WO2022259332A1 - 機械構造部品用電縫鋼管及びその製造方法 - Google Patents
機械構造部品用電縫鋼管及びその製造方法 Download PDFInfo
- Publication number
- WO2022259332A1 WO2022259332A1 PCT/JP2021/021627 JP2021021627W WO2022259332A1 WO 2022259332 A1 WO2022259332 A1 WO 2022259332A1 JP 2021021627 W JP2021021627 W JP 2021021627W WO 2022259332 A1 WO2022259332 A1 WO 2022259332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric resistance
- base material
- resistance welded
- steel pipe
- welded steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 332
- 239000010959 steel Substances 0.000 title claims abstract description 332
- 238000004519 manufacturing process Methods 0.000 title claims description 70
- 239000000463 material Substances 0.000 claims abstract description 216
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 239000000126 substance Substances 0.000 claims abstract description 47
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 33
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 75
- 238000010791 quenching Methods 0.000 claims description 73
- 230000000171 quenching effect Effects 0.000 claims description 73
- 238000005496 tempering Methods 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000005422 blasting Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052796 boron Inorganic materials 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 235000019589 hardness Nutrition 0.000 description 102
- 239000010410 layer Substances 0.000 description 97
- 239000002344 surface layer Substances 0.000 description 33
- 230000007423 decrease Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 28
- 238000005096 rolling process Methods 0.000 description 25
- 229910052761 rare earth metal Inorganic materials 0.000 description 21
- FLDSMVTWEZKONL-AWEZNQCLSA-N 5,5-dimethyl-N-[(3S)-5-methyl-4-oxo-2,3-dihydro-1,5-benzoxazepin-3-yl]-1,4,7,8-tetrahydrooxepino[4,5-c]pyrazole-3-carboxamide Chemical compound CC1(CC2=C(NN=C2C(=O)N[C@@H]2C(N(C3=C(OC2)C=CC=C3)C)=O)CCO1)C FLDSMVTWEZKONL-AWEZNQCLSA-N 0.000 description 18
- 239000010953 base metal Substances 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000004804 winding Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000988 reflection electron microscopy Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present disclosure relates to an electric resistance welded steel pipe for machine structural parts and a manufacturing method thereof.
- Patent Document 2 C: 0.35% or less, Si: 0.25% or less, Mn: 0.30 to 1.20%, Cr: 0.60% or less, P: 0.0020% or less, S : 0.0020% or less, sol. Al: 0.10% or less, N + O: 0.0200% or less, Ti: 4 to 12 times the (N + O) in steel, B: 0.0005 to 0.009%, the balance consisting of Fe and unavoidable impurities It is steel, and C, Si, Mn, and a Cr content-adjusted steel for electric resistance welded steel pipes for hollow stabilizers.
- Patent Document 3 C: 0.35% or less, Si: 0.20% or less, Mn: 0.30 to 1.20%, Cr: 0.60% or less, P: 0.0020% or less, S : 0.0020% or less, sol. Al: 0.10% or less, Ti: 4 to 12 times the amount of (N + O) in the steel, B: 0.0005 to 0.009%, the balance being Fe and unavoidable impurities.
- the contents of C, Si, Mn, and Cr are adjusted so that the ideal critical diameter DI (in) by the formula is 1.0 (in) or more, and the carbon equivalent Ceq by the predetermined formula is 0.48% or less.
- a steel slab is prepared, the slab is subjected to hot rolling, the coiling temperature is controlled to 570 to 690° C. and coiled, and the resulting steel plate or steel strip is used to manufacture an electric resistance welded steel pipe for a stabilizer.
- Patent Document 4 describes a method for producing a high-strength, high-ductility steel pipe for machine structural use, which is used as a steel pipe for automotive door reinforcement, etc.
- Mn 0.60 to 1.80%
- Ti 0.020 to 0.050%
- B 0.0005 to 0.0050%
- further Cr 0.20 to 0.50%
- Mo An electric resistance welded steel pipe containing at least one of 0.5% or less and Nb: 0.015 to 0.050% is normalized at 850 to 950 ° C. and then quenched, high strength and high ductility.
- a method for manufacturing an electric resistance welded steel pipe is disclosed.
- Patent Document 5 describes a high-strength electric resistance welded steel pipe for automobiles that has excellent tensile strength, shock absorption performance, and low-temperature impact properties. ⁇ 0.5%, Mn: 0.5-2.5%, P: 0.025% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0 .15% or less (excluding 0%), Cu: 2% or less (excluding 0%), Cr: 2% or less (excluding 0%), Ti: 0.2% or less (excluding 0%) B: 0.005% or less (not including 0%), the balance being iron and inevitable impurities, a steel sheet having a tensile strength of 1750 N/mm 2 or more and a 0.1% yield strength is 1320 N/mm 2 or more, and the Charpy impact value at a test temperature of minus 40°C is 50 J/cm 2 or more.
- Patent Document 6 describes an electric resistance welded steel pipe having excellent fatigue durability after rapid short-time heating and quenching treatment.
- An electric resistance welded steel pipe having an electric resistance welded portion having a width of ⁇ 10 -6 m or less, wherein the minimum C content of the electric resistance welded portion: C 1 (mass%) and the C content of the steel plate: C 0 (mass%) %), the difference C 0 ⁇ C 1 is 0.05% by mass or less, and the depth of all decarburized layers in the inner surface layer and the outer surface layer of the electric resistance welded steel pipe is 50 ⁇ 10 ⁇ 6 respectively.
- Disclosed is an electric resistance welded steel pipe, which is less than or equal to m.
- Patent Document 1 JP-A-2013-147751
- Patent Document 2 JP-A-58-123858
- Patent Document 3 JP-A-57-126917
- Patent Document 4 JP-A-6-93339
- Patent Document 5 JP 2008-261049
- Patent Document 6 International Publication 2019/131813
- An object of one aspect of the present disclosure is to provide an electric resistance welded steel pipe for mechanical structural parts including a straight pipe portion with excellent fatigue strength, and a method for manufacturing the same.
- An electric resistance welded steel pipe for machine structural parts including a straight pipe portion,
- the straight pipe portion includes a base material portion and an electric resistance welded portion,
- the chemical composition of the base material portion is, in mass %, C: 0.30 to 0.38%, Si: 0.05 to 0.40%, Mn: 0.50-2.00%, Al: 0.010 to 0.060%, Ti: 0.005 to 0.050%, B: 0.0003 to 0.0050%, Ca: 0.0005 to 0.0040%, N: 0 to 0.0060%, P: 0 to 0.020%, S: 0 to 0.0200%, O: 0 to 0.0050%, Cu: 0-0.50%, Ni: 0 to 0.50%, Cr: 0 to 0.50%, V: 0 to 0.20%, Nb: 0 to 0.10%, Mo: 0-0.50%, Mg: 0-0.0500%, REM: 0 to 0.0500%, and Balance: Fe and impurities,
- the thickness of the de-C layer is less than 0.20 mm on each of the inner surface side and the outer surface side of the base material portion, and the thickness of the de-B layer is is less than 0.10 mm,
- Each of the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material is 420 Hv or more and less than 510 Hv. Electric resistance welded steel pipes for machine structural parts.
- the chemical composition of the base material portion is, in mass%, Cu: 0.01-0.50%, Ni: 0.05 to 0.50%, Cr: 0.05-0.50% and Mo: 0.01-0.50%
- the outer diameter of the straight tube portion is 10 to 50 mm, A value obtained by dividing the wall thickness of the base material portion by the outer diameter of the straight pipe portion is 0.04 to 0.25.
- F1 represented by the following formula (1) is 0.50 or more, The electric resistance welded steel pipe for machine structural parts according to any one of ⁇ 1> to ⁇ 3>.
- F1 Ca ⁇ (1-124 ⁇ O) / (1.25 ⁇ S) ... formula (1)
- Each element symbol in Formula (1) means mass % of each element.
- ⁇ 5> A method for manufacturing the electric resistance welded steel pipe for machine structural parts according to any one of ⁇ 1> to ⁇ 4>, Including a base material portion A and an electric resistance welded portion A, the chemical composition of the base material portion A is, in mass%, C: 0.30 to 0.38%, Si: 0.05 to 0.40%, Mn: 0.50-2.00%, Al: 0.010 to 0.060%, Ti: 0.005 to 0.050%, B: 0.0003 to 0.0050%, Ca: 0.0005 to 0.0040%, N: 0 to 0.0060%, P: 0 to 0.020%, S: 0 to 0.0200%, O: 0 to 0.0050%, Cu: 0-0.50%, Ni: 0 to 0.50%, Cr: 0 to 0.50%, V: 0 to 0.20%, Nb: 0 to 0.10%, Mo: 0-0.50%, Mg: 0-0.0500%, REM: 0 to 0.0500%, and Balance: a preparatory step
- a method for manufacturing an electric resistance welded steel pipe for machine structural parts ⁇ 6> Further, after the preparation step and before the quenching step, a pipe drawing step of drawing the as-rolled electric resistance welded steel pipe, In the quenching step, the drawn as-rolled ERW steel pipe is quenched. The method for manufacturing the electric resistance welded steel pipe for machine structural parts according to ⁇ 5>. ⁇ 7> Furthermore, after the preparation step and before the quenching step, the step of subjecting the as-rolled electric resistance welded steel pipe to shot blasting is provided. The method for manufacturing the electric resistance welded steel pipe for machine structural parts according to ⁇ 5> or ⁇ 6>.
- the heating temperature in the quenching is 900 to 1050 ° C.
- the heating temperature in the tempering is 100 to 500 ° C.
- the method for producing an electric resistance welded steel pipe for machine structural parts according to any one of ⁇ 5> to ⁇ 7>.
- an electric resistance welded steel pipe for machine structural parts including a straight pipe portion with excellent fatigue strength and a method for manufacturing the same are provided.
- 2 is a C concentration profile in the depth direction showing the relationship between the depth from the inner surface of the base metal portion and the C concentration (% by mass) in the C section of the electric resistance welded steel pipe from which FIG. 1 was obtained.
- Fig. 1 shows the relationship between the depth from the inner surface of the base metal portion (that is, the distance in the thickness direction from the inner surface) and the B concentration (mass%) in the C section of the electric resistance welded steel pipe from which Fig. 1 was obtained.
- B concentration profile in the depth direction shows the relationship between the depth from the inner surface of the base material portion and the Vickers hardness in the C section of the electric resistance welded steel pipe.
- a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
- “%” indicating the content of a component (element) means “% by mass”.
- the content of C (carbon) may be referred to as “C content”. Contents of other elements may also be expressed similarly.
- the term “step” includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
- the straight pipe portion of an electric resistance welded steel pipe refers to a straight portion that is not bent (that is, a straight portion as manufactured or drawn) in an electric resistance welded steel pipe. means.
- the straight pipe portion preferably occupies 70% or more of the axial length of the electric resistance welded steel pipe.
- the base metal portion refers to a portion of an electric resistance welded steel pipe other than the electric resistance welded portion and the heat affected zone.
- the heat affected zone (sometimes referred to as "HAZ") is the area near the electric resistance welded part that is affected by heat due to electric resistance welding and seam heat treatment. Point.
- “as-rolled electric resistance welded steel pipe” refers to an electric resistance welded steel pipe that has not been subjected to heat treatment other than seam heat treatment after pipe making.
- “Tube-making” refers to the process of forming an open pipe by roll-forming a hot-rolled steel sheet unwound from a hot coil, and forming an electric-resistance welded portion by electric resistance welding of the butt portions of the obtained open pipe.
- Hot coil means a hot-rolled steel sheet produced using a hot strip mill and wound into a coil.
- “Roll forming” refers to continuously bending a hot-rolled steel sheet unwound from a hot coil into an open tubular shape.
- Hot-rolled steel sheet manufactured using a hot strip mill is a continuous steel sheet. It differs from the steel plate that is produced. Steel plate cannot be used for roll forming, which is a continuous bending process, because it is not a continuous steel sheet. Electric resistance welded steel pipes are clearly distinguished from welded steel pipes (for example, UOE steel pipes) manufactured using thick steel plates in the above points.
- the electric resistance welded steel pipe for mechanical structural parts of the present disclosure (hereinafter also simply referred to as "electric resistance welded steel pipe”) is an electric resistance welded steel pipe for mechanical structural parts including a straight pipe portion,
- the straight pipe portion includes a base material portion and an electric resistance welded portion,
- the chemical composition of the base material is % by mass, C: 0.30 to 0.38%, Si: 0.05 to 0.40%, Mn: 0.50-2.00%, Al: 0.010 to 0.060%, Ti: 0.005 to 0.050%, B: 0.0003 to 0.0050%, Ca: 0.0005 to 0.0040%, N: 0 to 0.0060%, P: 0 to 0.020%, S: 0 to 0.0200%, O: 0 to 0.0050%, Cu: 0-0.50%, Ni: 0 to 0.50%, Cr: 0 to 0.50%, V: 0 to 0.20%, Nb: 0 to 0.10%, Mo: 0-0.50%, Mg:
- the thickness of the de-C layer is less than 0.20 mm and the thickness of the de-B layer is 0 on each of the inner surface side and the outer surface side of the base material portion less than .10 mm;
- Each of the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material is 420 Hv or more and less than 510 Hv.
- the electric resistance welded steel pipe of the present disclosure is the above chemical composition of the base material portion in the straight pipe portion;
- the microstructure of the base material portion which is tempered martensite,
- Each of the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material is 420 Hv or more and less than 510 Hv; and is excellent in fatigue strength.
- the effect of fatigue strength is that the thickness of the de-C layer is less than 0.20 mm and the thickness of the de-B layer is less than 0.10 mm on each of the inner surface side and the outer surface side of the base material portion. It is an effect played by
- the electric resistance welded steel pipe for mechanical structural parts of the present disclosure is an electric resistance welded steel pipe used as a mechanical structural part or as a raw material for the mechanical structural part.
- Mechanical structural parts which are applications of the electric resistance welded steel pipe for mechanical structural parts of the present disclosure, are required to have high strength and fatigue resistance, such as parts for automobiles (e.g., drive shafts, axle beams, hollow springs, stabilizers). and mechanical structural parts.
- the electric resistance welded steel pipe of the present disclosure is based on the following knowledge of the present inventors. Normally, the fatigue strength and hardness of steel show a positive correlation. Therefore, the present inventors investigated the hardness of the inner surface layer of the base material of the electric resistance welded steel pipe. As a result, FIG. 1 was obtained.
- the inner surface layer of the base material means a region from the inner surface of the base material to a predetermined depth.
- the predetermined depth is, for example, a region from the inner surface to a position with a depth of 0.50 mm.
- FIG. 1 shows the depth (that is, the distance in the thickness direction) from the inner surface of the base material in a cross section perpendicular to the pipe axis direction of a conventional electric resistance welded steel pipe (hereinafter also referred to as “C cross section”). , and Vickers hardness (Hv) in the depth direction.
- the depth from the inner surface to the position of 0.20 mm in depth was found to be lower than that of the region deeper than 0.20 mm deep from the inner surface.
- a region with low hardness tends to be a starting point of a fatigue crack. If the region of low hardness in the inner surface layer is thick, the fatigue strength of the electric resistance welded steel pipe is reduced. Therefore, the present inventors considered reducing the thickness of the low-hardness region in the inner surface layer of the base material portion of the electric resistance welded steel pipe in order to increase the fatigue strength of the electric resistance welded steel pipe.
- the present inventors first investigated and examined the cause of the decrease in hardness in the inner surface layer of the base material of the electric resistance welded steel pipe. Hardness is correlated with the element concentration of steel. Therefore, the present inventors paid attention to C (carbon), which affects hardness.
- FIG. 2 shows the C concentration profile in the depth direction.
- the C concentration in the base material means the C concentration (% by mass) inside the base material.
- the C concentration inside the base material part is the wall thickness of the electric resistance welded steel pipe at a position shifted by 90° in the pipe circumferential direction from the electric resistance welded part (hereinafter also referred to as “base material 90° position”). It means the C concentration (mass%) in the central part. As shown in FIG.
- the C concentration in the region from the inner surface of the base material of the electric resistance welded steel pipe to the 0.20 mm depth position is 90% (that is, 0.342%) of the C concentration in the base material. is also low. From the above results, the present inventors found that the cause of the decrease in hardness from the inner surface of the base material of the electric resistance welded steel pipe to a depth of 0.20 mm is due to the decrease in the C concentration in the inner surface layer. I thought it was. A phenomenon in which the C concentration decreases is hereinafter also referred to as "deC".
- the Vickers hardness distribution shown in FIG. There is a marked decrease in the area up to the uppermost position.
- the inventors considered that there are elements other than C that affect the hardness of the inner surface layer of the base material.
- the inventors also measured the concentration profiles of various elements other than C by the above method. As a result, it was found that not only the C concentration but also the B concentration decreased in the inner surface layer of the base material.
- FIG. 3 shows the depth from the inner surface (that is, the distance in the thickness direction from the inner surface) in the C cross section of the base metal portion (B content: 0.00273%) of the electric resistance welded steel pipe from which FIG. 1 was obtained. , and the B concentration (% by mass) (that is, the B concentration profile in the depth direction).
- FIG. 3 was obtained by using the electric resistance welded steel pipe from which FIGS. 1 and 2 were obtained and measuring the B concentration by the same measuring method as the C concentration described above.
- a dashed line 2 in FIG. 3 indicates a B concentration (0.00246%) that is 90% of the B concentration of the base material, and a dashed line 20 indicates a B concentration (0.00273%) of the base material.
- the B concentration in the base material means the B concentration inside the base material.
- the concentration of B inside the base material portion is the concentration of B (% by mass) at the center of the thickness of the base material at the 90° position of the electric resistance welded steel pipe.
- the B concentration decreases in the region from the inner surface of the base metal portion of the electric resistance welded steel pipe to the 0.10 mm depth position, and the B concentration in this region is lower than the B concentration in the base metal portion. lower than 90%.
- the present inventors have found that the cause of the decrease in hardness in the region at a depth of 0.10 mm from the inner surface of the base material of the electric resistance welded steel pipe is the base material of the electric resistance welded steel pipe. It is thought that this is because not only the C concentration decreases in the inner surface layer of the part, but also the B concentration decreases. A phenomenon in which the concentration of B decreases is hereinafter also referred to as "de-B".
- FIG. 4 is an image diagram showing the relationship between the depth from the inner surface of the base material portion and the Vickers hardness in the C section of the electric resistance welded steel pipe.
- a solid line 4 is a schematic diagram representing the Vickers hardness shown in FIG.
- a dashed line 3 in FIG. 4 indicates the Vickers hardness when only deC is considered to occur.
- the Vickers hardness is at a depth of 0.20 mm from the inner surface of the base material of the electric resistance welded steel pipe. should decrease gradually towards the inner surface.
- the Vickers hardness gradually decreases from a depth of 0.20 mm to a depth of 0.10 mm from the inner surface of the base material, as indicated by the solid line 4 in FIG. In the region from the 0.10 mm depth position of the base material portion to the inner surface, it decreases remarkably toward the inner surface.
- the electric resistance welded steel pipe of this embodiment in the inner surface layer of the base material portion of the electric resistance welded steel pipe, not only deC is suppressed, but also deB is suppressed. Thereby, not only the deC layer but also the deB layer can be thinned. As a result, it is possible to reduce the thickness of the region with low hardness in the inner surface layer. As a result, the hardness of the inner surface layer of the base metal increases, and the fatigue strength of the electric resistance welded steel pipe increases.
- the de-C layer of the inner surface layer of the base material portion of the electric resistance welded steel pipe has a thickness of less than 0.20 mm.
- the deC layer is a region having a C concentration of 90% or less with respect to the C concentration of the base material, and is a region extending from the inner surface. If the deC layer has a thickness of less than 0.20 mm, the thickness of the low hardness region can be reduced. As a result, the hardness of the inner surface layer of the base metal increases, and the fatigue strength of the electric resistance welded steel pipe increases.
- the thickness of the B-free layer of the inner surface layer of the base material portion of the electric resistance welded steel pipe is less than 0.10 mm.
- the B-free layer is a region having a B concentration of 90% or less with respect to the B concentration of the base material, and is a region from the inner surface.
- C 0.30-0.38%
- C (carbon) is an element that forms a solid solution in steel or precipitates as a carbide to increase the fatigue strength of steel. If the C content is less than 0.30%, this effect may not be obtained sufficiently. On the other hand, when the C content exceeds 0.38%, workability may deteriorate. Therefore, the C content is 0.30-0.38%.
- the lower limit of the C content is preferably 0.31%, more preferably 0.32%, still more preferably 0.33%.
- the upper limit of the C content is preferably 0.37%.
- Si 0.05-0.40%
- Si is an element that increases the fatigue strength of steel through solid-solution strengthening. If the Si content is less than 0.15%, this effect may not be sufficiently obtained. On the other hand, if the Si content exceeds 0.30%, Si—Mn inclusions may be likely to form. Therefore, the Si content is 0.05-0.40%.
- the lower limit of the Si content is preferably 0.10%, more preferably 0.15%.
- the upper limit of the Si content is preferably 0.35%, more preferably 0.30%.
- Mn 0.50-2.00%
- Mn is an element that enhances the hardenability of steel and enhances the fatigue strength of steel. If the Mn content is less than 0.50%, this effect may not be obtained sufficiently. On the other hand, when the Mn content exceeds 2.00%, coarse inclusions such as MnS are formed, which may reduce the fatigue life of the steel. Therefore, the Mn content is 0.50-2.00%.
- the lower limit of the Mn content is preferably 0.60%, more preferably 0.80%, still more preferably 1.00%, still more preferably 1.10%, still more preferably 1 .20%.
- the upper limit of the Mn content is preferably 1.80%, more preferably 1.70%.
- Al 0.010-0.060%
- Al is an element that deoxidizes steel.
- Al is also an element that fixes N and secures a solid solution B amount that is effective for improving hardenability. If the Al content is less than 0.010%, this effect may not be sufficiently obtained. On the other hand, if the Al content exceeds 0.060%, inclusions are likely to form, and the fatigue strength of the steel may decrease. Therefore, the Al content is 0.010-0.060%.
- the lower limit of the Al content is preferably 0.015%, more preferably 0.020%.
- the upper limit of the Al content is preferably 0.050%, more preferably 0.045%.
- Ti is an element that fixes N and secures a solid solution B amount that is effective for improving hardenability. Ti is also an element that precipitates as fine carbides and suppresses coarsening of crystal grains during heat treatment due to the pinning effect, thereby increasing the toughness of steel. If the Ti content is less than 0.005%, the above effects may not be sufficiently obtained. On the other hand, when the Ti content exceeds 0.050%, inclusions become coarse, and as a result, the toughness and fatigue strength of the steel may decrease. Therefore, the Ti content is 0.005-0.050%.
- the lower limit of the Ti content is preferably 0.007%, more preferably 0.010%.
- the upper limit of the Ti content is preferably 0.025%, more preferably 0.020%.
- B 0.0003 to 0.0050%
- B is an element that enhances the hardenability of steel.
- B is also an element that increases the fatigue strength of steel through grain boundary strengthening. If the B content is less than 0.0003%, the above effects may not be sufficiently obtained.
- the B content exceeds 0.0050%, coarse B precipitates are formed, and as a result, the toughness of the steel may decrease.
- the B content exceeds 0.0050%, the B-free layer may become too thick. Therefore, the B content is 0.0003-0.0050%.
- the lower limit of the B content is preferably 0.0005%, more preferably 0.0008%.
- the upper limit of the B content is preferably 0.0025%, more preferably 0.0020%.
- Ca 0.0005-0.0040%
- Ca is an element that suppresses the formation of MnS by fixing S as CaS, and as a result, exhibits the effect of suppressing the decrease in fatigue strength due to MnS. If the Ca content is less than 0.0005%, these effects may not be sufficiently obtained. On the other hand, if the Ca content exceeds 0.0040%, coarse Ca inclusions may be formed, resulting in deterioration of toughness and fatigue strength of the steel. Therefore, the Ca content is 0.0005-0.0040%.
- the lower limit of the Ca content is preferably 0.0005%, more preferably 0.0010%, still more preferably 0.0012%.
- the upper limit of the Ca content is preferably 0.0038%, more preferably 0.0035%, still more preferably 0.0030%.
- N is an impurity.
- the N content may be 0% or greater than 0%.
- N is an element that precipitates as BN. When BN precipitates, the hardenability improvement effect of solute N may decrease. Precipitation of BN may further reduce toughness due to coarsening of nitrides and age hardening. Therefore, the N content is 0.0060% or less.
- the upper limit of the N content is preferably 0.0040%, more preferably 0.0030%.
- N forms nitrides and carbonitrides to increase the strength of steel. From the viewpoint of obtaining such effects more effectively, the lower limit of the N content is preferably 0.0010%, more preferably 0.0015%.
- P 0-0.020%
- P phosphorus
- the P content may be 0% or greater than 0%.
- P is an element that reduces the weld crack resistance and toughness of steel. Therefore, the P content is 0-0.020%.
- the upper limit of the P content is preferably 0.015%, more preferably 0.012%. The lower the P content is, the better.
- excessive reduction of the P content may increase manufacturing costs. Therefore, from the viewpoint of manufacturing cost reduction, the P content may be more than 0%, may be 0.001% or more, may be 0.002% or more, or may be 0.005% or more. may be
- S 0-0.0200%
- S is an impurity.
- the S content may be 0% or more than 0%.
- S is an element that forms nonmetallic inclusions. Non-metallic inclusions reduce the bendability, fatigue life and workability of electric resistance welded steel pipes.
- S is also an element that reduces toughness, anisotropy, and reheat cracking susceptibility. Therefore, the S content is 0-0.0200%.
- the upper limit of the S content is preferably 0.0100%, more preferably 0.0050%. It is preferable that the S content is as low as possible. However, excessive reduction of the S content may increase manufacturing costs. Therefore, from the viewpoint of manufacturing cost reduction, the S content may be more than 0%, may be 0.0001% or more, may be 0.0002% or more, or may be 0.0005% or more. may be
- O is an impurity.
- the O content may be 0% or greater than 0%.
- O is an element that becomes CaO and impairs the effect of Ca (that is, the effect of suppressing the generation of MnS by fixing S as CaS). Therefore, the O content is 0-0.0050%.
- the upper limit of the O content is preferably 0.040%, more preferably 0.030%.
- the O content is preferably as low as possible. However, excessive reduction of O content may increase production costs. Therefore, from the viewpoint of manufacturing cost reduction, the O content may be greater than 0%, may be 0.0001% or more, or may be 0.0005% or more.
- Cu is an optional element. That is, the Cu content may be 0% or more than 0%. If the Cu content is too high, the workability of the steel may deteriorate. Therefore, the Cu content is 0-0.50%.
- the upper limit of Cu content is preferably 0.40%, more preferably 0.30%.
- Cu is an element that increases the hardenability of steel and increases the strength of steel. From the viewpoint of such effects, the lower limit of the Cu content is preferably 0.01%, more preferably 0.02%, still more preferably 0.05%, and still more preferably 0.10%. be.
- Ni is an optional element. That is, the Ni content may be 0% or more than 0%. If the Ni content is too high, material costs may increase. Therefore, the Ni content is 0-0.50%.
- the upper limit of the Ni content is preferably 0.40%, more preferably 0.30%.
- Ni is an element that increases the hardenability of steel and increases the strength of steel. From the viewpoint of such effects, the lower limit of the Ni content is preferably 0.05%, more preferably 0.10%.
- Cr 0-0.50% Cr is an optional element. That is, the Cr content may be 0% or more than 0%. If the Cr content exceeds 0.50%, inclusions may form and cracks may occur. Therefore, the Cr content is 0-0.50%.
- the upper limit of the Cr content is preferably 0.35%, more preferably 0.20%.
- Cr is an element that enhances the hardenability of steel and enhances the fatigue strength of steel. From the viewpoint of such effects, the lower limit of the Cr content is preferably 0.05%, more preferably 0.10%, and still more preferably 0.13%.
- V 0-0.20%
- V (vanadium) is an arbitrary element. That is, the V content may be 0% or more than 0%. Too high a V content may reduce the toughness of the steel. Therefore, the V content is 0-0.20%.
- the upper limit of the V content is preferably 0.15%, more preferably 0.10%.
- V is an element that increases the strength of steel. From the viewpoint of such effects, the lower limit of the V content is preferably 0.01%.
- Nb 0-0.10%
- Nb is an arbitrary element. That is, the Nb content may be 0% or more than 0%. If the Nb content is too high, the toughness of the steel may decrease. Therefore, the Nb content is 0-0.10%.
- the upper limit of the Nb content is preferably 0.08%, more preferably 0.05%.
- Nb is an element that enhances the strength of steel, suppresses grain growth, and enhances low-temperature toughness. From the viewpoint of such effects, the lower limit of the Nb content is preferably 0.001%, more preferably 0.003%.
- Mo is an optional element. That is, the Mo content may be 0% or greater than 0%. If the Mo content is too high, coarse carbides may form, reducing the toughness of the steel. Therefore, the Mo content is 0-0.50%.
- the upper limit of Mo content is preferably 0.40%, more preferably 0.30%.
- Mo is an element that increases the hardenability of steel and increases the strength of steel. Mo is also an element that enhances the strength of steel through solid-solution strengthening. From the viewpoint of these effects, the lower limit of the Mo content is preferably 0.01%, more preferably 0.02%, and still more preferably 0.03%.
- Mg 0-0.0500%
- Mg is an optional element. That is, the Mg content may be 0% or more than 0%. If the Mg content is too high, oxides in the steel may coarsen and the toughness of the steel may decrease. Therefore, the Mg content is 0-0.0500%.
- the upper limit of the Mg content is preferably 0.0400%, more preferably 0.0300%, still more preferably 0.0200%.
- Mg is an element that detoxifies S in steel as sulfide and increases the toughness of steel. From the viewpoint of obtaining such effects, the lower limit of the Mg content is preferably more than 0%, more preferably 0.0001%, still more preferably 0.0003%, and still more preferably 0.0005%. be.
- REM 0-0.0500% REM is an optional element. That is, the REM content may be 0% or greater than 0%. wherein REM is selected from the group consisting of the rare earth elements, i.e. Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu means at least one element Also, the REM content means the total content of rare earth elements. If the REM content is too high, oxides in the steel may coarsen and the toughness of the steel may decrease. Therefore, the REM content is 0-0.0500%. The upper limit of the REM content is preferably 0.0400%, more preferably 0.0300%, still more preferably 0.0200%.
- REM is an element that controls the morphology of sulfides in steel and increases the toughness of steel.
- the lower limit of the REM content is preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
- Impurities refer to components contained in raw materials (e.g., ore, scrap, etc.) or components mixed in during the manufacturing process and not intentionally included in steel.
- Impurities include all elements other than those mentioned above. Only one element or two or more elements may be used as impurities.
- Impurities include, for example, Sb, Sn, W, Co, As, Pb, Bi, H, and the like.
- Sb, Sn, Co, and As are mixed in a content of 0.1% or less
- Pb and Bi are mixed in a content of 0.005% or less, for example.
- contamination with a content of 0.0004% or less is possible.
- There is no particular need to control the contents of other elements as long as they are within normal ranges.
- the chemical composition of the base material is Cu: 0.01-0.50%, Ni: 0.05 to 0.50%, Cr: 0.05-0.50% and Mo: 0.01-0.50% It may contain one or more selected from the group consisting of. More preferable ranges for the contents of these elements are as described above.
- F1 In the chemical composition of the base material portion, F1 represented by the following formula (1) is preferably 0.50 or more. This further improves the fatigue strength of the steel.
- the lower limit of F1 is more preferably 0.60, and still more preferably 0.70.
- the upper limit of F1 is not particularly limited, but from the viewpoint of further reducing the production cost for reducing the O content and S content, the upper limit of F1 is preferably 3.00, more preferably 2.50. Yes, more preferably 2.00.
- the microstructure at the thickness central portion of the base metal portion is tempered martensite.
- the microstructure of the thickness central portion of the base material is confirmed as follows.
- the observation surface is etched with nital at the thickness central portion of the base material 90° position in the C cross section of the electric resistance welded steel pipe.
- the etched observation surface is observed with an optical microscope to confirm the microstructure.
- the observation field plane was a rectangle measuring 200 ⁇ m in the rolling direction and 500 ⁇ m in the thickness direction.
- the observation magnification is 500 times.
- the deC layer (that is, the concentration of C is 90% or less with respect to the concentration of C in the chemical composition of the base material portion) on each of the inner surface side and the outer surface side of the base material portion. layer) is less than 0.20 mm thick. This improves the fatigue strength of the electric resistance welded steel pipe.
- the thickness of the de-C layer on the inner surface side of the base material portion is less than 0.20 mm.
- the lower limit of the thickness of the deC layer on the inner surface side of the base material portion is not particularly limited.
- the de-C layer on the inner surface side of the base material portion may have a thickness of 0 mm. The thinner the thickness of the de-C layer on the inner surface side of the base material, the better.
- the upper limit of the thickness of the deC layer on the inner surface side of the base material portion is preferably 0.19 mm, more preferably 0.18 mm, still more preferably 0.16 mm, and still more preferably 0.14 mm. , preferably 0.12 mm, more preferably 0.10 mm.
- the thickness of the de-C layer on the outer surface side of the base material portion is less than 0.20 mm.
- the lower limit of the thickness of the deC layer on the outer surface side of the base material portion is not particularly limited.
- the de-C layer on the outer surface side of the base material portion may have a thickness of 0 mm. The thinner the thickness of the de-C layer on the outer surface side of the base material, the better.
- the preferable upper limit of the thickness of the deC layer on the outer surface side of the base material is the same as the preferable upper limit of the thickness of the deC layer on the inner surface side of the base material.
- the outer surface layer of the base material means a region from the outer surface of the base material to a predetermined depth.
- the predetermined depth is, for example, a region from the outer surface to a depth of 0.50 mm.
- the C concentration in the base material means the C concentration inside the base material.
- the C concentration inside the base material portion is the C concentration (% by mass) at the thickness central portion at the 90° position of the base material.
- the C concentration of the base material portion is measured by a well-known check analysis in compliance with JIS G 1253 (2013). Specifically, a sample is taken from the thickness central portion at the 90° position of the base material. The sample is processed so that the analysis surface of the collected sample has a diameter of 20 mm or more and a thickness of 3 mm or more. The analysis surface of the processed sample is adjusted to be flat by grinding. The adjusted sample is placed in a spark discharge emission spectrometer to measure the C concentration (% by mass). The obtained C concentration is defined as the C concentration (% by mass) of the base material.
- the thickness of the decarburized layer on the inner surface side of the base material portion is measured as follows. Using a glow discharge optical emission spectrometer (GD-OES), the depth from the inner surface of the base material (that is, the distance in the thickness direction from the inner surface) and the C concentration (% by mass) C concentration profile in the depth direction (that is, in the thickness direction) is measured. Specifically, the C concentration was measured at intervals of 0.03 ⁇ m in the depth direction while performing sputtering with argon ions from the inner surface of the base material portion toward the depth direction (that is, the thickness direction). , to obtain the above C concentration profile.
- the measurement diameter of GD-OES shall be 4 mm in diameter.
- a smoothing process is performed on the obtained C concentration profile in consideration of the measurement error. Specifically, the arithmetic average value of the C concentration measured within the range of ⁇ 1.50 ⁇ m is calculated for each measurement depth position.
- the arithmetic mean value of the obtained C concentrations is defined as the C concentration at the measurement depth.
- the above C concentration is obtained.
- the C concentration at the measurement depth position 1.50 ⁇ m depth from the surface is the C concentration at 101 measurement depth positions (0.03 ⁇ m intervals) between 0 and 3.00 ⁇ m depth positions from the surface. shall be the arithmetic mean of
- the C concentration at each measurement depth position is obtained to obtain the C concentration profile.
- the C concentration profile is shown as a curve starting at a depth of 1.50 ⁇ m from the surface.
- the depth range from the inner surface where the C concentration is 90% or less of the C concentration in the base material is specified, and the specified depth range is the thickness of the deC layer. (mm).
- the thickness of the deC layer on the outer surface side of the base material part is measured by the above “thickness of the deC layer on the inner surface side of the base material part” except that “inner surface” is read as “outer surface”. Measured by the same method as
- the B-free layer (that is, the concentration of B is 90% or less with respect to the concentration of B in the chemical composition of the base material portion on the inner surface side and the outer surface side of the base material portion. layer) is less than 0.10 mm thick. This improves the fatigue strength of the electric resistance welded steel pipe.
- the thickness of the B-free layer on the inner surface side of the base material is 0.10 mm or more, the hardness of the inner surface layer of the base material decreases. As a result, the fatigue strength of the electric resistance welded steel pipe is lowered. Therefore, the thickness of the B-free layer on the inner surface side of the base material portion is less than 0.10 mm.
- the lower limit of the thickness of the de-B layer on the inner surface side of the base material portion is not particularly limited.
- the thickness of the de-B layer on the inner surface side of the base material portion may be 0 mm. The thinner the de-B layer on the inner surface side of the base material, the better.
- the upper limit of the thickness of the de-B layer on the inner surface side of the base material portion is preferably 0.09 mm, more preferably 0.08 mm.
- the thickness of the B-free layer on the outer surface side of the base material portion is 0.10 mm or more, the hardness of the outer surface layer of the base material portion of the electric resistance welded steel pipe decreases. As a result, the fatigue strength of the electric resistance welded steel pipe is lowered. Therefore, the thickness of the B-free layer on the outer surface side of the base material portion is less than 0.10 mm.
- the lower limit of the thickness of the de-B layer on the outer surface side of the base material portion is not particularly limited.
- the thickness of the de-B layer on the outer surface side of the base material portion may be 0 mm. The thinner the thickness of the B-free layer on the outer surface side of the base material, the better.
- the preferred upper limit of the thickness of the de-B layer on the outer surface side of the base material is the same as the preferred upper limit of the thickness of the de-B layer on the inner surface side of the base material.
- the B concentration in the base material means the B concentration inside the base material.
- the B concentration inside the base material portion is the B concentration (% by mass) at the thickness central portion at the 90° position of the base material.
- the B concentration of the base material portion is measured by the same method as for the C concentration of the base material portion described above.
- the thickness of the de-B layer on the inner surface side of the base material part is the same as the above-mentioned "thickness of the de-C layer on the inner surface side of the base material part” except that "C” (carbon) is read as “B” (boron). Measured by the same method as the measurement method for “Length”.
- the thickness of the de-B layer on the outer surface side of the base material part is described above except that "C” (carbon) is read as “B” (boron) and “inner surface” is read as “outer surface”. It is measured by the same method as the measurement method for "thickness of de-C layer on inner surface side of base material".
- the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material (hereinafter also referred to as “Vickers hardness on the inner surface side”) and the depth from the outer surface of the base material
- Each Vickers hardness at a position of 0.5 mm (hereinafter also referred to as “Vickers hardness on the outer surface side”) is 420 Hv or more and less than 510 Hv.
- the Vickers hardness in the range of 420 Hv or more and less than 510 Hv is hardness corresponding to the tensile strength in the range of 1370 MPa or more and less than 1750 MPa.
- the Vickers hardness is preferably 450 Hv or higher.
- the Vickers hardness is preferably 509 MPa or less.
- Vickers hardness means Vickers hardness measured according to JIS Z 2244 (2009) with a test force of 0.98N.
- the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material is obtained as follows.
- the electric resistance welded portion is 0°, and the positions of 90°, 180°, and 270° in the circumferential direction from the electric resistance welded portion (that is, the base material 90° position, Positions at a depth of 0.5 mm (three positions in total) from the inner surface of the base material (180° position and 270° position of the base material) are determined as measurement positions.
- a Vickers hardness test based on JIS Z 2244 (2009) is performed at each of the three measurement positions to obtain Vickers hardness (Hv).
- the test force shall be 0.98N.
- the arithmetic mean value of the three obtained Vickers hardnesses (measured values) is defined as the Vickers hardness (Hv) at a depth of 0.5 mm from the inner surface of the base material.
- the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material part is the above "position at a depth of 0.5 mm from the inner surface of the base material part” except that “inner surface” is read as “outer surface” It is obtained in the same manner as “Vickers hardness in”.
- the outer diameter of the straight tube portion of the electric resistance welded steel pipe of the present disclosure is, for example, 10 to 50 mm.
- the value (t/D value) obtained by dividing the wall thickness (t) of the base material portion in the straight pipe portion by the outer diameter (D) of the straight pipe portion is, for example, 0.04 to 0.04. 25.
- the thickness of the base material portion in the straight pipe portion is, for example, 2.0 to 8.0 mm.
- manufacturing method X Example of manufacturing method of electric resistance welded steel pipe for machine structural parts
- manufacturing method X An example of a manufacturing method (hereinafter referred to as “manufacturing method X”) for manufacturing the electric resistance welded steel pipe of the present disclosure will be described below.
- the following manufacturing method X is a manufacturing method of an electric resistance welded steel pipe of an example described later.
- Manufacturing method X is Including the base material part A and the electric resistance welded part A, the chemical composition of the base material part A is, in mass%, C: 0.30 to 0.38%, Si: 0.05 to 0.40%, Mn: 0.50-2.00%, Al: 0.010 to 0.060%, Ti: 0.005 to 0.050%, B: 0.0003 to 0.0050%, Ca: 0.0005 to 0.0040%, N: 0 to 0.0060%, P: 0 to 0.020%, S: 0 to 0.0200%, O: 0 to 0.0050%, Cu: 0-0.50%, Ni: 0 to 0.50%, Cr: 0 to 0.50%, V: 0 to 0.20%, Nb: 0 to 0.10%, Mo: 0-0.50%, Mg: 0-0.0500%, REM: 0 to 0.0500%, and Balance: a preparatory step of preparing an as-rolled ERW steel pipe consisting of Fe and impurities; A quenching process for quenching
- the electric resistance welded steel pipe of the present disclosure (that is, the electric resistance welded steel pipe for mechanical structural parts of the present disclosure) can be manufactured. Each step in the manufacturing method X will be described below.
- the preparation step is a step of preparing the above-mentioned as-rolled electric resistance welded steel pipe. This step may be a step of simply preparing the pre-manufactured as-rolled electric resistance welded steel pipe, or may be a step of manufacturing the above-described as-rolled electric resistance welded steel pipe. An example of a method for manufacturing an as-rolled electric resistance welded steel pipe will be described later as manufacturing method A.
- the above-mentioned as-rolled electric resistance welded steel pipe corresponds to the raw material of the electric resistance welded steel pipe for mechanical structural parts to be manufactured.
- the finally obtained electric resistance welded steel pipe for machine structural parts includes a straight pipe portion (that is, a portion that is not subjected to bending and is straight as manufactured or as drawn).
- a part of the as-rolled electric resistance welded steel pipe may be subjected to bending as long as it is possible. In this case, the portion that is not bent corresponds to the straight pipe portion.
- part or all of the as-rolled electric resistance welded steel pipe may be subjected to pipe drawing processing, which will be described later.
- the as-rolled electric resistance welded steel pipe is subjected to quenching and tempering under the above conditions to obtain an electric resistance welded steel pipe for machine structural parts.
- at this time at least a portion of the base material portion A and at least a portion of the electric resistance welded portion A of the as-rolled electric resistance welded steel pipe are converted into the base material portion and the electric resistance welded portion of the straight tube portion of the electric resistance welded steel pipe for machine structural parts, respectively. do.
- Each step of process X does not affect the chemical composition of the steel.
- the chemical composition of the base material in the straight tube portion of the electric resistance welded steel pipe manufactured by the manufacturing method X can be considered to be the same as the chemical composition of the base material A of the above-described as-rolled electric resistance welded steel pipe, which is the raw material.
- the outer diameter of the as-rolled electric resistance welded steel pipe is, for example, 10 to 50 mm.
- the value (t/D value) obtained by dividing the wall thickness (t) of the base material portion by the outer diameter (D) of the as-rolled electric resistance welded steel pipe is, for example, 0.04 to 0.25.
- the thickness of the base material of the as-rolled electric resistance welded steel pipe is, for example, 2.0 to 8.0 mm.
- the quenching step is a step of quenching the as-rolled electric resistance welded steel pipe.
- the oxygen content in the atmosphere in which the quenching is performed is 1000 ppm by volume or less.
- B and C diffused into the inner surface layer and the outer surface layer can be suppressed from reacting with oxygen in the atmosphere.
- de-B and de-C can be suppressed.
- the cooling rate during quenching is 10° C./second or more. As a result, the residence time of the as-rolled electric resistance welded steel pipe can be shortened in the temperature range where B and C tend to diffuse.
- the quenching process as a method of setting the oxygen content in the atmosphere to 1000 ppm by volume or less, for example, a method of using one or more selected from the group consisting of inert gas, CO and CO2 as the atmosphere gas. is mentioned.
- the lower limit of the cooling rate in quenching is preferably 13°C/sec, more preferably 15°C/sec.
- the upper limit of the cooling rate in the quenching process is not particularly limited. The upper limit is, for example, 30° C./second or less.
- the heating temperature for quenching (hereinafter also referred to as “quenching temperature”) is preferably 900 to 1050°C.
- quenching temperature is within the above range, the finally obtained electric resistance welded steel pipe for machine structural parts more easily achieves the above-described Vickers hardness (that is, 420 Hv or more and less than 510 Hv).
- the quenching temperature is 900 to 1050°C
- the diffusion coefficient of B in the mother pipe increases, B tends to diffuse to the surface layer, and de-B tends to occur easily.
- the amount of oxygen in the atmosphere in the quenching process is set to 1000 ppm by volume or less, so deboronization is suppressed even though the quenching temperature is 900 to 1050°C.
- the lower limit of the hardening temperature is preferably 910°C, more preferably 920°C.
- the upper limit of the quenching temperature is preferably 1000°C, more preferably 970°C.
- the tempering process is a process in which a quenched as-rolled electric resistance welded steel pipe (hereinafter also referred to as “an electric resistance welded steel pipe after quenching and before tempering”) is tempered to obtain an electric resistance welded steel pipe for machine structural parts. be.
- the heating temperature in the tempering step (hereinafter also referred to as “tempering temperature”) is preferably 100 to 500°C.
- tempering temperature is 100°C or higher, the fatigue strength of the electric resistance welded steel pipe is further increased.
- tempering temperature is 500° C. or lower, coarsening of precipitates can be suppressed, and cracking caused by hydrogen can be further suppressed.
- the holding time at the tempering temperature is, for example, 1 to 60 minutes.
- a method for carrying out the tempering step is not particularly limited.
- a method of carrying out the tempering process for example, a method using an electric furnace or an atmosphere furnace, which facilitates temperature control, can be used.
- ⁇ Preferred embodiment of electric resistance welded steel pipe after quenching and before tempering> 1 shows a preferred embodiment of an electric resistance welded steel pipe after quenching and before tempering.
- the electric resistance welded steel pipe after quenching and before tempering is in the preferred mode shown below, the electric resistance welded steel pipe for mechanical structural parts of the present disclosure that satisfies the conditions described above is likely to be obtained by subsequent tempering.
- the microstructure of the thickness center portion of the base metal portion is martensite.
- the microstructure at the center of the wall thickness of the base metal portion is martensite.
- the microstructure of the electric resistance welded steel pipe after quenching and before tempering is the electric resistance of the present disclosure for mechanical structural parts. This means that the microstructure uniformly appears to be martensite as a result of observation under the same conditions as those described above for observing the microstructure of the welded steel pipe (that is, the electric resistance welded steel pipe after tempering).
- the martensite fraction based on the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material (hereinafter referred to as "martensite on the inner surface side of the base material") Also referred to as "site fraction”) and the martensite fraction based on the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material (hereinafter also referred to as "martensite fraction on the outer surface side of the base material” ) is preferably 90% or more.
- Whether or not the martensite fraction on the inner surface side of the base material portion is 90% or more can be determined by measuring the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material portion using the following formula ( 2) and whether or not it is 90% martensite hardness calculated by formula (3) or not. Whether or not the martensite fraction on the outer surface side of the base material is 90% or more can be determined by measuring the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material using the formula ( 2) and whether or not it is 90% martensite hardness calculated by formula (3) or not.
- each of the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material is the present disclosure described above.
- Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and Vickers hardness at a depth of 0.5 mm from the outer surface of the base material in electric resistance welded steel pipes for machine structural parts and measure.
- 90% martensitic hardness means the value calculated by the formulas (2) and (3).
- 90% martensite hardness (Vickers hardness) 107.61 + 6.177 x HRC (90% M) x exp (2.089 x 10 -6 x HRC (90% M) 3.008 ) ...
- HRC (90% M) 30 + 50 x C (%)...
- the thickness of the region having a hardness of less than 90% martensite on the inner surface side and the outer surface side is preferably less than 0.20 mm.
- the thickness of the region of less than 90% martensite hardness on the inner surface side is measured as follows. In the C cross section of the electric resistance welded steel pipe after quenching and before tempering, when the wall thickness of the base material is t mm, from a depth of t/8 mm from the inner surface of the base material The Vickers hardness is measured every 0.02 mm toward the depth to obtain a Vickers hardness profile in the depth direction.
- the Vickers hardness measurement conditions are the same as the Vickers hardness measurement conditions for the electric resistance welded steel pipe for machine structural parts described above. Based on the obtained Vickers hardness profile, the thickness of the region of less than 90% martensite hardness on the inner surface side is measured.
- the thickness of the region with less than 90% martensite hardness on the outer surface side is the thickness of the region with less than 90% martensite hardness on the outer surface side except that the "inner surface” is read as "outer surface”. Measured by the same method.
- the manufacturing method X further comprises a pipe drawing step of drawing the as-rolled electric resistance welded steel pipe after the preparation step and before the quenching step.
- the drawn as-rolled electric resistance welded steel pipe is quenched.
- the manufacturing method X includes a pipe drawing process, even if a B-free layer and a C-free layer have occurred in the hot-rolled steel sheet that is the material of the as-rolled electric resistance welded steel pipe, the B-free layer and the C-free layer are formed by drawing. physically stretched.
- the de-B layer and the de-C layer can be made thinner, so that the range of the de-B layer and the de-C layer (i.e., the thickness of the de-C layer is less than 0.20 mm, and the thickness of the B-free layer is less than 0.10 mm).
- Drawing is performed, for example, by cold drawing or stretch-reducer rolling.
- the cross-section reduction rate in drawn pipe is preferably 10 to 40%.
- the cross-section reduction rate (%) is the value obtained by subtracting the area of the C cross-section of the as-rolled electric resistance welded steel pipe after drawing from the area of the C-section of the as-rolled electric resistance-welded steel pipe before drawing. It is a value obtained by dividing by the area of the C section of the sewn steel pipe and multiplying by 100.
- the manufacturing method X preferably further comprises a step of subjecting the as-rolled electric resistance welded steel pipe to shot blasting after the preparation step and before the quenching step.
- shot blasting is preferably performed after the pipe drawing step and before the quenching step.
- the manufacturing method X includes the step of applying shot blasting, even if the de-B layer and de-C layer have occurred in the hot-rolled steel sheet that is the material of the as-rolled electric resistance welded steel pipe, the de-B layer and de-C layer are removed by shot blasting. Layers can be physically removed.
- the de-B layer and the de-C layer can be made thinner, so that the range of the de-B layer and the de-C layer (i.e., the thickness of the de-C layer is less than 0.20 mm, and the thickness of the B-free layer is less than 0.10 mm).
- the azu-rolled electric resistance welded steel pipe preparation step in the above-described manufacturing method X may be a step of manufacturing an azu-rolled electric resistance welded steel pipe.
- An example of a method for manufacturing an as-rolled electric resistance welded steel pipe is shown as manufacturing method A below.
- Manufacturing method A is A slab preparation step of preparing a slab having a chemical composition similar to that of the base material portion A of the as-rolled electric resistance welded steel pipe; A hot-rolling step of rolling the prepared slab to obtain a hot-rolled steel sheet; A cooling step of cooling the hot rolled steel sheet obtained in the hot rolling step to a coiling temperature CT; A coiling step of obtaining a hot coil made of the hot-rolled steel sheet by coiling the cooled hot-rolled steel sheet at the coiling temperature CT; A hot-rolled steel sheet is unwound from a hot coil, the unwound hot-rolled steel sheet is roll-formed to form an open pipe, and the abutting portions of the obtained open pipe are electric-resistance welded to form an electric-resistance welded portion. , a pipe-making process to obtain an electric resistance welded steel pipe, including. The hot rolling process, cooling process, and winding process described above are performed using a hot strip mill. Each step in the manufacturing method A will be described below.
- a slab preparation process is a process of preparing a slab. This step may be a step of simply preparing a prefabricated slab, or may be a step of manufacturing a slab.
- the chemical composition of the slab to be prepared is the same as the chemical composition of the base material portion A of the as-rolled electric resistance welded steel pipe obtained by the manufacturing method A, and the preferred range is also the same.
- Each step of process A does not affect the chemical composition of the steel. Therefore, the chemical composition of the base material portion A of the as-rolled electric resistance welded steel pipe manufactured by the manufacturing method A can be considered to be the same as the chemical composition of the raw slab.
- molten steel having the chemical composition described above is produced, and a slab is produced using this molten steel.
- the chemical composition of molten steel can be assumed to be similar to that of slabs.
- the slab may be produced by a continuous casting method, or an ingot may be produced using molten steel and the ingot may be bloomed to produce the slab.
- the hot rolling step is a step of heating a slab to a slab heating temperature of, for example, 1100 to 1300° C. and subjecting the heated slab to hot rolling to obtain a hot rolled steel sheet.
- Hot rolling is preferably performed by performing a rough rolling process using a rough rolling mill and a finish rolling process using a finish rolling mill in this order.
- the prepared slab is heated and rough rolled to produce a rough rolled plate (rough bar).
- the rough hot rolling mill may be of a reverse type, or may be of a tandem type provided with a plurality of rolling stands arranged in a line.
- finish rolling the rough rolled sheet is subjected to finish rolling by a finish rolling mill to obtain a hot rolled steel sheet.
- Finish rolling may be performed using a tandem finishing mill comprising multiple rolling stands arranged in a line (each rolling stand having a pair of work rolls), Finish rolling may be performed using a reverse rolling mill having a pair of work rolls.
- the finish rolling temperature (°C) is, for example, 900 to 1200°C when the surface temperature of the steel sheet on the exit side of the final stand of the finishing mill is the finish rolling temperature (°C).
- the thickness of the steel sheet after the finish rolling process is not particularly limited, but is, for example, 2.0 to 20.0 mm.
- the cooling step is a step of cooling the hot rolled steel sheet obtained in the hot rolling step to the coiling temperature CT.
- the coiling temperature CT means the surface temperature of the hot-rolled steel sheet during coiling.
- the winding temperature T1 is preferably 800° C. or lower. If the coiling temperature T1 is 800° C. or lower, the generation of scale can be further suppressed.
- the upper limit of the winding temperature T1 is preferably 650°C. Although the lower limit of the winding temperature T1 is not particularly limited, the lower limit is preferably 500°C, more preferably 550°C.
- the coiling step is a step of obtaining a hot coil made of the hot-rolled steel sheet by coiling the cooled hot-rolled steel sheet at a coiling temperature CT.
- a preferable range of the winding temperature CT is as described above.
- a hot-rolled steel sheet is unwound from a hot coil, and the unwound hot-rolled steel sheet is roll-formed to form an open pipe. It is a step of obtaining an electric resistance welded steel pipe by forming A pipe-making process can be performed according to a well-known method.
- Production method A may include other steps as necessary. Other steps include, for example; A step of performing seam heat treatment on the electric resistance welded portion after the pipe making step; A step of reducing the outer diameter of the electric resistance welded steel pipe with a sizer after the pipemaking step (after the step of seam heat treatment when the above-described seam heat treatment step is included); A step of removing surface scales by pickling the hot-rolled steel sheet before the pipe-making step; etc.
- each step of the manufacturing method A described above does not affect the chemical composition of the steel. Therefore, the chemical composition of the base material portion A of the as-rolled electric resistance welded steel pipe manufactured by the manufacturing method A can be considered to be the same as the chemical composition of the raw material (molten steel or slab).
- Slabs were manufactured by continuously casting molten steels having the chemical compositions (steels A to AR) shown in Tables 1 and 2 (slab preparation process).
- Numerical values in Tables 1 and 2 indicate the content (% by mass) of the corresponding element.
- a blank in Tables 1 and 2 indicates that the content of the corresponding element was below the detection limit (that is, the corresponding element was not contained).
- the balance excluding the elements shown in Tables 1 and 2 is Fe and impurities. Underlines in Tables 1 and 2 are outside the scope of the present disclosure.
- REM in steel Y is Y (yttrium).
- REM in Steel Z is La.
- the REM in steel AA is Ce.
- REM in steel AB is Nd.
- REM in steel AE is Y.
- the REMs in steel AF are Y (0.0037%) and Ce (0.0052%).
- the slab obtained above is heated to a slab heating temperature of 1250° C., and the heated slab is subjected to hot rolling (specifically, rough rolling and finish rolling are performed in this order) to obtain a hot rolled steel sheet. was obtained (hot rolling process). At this time, the finish rolling temperature was 900°C to 1000°C.
- the hot-rolled steel sheet obtained in the hot-rolling step was cooled to the coiling temperature CT shown in Tables 3 and 4 below (cooling step).
- a hot coil made of the hot-rolled steel sheet having a thickness of 4.9 mm was obtained by winding the cooled hot-rolled steel sheet at a winding temperature CT (winding step).
- the hot rolling process, cooling process, and winding process described above were performed using a hot strip mill.
- the hot-rolled steel sheet is unwound from the hot coil, the unwound hot-rolled steel sheet is roll-formed to form an open pipe, and the butt portions of the obtained open pipe are electric resistance welded to form an electric resistance welded portion.
- the electric resistance welded portion was subjected to bead removal and seam heat treatment in this order to obtain an as-rolled electric resistance welded steel pipe having an outer diameter of 24.0 mm and a wall thickness of 4.9 mm (pipe making process).
- the hot-rolled steel sheet after unwinding and before roll forming was subjected to acid treatment as a scale removal treatment. A washing process was performed.
- Azroll ERW steel pipe was prepared through the above preparation process.
- the electric resistance welded steel pipes for machine structural parts of any test number have a straight pipe portion (that is, a straight portion) over the entire length direction.
- the electric resistance welded steel pipe for machine structural parts of the present disclosure is not limited to an aspect in which the entire length direction is a straight pipe portion, and includes a straight pipe portion and a portion other than the straight pipe portion (for example, bending Part) may be included.
- the thickness of the de-B layer on each of the inner surface side and the outer surface side, the thickness of the de-C layer on each of the inner surface side and the outer surface side, and the thickness of the de-C layer on each of the inner surface side and the outer surface side are determined by the method described above.
- Hardness of the base material on each side and outer surface side specifically, Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and a depth of 0.5 mm from the outer surface of the base material. Each of the Vickers hardness at the position) was measured. Tables 3 and 4 show the results.
- the thickness of the B-free layer is less than 0.10 mm and the thickness of the C-free layer is 0.20 mm on each of the inner surface side and the outer surface side. It was confirmed that the Vickers hardness was 420 Hv or more and less than 510 Hv.
- the microstructure of the thickness central portion of the base material portion was confirmed by the method described above, the microstructure of the thickness central portion of the base material portion was found to be: It was tempered martensite.
- a fatigue test piece with a plate thickness of 2 mm including the inner surface of the manufactured electric resistance welded steel pipe for machine structural parts (hereinafter also simply referred to as "electric resistance welded steel pipe”) was taken at a 90° position of the base material.
- the longitudinal direction of the fatigue test piece was parallel to the axial direction of the electric resistance welded steel pipe, and the length was 60 mm.
- a fatigue strength test was performed using the obtained fatigue test piece.
- the fatigue strength test conformed to JIS Z 2273 (1978).
- the test conditions for the fatigue strength test were a load stress of 350 MPa and a stress ratio R (minimum stress/maximum stress) of -1.
- the fatigue strength test was performed to obtain the number of fractures. When the obtained number of fractures was 80,000 or more, it was evaluated that the fatigue strength was high. Tables 3 and 4 show the results.
- the electric resistance welded steel pipe for mechanical structural parts of each example is The chemical composition of the base material portion in the straight pipe portion is the chemical composition in the present disclosure,
- the microstructure at the center of the thickness of the base material is tempered martensite,
- the de-C layer has a thickness of less than 0.20 mm, and the de-B layer has a thickness of less than 0.10 mm,
- the hardness of the base material on each of the inner surface side and the outer surface side that is, the Vickers hardness at a depth of 0.5 mm from the inner surface of the base material and the Vickers hardness at a depth of 0.5 mm from the outer surface of the base material
- Each of the Vickers hardness at the position was 420Hv or more and less than 510Hv.
- the electric resistance welded steel pipe for machine structural parts of each example had a large number of fractures in the fatigue strength test and was excellent in fatigue strength. As described above, in each example, an electric resistance welded steel pipe for machine structural parts having excellent tensile strength and fatigue strength was obtained.
- Test No. 10 although the chemical composition of the steel was appropriate, the atmosphere of the heat treatment furnace in the quenching process was air, and the amount of oxygen in the atmosphere exceeded 1000 ppm by volume. Therefore, the thickness of the B-free layer was 0.10 mm or more, and the thickness of the C-free layer exceeded 0.20 mm. As a result, the number of fractures in the fatigue strength test was less than 80,000, indicating low fatigue strength. In Test No. 11, the steel had an appropriate chemical composition, but the quenching temperature was less than 900°C. As a result, the hardness of the base material on the inner surface side and the outer surface side was insufficient.
- Test No. 39 had too low a C content. As a result, the fatigue strength was insufficient. Test No. 40 had too high a C content. As a result, the hardness of the base material on each of the inner surface side and the outer surface side exceeded the upper limit. Also, in this test No. 40, weld cracking occurred, and the fatigue strength test could not be performed. Therefore, the result of fatigue strength was set as "N.D.” (No data).
- Test No. 41 had too low a Si content. As a result, the fatigue strength was insufficient.
- Test No. 42 had too high a Si content. As a result, the fatigue strength was insufficient.
- Test No. 43 had too low Mn content. As a result, the fatigue strength was insufficient.
- Test No. 44 had too high Mn content. As a result, the fatigue strength was insufficient.
- Test number 45 had too low a Ti content. As a result, the fatigue strength was insufficient.
- Test No. 46 had too high a Ti content. As a result, the fatigue strength was insufficient.
- Test No. 47 had too low a B content. As a result, the fatigue strength was insufficient.
- Test No. 48 had too high a B content. As a result, the fatigue strength was insufficient.
- Test No. 49 had too low a Ca content. As a result, the fatigue strength was insufficient.
- Test number 50 had too high a Ca content. As a result, the fatigue strength was insufficient.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
例えば、特許文献1には、中空スタビライザー等におけるような急速加熱焼入れ処理を施されても、耐久性に優れた部材とすることが可能な、熱処理用電縫溶接鋼管として、質量%で、C:0.15~0.40%、Si:0.05~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、Ti:0.001~0.04%、B:0.0005~0.0050%及びN:0.0010~0.0100%を含み、かつ、Ti及びNが、(N/14)<(Ti/47.9)を満足し、残部がFe及び不可避的不純物からなる組成を有し、電縫溶接部のボンド幅が25μm以下である、熱処理用電縫溶接鋼管が開示されている。
特許文献2:特開昭58-123858号公報
特許文献3:特開昭57-126917号公報
特許文献4:特開平6-93339号公報
特許文献5:特開2008-261049号公報
特許文献6:国際公開2019/131813号
<1> 直管部を含む機械構造部品用電縫鋼管であって、
前記直管部が、母材部及び電縫溶接部を含み、
前記母材部の化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなり、
前記母材部における肉厚中央部のミクロ組織が、焼戻しマルテンサイトであり、
Cの濃度が、前記母材部の化学組成におけるCの濃度に対して90%以下である層を脱C層とし、Bの濃度が、前記母材部の化学組成におけるBの濃度に対して90%以下である層を脱B層とした場合に、前記母材部の内表面側及び外表面側の各々において、脱C層の厚さが0.20mm未満であり、脱B層の厚さが0.10mm未満であり、
前記母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び前記母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々が、420Hv以上510Hv未満である、
機械構造部品用電縫鋼管。
<2> 前記母材部の化学組成が、質量%で、
Cu:0.01~0.50%、
Ni:0.05~0.50%、
Cr:0.05~0.50%、及び
Mo:0.01~0.50%
からなる群から選択される1種以上を含有する
<1>に記載の機械構造部品用電縫鋼管。
<3> 前記直管部の外径が10~50mmであり、
前記母材部の肉厚を前記直管部の外径で除した値が0.04~0.25である、
<1>又は<2>に記載の機械構造部品用電縫鋼管。
<4> 前記母材部の前記化学組成において、下記式(1)で表されるF1が、0.50以上である、
<1>~<3>のいずれか1つに記載の機械構造部品用電縫鋼管。
F1 = Ca×(1-124×O)/(1.25×S) … 式(1)
式(1)の各元素記号は、各元素の質量%を意味する。
<5> <1>~<4>のいずれか1つに記載の機械構造部品用電縫鋼管を製造する方法であって、
母材部A及び電縫溶接部Aを含み、前記母材部Aの化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなる、アズロール電縫鋼管を準備する準備工程と、
前記アズロール電縫鋼管に対し、焼入れを施す焼入れ工程と、
前記焼入れが施された前記アズロール電縫鋼管に対し、焼戻しを施して前記機械構造部品用電縫鋼管を得る焼戻し工程と、
を備え、
前記焼入れ工程において、前記焼入れが行われる雰囲気中の酸素量が1000体積ppm以下であり、前記焼入れにおける冷却速度が10℃/秒以上である、
機械構造部品用電縫鋼管の製造方法。
<6> 更に、前記準備工程後であって前記焼入れ工程前に、前記アズロール電縫鋼管を伸管する伸管工程を備え、
前記焼入れ工程は、伸管された前記アズロール電縫鋼管に対し、焼入れを施す、
<5>に記載の機械構造部品用電縫鋼管の製造方法。
<7> 更に、前記準備工程後であって前記焼入れ工程前に、前記アズロール電縫鋼管に対してショットブラストを施す工程を備える、
<5>又は<6>に記載の機械構造部品用電縫鋼管の製造方法。
<8> 前記焼入れにおける加熱温度が900~1050℃であり、
前記焼戻しにおける加熱温度が100~500℃である、
<5>~<7>のいずれか1つに記載の機械構造部品用電縫鋼管の製造方法。
本開示において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本開示において、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
「造管」とは、ホットコイルから巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成するまでの過程を指す。
「ホットコイル」とは、ホットストリップミルを用いて製造され、コイル状に巻き取られた熱延鋼板を意味する。
「ロール成形」とは、ホットコイルから巻き出された熱延鋼板を、連続的に曲げ加工してオープン管状に成形することを指す。
厚鋼板(steel plate)は、長尺の鋼板(continuous steel sheet)ではないため、連続的な曲げ加工である、ロール成形に使用することはできない。
電縫鋼管は、以上の点で、厚鋼板を用いて製造される溶接鋼管(例えば、UOE鋼管)とは明確に区別される。
本開示の機械構造部品用電縫鋼管(以下、単に「電縫鋼管」ともいう)は、直管部を含む機械構造部品用電縫鋼管であって、
直管部が、母材部及び電縫溶接部を含み、
母材部の化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなり、
母材部における肉厚中央部のミクロ組織が、焼戻しマルテンサイトであり、
Cの濃度が、母材部の化学組成におけるCの濃度に対して90%以下である層を脱C層とし、Bの濃度が、母材部の化学組成におけるBの濃度に対して90%以下である層を脱B層とした場合に、母材部の内表面側及び外表面側の各々において、脱C層の厚さが0.20mm未満であり、脱B層の厚さが0.10mm未満であり、
母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々が、420Hv以上510Hv未満である。
直管部における母材部の上記化学組成と、
焼戻しマルテンサイトである母材部の上記ミクロ組織と、
母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々が、420Hv以上510Hv未満であることと、
の組み合わせを満足する電縫鋼管であって、かつ、疲労強度に優れる。
疲労強度の効果は、母材部の内表面側及び外表面側の各々において、脱C層の厚さが0.20mm未満であり、かつ、脱B層の厚さが0.10mm未満であることによって奏される効果である。
本開示の機械構造部品用電縫鋼管の用途である機械構造部品としては、例えば自動車用部品(例えば、ドライブシャフト、アクスルビーム、中空ばね、スタビライザー)等の、高強度及び耐疲労特性が要求される機械構造部品が挙げられる。
通常、鋼の疲労強度と硬さとは正の相関を示す。そのため、本発明者らは、電縫鋼管の母材部の内表層の硬さについて調査した。その結果、図1を得た。
ここで、母材部の内表層とは、母材部の内表面から所定深さまでの領域を意味する。所定深さとは、例えば、内表面から深さ0.50mmの位置までの領域である。
硬さが低い領域は、疲労き裂の起点となりやすい。内表層において硬さが低い領域が厚ければ、電縫鋼管の疲労強度が低下する。
そこで、本発明者らは、電縫鋼管の疲労強度を高めるために、電縫鋼管の母材部の内表層において、硬さが低い領域の厚さを低減することを考えた。
本発明者らはまず、電縫鋼管の母材部の内表層において、硬さが低下する原因について調査及び検討を行った。硬さは鋼の元素濃度と相関がある。そのため、本発明者らは、硬さに影響するC(炭素)に着目した。
図2は、上記深さ方向のC濃度プロファイルである。
図2中の破線1は、母材部のC濃度に対して90%のC濃度(=0.342%)を示す。
母材部のC濃度とは、母材部内部のC濃度(質量%)を意味する。母材部内部のC濃度とは、具体的には、電縫鋼管における、電縫溶接部から管周方向に90°ずれた位置(以下、「母材90°位置」ともいう)の肉厚中央部におけるC濃度(質量%)を意味する。 図2に示すように、電縫鋼管の母材部の内表面から0.20mm深さ位置までの領域のC濃度は、母材部のC濃度の90%(つまり、0.342%)よりも低い。
以上の結果から、本発明者らは、電縫鋼管の母材部の内表面から0.20mm深さ位置までにおいて、硬さが低下する原因は、内表層においてC濃度が低下しているためであると考えた。
C濃度が低下する現象を、以下、「脱C」ともいう。
図3中の破線2は、母材部のB濃度に対して90%のB濃度(0.00246%)を示し、破線20は、母材部のB濃度(0.00273%)を示す。
母材部のB濃度とは、母材部内部のB濃度を意味する。母材部内部のB濃度とは具体的には、電縫鋼管における母材90°位置の肉厚中央部におけるB濃度(質量%)である。
図3に示すように、電縫鋼管の母材部の内表面から0.10mm深さ位置までの領域においてB濃度が低下し、この領域のB濃度が、母材部のB濃度に対して90%よりも低くなっている。
B濃度が低下する現象を、以下、「脱B」ともいう。
図4中、実線4は、図1に示したビッカース硬さを模式図に表した線である。
図4中の破線3は、脱Cのみが発生していると考えられる場合のビッカース硬さを示す線である。
母材部の内表層において、もし、脱Cのみが発生しているのであれば、破線3に示すとおり、ビッカース硬さは、電縫鋼管の母材部の内表面から0.20mm深さ位置までの領域において、内表面に向かうに従って緩やかに減少するはずである。
しかし実際には、ビッカース硬さは、図4中の実線4に示すとおり、母材部の内表面から0.20mm深さ位置から0.10mm深さ位置まで緩やかに減少し、電縫鋼管の母材部の0.10mm深さ位置から内表面までの領域においては、内表面に向かうに従って顕著に減少している。
従って、電縫鋼管の母材部の内表層において、C濃度の低下(脱C)を抑制するだけでなく、B濃度の低下(脱B)も抑制する必要がある。
以下、母材部の化学組成における各元素の含有量について説明する。
C(炭素)は、鋼中に固溶して、又は、炭化物として析出して、鋼の疲労強度を高める元素である。C含有量が0.30%未満であると、この効果が十分に得られない場合がある。一方、C含有量が0.38%を超えると、加工性が低下する場合がある。
従って、C含有量は0.30~0.38%である。
C含有量の下限は、好ましくは0.31%であり、より好ましくは0.32%であり、更に好ましくは0.33%である。
C含有量の上限は、好ましくは0.37%である。
Siは、固溶強化により鋼の疲労強度を高める元素である。Si含有量が0.15%未満であると、この効果が十分に得られない場合がある。一方、Si含有量が0.30%を超えると、Si-Mn系の介在物が生成しやすくなる場合がある。
従って、Si含有量は0.05~0.40%である。
Si含有量の下限は、好ましくは0.10%であり、より好ましくは0.15%である。
Si含有量の上限は、好ましくは0.35%であり、より好ましくは0.30%である。
Mnは、鋼の焼入れ性を高め、鋼の疲労強度を高める元素である。Mn含有量が0.50%未満であると、この効果が十分に得られない場合がある。一方、Mn含有量が2.00%を超えると、MnS等の粗大な介在物が生成し、その結果、鋼の疲労寿命が低下する場合がある。
従って、Mn含有量は、0.50~2.00%である。
Mn含有量の下限は、好ましくは0.60%であり、より好ましくは0.80%であり、更に好ましくは1.00%であり、更に好ましくは1.10%であり、更に好ましくは1.20%である。
Mn含有量の上限は、好ましくは1.80%であり、より好ましくは1.70%である。
Alは、鋼を脱酸する元素である。Alは、更に、Nを固定して、焼入れ性向上に有効な固溶B量を確保する元素でもある。Al含有量が0.010%未満であると、この効果が十分に得られない場合がある。一方、Al含有量が0.060%を超えると、介在物が生成しやすくなり、鋼の疲労強度が低下する場合がある。
従って、Al含有量は、0.010~0.060%である。
Al含有量の下限は、好ましくは0.015%であり、より好ましくは0.020%である。
Al含有量の上限は、好ましくは0.050%であり、より好ましくは0.045%である。
Tiは、Nを固定して、焼入れ性向上に有効な固溶B量を確保する元素である。Tiは更に、微細な炭化物として析出し、ピンニング効果により熱処理時の結晶粒の粗大化を抑制し、その結果、鋼の靭性を高める元素でもある。Ti含有量が0.005%未満であると、上記効果が十分に得られない場合がある。一方、Ti含有量が0.050%を超えると、介在物が粗大化し、その結果、鋼の靭性及び疲労強度が低下する場合がある。
従って、Ti含有量は0.005~0.050%である。
Ti含有量の下限は、好ましくは0.007%であり、より好ましくは0.010%である。
Ti含有量の上限は、好ましくは0.025%であり、より好ましくは0.020%である。
B(ホウ素)は、鋼の焼入れ性を高める元素である。Bは、更に、粒界強化により鋼の疲労強度を高める元素でもある。B含有量が0.0003%未満であると、上記効果が十分に得られない場合がある。一方、B含有量が0.0050%を超えると、粗大なB析出物が生成し、その結果、鋼の靭性が低下する場合がある。また、B含有量が0.0050%を超えると、脱B層が厚くなりすぎる場合がある。
従って、B含有量は0.0003~0.0050%である。
B含有量の下限は、好ましくは0.0005%であり、より好ましくは0.0008%である。
B含有量の上限は、好ましくは0.0025%であり、より好ましくは0.0020%である。
Caは、SをCaSとして固定することにより、MnSの生成を抑制し、その結果、MnSによる疲労強度の低下を抑制する効果を発現する元素である。Ca含有量が0.0005%未満であると、これらの効果が十分に得られない場合がある。一方、Ca含有量が0.0040%を超えると、粗大なCa介在物が形成され、その結果、鋼の靭性及び疲労強度が低下する場合がある。
従って、Ca含有量は0.0005~0.0040%である。
Ca含有量の下限は、好ましくは0.0005%であり、より好ましくは0.0010%であり、更に好ましくは0.0012%である。
Ca含有量の上限は、好ましくは0.0038%であり、更に好ましくは0.0035%であり、更に好ましくは0.0030%である。
N(窒素)は、不純物である。N含有量は、0%であってもよいし、0%超であってもよい。
Nは、BNとして析出する元素である。BNが析出すると、固溶Nによる焼入れ性向上効果が低下する場合がある。BNが析出すると、更に、窒化物の粗大化及び時効硬化により靭性が低下する場合がある。
従って、N含有量は0.0060%以下である。
N含有量の上限は、好ましくは0.0040%であり、更に好ましくは0.0030%である。
一方、Nは、窒化物や炭窒化物を形成して、鋼の強度を高める。かかる効果をより効果的に得る観点から、N含有量の下限は、好ましくは0.0010%であり、より好ましくは0.0015%である。
P(リン)は、不純物である。P含有量は、0%であってもよいし、0%超であってもよい。
Pは、鋼の耐溶接割れ性及び靭性を低下する元素である。
従って、P含有量は0~0.020%である。
P含有量の上限は、好ましくは0.015%であり、より好ましくは0.012%である。
P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、製造コストを高める場合がある。従って、製造コスト低減の観点から、P含有量は、0%超であってもよく、0.001%以上であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。
S(硫黄)は、不純物である。S含有量は、0%であってもよいし、0%超であってもよい。
Sは、非金属介在物を形成する元素である。非金属介在物は電縫鋼管の曲げ性、疲労寿命及び加工性を低下する。Sは、更に、靭性、異方性、及び、再熱割れ感受性を低下する元素でもある。
従って、S含有量は0~0.0200%である。
S含有量の上限は、好ましくは0.0100%であり、より好ましくは0.0050%である。
S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は、製造コストを高める場合がある。従って、製造コスト低減の観点から、S含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0002%以上であってもよく、0.0005%以上であってもよい。
O(酸素)は、不純物である。O含有量は、0%であってもよいし、0%超であってもよい。
Oは、CaOとなってCaの効果(即ち、SをCaSとして固定することにより、MnSの生成を抑制する効果)を損なわせる元素である。
従って、O含有量は0~0.0050%である。
O含有量の上限は、好ましくは0.040%であり、より好ましくは0.030%である。
O含有量は、なるべく低い方が好ましい。しかしながら、O含有量の過剰な低減は、製造コストを高める場合がある。従って、製造コスト低減の観点から、O含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。
Cuは、任意元素である。即ち、Cu含有量は、0%であってもよいし、0%超であってもよい。
Cu含有量が高すぎると、鋼の加工性が低下する場合がある。
従って、Cu含有量は、0~0.50%である。
Cu含有量の上限は、好ましくは0.40%であり、より好ましくは0.30%である。
一方、Cuは、鋼の焼入れ性を高め、鋼の強度を高める元素である。かかる効果の観点から、Cu含有量の下限は、好ましくは0.01%であり、より好ましくは0.02%であり、更に好ましくは0.05%であり、更に好ましくは0.10%である。
Niは、任意元素である。即ち、Ni含有量は、0%であってもよいし、0%超であってもよい。
Ni含有量が高すぎると、材料コストが高くなる場合がある。
従って、Ni含有量は、0~0.50%である。
Ni含有量の上限は、好ましくは0.40%であり、より好ましくは0.30%である。
一方、Niは、鋼の焼入れ性を高め、鋼の強度を高める元素である。かかる効果の観点から、Ni含有量の下限は、好ましくは0.05%であり、より好ましくは0.10%である。
Crは、任意元素である。即ち、Cr含有量は、0%であってもよいし、0%超であってもよい。
Cr含有量が0.50%を超えると、介在物が生成して割れが発生する場合がある。
従って、Cr含有量は0~0.50%である。
Cr含有量の上限は、好ましくは0.35%であり、より好ましくは0.20%である。
一方、Crは、鋼の焼入れ性を高め、鋼の疲労強度を高める元素である。かかる効果の観点から、Cr含有量の下限は、好ましくは0.05%であり、更に好ましくは0.10%であり、更に好ましくは0.13%である。
V(バナジウム)は、任意元素である。即ち、V含有量は、0%であってもよいし、0%超であってもよい。
V含有量が高すぎると、鋼の靱性が低下する場合がある。
従って、V含有量は、0~0.20%である。
V含有量の上限は、好ましくは0.15%であり、より好ましくは0.10%である。
一方、Vは、鋼の強度を高める元素である。かかる効果の観点から、V含有量の下限は、好ましくは0.01%である。
Nbは、任意元素である。即ち、Nb含有量は、0%であってもよいし、0%超であってもよい。
Nb含有量が高すぎると、鋼の靱性が低下する場合がある。
従って、Nb含有量は、0~0.10%である。
Nb含有量の上限は、好ましくは0.08%であり、より好ましくは0.05%である。
一方、Nbは、鋼の強度を高め、粒成長を抑制して低温靭性を高める元素である。かかる効果の観点から、Nb含有量の下限は、好ましくは0.001%、より好ましくは0.003%である。
Moは、任意元素である。即ち、Mo含有量は、0%であってもよいし、0%超であってもよい。
Mo含有量が高すぎると、粗大な炭化物が形成し、鋼の靭性が低下する場合がある。
従って、Mo含有量は0~0.50%である。
Mo含有量の上限は、好ましくは0.40%であり、より好ましくは0.30%である。
一方、Moは、鋼の焼入れ性を高め、鋼の強度を高める元素である。Moは、更に、固溶強化により、鋼の強度を高める元素でもある。これらの効果の観点から、Mo含有量の下限は、好ましくは0.01%であり、より好ましくは0.02%であり、さらに好ましくは0.03%である。
Mgは、任意元素である。即ち、Mg含有量は、0%であってもよいし、0%超であってもよい。
Mg含有量が高すぎると、鋼中の酸化物が粗大化し、鋼の靱性が低下する場合がある。
従って、Mg含有量は、0~0.0500%である。
Mg含有量の上限は、好ましくは0.0400%であり、より好ましくは0.0300%であり、さらに好ましくは0.0200%である。
一方、Mgは、鋼中のSを硫化物として無害化し、鋼の靱性を高める元素である。かかる効果を得る観点から、Mg含有量の下限は、好ましくは0%超であり、より好ましくは0.0001%であり、更に好ましくは0.0003%であり、更に好ましくは0.0005%である。
REMは、任意元素である。即ち、REM含有量は、0%であってもよいし、0%超であってもよい。
ここで、REMは、希土類元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選択される少なくとも1種の元素を意味する。また、REM含有量は、希土類元素の総含有量を意味する。
REM含有量が高すぎると、鋼中の酸化物が粗大化し、鋼の靱性が低下する場合がある。
従って、REM含有量は、0~0.0500%である。
REM含有量の上限は、好ましくは0.0400%であり、より好ましくは0.0300%であり、さらに好ましくは、0.0200%である。
一方、REMは、鋼中の硫化物の形態を制御し、鋼の靱性を高める元素である。かかる効果を得る観点から、REM含有量の下限は、好ましくは0.0001%であり、更に好ましくは0.0003%であり、更に好ましくは0.0005%である。
直管部における母材部の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料(例えば、鉱石、スクラップ、等)に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
不純物としては、上述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。
不純物として、例えば、Sb、Sn、W、Co、As、Pb、Bi、H、等が挙げられる。
上述した元素のうち、例えば、Sb、Sn、Co、及びAsについては、例えば含有量0.1%以下の混入が、Pb及びBiについては、例えば含有量0.005%以下の混入が、Hについては、例えば含有量0.0004%以下の混入が、それぞれあり得る。
その他の元素の含有量については、通常の範囲であれば、特に制御する必要はない。
Cu:0.01~0.50%、
Ni:0.05~0.50%、
Cr:0.05~0.50%、及び
Mo:0.01~0.50%
からなる群から選択される1種以上を含有してもよい。
これらの元素の含有量のより好ましい範囲は、それぞれ前述したとおりである。
母材部の化学組成において、下記式(1)で表されるF1が、0.50以上であることが好ましい。これにより、鋼の疲労強度がより向上する。
式(1)の各元素記号は、各元素の質量%を意味する。
この理由は、F1が0.50以上である場合には、有効に機能する(即ち、CaOを形成していない)Caの量がある程度確保されるので、Caによる上記効果(即ち、SをCaSとして固定することにより、電縫鋼管の疲労強度を低下させるMnSの生成を抑制する効果)がより効果的に発揮されるためと考えられる。
本開示の電縫鋼管において、母材部における肉厚中央部のミクロ組織は、焼戻しマルテンサイトである。
母材部における肉厚中央部のミクロ組織は、以下のようにして確認する。
電縫鋼管のC断面における母材90°位置の肉厚中央部において、観察面をナイタールでエッチングする。エッチングした観察面を光学顕微鏡観察し、ミクロ組織を確認する。
観察視野面は、圧延方向に200μm、肉厚方向に500μmの矩形である。観察倍率は500倍とする。
本開示の電縫鋼管では、母材部の内表面側及び外表面側の各々において、脱C層(即ち、Cの濃度が、母材部の化学組成におけるCの濃度に対して90%以下である層)の厚さが0.20mm未満である。これにより、電縫鋼管の疲労強度が向上する。
従って、母材部の内表面側の脱C層の厚さは、0.20mm未満である。
母材部の内表面側の脱C層の厚さの下限は特に限定されない。母材部の内表面側の脱C層の厚さは0mmであってもよい。母材部の内表面側の脱C層の厚さは薄いほどよい。
母材部の内表面側の脱C層の厚さの上限は、好ましくは0.19mmであり、より好ましくは0.18mmであり、更に好ましくは0.16mmであり、更に好ましくは0.14mmであり、更に好ましくは0.12mmであり、更に好ましくは0.10mmである。
従って、母材部の外表面側の脱C層の厚さは、0.20mm未満である。
母材部の外表面側の脱C層の厚さの下限は特に限定されない。母材部の外表面側の脱C層の厚さは0mmであってもよい。母材部の外表面側の脱C層の厚さは薄いほどよい。
母材部の外表面側の脱C層の厚さの好ましい上限は、母材部の内表面側の脱C層の厚さの好ましい上限と同様である。
なお、母材部の外表層とは、母材部の外表面から所定深さまでの領域を意味する。所定深さとは、例えば、外表面から0.50mm深さ位置までの領域である。
母材部のC濃度は、JIS G 1253(2013)に準拠して、周知のチェック分析で測定する。具体的には、母材90°位置の肉厚中央部から、試料を採取する。採取した試料の分析面の直径が20mm以上、厚さ3mm以上となるように、試料を加工する。加工した試料の分析面を研削により平面状に調整する。調整した試料をスパーク放電発光分光分析装置に設置して、C濃度(質量%)を測定する。得られたC濃度を、母材部のC濃度(質量%)とする。
グロー放電発光分析装置(GD-OES:Glow Discharge Optical Emission Spectrometry)を用い、母材部の内表面からの深さ(即ち、内表面からの肉厚方向の距離)と、C濃度(質量%)との関係を示す、深さ方向(即ち、肉厚方向)のC濃度プロファイルを測定する。
具体的には、上記母材部の内表面から深さ方向(即ち、肉厚方向)に向かって、アルゴンイオンによるスパッタリングを実施しながら、深さ方向に0.03μm間隔でC濃度を測定し、上記C濃度プロファイルを得る。GD-OESの測定径は直径4mmとする。
得られたC濃度プロファイルに対して、測定誤差を考慮して、スムージング処理を行う。具体的には、測定深さ位置ごとに、この測定深さ位置±1.50μmの範囲内で測定されたC濃度の算術平均値を算出する。得られたC濃度の算術平均値を、その測定深さ一のC濃度と定義する。各測定深さ位置において、上述のC濃度を求める。例えば、測定深さ位置が表面から1.50μm深さ位置でのC濃度は、表面から0~3.00μm深さ位置の間における101個の測定深さ位置(0.03μm間隔)のC濃度の算術平均値とする。
以上のスムージング処理により各測定深さ位置でのC濃度を求め、C濃度プロファイルを得る。スムージング処理を実施した場合、C濃度プロファイルは、表面から1.50μm深さ位置から始まる曲線として示される。
得られたC濃度プロファイルにおいて、C濃度が母材部のC濃度の90%以下となっている、内表面からの深さ範囲を特定し、特定された深さ範囲を、脱C層の厚さ(mm)とする。
本開示の電縫鋼管では、母材部の内表面側及び外表面側において、脱B層(即ち、Bの濃度が、母材部の化学組成におけるBの濃度に対して90%以下である層)の厚さが0.10mm未満である。これにより、電縫鋼管の疲労強度が向上する。
従って、母材部の内表面側の脱B層の厚さは、0.10mm未満である。
母材部の内表面側の脱B層の厚さの下限は特に限定されない。母材部の内表面側の脱B層の厚さは0mmであってもよい。母材部の内表面側の脱B層の厚さは薄いほどよい。
母材部の内表面側の脱B層の厚さの上限は、好ましくは0.09mmであり、より好ましくは0.08mmである。
従って、母材部の外表面側の脱B層の厚さは、0.10mm未満である。
母材部の外表面側の脱B層の厚さの下限は特に限定されない。母材部の外表面側の脱B層の厚さは0mmであってもよい。母材部の外表面側の脱B層の厚さは薄いほどよい。
母材部の外表面側の脱B層の厚さの好ましい上限は、母材部の内表面側の脱B層の厚さの好ましい上限と同様である。
母材部のB濃度は、前述した母材部のC濃度と同様の方法によって測定する。
本開示の電縫鋼管において、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ(以下、「内表面側のビッカース硬さ」ともいう)及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さ(以下、「外表面側のビッカース硬さ」ともいう)の各々は、420Hv以上510Hv未満である。
内表面側のビッカース硬さ及び外表面側のビッカース硬さの各々が420Hv以上であることは、機械構造部品用電縫鋼管としての強度確保に寄与する。上記ビッカース硬さは、好ましくは450Hv以上である。
内表面側のビッカース硬さ及び外表面側のビッカース硬さの各々が510Hv未満であることは、機械構造部品用電縫鋼管の製造し易さ(例えば、素材である熱延鋼板の製造し易さ、熱延鋼板をロール成形して造管する際のロール成形のし易さ、等)に寄与する。上記ビッカース硬さは、好ましくは509MPa以下である。
電縫鋼管のC断面において、電縫溶接部を0°とし、時計回りに、電縫溶接部から周方向に90°、180°、及び270°の各位置(即ち、母材90°位置、母材180°位置、及び母材270°位置)における内表面から深さ0.5mmの位置(計3か所)を、測定位置として決定する。
上記3か所の測定位置の各々において、JIS Z 2244(2009)に準拠したビッカース硬さ試験を実施して、ビッカース硬さ(Hv)を得る。試験力は0.98Nとする。
得られた3つのビッカース硬さ(測定値)の算術平均値を、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ(Hv)とする。
本開示の電縫鋼管のサイズには特に限定はない。
本開示の電縫鋼管の直管部の外径は、例えば10~50mmである。
本開示の電縫鋼管において、直管部における母材部の肉厚(t)を直管部の外径(D)で除した値(t/D値)は、例えば0.04~0.25である。
本開示の電縫鋼管において、直管部における母材部の肉厚は、例えば2.0~8.0mmである。
以下、本開示の電縫鋼管を製造するための製造方法の一例(以下、「製法X」とする)について説明する。
以下の製法Xは、後述する実施例の電縫鋼管の製造方法である。
母材部A及び電縫溶接部Aを含み、母材部Aの化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなる、アズロール電縫鋼管を準備する準備工程と、
アズロール電縫鋼管に対し、焼入れを施す焼入れ工程と、
焼入れが施されたアズロール電縫鋼管に対し、焼戻しを施して機械構造部品用電縫鋼管を得る焼戻し工程と、
を備え、
焼入れ工程において、焼入れが行われる雰囲気中の酸素量が1000体積ppm以下であり、焼入れにおける冷却速度が10℃/秒以上である、
電縫鋼管の製造方法である。
以下、製法Xにおける各工程について説明する。
準備工程は、上記アズロール電縫鋼管を準備する工程である。
本工程は、予め製造してあった上記アズロール電縫鋼管を単に準備するだけの工程であってもよいし、上記アズロール電縫鋼管を製造する工程であってもよい。
アズロール電縫鋼管を製造する方法の例については、製法Aとして後述する。
製法Xでは、最終的に得られる機械構造部品用電縫鋼管中に直管部(即ち、曲げ加工が施されていない部分であって、造管まま又は伸管ままの真っすぐな部分)が含まれる限り、アズロール電縫鋼管の一部に対し、曲げ加工が施されてもよい。この場合、曲げ加工が施されていない部分が、直管部に該当する。
また、製法Xでは、アズロール電縫鋼管の一部又は全部に対し、後述する伸管加工が施されていてもよい。
この際、アズロール電縫鋼管の母材部Aの少なくとも一部分及び電縫溶接部Aの少なくとも一部分が、それぞれ、機械構造部品用電縫鋼管における直管部の母材部及び電縫溶接部に転化する。
製法Xの各工程は、鋼の化学組成に影響を及ぼさない。
従って、製法Xによって製造される電縫鋼管の直管部における母材部の化学組成は、原料である上記アズロール電縫鋼管の母材部Aの化学組成と同様であるとみなせる。
アズロール電縫鋼管のサイズには特に限定はない。
アズロール電縫鋼管の外径は、例えば10~50mmである。
アズロール電縫鋼管において、母材部の肉厚(t)をアズロール電縫鋼管の外径(D)で除した値(t/D値)は、例えば0.04~0.25である。
アズロール電縫鋼管の母材部の肉厚は、例えば2.0~8.0mmである。
焼入れ工程は、アズロール電縫鋼管に対し、焼入れを施す工程である。
焼入れ工程において、焼入れが行われる雰囲気中の酸素量は1000体積ppm以下である。これにより、内表層及び外表層に拡散したB及びCが、雰囲気中の酸素と反応することを抑制することができる。その結果、脱B及び脱Cを抑制することができる。
焼入れ工程において、焼入れにおける冷却速度は10℃/秒以上である。これにより、B及びCが拡散しやすい温度域でのアズロール電縫鋼管の滞留時間を短くすることができる。そのため、B及びCが内表層及び外表層に拡散し、拡散した酸素と反応することを抑制できる。その結果、脱B及び脱Cを抑制することができる。
焼入れ工程における焼入れは、例えば熱処理炉中で実施する。
焼入れ工程での冷却速度の上限は特に限定されない。上限は、例えば30℃/秒以下である。
焼入れ温度が上記範囲である場合には、最終的に得られる機械構造部品用電縫鋼管において、上述したビッカース硬さ(即ち、420Hv以上510Hv未満)がより達成され易い。
焼入れ温度の上限は、好ましくは1000℃であり、より好ましくは970℃である。
焼戻し工程は、焼入れが施されたアズロール電縫鋼管(以下、「焼入れ後であって焼戻し前の電縫鋼管」ともいう)に対し、焼戻しを施して機械構造部品用電縫鋼管を得る工程である。
焼戻し温度が100℃以上である場合には、電縫鋼管の疲労強度がより高まる。
焼戻し温度が500℃以下である場合には、析出物の粗大化を抑制でき、水素起因による割れをより抑制できる。
焼戻し工程を実施する方法は、特に限定されない。
焼戻し工程を実施する方法としては、例えば、温度管理が容易な、電気炉又は雰囲気炉を用いる方法が挙げられる。
焼入れ後であって焼戻し前の電縫鋼管の好ましい態様を示す。
焼入れ後であって焼戻し前の電縫鋼管が以下に示す好ましい態様である場合には、その後の焼戻しにより、前述した条件を満足する本開示の機械構造部品用電縫鋼管が得られやすい。
焼入れ後であって焼戻し前の電縫鋼管において、母材部における肉厚中央部のミクロ組織は、マルテンサイトであることが好ましい。
ここで、「母材部における肉厚中央部のミクロ組織は、マルテンサイトである」とは、焼入れ後であって焼戻し前の電縫鋼管における上記ミクロ組織を、本開示の機械構造部品用電縫鋼管(即ち、焼戻し後の電縫鋼管)におけるミクロ組織を観察するための前述した条件と同様の条件で観察した結果、ミクロ組織が、一様にマルテンサイトに見えることを意味する。
焼入れ後であって焼戻し前の電縫鋼管において、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さに基づくマルテンサイト分率(以下、「母材部の内表面側のマルテンサイト分率」ともいう)及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さに基づくマルテンサイト分率(以下、「母材部の外表面側のマルテンサイト分率」ともいう)の各々は、好ましくは90%以上である。
母材部の内表面側のマルテンサイト分率が90%以上であるか否かは、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さの実測値が、後述の式(2)及び式(3)によって算出される90%マルテンサイト硬さ以上であるか否かによって判断した。
母材部の外表面側のマルテンサイト分率が90%以上であるか否かは、母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの実測値が、後述の式(2)及び式(3)によって算出される90%マルテンサイト硬さ以上であるか否かによって判断した。
ここで、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々は、それぞれ、前述した本開示の機械構造部品用電縫鋼管における母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々と同様にして測定する。
90%マルテンサイト硬さ(ビッカース硬さ)=107.61+6.177×HRC(90%M)×exp(2.089×10-6×HRC(90%M)3.008) … 式(2)
HRC(90%M)=30+50×C(%) … 式(3)
焼入れ後であって焼戻し前の電縫鋼管の母材部では、内表面側及び外表面側において、90%マルテンサイト硬さ未満である領域の厚さが、0.20mm未満であることが好ましい。
焼入れ後であって焼戻し前の電縫鋼管のC断面において、母材部の肉厚をtmmとした場合に、母材部の内表面からt/8mm深さ位置から母材部の内表面に向かって0.02mmごとにビッカース硬さを測定し、深さ方向のビッカース硬さプロファイルを得る。ビッカース硬さの測定条件は、前述した機械構造部品用電縫鋼管におけるビッカース硬さの測定条件と同様である。
得られたビッカース硬さプロファイルに基づき、内表面側における90%マルテンサイト硬さ未満である領域の厚さを測定する。
製法Xは、更に、準備工程後であって焼入れ工程前に、アズロール電縫鋼管を伸管する伸管工程を備えることが好ましい。
この場合、前述の焼入れ工程では、伸管されたアズロール電縫鋼管に対し、焼入れを施す。
製法Xが伸管工程を含む場合には、アズロール電縫鋼管の素材である熱延鋼板に脱B層及び脱C層が生じていた場合でも、伸管により、脱B層及び脱C層が物理的に引き延ばされる。これにより、脱B層及び脱C層を薄くすることができるので、得られる機械構造部品用電縫鋼管において、前述した脱B層及び脱C層の範囲(即ち、脱C層の厚さが0.20mm未満、脱B層の厚さが0.10mm未満。)をより達成しやすい。
伸管は、例えば、冷間引抜、又は、ストレッチ・レデューサ圧延によって実施する。
伸管における断面減少率は、好ましくは10~40%である。
ここで、断面減少率(%)は、伸管前のアズロール電縫鋼管のC断面の面積から伸管後のアズロール電縫鋼管のC断面の面積を差し引いた値を、伸管前のアズロール電縫鋼管のC断面の面積で除して100を乗じた値である。
製法Xは、更に、準備工程後であって焼入れ工程前に、アズロール電縫鋼管に対してショットブラストを施す工程を備えることが好ましい。
製法Xが上記伸管工程を備える場合、ショットブラストは、好ましくは、伸管工程後であって焼入れ工程前に行う。
製法Xがショットブラストを施す工程を含む場合には、アズロール電縫鋼管の素材である熱延鋼板に脱B層及び脱C層が生じていた場合でも、ショットブラストにより、脱B層及び脱C層を物理的に除去することができる。これにより、脱B層及び脱C層を薄くすることができるので、得られる機械構造部品用電縫鋼管において、前述した脱B層及び脱C層の範囲(即ち、脱C層の厚さが0.20mm未満、脱B層の厚さが0.10mm未満。)をより達成しやすい。
前述した製法X(即ち、本開示の機械構造部品用電縫鋼管の製造方法の一例)におけるアズロール電縫鋼管準備工程は、アズロール電縫鋼管を製造する工程であってもよい。
以下、アズロール電縫鋼管の製造方法の一例を、製法Aとして示す。
アズロール電縫鋼管の母材部Aの化学組成と同様の化学組成を有するスラブを準備するスラブ準備工程と、
準備したスラブを圧延して熱延鋼板を得る熱延工程と、
熱延工程で得られた熱延鋼板を、巻取温度CTとなるまで冷却する冷却工程と、
冷却後の熱延鋼板を上記巻取温度CTにて巻取ることにより、熱延鋼板からなるホットコイルを得る巻取工程と、
ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成することにより、電縫鋼管を得る造管工程と、
を含む。
以上の、熱延工程、冷却工程、及び巻取工程は、ホットストリップミルを用いて実施する。
以下、製法Aにおける各工程について説明する。
スラブ準備工程は、スラブを準備する工程である。
本工程は、予め製造してあったスラブを単に準備するだけの工程であってもよいし、スラブを製造する工程であってもよい。
準備するスラブの化学組成は、製法Aによって得られるアズロール電縫鋼管の母材部Aの化学組成と同様であり、好ましい範囲も同様である。
製法Aの各工程は、鋼の化学組成に影響を及ぼさない。従って、製法Aによって製造されるアズロール電縫鋼管の母材部Aの化学組成は、原料であるスラブの化学組成と同様であるとみなせる。
この際、連続鋳造法によってスラブを製造してもよいし、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。
熱延工程は、スラブを例えば1100~1300℃のスラブ加熱温度にまで加熱し、加熱されたスラブに対し、熱間圧延を施すことにより、熱延鋼板を得る工程である。
熱間圧延は、好ましくは、粗圧延機を用いる粗圧延工程と、仕上げ圧延機を用いる仕上げ圧延工程と、をこの順に実施することによって行う。
粗熱延機としては、リバース式であってもよいし、一列に配列された複数の圧延スタンドを備えるタンデム式であってもよい。
仕上げ圧延工程では、
一列に並んだ複数の圧延スタンド(各圧延スタンドは一対のワークロールを有する)を含むタンデム式の仕上げ圧延機を用いた仕上げ圧延を実施してもよいし、
一対のワークロールを有するリバース式圧延機を用いた仕上げ圧延を実施してもよい。
仕上げ圧延工程後の鋼板の板厚は特に限定されないが、例えば、2.0~20.0mmである。
冷却工程は、熱延工程で得られた熱延鋼板を、巻取温度CTまで冷却する工程である。
ここで、巻取温度CTは、巻取り時の熱延鋼板の表面温度を意味する。
巻取温度T1は、800℃以下であることが好ましい。巻取温度T1が800℃以下であると、スケールの発生をより抑制できる。巻取温度T1の上限は、好ましくは650℃である。
巻取温度T1の下限は特に限定されないが、下限は、好ましくは500℃であり、より好ましくは550℃である。
巻取工程は、冷却後の熱延鋼板を巻取温度CTにて巻取ることにより、熱延鋼板からなるホットコイルを得る工程である。
巻取温度CTの好ましい範囲は前述のとおりである。
造管工程は、ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成することにより、電縫鋼管を得る工程である。
造管工程は、公知の方法に従って行うことができる。
その他の工程としては、例えば;
造管工程後に電縫溶接部をシーム熱処理する工程;
造管工程後(前述のシーム熱処理する工程を含む場合には、シーム熱処理する工程の後)において、電縫鋼管の外径をサイザーによって縮径する工程;
造管工程前に、熱延鋼板を酸洗浄することにより、表面のスケールを除去する工程;
等が挙げられる。
従って、製法Aによって製造されるアズロール電縫鋼管の母材部Aの化学組成は、原料(溶鋼又はスラブ)の化学組成と同様とみなせる。
表1~表4中の下線は、本開示の範囲外か、又は、好ましい製造条件の範囲外であることを示す。
準備工程として、前述の製法Aに従い、アズロール電縫鋼管を準備(製造)した。
以下、詳細を示す。
表1及び表2中の空欄は、対応する元素含有量が検出限界未満であったこと(即ち、対応する元素が含有されていないこと)を示す。
表1及び表2中に示した元素を除いた残部は、Fe及び不純物である。
表1及び表2中の下線は、本開示の範囲外であることを示す。
鋼ZにおけるREMは、Laである。
鋼AAにおけるREMは、Ceである。
鋼ABにおけるREMは、Ndである。
鋼AEにおけるREMは、Yである。
鋼AFにおけるREMは、Y(0.0037%)及びCe(0.0052%)である。
熱延工程で得られた熱延鋼板を、下記の表3及び表4に示す巻取温度CTとなるまで冷却した(冷却工程)。
冷却後の熱延鋼板を巻取温度CTにて巻取ることにより、板厚4.9mmの熱延鋼板からなるホットコイルを得た(巻取工程)。
以上の、熱延工程、冷却工程、及び巻取工程は、ホットストリップミルを用いて実施した。
この際、表3及び表4中の「酸洗」欄に「有」と表記されている試験番号では、巻き出し後であってロール成形前の熱延鋼板に対し、スケール除去処理としての酸洗処理を実施した。
表3及び表4中の「任意工程」欄に、「1回伸管」と記載されている試験番号では、焼入れ工程前のアズロール電縫鋼管に対し、断面減少率16%の1回の伸管を施した。1回の伸管後のサイズは、外径22.0mm、肉厚4.5mmである。
表3及び表4中の「任意工程」欄に、「2回伸管」と記載されている試験番号では、焼入れ工程前のアズロール電縫鋼管に対し、断面減少率が合計で16%となる2回の伸管を施した。2回の伸管後のサイズは、外径22.0mm、肉厚4.5mmである。
表3及び表4中の「任意工程」欄に、「ショットブラスト」と記載されている試験番号では、焼入れ工程前のアズロール電縫鋼管に対し、ショットブラストを施した。
アズロール電縫鋼管に対し、下記の表3及び表4に示す条件の焼入れ工程及び焼戻し工程をこの順に実施し、各試験番号の機械構造部品用電縫鋼管を製造した。
焼入れは、熱処理炉にて行った。
表3及び表4中、「雰囲気」欄に「CO2」と記載されている試験番号では、熱処理炉での雰囲気をCO2とし、雰囲気中の酸素量を1000体積ppm以下とした条件で焼入れを実施した。
表3及び表4中、「雰囲気」欄に「大気」と記載されている試験番号では、熱処理炉での雰囲気を大気雰囲気とした条件で焼入れを実施した。
焼入れ温度及び冷却速度は、表3及び表4中に示すとおりとした。
焼戻し温度は、表3及び表4中に示すとおりとした。
焼戻し温度での保持時間は1~60分の範囲内とした。
但し、本開示の機械構造部品用電縫鋼管は、長さ方向の全体が直管部である態様には限定されず、直管部を含み、かつ、直管部以外の部分(例えば曲げ加工部)を含む態様であってもよい。
焼入れ後であって焼入れ前の電縫鋼管の内表面側及び外表面側の各々について、前述した方法により、硬さに基づくマルテンサイト分率(%)及び90%マルテンサイト硬さ未満の領域の厚さ(mm)をそれぞれ求めた。
結果を表3及び表4に示す。
表3及び表4に示すように、全実施例において、内表面側及び外表面側の各々における90%マルテンサイト硬さ未満の領域の厚さが0.20mm未満であることが確認された。
機械構造部品用電縫鋼管について、前述した方法により、内表面側及び外表面側の各々における脱B層の厚さ、内表面側及び外表面側の各々における脱C層の厚さ、内表面側及び外表面側の各々における母材部硬さ(詳細には、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々)を測定した。
結果を表3及び表4に示す。
表3及び表4に示すように、全実施例において、内表面側及び外表面側の各々において、脱B層の厚さが0.10mm未満であり、脱C層の厚さが0.20mm未満であり、ビッカース硬さが420Hv以上510Hv未満であることが確認された。
製造した機械構造部品用電縫鋼管(以下、単に「電縫鋼管」ともいう)の母材90°位置において、電縫鋼管の内表面を含む板厚2mmの疲労試験片を採取した。
疲労試験片の長手方向は電縫鋼管の管軸方向と平行とし、長さを60mmとした。
採取した疲労試験片を用いて、疲労強度試験を実施した。
疲労強度試験は、JIS Z 2273(1978)に準拠した。
疲労強度試験の試験条件は、負荷応力は350MPaとし、応力比R(最小応力/最大応力)=-1の両振りとした。
上記疲労強度試験を実施して、破断回数を得た。
得られた破断回数が8.0万回以上である場合、疲労強度が高いと評価した。
結果を表3及び表4に示す。
各実施例の機械構造部品用電縫鋼管は、
直管部における母材部の化学組成が本開示における化学組成であり、
母材部における肉厚中央部のミクロ組織が焼戻しマルテンサイトであり、
母材部の内表面側及び外表面側の各々において、脱C層の厚さが0.20mm未満であり、脱B層の厚さが0.10mm未満であり、
内表面側及び外表面側の各々における母材部硬さ(即ち、母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々)が、420Hv以上510Hv未満であった。
各実施例の機械構造部品用電縫鋼管は、疲労強度試験における破断回数が多く、疲労強度に優れていた。
以上のように、各実施例では、引張強度及び疲労強度に優れた機械構造部品用電縫鋼管が得られた。
試験番号11では、鋼の化学組成が適切であったものの、焼入れ温度が900℃未満であった。その結果、内表面側及び外表面側の母材部硬さが不足した。
試験番号40は、C含有量が高すぎた。その結果、内表面側及び外表面側の各々における母材部硬さが上限を超過した。また、この試験番号40では、溶接割れが発生し、疲労強度の試験を行うことができなかった。このため、疲労強度の結果は、「N.D.」(No data)とした。
試験番号42は、Si含有量が高すぎた。その結果、疲労強度が不足した。
試験番号43は、Mn含有量が低すぎた。その結果、疲労強度が不足した。
試験番号44は、Mn含有量が高すぎた。その結果、疲労強度が不足した。
試験番号45は、Ti含有量が低すぎた。その結果、疲労強度が不足した。
試験番号46は、Ti含有量が高すぎた。その結果、疲労強度が不足した。
試験番号47は、B含有量が低すぎた。その結果、疲労強度が不足した。
試験番号48は、B含有量が高すぎた。その結果、疲労強度が不足した。
試験番号49は、Ca含有量が低すぎた。その結果、疲労強度が不足した。
試験番号50は、Ca含有量が高すぎた。その結果、疲労強度が不足した。
Claims (8)
- 直管部を含む機械構造部品用電縫鋼管であって、
前記直管部が、母材部及び電縫溶接部を含み、
前記母材部の化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなり、
前記母材部における肉厚中央部のミクロ組織が、焼戻しマルテンサイトであり、
Cの濃度が、前記母材部の化学組成におけるCの濃度に対して90%以下である層を脱C層とし、Bの濃度が、前記母材部の化学組成におけるBの濃度に対して90%以下である層を脱B層とした場合に、前記母材部の内表面側及び外表面側の各々において、脱C層の厚さが0.20mm未満であり、脱B層の厚さが0.10mm未満であり、
前記母材部の内表面から深さ0.5mmの位置におけるビッカース硬さ及び前記母材部の外表面から深さ0.5mmの位置におけるビッカース硬さの各々が、420Hv以上510Hv未満である、
機械構造部品用電縫鋼管。 - 前記母材部の化学組成が、質量%で、
Cu:0.01~0.50%、
Ni:0.05~0.50%、
Cr:0.05~0.50%、及び
Mo:0.01~0.50%
からなる群から選択される1種以上を含有する
請求項1に記載の機械構造部品用電縫鋼管。 - 前記直管部の外径が10~50mmであり、
前記母材部の肉厚を前記直管部の外径で除した値が0.04~0.25である、
請求項1又は請求項2に記載の機械構造部品用電縫鋼管。 - 前記母材部の前記化学組成において、下記式(1)で表されるF1が、0.50以上である、
請求項1~請求項3のいずれか1項に記載の機械構造部品用電縫鋼管。
F1 = Ca×(1-124×O)/(1.25×S) … 式(1)
式(1)の各元素記号は、各元素の質量%を意味する。 - 請求項1~請求項4のいずれか1項に記載の機械構造部品用電縫鋼管を製造する方法であって、
母材部A及び電縫溶接部Aを含み、前記母材部Aの化学組成が、質量%で、
C:0.30~0.38%、
Si:0.05~0.40%、
Mn:0.50~2.00%、
Al:0.010~0.060%、
Ti:0.005~0.050%、
B:0.0003~0.0050%、
Ca:0.0005~0.0040%、
N:0~0.0060%、
P:0~0.020%、
S:0~0.0200%、
O:0~0.0050%、
Cu:0~0.50%、
Ni:0~0.50%、
Cr:0~0.50%、
V:0~0.20%、
Nb:0~0.10%、
Mo:0~0.50%、
Mg:0~0.0500%、
REM:0~0.0500%、及び、
残部:Fe及び不純物からなる、アズロール電縫鋼管を準備する準備工程と、
前記アズロール電縫鋼管に対し、焼入れを施す焼入れ工程と、
前記焼入れが施された前記アズロール電縫鋼管に対し、焼戻しを施して前記機械構造部品用電縫鋼管を得る焼戻し工程と、
を備え、
前記焼入れ工程において、前記焼入れが行われる雰囲気中の酸素量が1000体積ppm以下であり、前記焼入れにおける冷却速度が10℃/秒以上である、
機械構造部品用電縫鋼管の製造方法。 - 更に、前記準備工程後であって前記焼入れ工程前に、前記アズロール電縫鋼管を伸管する伸管工程を備え、
前記焼入れ工程は、伸管された前記アズロール電縫鋼管に対し、焼入れを施す、
請求項5に記載の機械構造部品用電縫鋼管の製造方法。 - 更に、前記準備工程後であって前記焼入れ工程前に、前記アズロール電縫鋼管に対してショットブラストを施す工程を備える、
請求項5又は請求項6に記載の機械構造部品用電縫鋼管の製造方法。 - 前記焼入れにおける加熱温度が900~1050℃であり、
前記焼戻しにおける加熱温度が100~500℃である、
請求項5~請求項7のいずれか1項に記載の機械構造部品用電縫鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/557,049 US20240218492A1 (en) | 2021-06-07 | 2021-06-07 | Electric resistance welded steel pipe for mechanical structural components, and method for producing same |
CN202180098160.2A CN117280062A (zh) | 2021-06-07 | 2021-06-07 | 机械结构部件用电焊钢管及其制造方法 |
PCT/JP2021/021627 WO2022259332A1 (ja) | 2021-06-07 | 2021-06-07 | 機械構造部品用電縫鋼管及びその製造方法 |
JP2021557048A JP7001213B1 (ja) | 2021-06-07 | 2021-06-07 | 機械構造部品用電縫鋼管及びその製造方法 |
MX2023013764A MX2023013764A (es) | 2021-06-07 | 2021-06-07 | Tubo de acero soldado por resistencia electrica para componentes estructurales mecanicos y metodo para la produccion del mismo. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/021627 WO2022259332A1 (ja) | 2021-06-07 | 2021-06-07 | 機械構造部品用電縫鋼管及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022259332A1 true WO2022259332A1 (ja) | 2022-12-15 |
Family
ID=80490513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021627 WO2022259332A1 (ja) | 2021-06-07 | 2021-06-07 | 機械構造部品用電縫鋼管及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240218492A1 (ja) |
JP (1) | JP7001213B1 (ja) |
CN (1) | CN117280062A (ja) |
MX (1) | MX2023013764A (ja) |
WO (1) | WO2022259332A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131813A1 (ja) * | 2017-12-27 | 2019-07-04 | Jfeスチール株式会社 | 電縫溶接鋼管および電縫溶接鋼管の製造方法 |
WO2019188224A1 (ja) * | 2018-03-29 | 2019-10-03 | Jfeスチール株式会社 | 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法 |
WO2020230795A1 (ja) * | 2019-05-13 | 2020-11-19 | Jfeスチール株式会社 | 中空スタビライザー用電縫鋼管 |
-
2021
- 2021-06-07 CN CN202180098160.2A patent/CN117280062A/zh active Pending
- 2021-06-07 MX MX2023013764A patent/MX2023013764A/es unknown
- 2021-06-07 JP JP2021557048A patent/JP7001213B1/ja active Active
- 2021-06-07 WO PCT/JP2021/021627 patent/WO2022259332A1/ja active Application Filing
- 2021-06-07 US US18/557,049 patent/US20240218492A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131813A1 (ja) * | 2017-12-27 | 2019-07-04 | Jfeスチール株式会社 | 電縫溶接鋼管および電縫溶接鋼管の製造方法 |
WO2019188224A1 (ja) * | 2018-03-29 | 2019-10-03 | Jfeスチール株式会社 | 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法 |
WO2020230795A1 (ja) * | 2019-05-13 | 2020-11-19 | Jfeスチール株式会社 | 中空スタビライザー用電縫鋼管 |
Also Published As
Publication number | Publication date |
---|---|
JP7001213B1 (ja) | 2022-01-19 |
JPWO2022259332A1 (ja) | 2022-12-15 |
US20240218492A1 (en) | 2024-07-04 |
MX2023013764A (es) | 2023-12-06 |
CN117280062A (zh) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2851325C (en) | High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same | |
US9493865B2 (en) | Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same | |
EP2949772B1 (en) | Hot-rolled steel sheet and method for manufacturing same | |
EP2484791B1 (en) | Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same | |
JP4575995B2 (ja) | 変形特性に優れた鋼管 | |
EP2837706B1 (en) | Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same | |
JPWO2019058422A1 (ja) | 鋼管及び鋼板 | |
JP2011052321A (ja) | 低温靭性に優れた高強度熱延鋼板およびその製造方法 | |
JP2010196164A (ja) | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 | |
WO2018235244A1 (ja) | ラインパイプ用アズロール電縫鋼管及び熱延鋼板 | |
JP2008274355A (ja) | 表面品質、破壊靱性および耐サワー性に優れる熱延鋼板の製造方法 | |
JPWO2007023873A1 (ja) | 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法 | |
JP5521482B2 (ja) | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 | |
CN104937125A (zh) | 高强度管线钢管用热轧钢板 | |
WO2015151468A1 (ja) | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 | |
JP6384637B1 (ja) | コイルドチュービング用電縫鋼管およびその製造方法 | |
JP5499559B2 (ja) | 成形性と耐ねじり疲労特性に優れた自動車足回り部材用高張力鋼材及びその製造方法 | |
JP5499560B2 (ja) | 成形性と耐ねじり疲労特性に優れた自動車足回り部材用高張力鋼材及びその製造方法 | |
JP2009203492A (ja) | 自動車構造部材用高張力溶接鋼管およびその製造方法 | |
US11326240B2 (en) | Hot-rolled steel sheet for coiled tubing | |
WO2022259332A1 (ja) | 機械構造部品用電縫鋼管及びその製造方法 | |
JP2010196157A (ja) | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 | |
WO2022085152A1 (ja) | 機械構造部品用電縫鋼管及びその製造方法 | |
JPH06340922A (ja) | 低降伏比高張力鋼管の製造方法 | |
JP7160235B1 (ja) | 熱間縮径電縫管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021557048 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21945012 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18557049 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180098160.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317078279 Country of ref document: IN Ref document number: MX/A/2023/013764 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301007850 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21945012 Country of ref document: EP Kind code of ref document: A1 |