のために急速短時間加熱焼入れ処理を利用しつつも、電縫溶接部における焼入れ硬さの不足を解消することが求められている。
 そこで本発明者らは、上記従来技術の問題を解決するために、急速短時間加熱焼入れ処理における加熱条件を制御することにより、電縫溶接部における焼入れ硬さの低下を抑制する技術を開発した(特許文献4)。すなわち、焼入れ処理条件のうち、加熱速度、最高到達温度、均熱時間、および焼入れ開始温度までの一次冷却速度を、電縫溶接部のボンド幅(減炭層幅に対応)に応じて調整するという方法である。この方法によれば、十分な焼入れ硬さを確保できるだけのC(炭素)が加熱時に母材部から電縫溶接部へ拡散し、その結果、焼入れ処理後の電縫溶接部硬さが上昇し、得られる部材の疲労耐久性が向上する。
 しかし、特許文献4に記載された技術には、熱間仕上げ電縫溶接鋼管のようにボンド幅が狭い鋼管にしか適用できないという問題があった。ボンド幅が40μm以上の一般の電縫溶接ままの鋼管の場合には、電縫溶接部に十分に復炭させることができる適切な短時間加熱条件が存在しない。もちろん、加熱時間を延長することで復炭は可能であるが、その場合、加熱時間が長くなることによって脱炭が防止できない。したがって、前記方法では、一般的なボンド幅を有する部材の焼入れにおいて、電縫溶接部における焼入れ硬さの向上と脱炭の防止とを両立させることができないという問題があった。
 本発明は、上記事情に鑑みてなされたものであり、ボンド幅が40×10-6m以上であっても電縫溶接部における焼入れ硬さの向上と脱炭の防止とを両立させることができ、急速短時間加熱焼入れ処理後の疲労耐久性に優れる電縫溶接鋼管を提供することを目的とする。また、本発明は前記電縫溶接鋼管の製造方法を提供することを目的とする。
 なお、本発明において「急速短時間加熱焼入れ処理」とは、最高加熱温度が900℃以上であり、室温から前記最高加熱温度の間における平均加熱速度が10℃/s以上であり、900℃以上の温度域に滞留している時間が1min以内である焼入れ処理をいうものとする。
 本発明者らは、上記課題を解決するために検討を行った結果、以下の知見を得た。
(1)一般的なボンド幅の電縫溶接鋼管の焼入れにおいて、電縫溶接部における焼入れ硬さを向上させるために十分な復炭を行うためには、加熱時間を長くする必要があり、脱炭が生じてしまう。脱炭を防ぐためには脱炭を起こさない雰囲気中で加熱を行えばよいが、上述したように、焼入れ処理における加熱工程ではその後に急冷を行う必要があるため、脱炭を起こさない雰囲気を使用するためには様々な対策が必要となる。
(2)しかし、加工される前の真っ直ぐな鋼管に対して、急冷を伴わない加熱を行うのであれば、一般的な炉であっても、脱炭を生じさせない雰囲気を用いた加熱を容易に行うことができる。
(3)したがって、急速短時間加熱焼入れ処理に先だって、脱炭を生じさせない雰囲気中で、ボンド幅に応じた適切な条件で熱処理(焼準)を行うことにより、脱炭を防止しつつ電縫溶接部に十分な量の炭素を拡散させることができる。
(4)上記熱処理が施された電縫溶接鋼管は、急速短時間加熱焼入れ処理を行った後の電縫溶接部における焼入れ硬さが高く、優れた疲労耐久性を備える。
 本発明は、上記知見に基づいて完成されたものであり、その要旨構成は、次のとおりである。
1.質量%で、
  C :0.15~0.40%、
  Si:0.05~0.50%、
  Mn:0.30~2.00%、
  Al:0.01~0.10%、
  Ti:0.001~0.04%、
  B :0.0005~0.0050%、および
  N :0.0010~0.0100%、を含み、
 残部がFeおよび不可避的不純物からなり、かつ、
 Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を母材とし、
 ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有する電縫溶接鋼管であって、
 前記電縫溶接部の最低C含有量:C(質量%)と前記鋼板のC含有量:C(質量%)との差、C-Cが0.05質量%以下であり、かつ、
 前記電縫溶接鋼管の内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である、電縫溶接鋼管。
 (N/14)<(Ti/47.9)…(1)
ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
2.前記成分組成が、質量%で、
  Cr:1.0%以下、
  Mo:1.0%以下、
  W :1.0%以下、
  Ni:1.0%以下、および
  Cu:1.0%以下からなる群より選択される1または2以上をさらに含有する、上記1に記載の電縫溶接鋼管。
3.前記成分組成が、質量%で、
  Nb:0.2%以下、および
  V :0.2%以下の一方または両方をさらに含有する、上記1または2に記載の電縫溶接鋼管。
4.前記成分組成が、質量%で、
  Ca:0.0050%以下をさらに含有する、上記1~3のいずれか一項に記載の電縫溶接鋼管。
5.質量%で、
  C :0.15~0.40%、
  Si:0.05~0.50%、
  Mn:0.30~2.00%、
  Al:0.01~0.10%、
  Ti:0.001~0.04%、
  B :0.0005~0.0050%、および
  N :0.0010~0.0100%、を含み、
 残部がFeおよび不可避的不純物からなり、かつ、
 Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を電縫溶接して、ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有し、内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である電縫溶接鋼管とし、
 次いで、下記(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C が0.05質量%以下となる条件で、かつ、
 CO、CO、H、HO、ならびにCおよびFeに対して中性なガスからなり、下記(3)および(4)式を満たす雰囲気で焼準する、電縫溶接鋼管の製造方法。
 (N/14)<(Ti/47.9)…(1)
ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
 C =C-(C-0.09)erf(h’)…(2)
 ここで、
  C:鋼板のC含有量(質量%)
  h’=h/(Dt)1/2
  h(m):ボンド幅/2
  D(m/s)=D exp(-Q/RT)
  D=4.7×10-5 m/s
  Q=155 kJ/mol・K
  R=8.31 J/mol・K、
  T:前記焼準における最高加熱温度(K)
  t(s):前記焼準において(T-50K)からTの間の温度域に保持されている時間
 (PCO/PCO2≧K・aγ …(3)
 PH2・PCO/PH2O≧K’・aγ …(4)
 ここで、
  log(K)=-9460/T-1.26log(T)+13.52
  K’=exp[-(131300-134.3T)/RT]
  a γ=x γ・exp[(G γ+ΩFeC γ-G gr)・RT]・exp[(-2ΩFeC γ・x γ+ΣWMC γ・x γ)/RT]
  G γ-G gr=73744J/mol
  2ΩFeC γ=-51956J/mol
  WMnC γ=-41900J/mol
  WSiC γ=+125700J/mol
  WCrC γ=-104750/mol
  PCO(atm):炉内雰囲気中のCOの分圧
  PCO2(atm):炉内雰囲気中のCOの分圧
  PH2(atm):炉内雰囲気中のHの分圧
  PH2O(atm):炉内雰囲気中のHOの分圧
  R=8.31 J/mol・K
  T:前記焼準における最高加熱温度(K)
  a γ:オーステナイト相中におけるCの活量
  x γ:オーステナイト相中のCのモル分率
  xSi γ:オーステナイト相中のSiのモル分率
  xMn γ:オーステナイト相中のMnのモル分率
  xCr γ:オーステナイト相中のCrのモル分率
  G γ:オーステナイト相中におけるCの自由エネルギー
  G gr:グラファイト中におけるCの自由エネルギー
6.質量%で、
  C :0.15~0.40%、
  Si:0.05~0.50%、
  Mn:0.30~2.00%、
  Al:0.01~0.10%、
  Ti:0.001~0.04%、
  B :0.0005~0.0050%、および
  N :0.0010~0.0100%、を含み、
 残部がFeおよび不可避的不純物からなり、かつ、
 Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を電縫溶接して、ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有し、内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である電縫溶接鋼管とし、
 次いで、下記(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C が0.05質量%以下となる条件で、かつ、
 炉内雰囲気中のモル分率でH:10%以下、O:80ppm以下、ならびに残部のHOおよびNからなり、露点が0℃以下である雰囲気で焼準する、電縫溶接鋼管の製造方法。
 (N/14)<(Ti/47.9)…(1)
ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
 C =C-(C-0.09)erf(h’)…(2)
 ここで、
  C:鋼板のC含有量(質量%)
  h’=h/(Dt)1/2
  h(m):ボンド幅/2
  D(m/s)=D exp(-Q/RT)
  D=4.7×10-5 m/s
  Q=155 kJ/mol・K
  R=8.31 J/mol・K、
  T:前記焼準における最高加熱温度(K)
  t(s):前記焼準において(T-50K)からTの間の温度域に保持されている時間
7.前記成分組成が、質量%で、
  Cr:1.0%以下、
  Mo:1.0%以下、
  W :1.0%以下、
  Ni:1.0%以下、および
  Cu:1.0%以下からなる群より選択される1または2以上をさらに含有する、上記5または6に記載の電縫溶接鋼管の製造方法。
8.前記成分組成が、質量%で、
  Nb:0.2%以下、および
  V :0.2%以下の一方または両方をさらに含有する、上記5~7のいずれか一項に記載の電縫溶接鋼管の製造方法。
9.前記成分組成が、質量%で、
  Ca:0.0050%以下をさらに含有する、上記5~8のいずれか一項に記載の電縫溶接鋼管の製造方法。
 本発明によれば、電縫溶接部の減炭領域の幅が広い一般の電縫溶接鋼管であっても、急速短時間加熱焼入れ処理後の電縫溶接部の焼入れ硬さの低下を抑制でき、優れた疲労耐久性を得ることができる。したがって本発明の電縫溶接鋼管は、中空スタビライザー等の中空部品用の素管として極めて好適に使用することができる。
減炭層幅およびボンド幅の測定例を示す図である。 実施例における焼入れ処理のヒートパターンを模式的に示すグラフである。 電縫溶接部の最低C含有量:C(質量%)と前記鋼板のC含有量:C(質量%)との差、C-Cと、焼戻し後における母材部と電縫部のビッカース硬さの差との相関、および異常な割れ発生の有無を示すグラフである。 (2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C と、実測値であるC-Cとの相関を示すグラフである。
 次に、本発明を実施する方法について具体的に説明する。
[成分組成]
 本発明の電縫溶接鋼管は、上述した成分組成を有する鋼板を母材とすることを特徴の一つとする。以下、成分組成を上記範囲に限定する理由を説明する。なお、以下の成分組成の説明における「%」は、特に断らない限り「質量%」を表す。また、前記電縫溶接鋼管を製造する際に素材として用いる鋼板の成分組成も、上記電縫溶接鋼管の母材の成分組成と同様とすることができる。
C:0.15~0.40%
 Cは、固溶して鋼の強度を増加させるとともに、炭化物および炭窒化物の一方または両方として析出し、焼戻後の強度を高める有用な元素である。所望の鋼管の強度および焼入れ後の強度を確保するために、C含有量を0.15%以上、好ましくは0.20%以上とする。一方、C含有量が0.40%を超えると、焼入れ処理後の靭性が低下する。そのため、C含有量は0.40%以下、好ましくは0.35%以下とする。
Si:0.05~0.50%
 Siは、脱酸剤として作用する元素である。その効果を得るためには、0.05%以上の含有を必要とする。そのため、Si含有量は0.05%以上、好ましくは0.10%以上とする。一方、0.50%を超えて含有しても、脱酸の効果が飽和するため、含有量に見合う効果を期待できず、経済的に不利となるうえ、電縫溶接時に介在物が生じやすくなり、電縫溶接部の健全性に悪影響を及ぼす。そのため、Si含有量は0.50%以下、好ましくは0.30%以下とする。
Mn:0.30~2.00%
 Mnは、固溶して鋼の強度を高めるとともに、鋼の焼入れ性を向上させる元素である。所望の強度を確保するために、Mn含有量は0.30%以上とする。一方、Mn含有量が2.00%を超えると、残留オーステナイトが生成し、焼戻後の靭性が低下する。そのため、Mn含有量は2.00%以下、好ましくは1.60%以下とする。
Al:0.01~0.10%
 Alは、脱酸剤として作用するとともに、Nを固定し、焼入れ性向上に有効な固溶B量を確保する効果を有する元素である。前記効果を得るために、Al含有量を0.01%以上、好ましくは0.02%以上とする。一方、Al含有量が0.10%を超えると、介在物の生成が多くなり、疲労寿命が低下する。そのため、Al含有量は0.10%以下、好ましくは0.05%以下とする。
Ti:0.001~0.04%
 Tiは、N固定化元素として作用し、焼入れ性向上に有効な固溶B量を確保する効果を有する。また、Tiは、微細な炭化物として析出し、溶接時や熱処理時の結晶粒の粗大化を抑制し、靭性の向上に寄与する。前記効果を得るために、Ti含有量を0.001%以上、好ましくは0.02%以上とする。一方、Ti含有量が0.04%を超えると、介在物の形成が著しくなり靭性が低下する。そのため、Ti含有量を0.04%以下、好ましくは0.03%以下とする。
B:0.0005~0.0050%
 Bは、鋼の焼入れ性を向上させる有効な元素である。また、Bは粒界を強化する作用を有し、焼割れを防止する効果を有する。前記効果を得るために、B含有量を0.0005%以上、好ましくは0.0010%以上とする。一方、B含有量が0.0050%を超えると、上記効果が飽和し経済的に不利となる。また、B含有量が0.0050%を超えると、粗大なB含有析出物が生じ靭性が低下する。そのため、B含有量を0.0050%以下、好ましくは0.0025%以下とする。
N:0.0010~0.0100%
 Nは、鋼中の合金元素と結合し窒化物、炭窒化物を形成し、焼戻後の強度確保に寄与する元素である。前記効果を得るために、N含有量を0.0010%以上とする。一方、N含有量が0.0100%を超えると、窒化物が粗大化し、靭性や疲労寿命が低下する。そのため、N含有量を0.0100%以下とする。
 本発明の一実施形態における鋼板の成分組成は、上記元素と、残部のFeおよび不可避的不純物からなるものとすることができる。なお、不可避不純物の含有量は特に限定されないが、P、S、およびOの含有量は、それぞれ独立に、以下の範囲に抑制することが好ましい。
P:0.020%以下
 Pは、溶接割れ性、靭性に悪影響を及ぼす元素である。そのため、不可避不純物としてのP含有量は、0.020%以下に抑制することが好ましく、0.015%以下に抑制することがより好ましい。一方、Pは不純物元素であって、その含有量は低ければ低いほど良いため、P含有量の下限は限定されず、0であってよい。しかし、過度の低減はコストの増加を招く場合がある。そのため、コスト低減という観点からはP含有量を0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。
S:0.010%以下
 Sは、鋼中では硫化物系介在物として存在し、鋼管の加工性、靭性、疲労寿命を低下させるとともに、再熱割れ感受性を増大する元素である。そのため、不可避的不純物としてのS含有量は、0.010%以下に抑制することが好ましく、0.005%以下に抑制することがより好ましい。一方、Sは不純物元素であって、その含有量は低ければ低いほど良いため、S含有量の下限は限定されず、0であってよい。しかし、過度の低減はコストの増加を招く場合がある。そのため、コスト低減という観点からはS含有量を0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。
O:0.005%以下
 Oは、鋼中では主として酸化物系介在物として存在し、鋼管の加工性、靭性、疲労寿命を低下させる元素である。そのため、不可避的不純物としてのO含有量を0.005%以下に抑制することが好ましく、0.0021%以下に抑制することがより好ましい。一方、Oは不純物元素であって、その含有量は低ければ低いほど良いため、O含有量の下限は限定されず、0であってよい。しかし、過度の低減はコストの増加を招く場合がある。そのため、コスト低減という観点からはO含有量を0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。
 本発明の他の実施形態においては、上記成分組成は、さらにCr、Mo、W、Ni、およびCuからなる群より選択される1または2以上を、以下の含有量で任意に含有することができる。
Cr:1.0%以下
 Crは、焼入れ性向上に加えて、微細な炭化物を形成し強度を上昇させる作用を有する元素である。しかし、Cr含有量が1.0%を超えると、前記効果が飽和して経済的に不利となるとともに、電縫溶接時に介在物を生じ易くなり、電縫溶接部の健全性に悪影響を及ぼす。そのため、Crを添加する場合、Cr含有量を1.0%以下、好ましくは0.30%以下とする。一方、Cr含有量の下限は特に限定されないが、Crの添加効果を十分に得るという観点からは、Cr含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
Mo:1.0%以下
 Moは、焼入れ性向上に加えて、微細な炭化物を形成し強度を上昇させる作用を有する元素である。しかし、Mo含有量が1.0%を超えると、前記効果が飽和して経済的に不利となるとともに、粗大な炭化物を生成し、靭性が低下する。そのため、Moを添加する場合、Mo含有量を1.0%以下、好ましくは0.30%以下とする。一方、Mo含有量の下限は特に限定されないが、Moの添加効果を十分に得るという観点からは、Mo含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
W:1.0%以下
 Wは、焼入れ性向上に加えて、調質処理後の硬さと靭性のバランスを良好にする作用を有する元素である。しかし、W含有量が1.0%を超えると、前記効果が飽和して経済的に不利となる。そのため、Wを添加する場合、W含有量を1.0%以下、好ましくは0.30%以下とする。一方、W含有量の下限は特に限定されないが、Wの添加効果を十分に得るという観点からは、W含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
Ni:1.0%以下
 Niは、焼入れ性向上に加えて、靭性向上にも寄与する元素である。しかし、Ni含有量が1.0%を超えると、前記効果が飽和して経済的に不利となるうえ、加工性が低下する。そのため、Niを添加する場合、Ni含有量を1.0%以下、好ましくは0.50%以下とする。一方、Ni含有量の下限は特に限定されないが、Niの添加効果を十分に得るという観点からは、Ni含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
Cu:1.0%以下
 Cuは、焼入れ性向上に加えて、遅れ破壊防止に効果のある元素である。しかし、Cu含有量が1.0%を超えると、前記効果が飽和して経済的に不利となるうえ、加工性が低下する。そのため、Cuを添加する場合、Cu含有量を1.0%以下、好ましくは0.30%以下とする。一方、Cu含有量の下限は特に限定されないが、Cuの添加効果を十分に得るという観点からは、Cu含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
 本発明の他の実施形態においては、上記成分組成は、さらにNbおよびVの一方または両方を、以下の含有量で任意に含有することができる。
Nb:0.2%以下
 Nbは、炭化物を形成して強度増加に寄与する元素であり、必要に応じて選択して含有できる。しかし、Nb含有量が0.2%を超えると、前記効果が飽和して経済的に不利となる。そのため、Nbを添加する場合、Nb含有量は0.2%以下とする。一方、Nb含有量の下限は特に限定されないが、Nbの添加効果を十分に得るという観点からは、Nb含有量を0.01%以上とすることが好ましい。
V:0.2%以下
 Vは、Nbと同様に、炭化物を形成して強度増加に寄与する元素であり、必要に応じて選択して含有できる。しかし、V含有量が0.2%を超えると、前記効果が飽和して経済的に不利となる。そのため、Vを添加する場合、V含有量は0.2%以下とする。一方、V含有量の下限は特に限定されないが、Vの添加効果を十分に得るという観点からは、V含有量を0.01%以上とすることが好ましい。
 本発明の他の実施形態においては、上記成分組成は、さらにCaを、以下の含有量で任意に含有することができる。
Ca:0.0050%以下
 Caは、硫化物等の介在物の形態を制御し、加工性を向上させる元素であり、必要に応じて含有できる。しかし、Ca含有量が0.0050%を超えると鋼の清浄度が低下する。そのため、Caを添加する場合、Ca含有量を0.0050%以下、好ましくは0.0010%以下とする。一方、Ca含有量の下限は特に限定されないが、Caの添加効果を十分に得るという観点からは、Ca含有量を0.0001%以上とすることが好ましく、0.0003%以上とすることがより好ましい。
・Ti含有量とN含有量の関係
 本発明においては、上記鋼板の成分組成におけるTi含有量とN含有量が下記(1)式を満足する必要がある。
 (N/14)<(Ti/47.9)…(1)
ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す。
 上述したように、Bは焼入れ性を向上させる作用を有する元素であるが、Nと結合し、BNとして析出すると焼入れ性向上効果が著しく低下する。Ti含有量とN含有量が下記(1)式を満足しない場合、TiによるNの固定化が不十分となり、焼入れ時の固溶B量を確保することができない。
 言い換えると、下記(a)式で定義されるRが、1未満である必要がある。なお、焼入れ時の固溶B量をより確実に確保するという観点からは、Rを0.90以下とすることが好ましく、0.80以下とすることがより好ましい。一方、Rの下限については限定されない。ただし、N含有量とTi含有量は、それぞれ上述した範囲内である必要がある。
 R=(N/14)/(Ti/47.9)…(a)
 本発明の一実施形態においては、質量%で、
  C :0.15~0.40%、
  Si:0.05~0.50%、
  Mn:0.30~2.00%、
  Al:0.01~0.10%、
  Ti:0.001~0.04%、
  B :0.0005~0.0050%、
  N :0.0010~0.0100%、
  任意に、Cr:1.0%以下、Mo:1.0%以下、W:1.0%以下、Ni:1.0%以下、およびCu:1.0%以下からなる群より選択される1または2以上、
  任意に、Nb:0.2%以下、およびV:0.2%以下の一方または両方、ならびに、
  任意に、Ca:0.0050%以下を含み、
 残部がFeおよび不可避的不純物からなり、かつ、
 Ti含有量とN含有量とが上記(1)式を満足する成分組成を有する鋼板を用いることができる。
[電縫溶接部]
 本発明の電縫溶接鋼管は、ボンド幅および電縫溶接部のC含有量が以下の条件を満たすことを特徴とする。
[ボンド幅]
 電縫溶接鋼管は、素材としての鋼板を成形して略円筒状のオープン管としたのち、該オープン管の端部同士を突き合わせて電縫溶接することによって製造される。このようにして得られる電縫溶接鋼管の電縫溶接部には、C含有量が母材よりも低くなっている減炭層が形成される。この減炭層の幅や、減炭層におけるC含有量は、電縫溶接鋼管の特性に大きく影響する。
 減炭層の幅は、図1の上段の図に示すようにEPMA(Electron Probe Micro Analyzer)によってC量を分析する方法や、図1の中段に示すように溶接部をナイタールエッチングして観察される白色層の幅を測定する方法など、種々の方法で測定することが可能である。しかし、C量が0.30%未満で電縫溶接まま、あるいは800℃未満の温度での熱処理しか施されていない電縫溶接鋼管であれば、図1の下段に示すようなメタルフローエッチングを行うことにより、偏析線が観察されない領域であるボンド部の幅を、比較的簡単に、しかも明瞭に測定できる。そして、このボンド部の幅(ボンド幅)は、上述したような方法で測定される減炭層の幅とよく一致する。なお、C量が0.30%以上の電縫溶接鋼管においては、EPMAによって測定した減炭層の幅、またはナイタールエッチングして観察した白色層の幅をボンド幅として用いる。
ボンド幅:40×10-6m以上、120×10-6m以下
 電縫溶接部の焼入れ硬さの観点からは、ボンド幅が狭い方が好ましい。そのため、ボンド幅を120×10-6m以下とする。一方、ボンド幅が狭くなりすぎると、加工性や電縫溶接時のロバスト性が低下する。そのため、ボンド幅を40×10-6m以上とする。前記ボンド幅は、上述した方法で測定すればよく、具体的には、実施例に記載する方法によって測定することができる。
 なお、特許文献4に記載した技術は、急速短時間加熱焼入れ処理において十分な復炭を可能とするために、ボンド幅が狭い鋼管にしか適用することができなかった。そのため、特許文献4では、鋼管に対して縮径圧延などの加工を施してボンド幅を狭くしていた。ボンド幅が40×10-6m以上であるような一般的な鋼管に、縮径圧延などの加工を施すことなく特許文献4に記載の焼入れ処理を施したとしても、本発明の条件を満たす鋼管を製造することはできない。
[C含有量]
-C:0.05質量%以下
 電縫溶接部におけるC含有量が低いと、焼入れ性が不足し、焼入れ後における電縫溶接部の硬さが不十分となる。そこで、電縫溶接部の焼入れ硬さを確保し、疲労強度を向上させるために、電縫溶接部の最低C含有量:C(質量%)と、母材である鋼板のC含有量:C(質量%)との差、C-Cを0.05質量%以下、好ましくは0.04質量%以下とする。一方、電縫溶接部の焼入れ硬さを確保するという観点からは、C-Cは低ければ低いほどよいため、C-Cの下限はとくに限定されない。しかし、通常、C>Cであるため、C-Cは0質量%超であってよい。また、製造の容易さという観点からは、C-Cを0.01質量%以上とすることが好ましく、0.02質量%以上とすることが好ましい。なお、電縫溶接部の最低C含有量:Cは、電縫溶接部におけるC含有量を、鋼管の外表面から厚み方向に200μm(深さ200μm)の位置で、管周方向に沿ってEPMAで測定することによって求めることができる。
[全脱炭層の深さ]
全脱炭深さ:50×10-6m以下
 全脱炭層深さが大きいと、焼入れ後の硬さが低下して疲労強度が確保できなくなる。そのため、電縫溶接鋼管の内側表層と外側表層における全脱炭層の深さを、それぞれ50×10-6m以下、好ましくは30×10-6m以下とする。一方、前記全脱炭深さの下限については限定されない。しかし、製造の容易さという観点からは、内側表層と外側表層における全脱炭層の深さを、それぞれ6×10-6m以上とすることが好ましく、12×10-6m以上とすることがより好ましい。
 全脱炭層の深さは熱処理条件の影響を受けるが、後述する条件で焼準を行うことにより、脱炭を防止し、全脱炭層深さを前記範囲内とすることができる。また、脱炭層深さは電縫溶接鋼管の素材として用いる鋼帯の脱炭層深さにも影響を受ける。そのため、例えば、素材として熱延鋼板を用いる場合には、該熱延鋼板製造時の巻取温度を低くすることや、高圧デスケーリングを行ってスケール厚を薄くしておくことが好ましい。
 なお、前記全脱炭層の深さは、JIS G 0558「鋼の脱炭層深さ測定方法」に規定されている「顕微鏡による測定方法」に準じて測定することができる。具体的な測定は、実施例に記載した方法で行うことができる。
[外径・肉厚]
 本発明の電縫溶接鋼管の外径(D)は、特に限定されることなく任意の値とすることができる。前記外径は20mm以上とすることが好ましい。また、前記外径は40mm以下とすることが好ましい。また、本発明の電縫溶接鋼管の肉厚(t)は、特に限定されることなく任意の値とすることができる。前記肉厚は2mm以上とすることが好ましい、また、前記肉厚は8mm以下とすることが好ましい。外径Dに対する肉厚tの比(t/D)は、0.14以上とすることが好ましい。また、前記比(t/D)は0.28以下とすることが好ましい。
[製造方法]
 次に、本発明の一実施形態における電縫溶接鋼管の製造方法を説明する。本発明の電縫溶接鋼管は、素材としての鋼板を電縫溶接して電縫溶接鋼管とし、前記電縫溶接鋼管を特定の条件で焼準することによって得ることができる。以下、各工程について具体的に説明する。
[鋼板]
 素材としての鋼板としては、上記成分組成を有する鋼板であれば、熱延鋼板、冷延鋼板を問わず任意のものを用いることができるが、熱延鋼板を用いることが好ましい。なお、ここでいう「鋼板」には「鋼帯」をも含むものとする。
[電縫溶接]
 前記鋼板を、電縫溶接して電縫溶接鋼管とする。電縫溶接の方法は特に限定されないが、一般的には、鋼板をロール成形して略円筒状のオープン管としたのち、該オープン管の端部同士を突き合わせて電縫溶接する。突合せ面は一般には剪断したままの面から成形されるが、溶接欠陥を防止する観点からは切断で仕上げることも好ましい。電縫溶接は、高周波抵抗溶接で行うことが好ましいが、特に表面疵の防止の観点からは接触電極式ではなく誘導加熱が好ましい。また、電縫溶接部の耐久性の不安定要因となりうるため、電縫溶接後に外面だけでなく内面もビードカットを行って凸部が残らないようにすることが好ましい。なお、電縫溶接鋼管への加工に先立って、素材鋼板に対してデスケーリングを施すことが好ましい。前記デスケーリングは、酸洗など、任意の方法で行うことができる。
 その際、電縫溶接鋼管のボンド幅は40×10-6m以上、120×10-6m以下とする。また、電縫溶接鋼管の内側表層と外側表層の両者における全脱炭層の深さは、それぞれ50×10-6m以下とする。ボンド幅と全脱炭層深さを前記範囲に限定する理由は、上述したとおりである。
[焼準]
 次いで、得られた電縫溶接鋼管に対して焼準(焼入れ前熱処理)を施す。本発明においては、前記焼準の際の加熱条件と雰囲気の両者を以下に述べるように制御することが重要である。
[加熱条件]
 下記(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C が0.05質量%以下となる条件で前記焼準を行う。
 C =C-(C-0.09)erf(h’)…(2)
 ここで、
  C:鋼板のC含有量(質量%)
  h’=h/(Dt)1/2
  h(m):ボンド幅/2
  D(m/s)=D exp(-Q/RT)
  D=4.7×10-5 m/s
  Q=155 kJ/mol・K
  R=8.31 J/mol・K、
  T:前記焼準における最高加熱温度(K)
  t(s):前記焼準において(T-50K)からTの間の温度域に保持されている時間
 上記のD、Q、およびRの値は、社団法人日本金属学会編、改訂2版金属データブック、p.26、1984年、丸善、より引用した。なお、前記Qは、オーステナイト相中におけるCの拡散の活性化エネルギーである。また、(2)式における「erf」は、誤差関数である。
 上記(2)式は、焼準を行っている間のCの拡散に基づいて、焼準後のボンド幅中央位置におけるC含有量を算出する式である。したがって、上記(2)式を用いることにより、焼準後の電縫溶接部における最低C含有量(C )を推定することができる。したがって、C-C が0.05質量%以下となるように、ボンド幅に応じた加熱条件を選択することにより、焼準後の電縫溶接鋼管における電縫溶接部の実際の最低C含有量:C(質量%)と前記鋼板のC含有量:C(質量%)との差、C-Cを0.05質量%以下とすることができる。
 上記焼準は、上記条件を満たす限りにおいて、任意の方法で行うことができる。具体的には、一般的な焼準と同様に、鋼管を最高加熱温度:Tまで加熱し、前記最高加熱温度に保持(均熱)した後、冷却すればよい。前記冷却の条件は特に限定されず、鋼管の成分組成や加熱温度に応じて決定すればよい。
 しかし、前記冷却における650℃までの冷却速度が速すぎると、ベイナイトやマルテンサイトといった硬質相が生成してしまう場合がある。硬質相が生成すると、スタビライザーで行われる曲げやドライブシャフトで行われるスウェージ等の加工性が低下する。そのため、前記冷却においては、冷却開始から650℃までの平均冷却速度を10℃/s以下とすることが好ましい。冷却開始から650℃までの平均冷却速度を10℃/s以下であれば、フェライトおよびパーライトの一方または両方からなり、硬質相を含まない組織を得ることができる。
 前記冷却においては、脱炭防止の観点から、少なくとも650℃に到達するまでの間は、後述する第一の雰囲気または第二の雰囲気中で冷却を行うことが好ましく、少なくとも450℃に到達するまでの間は、後述する第一の雰囲気または第二の雰囲気中で冷却を行うことがより好ましい。
 上記焼準は、上記雰囲気を用いることができるものであれば任意の設備を用いて行うことができるが、生産性の観点からは連続式の熱処理炉(連続炉)を用いることが好ましい。雰囲気制御という観点からは、光輝焼鈍に一般的に用いられている光輝焼鈍炉を前記熱処理として用いることが好ましい。
[雰囲気]
 上記焼準は、脱炭を生じさせない雰囲気で行う必要がある。雰囲気が適切でないと、電縫溶接部へ復炭する炭素の供給源である母材部の脱炭が進んで電縫溶接部への復炭が進まない。前記脱炭を生じさせない雰囲気としては、次の2つの雰囲気を挙げることができる。
(第一の雰囲気)
 本発明の一実施形態においては、上記焼準を、CO、CO、H、HO、ならびにCおよびFeに対して中性なガスからなり、下記(3)および(4)式を満たす雰囲気で行うことができる。
(PCO/PCO2≧K・aγ …(3)
 PH2・PCO/PH2O≧K’・aγ …(4)
 ここで、
  log(K)=-9460/T-1.26log(T)+13.52
  K’=exp[-(131300-134.3T)/RT]
  a γ=x γ・exp[(G γ+ΩFeC γ-G gr)・RT]・exp[(-2ΩFeC γ・x γ+ΣWMC γ・x γ)/RT]
  G γ-G gr=73744J/mol
  2ΩFeC γ=-51956J/mol
  WMnC γ=-41900J/mol
  WSiC γ=+125700J/mol
  WCrC γ=-104750/mol
  PCO(atm):炉内雰囲気中のCOの分圧
  PCO2(atm):炉内雰囲気中のCOの分圧
  PH2(atm):炉内雰囲気中のHの分圧
  PH2O(atm):炉内雰囲気中のHOの分圧
  R=8.31 J/mol・K
  T:前記焼準における最高加熱温度(K)
  a γ:オーステナイト相中におけるCの活量
  x γ:オーステナイト相中のCのモル分率
  xSi γ:オーステナイト相中のSiのモル分率
  xMn γ:オーステナイト相中のMnのモル分率
  xCr γ:オーステナイト相中のCrのモル分率
  G γ:オーステナイト相中におけるCの自由エネルギー
  G gr:グラファイト中におけるCの自由エネルギー
 なお、G γはオーステナイト相中におけるCの自由エネルギーであり、G grはグラファイト中におけるCの自由エネルギーである。ΩFeC γはオーステナイト相中におけるCとFeとの相互作用係数、WMC γはオーステナイト相中におけるCと元素Aとの相互作用係数である。また、「ΣWMC γ・x γ」は、M=Mn、Si、Crである場合の「WMC γ・x γ」の和を意味する。
 ここで、オーステナイト相中におけるパラメータを用いているのは、上記成分組成を有する鋼板からなる鋼管に焼準を施すと、鋼のミクロ組織が実質的にオーステナイト単相からなるミクロ組織となるためである。したがって、オーステナイト相中におけるC、Si、Mn、およびCrのモル分率は、鋼中における各元素のモル分率に等しい。そのため、(3)、(4)式の計算においては、オーステナイト相中のモル分率として、鋼中のモル分率の値を用いることができる。また、上述したように焼準によってオーステナイト単相組織となるため、焼準を施す前の鋼のミクロ組織は任意の組織とすることができる。
 上記雰囲気は、特に限定されることなく任意の方法で調製することができるが、一般にはメタンやプロパンなどを不完全燃焼させたガスからCOやHOを除去することによって調製することができる。なお、前記「CおよびFeに対して中性なガス」としては、例えば、NおよびArの一方または両方を用いることができる。
(第二の雰囲気)
 本発明の一実施形態においては、上記焼準を、雰囲気中のモル分率で、H:0~10%、O:80ppm以下含み、残部がHOおよびNからなり、かつ、露点が0℃以下である雰囲気で行うことができる。
 ここで、Hは、任意に添加できる成分であり、そのモル分率はゼロであってもよい。しかし、H
鋼管の酸化や脱炭を抑制する効果を有する成分であるため、添加することが好ましい。具体的には、Hのモル分率を1%以上とすることが好ましく、2%以上とすることがより好ましい。一方、Hを過剰に添加しても、その添加効果は飽和し、さらに、爆発が生じやすくなる。そのため、Hのモル分率は、10%以下、好ましくは7%以下、より好ましくは5%以下とする。
 また、OおよびHOは、脱炭を生じさせる成分である。さらに、OおよびHOは、鉄を酸化して酸化スケールを生じさせ、酸化が著しい場合には、表面粗さの増加といった表面性状の低下を招く。そのため、雰囲気中のOおよびHOの量は少ないことが望ましい。具体的には、Oのモル分率が80ppmを超えると、前記の悪影響が顕著となるため、Oのモル分率は80ppm以下、好ましくは40ppm以下、より好ましくは20ppm以下とする。また、HOについては、露点が0℃をこえると前記の悪影響が顕著になるため、露点を0℃以下、好ましくは-20℃以下、より好ましくは-40℃以下とする。一方、雰囲気調整の容易さという観点からは、露点は-60℃以上とすることが好ましく、-50℃以上とすることが好ましい。
 上記第一の雰囲気および第二の雰囲気のいずれかの雰囲気中で上記焼準を行うことにより、焼準中の脱炭を防止することができる。したがって、素材鋼板として内側表層と外側表層の両者における全脱炭層の深さが50×10-6m以下である電縫溶接鋼管を使用し、かつ前記雰囲気中で焼準を行えば、焼準後の電縫溶接鋼管の内側表層と外側表層の両者における全脱炭層の深さを50×10-6m以下とすることができる。
 以上の手順で本発明の電縫溶接鋼管を製造することができる。このようにして得られた電縫溶接鋼管は、急速短時間加熱焼入れ処理後の疲労耐久性に優れ、中空スタビライザー等の素材として好適に用いることができる。
[中空部品]
 上記のようにして製造された電縫溶接鋼管は、任意の用途に用いることができる。一例としては、上述したような中空スタビライザーなどの中空部品の素材として用いることができる。
 具体的には、前記電縫溶接鋼管に対して、所望の部材形状に加工する加工を施し、次いで、急速短時間加熱焼入れ処理を施すことが好ましい。前記加工としては、任意の加工を用いることができるが、冷間加工を用いることが好ましい。
[急速短時間加熱焼入れ]
 上記急速短時間加熱焼入れ処理は、最高加熱温度が900℃以上、室温から前記最高加熱温度の間における平均加熱速度が10℃/s以上、かつ900℃以上の温度域に滞留している時間が1min以内の条件で行う。前記条件で焼入れを行うことにより、脱炭を防止しつつ、所望の強度を有する部品を得ることができる。前記焼入れにおける加熱は、任意の方法で行うことができるが、例えば、高周波加熱や通電加熱を用いることができる。
 上記急速短時間加熱焼入れ処理における焼入れ開始温度:Tqは、電縫溶接部のAr3変態点よりも高い温度とする。Tqが電縫溶接部のAr3変態点以下であると、焼入れ(急冷)の開始前にフェライト変態やベイナイト変態が生じ、電縫溶接部を100%のマルテンサイトからなる組織とすることができなくなる。そして、その結果、所望の焼入れ硬さを確保できず、疲労耐久性が低下する。
 ここで、電縫溶接部のAr3変態点は、下記(5)式を用いて算出した値とする。この値は実際のAr3変態点よりも高温側にずれるので、急冷開始温度を決定するうえでは安全側の値である。なお、上記のAc3変態点の計算式は、レスリー鉄鋼材科学(幸田監訳:1985[丸善]、p.273)より引用した。                     
 Ac3変態点(℃)=910-203(C1/2)-15.2Ni+44.7Si+104V+31.5Mo+13.1W-(30Mn+11Cr+20Cu-700P-400Al-120As-400Ti)…(5)
(上記(5)式における元素記号は、各元素の含有量(質量%)であり、当該元素が含まれていない場合にはゼロとする)
 また、焼入れ時の冷却速度は、100%マルテンサイト組織を生成できる冷却条件であればよい。100%マルテンサイト組織を得られる冷却条件は、素材である鋼板の成分組成に依存するが、本発明においては、焼入れ開始温度:Tqから、平均冷却速度:30℃/s以上、好ましくは80℃/s以上で室温まで冷却することが好ましい。
 焼入れ処理における急冷(二次冷却)は、生産性やメンテナンスという観点からは、水または水にポリマーを添加した冷却媒を用いることが好ましい。しかし、焼割れ、焼入れ時の変形や残留応力の発生を抑制するために油冷とすることもできる。
[焼戻し]
 上記急速短時間加熱焼入れ後、任意に、靭性を向上させるための焼戻処理を施しても良い。焼戻処理における加熱温度(焼戻し温度)は、150~450℃とすることが好ましい。前記加熱温度が150℃未満では、所望の靭性を確保できなくなる場合がある。一方、前記加熱温度が450℃を超えると、硬さが低下し、所望の耐久性が確保できなくなる場合がある。
 次に、実施例に基づいて本発明をさらに具体的に説明する。
 表1に示す成分組成を有する熱延鋼板を素材として、以下の手順で電縫溶接鋼管を製造した。まず、前記熱延鋼板を酸洗し、スケールを除去した。次いで、前記熱延鋼板を冷間で連続的にロール成形し、略円筒状のオープン管とした。次いで、前記オープン管の端部同士を突き合わせ、高周波抵抗溶接により電縫溶接して、電縫溶接鋼管とした。得られた電縫溶接鋼管の外径は25.4mm、肉厚は4.5mmであった。
(ボンド幅)
 上記電縫溶接においては、溶接条件を変更することにより、電縫溶接部のボンド幅を表2、3に示す値に調整した。なお、ボンド幅は、得られた電縫溶接鋼管から電縫溶接部を含む組織観察用試験片を採取し、組織観察を行って求めた。前記組織観察用試験片は、電縫溶接鋼管の長手(管軸)方向に垂直な断面が観察面となるように切り出した。切り出された試験片の断面を研磨した。
・鋼板のC含有量が0.30%未満の場合
 研磨後の試験片の表面を、メタルフローエッチング液(5%ピクリン酸+界面活性剤)を用いて腐食した。その後、光学顕微鏡(倍率:400倍)を用いて、断面組織を観察した。該断面組織における偏析線が観察されない領域(層)の最大幅を測定し、ボンド幅とした。
・鋼板のC含有量が0.30%以上の場合
 研磨後の試験片の表面を、ナイタールエッチング液(5%硝酸アルコール)を用いて腐食した。その後、光学顕微鏡(倍率:400倍)を用いて、断面組織を観察した。該断面組織における明るく観察される領域(白色層)の最大幅を測定し、ボンド幅とした。
(焼準前の脱炭層深さ)
 また、得られた電縫溶接鋼管(焼準前)のそれぞれについて、JIS G 0558「鋼の脱炭層深さ測定方法」に規定されている「顕微鏡による測定方法」に準じて、内側表層と外側表層の両者における全脱炭層の深さ測定した。測定は、電縫溶接鋼管を長手方向中心で切断し、その断面における脱炭層深さの最大値を採用した。また、前記測定においては、同様の方法でフェライト脱炭層の深さも測定した。測定結果を表2、3に示した。
(焼準)
 次に、前記電縫溶接後の電縫溶接鋼管(電縫溶接まま)に対し、表2、3に示した条件で焼準を施した。前記焼準は、次の(1)~(3)の工程からなる。
(1)室温から最高加熱温度:T(℃)まで、平均加熱速度:5(℃/s)で加熱。
(2)前記最高加熱温度:T(℃)で所定の均熱時間、保持。
(3)室温まで、平均冷却速度:3(℃/s)で冷却。
 上記(1)~(3)の工程の間において、鋼管が(T-50K)からTの間の温度域に保持されている時間として定義されるt(s)は、表2、3に示した通りとした。なお、表2、3では、分かりやすくするために最高加熱温度:Tを絶対温度(K)ではなくセルシウス度(℃)で示している。
 表2、3に示したボンド幅および加熱条件より、(2)式を用いて電縫溶接部の最低C含有量の計算値:C (質量%)を算出した。得られたC の値と、C と鋼板のC含有量:Cとの差であるC-C の値とを、表2、3に併せて示した。ここで、前記鋼板のC含有量:Cとしては、表1に示したC含有量の値を用いた。
 また、前記焼準の際の雰囲気としては、表4、5に示す組成の雰囲気を用いた。表4の雰囲気は、上述した第一の雰囲気に相当するものであり、CO、CO、H、HO、およびNからなる。ここで、NはCおよびFeに対して中性なガスである。また、表5の雰囲気は上述した第二の雰囲気に相当するものであり、H、O、HO、および残部のNからなる。表5においては、HOの量は露点として示している。
 得られた焼準後の電縫溶接鋼管のそれぞれについて、電縫溶接部の最低C含有量:C(質量%)を測定した。測定方法は以下のとおりとした。なお、前記測定は、後述する焼入れ処理の前に実施した。
(電縫溶接部の最低C含有量:C
 得られた電縫溶接鋼管の電縫溶接部におけるC含有量を、EPMA測定の結果に基づいて求めた。測定位置は、鋼管の長手方向に垂直な、電縫溶接部を含む断面における、外表面から厚み方向に200μm(深さ200μm)の位置とした。前記測定は、以下の手順で行った。まず、電縫鋼管から長手方向に垂直な断面が測定位置となるように試料を切り出した。次いで、前記断面において、ボンド部を中心にして、円周方向にボンド幅+200μmの長さのラインでEPMA測定を行い、Cに由来するX線強度を測定した。次に、前記ラインのうち、ボンド部を中心に±ボンド幅×0.4の範囲におけるX線強度の平均値Aを求めた。さらに、前記ラインのうち、ボンド部の端から20μm離れた位置から80μm離れた位置までの範囲におけるX線強度の平均値Bを求めた。前記平均強度Bの測定位置は母材部にあたる。
 以上の測定を3カ所の断面について行い、該3断面におけるAの平均値とBの平均値を、それぞれ求めた。電縫部の最低C含有量:Cは、鋼板のC含有量:C×(Aの平均値)/(Bの平均値)として算出した。
 得られた電縫溶接部の最低C含有量:Cと鋼板のC含有量:Cとの差であるC-Cの値を、表6、7に示す。ここで、前記鋼板のC含有量:Cとしては、表1に示したC含有量の値を用いた。焼準雰囲気が本発明の範囲を外れて脱炭が進行した比較例のNo.7~9、21、22を除き,表6、7のC-Cの実測値は表2、3のC-C の計算値によく一致している。このことから、焼準雰囲気が本発明の範囲内である場合には、(2)式を用いて焼準後の電縫溶接部の最低C含有量を見積もれることが分かる。
(脱炭層深さ)
 また、得られた電縫溶接鋼管(焼準後、焼入れ前)のそれぞれについて、内側表層と外側表層の両者における全脱炭層深さおよびフェライト脱炭層深さを測定した。前記測定は、焼準前の脱炭層深さの測定と同様の方法で実施した。測定結果を表6、7に併記する。この結果より、本発明の条件を満たす方法で製造された電縫溶接鋼管においては、著しい脱炭は生じておらず、全脱炭層深さおよびフェライト脱炭層深さが低減できていることが分かる。
(焼入れ)
 次に、上記焼準後の電縫溶接鋼管に、図2に示すヒートパターンで急速短時間加熱焼入れ処理を施した。すなわち、下記(1)~(3)の工程を順次実施した。
(1)室温から990℃まで、平均加熱速度:20℃/sで加熱。
(2)990℃から980℃まで、平均冷却速度:5℃/sで冷却(一次冷却)。
(3)980℃から室温まで、平均冷却速度:80℃/sで水冷(二次冷却)。
(硬さ試験)
 上記焼入れ処理後の電縫溶接鋼管のそれぞれについて、母材部におけるビッカース硬さ:Hv、電縫溶接部におけるビッカース硬さ:Hvを測定した。測定結果を表6、7に示した。測定法は、以下のとおりとした。
 得られた電縫溶接鋼管から硬さ測定用試験片を採取し、電縫溶接部および母材部について、板厚方向にビッカース硬度計(荷重:4.9N)でビッカース硬さ(HV0.5)を測定した。測定は外表面と内表面からそれぞれ1mmまでの範囲について、0.2mmピッチで行い、得られた値を算術平均して各鋼管の電縫溶接部、母材部における硬さとした。
(焼戻し)
 さらに、上記焼入れ後の電縫溶接鋼管に対し、表6、7に示した焼戻し温度で、20分間の焼戻しを施した。焼戻し後の電縫溶接鋼管についても、焼入れ後の電縫溶接鋼管と同様の方法で、電縫溶接部におけるビッカース硬さ:Hv、および電縫溶接部におけるビッカース硬さ:Hvを測定した。測定結果を表6、7に示す。
(ねじり疲労試験)
 上記焼戻し後の電縫溶接鋼管から疲労試験用試験材(管軸方向長さ:250mm)を採取し、JISZ 2273に準拠した両振りのねじり疲労試験を行った。ねじり疲労試験の応力τは、鋼板No.A、B、E、F、G、I、およびJを用いた鋼管では380MPa、鋼板No.C、D、およびHを用いた鋼管では470MPaとした。ねじり疲労試験後に破断状況を観察し、電縫溶接部に沿った異常な割れ方を示した場合を×、それ以外の割れ方を示した場合を○として評価した。評価結果と、破断するまでの繰返し数:Nfを表6、7に示す。
 図3は、電縫溶接部の最低C含有量:C(質量%)と前記鋼板のC含有量:C(質量%)との差、C-Cと、焼戻し後における電縫溶接部のビッカース硬さ:Hvと母材部のビッカース硬さ:Hvとの差、Hv-Hvとの関係を示すグラフである。図3における各点は、上記ねじり疲労試験において電縫溶接部に沿った異常な割れ方を示した場合を白丸、電縫溶接部に沿った異常な割れ方を示さなかった場合を黒丸でプロットした。
 図3および表6、7に示した結果から分かるように、本発明の条件を満たす発明例の電縫溶接鋼管では、急速短時間加熱焼入れ処理後の電縫溶接部における硬さの顕著な低下は認められず、また、ねじり疲労試験においても電縫溶接部に沿った異常な割れ方を示さなかった。一方、本発明の条件を満たさない比較例のNo.3、5~9、21、および22の電縫溶接鋼管では、急速短時間加熱焼入れ処理後における電縫溶接部の硬さの顕著な低下が生じており、また、ねじり疲労試験においても電縫溶接部に沿った異常な割れ方を示した。また、TiとNの関係が本発明の範囲を外れる比較例No.15では、C含有量が同じ発明例No.1に比べて焼入れ硬さが母材部および溶接部ともに低いことが分かる。
 また、図4は、(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C を横軸とし、実測値であるC-Cを縦軸としてプロットしたグラフである。図4から分かるように、本発明で規定する雰囲気中で焼準を行う場合、(2)式を用いて算出した電縫溶接部の最低C含有量:C が、実測した電縫溶接部の最低C含有量:Cとよく一致していることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (9)

  1.  質量%で、
      C :0.15~0.40%、
      Si:0.05~0.50%、
      Mn:0.30~2.00%、
      Al:0.01~0.10%、
      Ti:0.001~0.04%、
      B :0.0005~0.0050%、および
      N :0.0010~0.0100%、を含み、
     残部がFeおよび不可避的不純物からなり、かつ、
     Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を母材とし、
     ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有する電縫溶接鋼管であって、
     前記電縫溶接部の最低C含有量:C(質量%)と前記鋼板のC含有量:C(質量%)との差、C-Cが0.05質量%以下であり、かつ、
     前記電縫溶接鋼管の内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である、電縫溶接鋼管。
     (N/14)<(Ti/47.9)…(1)
    ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
  2.  前記成分組成が、質量%で、
      Cr:1.0%以下、
      Mo:1.0%以下、
      W :1.0%以下、
      Ni:1.0%以下、および
      Cu:1.0%以下からなる群より選択される1または2以上をさらに含有する、請求項1に記載の電縫溶接鋼管。
  3.  前記成分組成が、質量%で、
      Nb:0.2%以下、および
      V :0.2%以下の一方または両方をさらに含有する、請求項1または2に記載の電縫溶接鋼管。
  4.  前記成分組成が、質量%で、
      Ca:0.0050%以下をさらに含有する、請求項1~3のいずれか一項に記載の電縫溶接鋼管。
  5.  質量%で、
      C :0.15~0.40%、
      Si:0.05~0.50%、
      Mn:0.30~2.00%、
      Al:0.01~0.10%、
      Ti:0.001~0.04%、
      B :0.0005~0.0050%、および
      N :0.0010~0.0100%、を含み、
     残部がFeおよび不可避的不純物からなり、かつ、
     Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を電縫溶接して、ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有し、内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である電縫溶接鋼管とし、
     次いで、下記(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C が0.05質量%以下となる条件で、かつ、
     CO、CO、H、HO、ならびにCおよびFeに対して中性なガスからなり、下記(3)および(4)式を満たす雰囲気で焼準する、電縫溶接鋼管の製造方法。
     (N/14)<(Ti/47.9)…(1)
    ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
     C =C-(C-0.09)erf(h’)…(2)
     ここで、
      C:鋼板のC含有量(質量%)
      h’=h/(Dt)1/2
      h(m):ボンド幅/2
      D(m/s)=D exp(-Q/RT)
      D=4.7×10-5 m/s
      Q=155 kJ/mol・K
      R=8.31 J/mol・K、
      T:前記焼準における最高加熱温度(K)
      t(s):前記焼準において(T-50K)からTの間の温度域に保持されている時間
     (PCO/PCO2≧K・aγ …(3)
     PH2・PCO/PH2O≧K’・aγ …(4)
     ここで、
      log(K)=-9460/T-1.26log(T)+13.52
      K’=exp[-(131300-134.3T)/RT]
      a γ=x γ・exp[(G γ+ΩFeC γ-G gr)・RT]・exp[(-2ΩFeC γ・x γ+ΣWMC γ・x γ)/RT]
      G γ-G gr=73744J/mol
      2ΩFeC γ=-51956J/mol
      WMnC γ=-41900J/mol
      WSiC γ=+125700J/mol
      WCrC γ=-104750/mol
      PCO(atm):炉内雰囲気中のCOの分圧
      PCO2(atm):炉内雰囲気中のCOの分圧
      PH2(atm):炉内雰囲気中のHの分圧
      PH2O(atm):炉内雰囲気中のHOの分圧
      R=8.31 J/mol・K
      T:前記焼準における最高加熱温度(K)
      a γ:オーステナイト相中におけるCの活量
      x γ:オーステナイト相中のCのモル分率
      xSi γ:オーステナイト相中のSiのモル分率
      xMn γ:オーステナイト相中のMnのモル分率
      xCr γ:オーステナイト相中のCrのモル分率
      G γ:オーステナイト相中におけるCの自由エネルギー
      G gr:グラファイト中におけるCの自由エネルギー
  6.  質量%で、
      C :0.15~0.40%、
      Si:0.05~0.50%、
      Mn:0.30~2.00%、
      Al:0.01~0.10%、
      Ti:0.001~0.04%、
      B :0.0005~0.0050%、および
      N :0.0010~0.0100%、を含み、
     残部がFeおよび不可避的不純物からなり、かつ、
     Ti含有量とN含有量とが下記(1)式を満足する成分組成を有する鋼板を電縫溶接して、ボンド幅が40×10-6m以上、120×10-6m以下である電縫溶接部を有し、内側表層と外側表層における全脱炭層の深さが、それぞれ50×10-6m以下である電縫溶接鋼管とし、
     次いで、下記(2)式で求められる前記電縫溶接部の最低C含有量の計算値:C (質量%)と前記鋼板のC含有量:C(質量%)との差、C-C が0.05質量%以下となる条件で、かつ、
     炉内雰囲気中のモル分率でH:0~10%、O:80ppm以下ならびに残部のHOおよびNからなり、露点が0℃以下である雰囲気で焼準する、電縫溶接鋼管の製造方法。
     (N/14)<(Ti/47.9)…(1)
    ここで、上記(1)式におけるNはN含有量(質量%)、TiはTi含有量(質量%)を、それぞれ示す
     C =C-(C-0.09)erf(h’)…(2)
     ここで、
      C:鋼板のC含有量(質量%)
      h’=h/(Dt)1/2
      h(m):ボンド幅/2
      D(m/s)=D exp(-Q/RT)
      D=4.7×10-5 m/s
      Q=155 kJ/mol・K
      R=8.31 J/mol・K、
      T:前記焼準における最高加熱温度(K)
      t(s):前記焼準において(T-50K)からTの間の温度域に保持されている時間
  7.  前記成分組成が、質量%で、
      Cr:1.0%以下、
      Mo:1.0%以下、
      W :1.0%以下、
      Ni:1.0%以下、および
      Cu:1.0%以下からなる群より選択される1または2以上をさらに含有する、請求項5または6に記載の電縫溶接鋼管の製造方法。
  8.  前記成分組成が、質量%で、
      Nb:0.2%以下、および
      V :0.2%以下の一方または両方をさらに含有する、請求項5~7のいずれか一項に記載の電縫溶接鋼管の製造方法。
  9.  前記成分組成が、質量%で、
      Ca:0.0050%以下をさらに含有する、請求項5~8のいずれか一項に記載の電縫溶接鋼管の製造方法。
     
     
     
PCT/JP2018/047972 2017-12-27 2018-12-26 電縫溶接鋼管および電縫溶接鋼管の製造方法 WO2019131813A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019533138A JP6649531B2 (ja) 2017-12-27 2018-12-26 電縫溶接鋼管および電縫溶接鋼管の製造方法
CN201880084274.XA CN111511946B (zh) 2017-12-27 2018-12-26 电阻焊钢管和电阻焊钢管的制造方法
US16/958,736 US11512361B2 (en) 2017-12-27 2018-12-26 Electric resistance welded steel pipe or tube and production method for electric resistance welded steel pipe or tube
EP18894950.7A EP3733894B8 (en) 2017-12-27 2018-12-26 Electric resistance welded steel pipe or tube and production method for electric resistance welded steel pipe or tube
KR1020207021308A KR102390423B1 (ko) 2017-12-27 2018-12-26 전봉 용접 강관 및 전봉 용접 강관의 제조 방법
US18/047,331 US20230079323A1 (en) 2017-12-27 2022-10-18 Electric resistance welded steel pipe or tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017251999 2017-12-27
JP2017-251999 2017-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/958,736 A-371-Of-International US11512361B2 (en) 2017-12-27 2018-12-26 Electric resistance welded steel pipe or tube and production method for electric resistance welded steel pipe or tube
US18/047,331 Division US20230079323A1 (en) 2017-12-27 2022-10-18 Electric resistance welded steel pipe or tube

Publications (1)

Publication Number Publication Date
WO2019131813A1 true WO2019131813A1 (ja) 2019-07-04

Family

ID=67067488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047972 WO2019131813A1 (ja) 2017-12-27 2018-12-26 電縫溶接鋼管および電縫溶接鋼管の製造方法

Country Status (6)

Country Link
US (2) US11512361B2 (ja)
EP (1) EP3733894B8 (ja)
JP (1) JP6649531B2 (ja)
KR (1) KR102390423B1 (ja)
CN (1) CN111511946B (ja)
WO (1) WO2019131813A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129337A1 (ja) * 2018-12-19 2020-06-25 Jfeスチール株式会社 電縫鋼管
TWI697563B (zh) * 2019-09-26 2020-07-01 中國鋼鐵股份有限公司 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法
JP7001213B1 (ja) * 2021-06-07 2022-01-19 日本製鉄株式会社 機械構造部品用電縫鋼管及びその製造方法
WO2022065223A1 (ja) * 2020-09-24 2022-03-31 Ntn株式会社 ころ軸受用溶接保持器、保持器付きころ、溶融接合部の判別方法、およびころ軸受用溶接保持器の品質確認方法
JP7472826B2 (ja) 2021-03-03 2024-04-23 Jfeスチール株式会社 電縫溶接鋼管およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522607A (zh) * 2020-11-17 2021-03-19 马鞍山钢铁股份有限公司 一种q125钢级sew石油套管及其制造方法
KR102492994B1 (ko) 2020-12-18 2023-01-30 주식회사 포스코 균일한 인장재질 및 용접부 횡크랙 저항성이 우수한 강판, 강관 및 이들의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145688B2 (ja) 1981-01-30 1986-10-09 Nisshin Steel Co Ltd
JPH0158264B2 (ja) 1982-01-16 1989-12-11 Nisshin Steel Co Ltd
JPH0693339A (ja) 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd 高強度高延性電縫鋼管の製造方法
JP2008208417A (ja) * 2007-02-26 2008-09-11 Jfe Steel Kk 熱処理用電縫溶接鋼管およびその製造方法
JP2009197327A (ja) 2008-01-21 2009-09-03 Jfe Steel Corp 中空部材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145688A (ja) 1984-08-08 1986-03-05 Sharp Corp ビデオデイスク再生装置
JPH0787861B2 (ja) 1987-08-28 1995-09-27 田中貴金属工業株式会社 医療用貴金属網の製造方法
JP2007056283A (ja) * 2005-08-22 2007-03-08 Nippon Steel Corp 焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管およびその製造方法
JP5845623B2 (ja) 2010-05-27 2016-01-20 Jfeスチール株式会社 耐ねじり疲労特性に優れた電縫鋼管及びその製造方法
WO2014119802A1 (ja) * 2013-01-31 2014-08-07 Jfeスチール株式会社 電縫鋼管
CN109642264A (zh) * 2016-10-24 2019-04-16 杰富意钢铁株式会社 高强度薄壁中空稳定器用电焊钢管及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145688B2 (ja) 1981-01-30 1986-10-09 Nisshin Steel Co Ltd
JPH0158264B2 (ja) 1982-01-16 1989-12-11 Nisshin Steel Co Ltd
JPH0693339A (ja) 1992-07-27 1994-04-05 Sumitomo Metal Ind Ltd 高強度高延性電縫鋼管の製造方法
JP2008208417A (ja) * 2007-02-26 2008-09-11 Jfe Steel Kk 熱処理用電縫溶接鋼管およびその製造方法
JP2009197327A (ja) 2008-01-21 2009-09-03 Jfe Steel Corp 中空部材およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARUZEN. Q: "Metal data book", 1984, pages: 26
See also references of EP3733894A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129337A1 (ja) * 2018-12-19 2020-06-25 Jfeスチール株式会社 電縫鋼管
JP6747623B1 (ja) * 2018-12-19 2020-08-26 Jfeスチール株式会社 電縫鋼管
TWI697563B (zh) * 2019-09-26 2020-07-01 中國鋼鐵股份有限公司 鋼胚加熱爐及抑制鋼胚表面脫碳層之厚度增加的方法
WO2022065223A1 (ja) * 2020-09-24 2022-03-31 Ntn株式会社 ころ軸受用溶接保持器、保持器付きころ、溶融接合部の判別方法、およびころ軸受用溶接保持器の品質確認方法
JP7472826B2 (ja) 2021-03-03 2024-04-23 Jfeスチール株式会社 電縫溶接鋼管およびその製造方法
JP7001213B1 (ja) * 2021-06-07 2022-01-19 日本製鉄株式会社 機械構造部品用電縫鋼管及びその製造方法
WO2022259332A1 (ja) * 2021-06-07 2022-12-15 日本製鉄株式会社 機械構造部品用電縫鋼管及びその製造方法

Also Published As

Publication number Publication date
JPWO2019131813A1 (ja) 2019-12-26
JP6649531B2 (ja) 2020-02-19
EP3733894A1 (en) 2020-11-04
CN111511946B (zh) 2021-12-07
KR20200096652A (ko) 2020-08-12
EP3733894B1 (en) 2024-04-03
US11512361B2 (en) 2022-11-29
EP3733894A4 (en) 2020-11-04
KR102390423B1 (ko) 2022-04-22
EP3733894B8 (en) 2024-05-29
US20200332381A1 (en) 2020-10-22
CN111511946A (zh) 2020-08-07
US20230079323A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2019131813A1 (ja) 電縫溶接鋼管および電縫溶接鋼管の製造方法
JP5353256B2 (ja) 中空部材およびその製造方法
US9932651B2 (en) Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
JP5223511B2 (ja) 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
KR101893845B1 (ko) 내변형 시효 특성 및 내hic 특성이 우수한 고변형능 라인 파이프용 강재 및 그 제조 방법 그리고 용접 강관
RU2677554C1 (ru) Толстолистовая сталь для конструкционных труб или трубок, способ производства толстолистовой стали для конструкционных труб или трубок и конструкционные трубы или трубки
JP5928405B2 (ja) 耐水素誘起割れ性に優れた調質鋼板及びその製造方法
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
RU2679499C1 (ru) Листовая сталь для конструкционных труб или трубок, способ производства листовой стали для конструкционных труб или трубок и конструкционные трубы и трубки
KR101885234B1 (ko) 내변형 시효 특성 및 내hic 특성이 우수한 고변형능 라인 파이프용 강재 및 그 제조 방법 그리고 용접 강관
KR20210021068A (ko) 강관 및 강판
WO2014119802A1 (ja) 電縫鋼管
KR102002241B1 (ko) 구조관용 강판, 구조관용 강판의 제조 방법, 및 구조관
JP6241434B2 (ja) ラインパイプ用鋼板、ラインパイプ用鋼管、およびその製造方法
JP2009235499A (ja) 中空スタビライザーの製造方法
RU2735605C1 (ru) Высокопрочная толстолистовая сталь для магистральных труб, стойких к воздействию высокосернистого нефтяного газа, и способ ее изготовления, и высокопрочная стальная труба, использующая высокопрочную толстолистовую сталь для магистральных труб, стойких к воздействию высокосернистого нефтяного газа
KR102492994B1 (ko) 균일한 인장재질 및 용접부 횡크랙 저항성이 우수한 강판, 강관 및 이들의 제조방법
WO2023162507A1 (ja) 鋼板およびその製造方法
WO2023162571A1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019533138

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021308

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018894950

Country of ref document: EP

Effective date: 20200727