WO2014087584A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2014087584A1
WO2014087584A1 PCT/JP2013/006752 JP2013006752W WO2014087584A1 WO 2014087584 A1 WO2014087584 A1 WO 2014087584A1 JP 2013006752 W JP2013006752 W JP 2013006752W WO 2014087584 A1 WO2014087584 A1 WO 2014087584A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary tube
refrigerator
dew
evaporator
refrigerant
Prior art date
Application number
PCT/JP2013/006752
Other languages
English (en)
French (fr)
Inventor
境 寿和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380063575.1A priority Critical patent/CN104823010B/zh
Publication of WO2014087584A1 publication Critical patent/WO2014087584A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Definitions

  • the present invention relates to a refrigerator having a capillary tube as an expansion mechanism of a refrigeration cycle.
  • an inverter compressor that varies the number of rotations according to load conditions is used. At this time, under high load conditions, the inverter compressor is rotated at a high speed to increase the refrigerant circulation rate to increase the capacity. Under normal load conditions, the inverter compressor is rotated at a low speed to reduce the refrigerant circulation rate. To improve efficiency.
  • a capillary tube is used as the expansion mechanism of the refrigeration cycle, if the capillary tube throttle amount is designed in accordance with the refrigerant circulation amount under high load conditions, the throttle amount will be smaller than the appropriate throttle amount under normal load conditions. Cause a decline. Also, if the capillary tube throttle amount is designed in accordance with the refrigerant circulation amount under normal load conditions, the throttle amount becomes larger than the appropriate throttle amount under high load conditions, resulting in a reduction in capacity.
  • FIG. 6 is a configuration diagram of a refrigeration cycle of a conventional refrigerator.
  • the conventional refrigerator cools the freezer compartment (not shown) using the freezer evaporator 62, and cools the refrigerator compartment (not shown) using the refrigerator compartment evaporator 63.
  • the flow path switching valve 68 is switched so that the condenser 61 communicates with the freezer compartment evaporator 62 via the freezer compartment capillary tube 69.
  • the flow path switching valve 68 is switched so that the condenser 61 communicates with the refrigerator compartment evaporator 63 via the refrigerator compartment capillary tube 70 or the refrigerator compartment auxiliary capillary tube 71.
  • An on-off valve 72 provided upstream of the refrigerating room auxiliary capillary tube 71 opens and closes the flow path to the refrigerating room auxiliary capillary tube 71.
  • the freezer compartment evaporator 62 is connected to the compressor 60 via an accumulator 66 and a check valve 67, and the refrigerator compartment evaporator 63 is directly connected to the compressor 60.
  • the freezer compartment fan 64 sends cold air generated from the freezer compartment evaporator 62 to the freezer compartment, and the freezer compartment fan 65 sends cold air generated from the freezer compartment evaporator 63 to the refrigerator compartment.
  • the refrigerant discharged from the compressor 60 is radiated and liquefied by the condenser 61 and then supplied to the flow path switching valve 68.
  • the flow path switching valve 68 is switched, the pressure is reduced by the freezing room capillary tube 69, and the refrigerant is supplied to the freezing room evaporator 62 to be evaporated.
  • the freezer compartment (not shown) is cooled by driving the freezer compartment fan 64.
  • the refrigerant circulation amount is excessive as compared with the load of the freezer compartment (not shown), and surplus refrigerant that could not be evaporated by the freezer evaporator 62 is stored in the accumulator 66.
  • the flow path switching valve 68 is switched to reduce the pressure in the refrigerating room capillary tube 70 or the refrigerating room auxiliary capillary tube 71 and supply the refrigerant to the refrigerating room evaporator 63. Feed and evaporate.
  • the refrigerator compartment (not shown) is cooled by driving the refrigerator compartment fan 65.
  • the on-off valve 72 is closed when the refrigerator compartment (not shown) is cooled.
  • No refrigerant is supplied to the refrigerator compartment auxiliary capillary tube 71, and only the refrigerator compartment capillary tube 70 is used.
  • the opening / closing valve 72 is opened when the refrigerator compartment (not shown) is cooled. Then, the refrigerant is supplied to both the refrigerator compartment auxiliary capillary tube 71 and the refrigerator compartment capillary tube 70.
  • the refrigerant circulation amount to the refrigerating room evaporator 63 can be increased to increase the capacity.
  • the speed of the compressor 60 is increased in synchronism with the opening of the on-off valve 72, the capacity can be further increased.
  • the throttle amount of the refrigerator compartment capillary tube 70 is designed in accordance with the normal load condition in which the on-off valve 72 is closed, the efficiency can be improved and the compression is performed in synchronization with the on-off of the on-off valve 72. If the machine 60 is decelerated, higher efficiency can be achieved.
  • the refrigerator compartment (not shown) has a higher set temperature than the freezer compartment (not shown), and the load amount under normal load conditions where there is no door opening / closing or food input is small.
  • the load amount under a high load condition in which a large amount of relatively high temperature food near room temperature is thrown in the summer may be larger than that in a freezer room (not shown). is there. For this reason, it is important to adjust the refrigerant circulation amount according to the load condition of the refrigerator compartment (not shown).
  • the refrigerator compartment auxiliary capillary tube 71 and the open / close valve 72 are necessary to adjust the throttle amount in cooling the refrigerator compartment, and the piping configuration is complicated.
  • the throttle amount adjustment is limited to the two stages of opening / closing of the on-off valve 72, and finely copes with the refrigerant circulation amount change accompanying the change in the rotation speed of the compressor 60, which is normally switched to three to six stages. Can not do it.
  • the present invention automatically adjusts the amount of capillary tube squeezing according to the load condition of the refrigerator compartment by cooling the inlet-side non-heat exchange section of the capillary tube with the discharge cold air supplied to the refrigerator compartment.
  • the refrigerator of the present invention includes a refrigeration cycle having a compressor, a condenser, a capillary tube, an evaporator, an evaporator fan, and a suction, a refrigerator, and a freezer. Moreover, in order to perform internal heat exchange of a refrigerating cycle, it has an internal heat exchange part which thermally couples a capillary tube and a suction. Further, the non-heat exchanging portion on the inlet side of the capillary tube is cooled by the cool air supplied to the refrigerator compartment by the evaporator fan.
  • the pressure loss of the capillary tube is reduced by suppressing the evaporation of the refrigerant passing through the inside and suppressing the increase in dryness.
  • the capillary tube inlet side non-heat exchanging portion is cooled at the same time, thereby reducing the amount of capillary tube squeezing and increasing the amount of refrigerant circulation to increase the capacity.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to an embodiment of the present invention.
  • FIG. 2 is a cycle configuration diagram of the refrigerator in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the front of the refrigerator in one embodiment of the present invention.
  • FIG. 4 is a schematic view of the back surface of the refrigerator according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the internal heat exchange part of the refrigerator according to the embodiment of the present invention.
  • FIG. 6 is a cycle configuration diagram of a conventional refrigerator.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to one embodiment of the present invention
  • FIG. 2 is a cycle configuration diagram of the refrigerator according to one embodiment of the present invention
  • 3 is a schematic diagram of the front of the refrigerator in one embodiment of the present invention
  • FIG. 4 is a schematic diagram of the back of the refrigerator in one embodiment of the present invention
  • FIG. 5 is the interior of the refrigerator in one embodiment of the present invention. It is sectional drawing of a heat exchange part.
  • the refrigerator 11 includes a housing 12, a door 13, and legs 14 that support the housing 12.
  • a lower machine room 15 is provided at the lower part of the housing 12, and an upper machine room 16 is provided at the upper back of the housing 12.
  • a refrigerating room 17 that is a storage room is disposed at the upper part of the housing 12, and a freezer room 18 is disposed at the lower part of the housing 12.
  • the refrigeration cycle includes a compressor 19 housed in the upper machine room 16, an evaporator 20 housed in the housing 12 on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15.
  • a compressor 19 housed in the upper machine room 16
  • an evaporator 20 housed in the housing 12 on the back side of the freezer room 18
  • a main condenser 21 housed in the lower machine room 15.
  • the refrigerator 11 is attached to a partition wall 22 that divides the lower machine room 15 having a bottom plate 25 below in the front and rear, a fan 23 that air-cools the main condenser 21, and an evaporating dish housed on the back side of the lower machine room 15. 24.
  • the main condenser 21 is disposed on the leeward side of the fan 23, and the evaporating dish 24 is disposed on the leeward side of the fan 23.
  • the main condenser 21 is a spiral fin tube in which a strip-shaped fin is wound around a refrigerant pipe having an inner diameter of about 4.5 mm.
  • the air sucked from the plurality of air inlets 26 provided in the bottom plate 25 by the fan 23 is discharged from the air outlets 27 provided on the back side of the lower machine room 15.
  • a communication air passage 28 connecting the discharge port 27 of the lower machine chamber 15 and the upper machine chamber 16 is provided, and the air discharged from the discharge port 27 flows to the upper machine chamber 16 through the communication air passage 28.
  • an evaporator fan 38 that supplies the cool air of the evaporator 20 to the freezer compartment 18 and the refrigerator compartment 17 is provided on the upper part of the evaporator 20 housed in the housing 12 on the back side of the freezer compartment 18. .
  • a refrigerator compartment damper 39 for adjusting the supply amount of the cold air supplied from the evaporator fan 38 to the refrigerator compartment 17 is provided.
  • a refrigerating room cooling air passage 40 that is a passage for the cold air supplied to the refrigerating room 17 through the refrigerating room damper 39 is provided on the back surface of the refrigerating room 17.
  • a sub-condenser that dissipates high-temperature heat in the refrigeration cycle is provided.
  • One is a first dew-proof pipe 30 disposed in the opening of the freezer compartment 18, and the other is a second dew-proof pipe 31 disposed on the back side of the housing 12.
  • the downstream side of the main condenser 21 and the first dew-proof pipe 30 and the second dew-proof pipe 31 are connected by a flow path switching valve 32, and the downstream side of the first dew-proof pipe 30 and the second dew-proof pipe 31.
  • the downstream side of the dew pipe 31 is connected at a junction 33.
  • a dryer 34 is disposed on the downstream side of the junction 33, and a capillary tube 35, the evaporator 20, and a suction 36 that returns from the evaporator 20 to the compressor 19 are provided on the downstream side of the dryer 34.
  • the first dew-proof pipe 30 and the second dew-proof pipe 31 are made of refrigerant pipes having an inner diameter of about 3.2 mm and are thermally coupled to the outer surface of the housing 12.
  • the capillary tube 35 and the suction 36 are thermally coupled via a solder 41 to form an internal heat exchanging portion in order to perform internal heat exchange.
  • the inlet side non-heat exchanging portion 35a upstream from the internal heat exchanging portion of the capillary tube 35 is composed of a heat radiating plate 37 and an aluminum having a surface area about five times that of the inlet side non-heat exchanging portion 35a. It is thermally bonded by a foil tape (not shown).
  • the inlet-side non-heat exchanging portion 35 a and the heat radiating plate 37 are embedded in the wall surface of the refrigerating room cooling air passage 40 and exchange heat with the cold air flowing through the refrigerating room cooling air passage 40.
  • the heat radiating plate 37 having a surface area about 5 times that of the inlet side non-heat exchanging portion 35a is used.
  • the heat radiating plate having a surface area 2 to 10 times that of the inlet side non-heat exchanging portion 35a. It is desirable to use 37. If it is less than twice the inlet-side non-heat exchanging portion 35a, a sufficient heat dissipation effect cannot be obtained, and if it exceeds 10 times, the effect of increasing the heat dissipation amount with respect to the increase in surface area is hardly obtained.
  • fins 36a are formed in the pipe of the suction 36, and the surface area of the pipe of the suction 36 is increased about twice as compared with the case of a smooth pipe.
  • the heat conduction of the refrigerant flowing in the suction 36 and the pipe is improved, and the efficiency of heat exchange in the internal heat exchange part of the capillary tube 35 and the suction 36 is improved.
  • the fin 36a is formed so that the inner surface area of the suction 36 is about twice that of a smooth tube, but the fin 36a is formed in a range of 1.5 to 5 times. It is desirable. If it is less than 1.5 times, a sufficient effect of improving heat conduction cannot be obtained, and if it exceeds 5 times, the adverse effect of reducing the circulation rate due to an increase in pressure loss is greater than the effect of improving heat conduction.
  • the flow path switching valve 32 is switched to open the connection to the first dew-proof pipe 30 and the second dew-proof pipe 31, and the fan 23 is operated in conjunction with the operation of the compressor 19.
  • the fan 23 is operated in conjunction with the operation of the compressor 19.
  • the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure.
  • the air is discharged from the plurality of discharge ports 27 to the outside.
  • the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and is then connected to the first dew-proof pipe 30 via the flow path switching valve 32. Supplied to the second dewproof pipe 31.
  • the inside of the pipe of the main condenser 21 is in an initial stage where the refrigerant condenses, and there are more gaseous refrigerants than the first dew-proof pipe 30 and the second dew-proof pipe 31, and the flow rate is relatively high.
  • the main condenser 21 is preferably a pipe having a larger inner diameter than the first dew-proof pipe 30 and the second dew-proof pipe 31, and preferably a pipe having an inner diameter of 4 mm or more.
  • the refrigerant that has passed through the first dew-proof pipe 30 dissipates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. Then, the refrigerant that has passed through the second dew-proof pipe 31 dissipates heat through the housing 12 and condenses while warming the back surface of the housing 12.
  • the liquid refrigerant that has passed through the first dew-proof pipe 30 and the second dew-proof pipe 31 is dehydrated by the dryer 34 and depressurized by the capillary tube 35.
  • the refrigerant decompressed by the capillary tube 35 exchanges heat with the internal air circulated by the evaporator fan 38 while evaporating by the evaporator 20, and then returns to the compressor 19 as a gaseous refrigerant through the suction 36.
  • the gaseous refrigerant that circulates in the suction 36 is warmed to near room temperature while exchanging heat with the high-temperature refrigerant flowing in the capillary tube 35 via the solder 41 in the internal heat exchange section.
  • the refrigerator compartment damper 39 is opened, and the evaporator fan 38 supplies the cold air generated by the evaporator 20 to the refrigerator compartment 17 through the refrigerator compartment cooling air passage 40.
  • the inlet side non-heat exchanging portion 35a of the capillary tube 35 is cooled by cooling the heat radiating plate 37 installed on the wall surface in the refrigerator compartment cooling air passage 40.
  • the pressure loss of the capillary tube can be reduced by suppressing the evaporation of the refrigerant passing through the inside of the inlet-side non-heat exchanging portion 35a of the capillary tube 35 and suppressing the increase in the dryness, and the refrigerant circulation
  • the capacity can be increased by increasing the amount.
  • the evaporator fan 38 supplies the cold air generated by the evaporator 20 to the freezer compartment 18 in parallel with the refrigerator compartment 17.
  • the temperature of the cold air generated in the evaporator 20 also rises, and the freezer compartment 18 is frozen. It remains only to maintain the upper temperature limit of ⁇ 18 ° C. to ⁇ 15 ° C.
  • the refrigerator compartment damper 39 is closed, and the evaporator fan 38 supplies the cold air generated by the evaporator 20 only to the freezer compartment 18.
  • the heat radiating plate 37 installed on the wall surface in the refrigerating room cooling air passage 40 is not cooled, the original throttle amount of the capillary tube 35 is maintained, and the refrigerant circulation amount is reduced.
  • the evaporation temperature of the refrigerant in the evaporator 20 is lowered to ⁇ 25 ° C. to ⁇ 30 ° C., and the freezer compartment 18 can be cooled to about ⁇ 20 ° C.
  • the heat radiation plate 37 is cooled in accordance with the cooling operation of the refrigerator compartment, so that the pressure loss of the capillary tube can be reduced, and the refrigerant circulation amount is increased to increase the capacity. Can be achieved.
  • the flow path switching valve 32 is switched to close the connection to the first dew-proof pipe 30 and open the connection to the second dew-proof pipe 31.
  • the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the second refrigerant as a sub-condenser via the flow path switching valve 32.
  • the refrigerant that has passed through the second dew-proof pipe 31 dissipates heat through the housing 12 and condenses while warming the back surface of the housing 12.
  • the first dew-proof pipe 30 in which the refrigerant does not flow from the flow path switching valve 32 does not radiate heat and eliminates a temperature difference from the surroundings.
  • high-pressure refrigerant flows from the junction 33, and the first dew-proof pipe 30 is almost filled with the liquid refrigerant.
  • the liquid refrigerant does not move while staying in the piping of the first dew prevention pipe 30 that is not used on the high pressure side of the refrigeration cycle, and the total amount of refrigerant circulating in the refrigeration cycle is reduced. Therefore, when the first dew-proof pipe 30 or the second dew-proof pipe 31 is switched and not used, it is necessary to suppress a decrease in the amount of refrigerant circulating in the refrigeration cycle.
  • the first dew proof pipe 30 and the second dew proof pipe 31 use pipes having an inner diameter smaller than that of the main condenser 21. Therefore, the first dew-proof pipe 30 and the second dew-proof pipe 31 are desirably pipes having an inner diameter of less than 4 mm.
  • the liquid refrigerant that has passed through the second dew-proof pipe 31 is dehydrated by the dryer 34, depressurized by the capillary tube 35, and evaporated in the evaporator 20 while being circulated by the evaporator fan 38 and heat. Exchange. Thereafter, it passes through the suction 36 and returns to the compressor 19 as a gaseous refrigerant. At this time, the gaseous refrigerant that circulates in the suction 36 is warmed to near room temperature while exchanging heat with the high-temperature refrigerant flowing in the capillary tube 35 via the solder 41 in the internal heat exchange section.
  • the refrigerator compartment damper 39 is opened, and the cold air generated by the evaporator 20 is supplied from the refrigerator compartment cooling air passage 40 to the refrigerator compartment 17 by the evaporator fan 38.
  • the inlet side non-heat exchanging portion 35a of the capillary tube 35 is cooled by cooling the heat radiating plate 37 installed on the wall surface in the refrigerator compartment cooling air passage 40.
  • the pressure loss of the capillary tube 35 can be reduced by suppressing the evaporation of the refrigerant passing through the inside of the capillary tube 35 and suppressing the increase in dryness.
  • the refrigerator compartment 17 is immediately cooled sufficiently.
  • the refrigerator compartment damper 39 is closed, and the evaporator fan 38 supplies the cold air generated by the evaporator 20 only to the freezer compartment 18.
  • the heat radiating plate 37 installed on the wall surface in the refrigerating room cooling air passage 40 is not cooled, the original throttle amount of the capillary tube 35 is maintained, and the refrigerant circulation amount is reduced.
  • the evaporation temperature of the refrigerant in the evaporator 20 decreases to ⁇ 25 to ⁇ 30 ° C., and the freezer compartment 18 can be cooled to about ⁇ 20 ° C.
  • the refrigerator in the present embodiment can improve the rising characteristics of the refrigerating capacity when the compressor 19 is started under normal load conditions. Furthermore, the refrigerator in the present embodiment can achieve high efficiency under normal load conditions by designing the amount of restriction of the capillary tube 35 in accordance with the refrigerant circulation amount under normal load conditions.
  • the first dew-proof pipe 30 is not used, and the refrigerant flows through the second dew-proof pipe 31, thereby reducing the heat load caused by the first dew-proof pipe 30.
  • higher efficiency can be achieved.
  • the refrigerator in the present embodiment cools the inlet-side non-heat exchanging portion 35 a of the capillary tube 35 with the discharged cold air supplied to the refrigerator compartment 17.
  • the capacity by reducing the amount of restriction of the capillary tube 35 and increasing the circulation amount of the refrigerant.
  • the cooling operation time of the refrigerator compartment 17 increases. Therefore, by promoting the cooling of the inlet-side non-heat exchanging portion 35 a of the capillary tube 35, it is possible to increase the capacity more effectively according to the load of the refrigerator compartment 17.
  • the cooling operation time of the refrigerator compartment 17 is short, and the cooling operation of the freezer compartment 18 is mainly performed.
  • the cooling of the inlet-side non-heat exchanging portion 35a of the capillary tube 35 becomes slow, and the original throttle amount of the capillary tube 35 is maintained.
  • the amount of restriction of the capillary tube 35 is designed in accordance with the refrigerant circulation amount under the normal load condition, it is possible to achieve high efficiency under the normal load condition and high performance under the high load condition.
  • the cooling amount of the heat radiation plate 37 under a high load condition is designed to be about 5% of the refrigeration capacity obtained by the evaporator 20.
  • the cooling amount of the heat radiating plate 37 is preferably designed to be 2 to 10% of the refrigeration capacity obtained by the evaporator 20. If the cooling amount obtained by the evaporator 20 is less than 2% of the refrigeration capacity, the effect of reducing the amount of restriction of the capillary tube 35 cannot be obtained, and if it exceeds 10%, the temperature of the suction 36 decreases and condensation occurs. May occur.
  • the suction 36 is heated to near room temperature by exchanging internal heat with the capillary tube 35 via the solder 41. For this reason, when the cooling amount of the heat radiating plate 37 exceeds 10%, the temperature of the capillary tube 35 decreases, and the heating of the gas refrigerant flowing in the suction 36 and the suction 36 becomes insufficient.
  • the fin 36a is formed in the pipe of the suction 36 to increase the internal surface area of the pipe by 1.5 to 5 times, thereby improving the efficiency of internal heat exchange and suppressing the temperature drop of the suction 36.
  • the cooling amount of the heat radiating plate 37 is 2 to 10%, the temperature after the internal heat exchange of the suction 36 can be maintained near room temperature regardless of the temperature drop of the capillary tube 35.
  • the refrigerator of the present invention includes a refrigeration cycle having a compressor, a condenser, a capillary tube, an evaporator, an evaporator fan, and a suction, a refrigerator, and a freezer. Moreover, in order to perform internal heat exchange of a refrigerating cycle, it has an internal heat exchange part which thermally couples a capillary tube and a suction. Further, the non-heat exchanging portion on the inlet side of the capillary tube is cooled by the cool air supplied to the refrigerator compartment by the evaporator fan.
  • the pressure loss of the capillary tube is reduced by suppressing the evaporation of the refrigerant passing through the inside and suppressing the increase in dryness.
  • the capillary tube inlet side non-heat exchanging portion is cooled at the same time, thereby reducing the amount of capillary tube squeezing and increasing the amount of refrigerant circulation to increase the capacity.
  • the non-heat exchange section on the inlet side of the capillary tube has a great effect of reducing pressure loss due to cooling because the change in dryness is large.
  • the cooling operation time in the refrigerator compartment varies greatly depending on the load conditions of the refrigerator. Especially when a large amount of food with relatively high temperature close to room temperature is thrown in the summer, which is a heavy load condition, the cooling operation time of the refrigerator compartment is increased and the compressor and fan are accelerated to increase the capacity of the refrigeration system. To control. At this time, the discharged cool air supplied to the refrigerating chamber becomes a low temperature with a higher air volume than usual, and in the configuration of the present invention, cooling of the inlet-side non-heat exchange section of the capillary tube is promoted. As a result, it is possible to further increase the capacity by increasing the refrigerant circulation rate.
  • the cooling operation time of the refrigerator compartment is short, and the cooling operation of the freezer room is mainly used.
  • cooling of the inlet-side non-heat exchanging portion of the capillary tube is slow, and the original throttle amount of the capillary tube is maintained.
  • the amount of restriction of the capillary tube is designed in accordance with the refrigerant circulation amount under the normal load condition, it is possible to achieve high efficiency under the normal load condition and high performance under the high load condition.
  • the refrigerator of the present invention achieves higher efficiency under normal load conditions and higher capacity under high load conditions if the throttle amount of the capillary tube is designed according to the refrigerant circulation amount under normal load conditions. be able to.
  • the present invention also includes a heat radiating plate that is thermally coupled to the non-heat exchanging portion on the inlet side of the internal heat exchanging portion in the capillary tube and has a surface area 2 to 10 times that of the non-heat exchanging portion on the inlet side of the capillary tube. . Then, the heat radiating plate may be cooled by cool air supplied to the refrigerator compartment by the evaporator fan.
  • the present invention improves the efficiency of heat exchange between the inlet-side non-heat exchanging portion of the capillary tube and the cold air supplied to the refrigerating chamber with the above configuration, thereby reducing the length of the inlet-side non-heat exchanging portion of the capillary tube. It can be shortened. Therefore, the above problem can be solved.
  • the present invention may be provided with fins that are formed in the suction pipe and expand the surface area of the pipe 1.5 to 5 times.
  • the present invention includes a plurality of dew-proof pipes and a switching valve for switching the dew-proof pipes. All the dew-proof pipes are used at high loads, and some switching valves are switched at normal loads. It is good also as a structure which uses selectively only a dew-proof pipe.
  • the refrigerator according to the present invention can automatically adjust the squeezing amount of the refrigeration cycle according to the load of the refrigeration room, thereby achieving high performance. Applicable to applied products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷凍サイクルの内部熱交換を行うために、キャピラリチューブ(35)とサクション(36)を熱結合する内部熱交換部を有する。また、キャピラリチューブ(35)における内部熱交換部よりも入口側の非熱交換部を、蒸発器ファンが冷蔵室に供給する冷気により冷却する。そして、冷蔵室を冷却する際に、同時にキャピラリチューブ(35)の入口側非熱交換部(35a)を冷却することでキャピラリチューブ(35)の絞り量を小さくし、冷媒循環量を増大させて高能力化を図る。

Description

冷蔵庫
 本発明は、冷凍サイクルの膨張機構としてキャピラリチューブを有する冷蔵庫に関するものである。
 省エネルギーの観点から、家庭用冷蔵庫の冷凍サイクルにおいては、負荷条件に応じて回転数を可変するインバータ圧縮機が使用される。この時、高負荷条件においてはインバータ圧縮機を高速回転することで冷媒循環量を増大させて高能力化を図るとともに、通常負荷条件においてはインバータ圧縮機を低速回転することで冷媒循環量を低下させて高効率化を図る。しかし、冷凍サイクルの膨張機構としてキャピラリチューブを使用する場合、高負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件では適正な絞り量よりも小さな絞り量となり効率の低下を招く。また、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、高負荷条件では適正な絞り量よりも大きな絞り量となり能力の低下を招く。
 そこで、冷蔵庫の負荷条件に応じて冷媒循環量を調整するために、複数のキャピラリチューブを切り替えて使用する冷蔵庫が提案されている(例えば、特許文献1参照)。
 以下、図面を参照しながら従来の冷蔵庫を説明する。
 図6は従来の冷蔵庫の冷凍サイクル構成図である。
 従来の冷蔵庫は、冷凍室蒸発器62を用いて冷凍室(図示せず)を冷却し、冷蔵室蒸発器63を用いて冷蔵室(図示せず)を冷却する。冷凍室蒸発器62に冷媒を供給する場合は、凝縮器61から冷凍室キャピラリチューブ69を介して冷凍室蒸発器62に連通するように流路切換バルブ68を切り換える。冷蔵室蒸発器63に冷媒を供給する場合は、凝縮器61から冷蔵室キャピラリチューブ70あるいは冷蔵室補助キャピラリチューブ71を介して冷蔵室蒸発器63に連通するように流路切換バルブ68を切り換える。冷蔵室補助キャピラリチューブ71の上流に設けた開閉弁72は冷蔵室補助キャピラリチューブ71への流路を開閉する。
 また、冷凍室蒸発器62はアキュームレータ66および逆止弁67を介して圧縮機60に連結され、冷蔵室蒸発器63は圧縮機60に直接連結されている。冷凍室ファン64は冷凍室蒸発器62から発生する冷気を冷凍室に送り、冷蔵室ファン65は冷蔵室蒸発器63から発生する冷気を冷蔵室に送る。
 以上のように構成された従来の冷蔵庫について以下にその動作を説明する。
 圧縮機60から吐出された冷媒は凝縮器61で放熱されて液化した後、流路切換バルブ68に供給される。冷凍室(図示せず)の冷却が必要な場合は、流路切換バルブ68を切り換えて、冷凍室キャピラリチューブ69で減圧して冷凍室蒸発器62に冷媒を供給して蒸発させる。このとき、冷凍室ファン64を駆動することで冷凍室(図示せず)の冷却を行う。また、冷凍室(図示せず)の負荷に比べて冷媒循環量が過多となり、冷凍室蒸発器62で蒸発できなかった余剰冷媒は、アキュームレータ66に貯留される。
 一方、冷蔵室(図示せず)の冷却が必要な場合は、流路切換バルブ68を切り換えて、冷蔵室キャピラリチューブ70あるいは冷蔵室補助キャピラリチューブ71で減圧して冷蔵室蒸発器63に冷媒を供給して蒸発させる。このとき、冷蔵室ファン65を駆動することで冷蔵室(図示せず)の冷却を行う。
 ここで、冷凍室(図示せず)及び冷蔵室(図示せず)の温度が比較的安定した通常負荷条件においては、冷蔵室(図示せず)の冷却を行う際に開閉弁72を閉塞し冷蔵室補助キャピラリチューブ71には冷媒を供給せず、冷蔵室キャピラリチューブ70のみを使用する。また、扉開閉や高温の食品が多量に投入されて冷蔵室(図示せず)の温度が上昇した高負荷条件においては、冷蔵室(図示せず)の冷却を行う際に開閉弁72を開放し冷蔵室補助キャピラリチューブ71と冷蔵室キャピラリチューブ70の両方に冷媒を供給する。
 この結果、冷蔵室(図示せず)の温度が上昇した高負荷条件において、冷蔵室蒸発器63への冷媒循環量を増大させて高能力化を図ることができる。この際、開閉弁72の開放と同期して圧縮機60を増速すれば、さらに高能力化を図ることができる。また、開閉弁72を閉塞して運転する通常負荷条件に合わせて冷蔵室キャピラリチューブ70の絞り量を設計すれば、高効率化を図ることができるとともに、開閉弁72の閉塞と同期して圧縮機60を減速すればさらに高効率化を図ることができる。
 特に、冷蔵室(図示せず)は冷凍室(図示せず)に比べて設定温度が高く、扉開閉や食品の投入などがない通常負荷条件における負荷量が小さい。しかし、冷蔵室(図示せず)は夏場に室温に近い比較的高温の食品が多量に投入されるような高負荷条件における負荷量が冷凍室(図示せず)に比べて大きくなる可能性がある。このことから、冷蔵室(図示せず)の負荷条件に応じて冷媒循環量を調整することは重要である。
 しかしながら、従来の冷蔵庫の構成では、冷蔵室の冷却において絞り量を調整するために、冷蔵室補助キャピラリチューブ71と開閉弁72が必要であるとともに、配管構成が複雑となっていた。
 また、従来の冷蔵庫の構成では、絞り量の調整が開閉弁72の開閉の2段階に限定され、通常3~6段階に切り換えられる圧縮機60の回転数変化に伴う冷媒循環量変化に細かく対応することができない。
 従って、冷蔵庫の負荷条件に応じて絞り量を適正に調整することが課題であった。
 本発明は、キャピラリチューブの入口側非熱交換部を冷蔵室に供給される吐出冷気で冷却することで、特に冷蔵室の負荷条件に応じてキャピラリチューブの絞り量を自動的に調整する。
特開2001-263902号公報
 本発明の冷蔵庫は、圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備える。また、冷凍サイクルの内部熱交換を行うために、キャピラリチューブとサクションを熱結合する内部熱交換部を有する。さらに、キャピラリチューブにおける内部熱交換部よりも入口側の非熱交換部を、蒸発器ファンが冷蔵室に供給する冷気により冷却する。
 キャピラリチューブの入口側非熱交換部を冷却することにより、内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブの圧力損失を低減する。冷蔵室を冷却する際に、同時にキャピラリチューブの入口側非熱交換部を冷却することでキャピラリチューブの絞り量を小さくし、冷媒循環量を増大させて高能力化を図ることができる。
図1は、本発明の一実施の形態における冷蔵庫の縦断面図である。 図2は、本発明の一実施の形態における冷蔵庫のサイクル構成図である。 図3は、本発明の一実施の形態における冷蔵庫の正面の模式図である。 図4は、本発明の一実施の形態における冷蔵庫の背面の模式図である。 図5は、本発明の一実施の形態における冷蔵庫の内部熱交換部の断面図である。 図6は、従来の冷蔵庫のサイクル構成図である。
 以下、本発明の一実施の形態における冷蔵庫ついて、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態)
 図1は本発明の一実施の形態における冷蔵庫の縦断面図、図2は本発明の一実施の形態における冷蔵庫のサイクル構成図である。図3は本発明の一実施の形態における冷蔵庫の正面の模式図、図4は本発明の一実施の形態における冷蔵庫の背面の模式図、図5は本発明の一実施の形態における冷蔵庫の内部熱交換部の断面図である。
 図1において、冷蔵庫11は、筐体12と、扉13と、筐体12を支える脚14とを備えている。筐体12の下部には下部機械室15が設けられ、筐体12の背面上部には上部機械室16が設けられている。また、筐体12の上部には貯蔵室である冷蔵室17が配置され、筐体12の下部には冷凍室18が配置されている。
 冷凍サイクルは、上部機械室16に納められた圧縮機19、冷凍室18の背面側の筐体12内に収められた蒸発器20、および下部機械室15内に納められた主凝縮器21を有している。
 また、冷蔵庫11は、下方に底板25を有する下部機械室15を前後に仕切る隔壁22に取り付けられ、主凝縮器21を空冷するファン23と、下部機械室15の背面側に納められた蒸発皿24を有する。ここで、主凝縮器21はファン23の風上側に配置され、蒸発皿24はファン23の風下側に配置されている。なお、主凝縮器21は内径約4.5mmの冷媒配管に帯状のフィンを巻き付けたスパイラルフィンチューブからなる。
 また、下部機械室15では、ファン23によって底板25に設けられた複数の吸気口26から吸い込んだ空気が、下部機械室15の背面側に設けられた排出口27から排出される。下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28が備えてあり、排出口27から排出された空気は連通風路28を通って上部機械室16に流れる。
 また、冷凍室18の背面側の筐体12内に収められた蒸発器20の上部には、蒸発器20の冷気を冷凍室18や冷蔵室17へ供給する蒸発器ファン38が備えられている。蒸発器ファン38の上部には、蒸発器ファン38から冷蔵室17へ供給する冷気の供給量を調整する冷蔵室ダンパ39が備えられている。さらに、冷蔵室17の背面には冷蔵室ダンパ39を介して冷蔵室17へ供給される冷気の通路である冷蔵室冷却風路40が備えられている。
 図2から図4に示すように、主凝縮器21に加えて冷凍サイクルの高温の熱の放熱を行う副凝縮器を設けている。ひとつは冷凍室18の開口部に配設された第1の防露パイプ30であり、もうひとつは筐体12の背面側に配設された第2の防露パイプ31である。
 また、主凝縮器21の下流側と第1の防露パイプ30および第2の防露パイプ31は流路切換バルブ32で繋がれ、第1の防露パイプ30の下流側と第2の防露パイプ31の下流側は合流点33で繋がれている。合流点33の下流側にはドライヤ34が配置され、ドライヤ34の下流側にはキャピラリチューブ35と、蒸発器20と、蒸発器20から圧縮機19へ帰還するサクション36が備えられている。なお、第1の防露パイプ30と第2の防露パイプ31は内径約3.2mmの冷媒配管からなり、筐体12の外表面と熱結合している。
 図5に示すように、キャピラリチューブ35とサクション36は内部熱交換を行うために、ハンダ41を介して熱結合し内部熱交換部を形成している。また、図2に示すように、キャピラリチューブ35の内部熱交換部より上流にある入口側非熱交換部35aは、入口側非熱交換部35aの約5倍の表面積を有する放熱プレート37とアルミ箔テープ(図示せず)によって熱結合している。入口側非熱交換部35aと放熱プレート37は冷蔵室冷却風路40の壁面に埋設されて、冷蔵室冷却風路40内を流れる冷気と熱交換する。なお、本実施の形態においては、入口側非熱交換部35aの約5倍の表面積を有する放熱プレート37を使用したが、入口側非熱交換部35aの2~10倍の表面積を有する放熱プレート37を使用することが望ましい。入口側非熱交換部35aの2倍未満では十分な放熱効果が得られず、10倍超では表面積増加に対する放熱量増加の効果がほとんど得られなくなる。
 図5に示すように、サクション36の管内にはフィン36aが形成され、サクション36の管内表面積を平滑管である場合に比べて約2倍に拡大している。これにより、サクション36と管内を流れる冷媒の熱伝導を向上し、キャピラリチューブ35とサクション36の内部熱交換部における熱交換の効率を向上している。なお、本実施の形態においてはサクション36の管内表面積を平滑管である場合に比べて約2倍となるようにフィン36aを形成したが、1.5~5倍の範囲でフィン36aを形成することが望ましい。1.5倍未満では十分な熱伝導向上の効果が得られず、5倍超では熱伝導向上の効果に比べて圧力損失増大による循環量低減の悪影響が大きくなる。
 以上のように構成された本実施の形態における冷蔵庫について、以下その動作を説明する。
 高負荷条件においては、流路切換バルブ32を切換えて、第1の防露パイプ30および第2の防露パイプ31への接続を開とし、圧縮機19の運転と連動して、ファン23を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。
 一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ32を介して第1の防露パイプ30と第2の防露パイプ31へ供給される。このとき、主凝縮器21の配管内は冷媒が凝縮する初期段階にあり、第1の防露パイプ30や第2の防露パイプ31よりも気体の冷媒が多く存在し比較的流速が早い。このため、主凝縮器21は、第1の防露パイプ30や第2の防露パイプ31よりも内径が太い配管、望ましくは内径4mm以上の配管を用いることがよい。
 そして、第1の防露パイプ30を通過した冷媒は冷凍室18の開口部を温めながら、筐体12を介して外部に放熱して凝縮する。そして、第2の防露パイプ31を通過した冷媒は筐体12の背面を温めながら、筐体12を介して外部に放熱して凝縮する。第1の防露パイプ30と第2の防露パイプ31を通過した液冷媒は、ドライヤ34で水分除去され、キャピラリチューブ35で減圧される。キャピラリチューブ35で減圧された冷媒は、蒸発器20で蒸発しながら蒸発器ファン38で循環される庫内空気と熱交換した後、サクション36を通って気体冷媒として圧縮機19に還流する。このとき、サクション36内を還流する気体冷媒は、ハンダ41を介してキャピラリチューブ35内を流れる高温冷媒と内部熱交換部で熱交換しながら室温付近まで温められる。
 ここで、冷蔵室17の温度が上昇すると冷蔵室ダンパ39を開状態とし、蒸発器20で生成された冷気を蒸発器ファン38が冷蔵室冷却風路40を介して冷蔵室17に供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37が冷却されることで、キャピラリチューブ35の入口側非熱交換部35aが冷却される。この結果、キャピラリチューブ35の入口側非熱交換部35aの内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することにより、キャピラリチューブの圧力損失を低減することができ、冷媒循環量を増大させて高能力化を図ることができる。
 一方、蒸発器20で生成された冷気を蒸発器ファン38が冷蔵室17と並列に冷凍室18にも供給する。しかし、冷蔵室17に投入された負荷により蒸発器20に還流する庫内空気が長時間比較的高温となることから、蒸発器20で生成される冷気の温度も上昇し、冷凍室18は冷凍温度の上限である-18℃~-15℃を維持する程度に留まる。
 そして、冷蔵室17が十分冷却されて所定温度に達すると、冷蔵室ダンパ39を閉状態とし、蒸発器20で生成された冷気を蒸発器ファン38が冷凍室18にのみ供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37は冷却されず、キャピラリチューブ35本来の絞り量が維持され、冷媒循環量が減少する。この結果、蒸発器20内の冷媒の蒸発温度が-25℃~-30℃に低下して、冷凍室18を-20℃程度に冷却することができる。
 以上のように、高負荷条件においては、冷蔵室の冷却運転に伴い放熱プレート37が冷却されることで、キャピラリチューブの圧力損失を低減することができ、冷媒循環量を増大させて高能力化を図ることができる。
 また、第1の防露パイプ30と第2の防露パイプ31に並列に冷媒を流すことにより、放熱能力を増大させることができ、1本当りの冷媒循環量を低減することで、防露パイプに起因する圧力損失を抑制することも期待できる。
 次に、通常条件においては、流路切換バルブ32を切換えて、第1の防露パイプ30への接続を閉とし、第2の防露パイプ31への接続を開とする。このとき、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ32を介して副凝縮器としての第2の防露パイプ31へ供給される。そして、第2の防露パイプ31を通過した冷媒は筐体12の背面を温めながら、筐体12を介して外部に放熱して凝縮する。
 一方、流路切換バルブ32から冷媒が流入しない第1の防露パイプ30は、放熱せず周囲との温度差がなくなる。このとき、合流点33から高圧冷媒が流入して、第1の防露パイプ30は液冷媒でほぼ満たされた状態となる。このように、冷凍サイクルの高圧側で不使用となった第1の防露パイプ30の配管内には液冷媒が滞留したまま移動せず、冷凍サイクルを循環する冷媒の総量が減少する。従って、第1の防露パイプ30あるいは第2の防露パイプ31を切換えて不使用とする場合、冷凍サイクルを循環する冷媒量の減少を抑制する必要がある。そこで、第1の防露パイプ30および第2の防露パイプ31は、主凝縮器21よりも内径が細い配管を用いる。そのため、第1の防露パイプ30および第2の防露パイプ31は、望ましくは内径4mm未満の配管を用いるとよい。
 そして、第2の防露パイプ31を通過した液冷媒は、ドライヤ34で水分除去され、キャピラリチューブ35で減圧されて蒸発器20で蒸発しながら蒸発器ファン38で循環される庫内空気と熱交換する。その後、サクション36を通って気体冷媒として圧縮機19に還流する。このとき、サクション36内を還流する気体冷媒は、ハンダ41を介してキャピラリチューブ35内を流れる高温冷媒と内部熱交換部で熱交換しながら室温付近まで温められる。
 ここで、圧縮機19の起動時は冷蔵室ダンパ39を開状態とし、蒸発器20で生成された冷気を蒸発器ファン38によって冷蔵室冷却風路40から冷蔵室17に供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37が冷却されることで、キャピラリチューブ35の入口側非熱交換部35aが冷却される。この結果、キャピラリチューブ35の内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブ35の圧力損失を低減することができる。その結果、冷媒循環量を増大させて圧縮機19起動時の冷凍能力の立ち上がり特性を向上することができる。
 そして、通常負荷条件においては直ぐに冷蔵室17が十分冷却される。冷蔵室17が所定温度に達すると、冷蔵室ダンパ39を閉状態とし、蒸発器ファン38が蒸発器20で生成された冷気を冷凍室18にのみ供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37は冷却されず、キャピラリチューブ35本来の絞り量が維持され、冷媒循環量が減少する。この結果、蒸発器20内の冷媒の蒸発温度が-25~-30℃に低下して、冷凍室18を-20℃程度に冷却することができる。
 以上のように、本実施の形態における冷蔵庫は通常負荷条件においては、圧縮機19起動時の冷凍能力の立ち上がり特性を向上することができる。さらに、本実施の形態における冷蔵庫は通常負荷条件の冷媒循環量に合わせてキャピラリチューブ35の絞り量を設計すれば、通常負荷条件で高効率化を図ることができる。
 また、通常負荷条件においては、第1の防露パイプ30を不使用とし、第2の防露パイプ31に冷媒を流すことにより、第1の防露パイプ30に起因する熱負荷を削減することでさらに高効率化を図ることができる。
 以上のように、本実施の形態における冷蔵庫は、キャピラリチューブ35の入口側非熱交換部35aを冷蔵室17に供給される吐出冷気で冷却する。このことによって、キャピラリチューブ35の絞り量を小さくし、冷媒循環量を増大させて高能力化を図ることができる。特に高負荷条件となる夏場に室温に近い比較的高温の食品が多量に投入された場合、冷蔵室17の冷却運転時間が増大する。そこで、キャピラリチューブ35の入口側非熱交換部35aの冷却を促進することで、冷蔵室17の負荷に応じてより効果的に高能力化を図ることができる。
 一方、通常負荷条件では、冷蔵室17の冷却運転時間は短く、冷凍室18の冷却運転が主体となる。この場合、キャピラリチューブ35の入口側非熱交換部35aの冷却は緩慢となり、キャピラリチューブ35本来の絞り量が維持される。結果として、通常負荷条件の冷媒循環量に合わせてキャピラリチューブ35の絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。
 なお、本実施の形態における冷蔵庫では、高負荷条件での放熱プレート37の冷却量を蒸発器20で得られる冷凍能力の約5%となるように設計した。そして、放熱プレート37の冷却量は、蒸発器20で得られる冷凍能力の2~10%に設計することが望ましい。蒸発器20で得られる冷凍能力の2%未満の冷却量ではキャピラリチューブ35の絞り量を低減する効果が得られず、10%超ではサクション36の温度が低下して結露などが発生する問題が生じる恐れがある。サクション36はハンダ41を介してキャピラリチューブ35と内部熱交換することで室温付近まで温められる。このため、放熱プレート37の冷却量が10%を超えるとキャピラリチューブ35の温度が低下してサクション36及びサクション36内を流れる気体冷媒の加温が不十分となる。
 このとき、サクション36の管内にフィン36aを形成して管内表面積を1.5~5倍に拡大することで、内部熱交換の効率を向上してサクション36の温度低下を抑制することができる。このように、放熱プレート37の冷却量が2~10%であればキャピラリチューブ35の温度低下によらずサクション36の内部熱交換後の温度が室温付近で維持できる。
 以上説明したように、本発明の冷蔵庫は、圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備える。また、冷凍サイクルの内部熱交換を行うために、キャピラリチューブとサクションを熱結合する内部熱交換部を有する。さらに、キャピラリチューブにおける内部熱交換部よりも入口側の非熱交換部を、蒸発器ファンが冷蔵室に供給する冷気により冷却する。
 キャピラリチューブの入口側非熱交換部を冷却することにより、内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブの圧力損失を低減する。冷蔵室を冷却する際に、同時にキャピラリチューブの入口側非熱交換部を冷却することでキャピラリチューブの絞り量を小さくし、冷媒循環量を増大させて高能力化を図ることができる。特に、キャピラリチューブの入口側非熱交換部は、乾き度の変化が大きいことから、冷却による圧力損失低減の効果が大きい。
 冷蔵室の冷却運転時間は冷蔵庫の負荷条件によって大きく変化する。特に高負荷条件となる夏場に室温に近い比較的高温の食品が多量に投入された場合、冷蔵室の冷却運転時間が増大するとともに圧縮機及びファンを増速して冷凍システムを高能力化するように制御する。このとき、冷蔵室に供給される吐出冷気は、通常より高風量で低温となり、本発明の構成では、キャピラリチューブの入口側非熱交換部の冷却を促進することになる。この結果、さらに冷媒循環量を増大させて高能力化を図ることができる。
 一方、通常負荷条件では、冷蔵室の冷却運転時間は短く、冷凍室の冷却運転が主体となる。この場合、キャピラリチューブの入口側非熱交換部の冷却は緩慢となり、キャピラリチューブ本来の絞り量が維持される。結果として、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。
 このように、本発明の冷蔵庫は、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。
 また、本発明は、キャピラリチューブにおける内部熱交換部よりも入口側の非熱交換部と熱結合し、キャピラリチューブの入口側の非熱交換部の2~10倍の表面積を有する放熱プレートを備える。そして、その放熱プレートを、蒸発器ファンが冷蔵室に供給する冷気により冷却してもよい。
 キャピラリチューブの入口側非熱交換部の長さが必要以上に長い場合、内部熱交換部における熱交換の効率が低下してサクションの温度低下による結露が発生するという不具合が生じる。本発明は、上記構成により、キャピラリチューブの入口側非熱交換部と冷蔵室に供給される冷気との熱交換の効率を向上することで、キャピラリチューブの入口側非熱交換部の長さを短縮することができる。そのため、上記不具合を解消することができる。
 また、本発明は、サクションの管内に形成され、管内表面積を1.5~5倍に拡大するフィンを備えてもよい。
 これによって、内部熱交換部の熱交換の効率が向上し、キャピラリチューブの入口側非熱交換部の温度低下によるサクションの温度低下を抑制することができる。
 また、本発明は、複数の防露パイプと、防露パイプを切り換える切換バルブとを備え、高負荷時はすべての防露パイプを使用するとともに、通常負荷時は切換バルブを切換えて一部の防露パイプだけを選択的に使用する構成としてもよい。
 これによって、キャピラリチューブの絞り量を小さくし冷媒循環量を増大させた高負荷時は、すべての防露パイプを使用することで十分な放熱量を確保することができる。加えて、キャピラリチューブの絞り量を大きくし冷媒循環量を減少させた通常負荷時は、一部の防露パイプだけを選択的に使用することで防露パイプに起因する負荷量を抑制して省エネルギーを図ることができる。
 以上のように、本発明にかかる冷蔵庫は、冷蔵室の負荷に応じて冷凍サイクルの絞り量を自動的に調整して高能力化を図ることができるので、業務用冷凍冷蔵庫を含め各種冷凍冷蔵応用商品に適用できる。
 11 冷蔵庫
 12 筐体
 13 扉
 14 脚
 15 下部機械室
 16 上部機械室
 17 冷蔵室
 18 冷凍室
 19,60 圧縮機
 20 蒸発器
 21 主凝縮器
 22 隔壁
 23 ファン
 24 蒸発皿
 25 底板
 26 吸気口
 27 排出口
 28 連通風路
 30 第1の防露パイプ
 31 第2の防露パイプ
 32,68 流路切換バルブ
 33 合流点
 34 ドライヤ
 35 キャピラリチューブ
 35a 入口側非熱交換部
 36 サクション
 37 放熱プレート
 38 蒸発器ファン
 39 冷蔵室ダンパ
 40 冷蔵室冷却風路
 41 ハンダ
 61 凝縮器
 62 冷凍室蒸発器
 63 冷蔵室蒸発器
 64 冷凍室ファン
 65 冷蔵室ファン
 66 アキュームレータ
 67 逆止弁
 69 冷凍室キャピラリチューブ
 70 冷蔵室キャピラリチューブ
 71 冷蔵室補助キャピラリチューブ
 72 開閉弁

Claims (4)

  1. 圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備え、前記冷凍サイクルの内部熱交換を行うために、前記キャピラリチューブと前記サクションを熱結合する内部熱交換部を有し、前記キャピラリチューブにおける前記内部熱交換部よりも入口側の非熱交換部を、前記蒸発器ファンが前記冷蔵室に供給する冷気により冷却する冷蔵庫。
  2. 前記非熱交換部と熱結合し、前記キャピラリチューブの入口側の前記非熱交換部の2~10倍の表面積を有する放熱プレートを備え、前記放熱プレートを、前記蒸発器ファンが前記冷蔵室に供給する冷気により冷却する請求項1記載の冷蔵庫。
  3. 前記サクションの管内に形成され、前記サクションの管内表面積を1.5~5倍に拡大するフィンを備えた請求項1または2のいずれかに記載の冷蔵庫。
  4. 複数の防露パイプと、前記防露パイプを切り換える切換バルブとを備え、高負荷時はすべての前記防露パイプを使用するとともに、通常負荷時は前記切換バルブを切換えて一部の前記防露パイプを選択的に使用する請求項1または2のいずれか一項に記載の冷蔵庫。
PCT/JP2013/006752 2012-12-05 2013-11-18 冷蔵庫 WO2014087584A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380063575.1A CN104823010B (zh) 2012-12-05 2013-11-18 冷藏库

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265936A JP6101926B2 (ja) 2012-12-05 2012-12-05 冷蔵庫
JP2012-265936 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014087584A1 true WO2014087584A1 (ja) 2014-06-12

Family

ID=50883026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006752 WO2014087584A1 (ja) 2012-12-05 2013-11-18 冷蔵庫

Country Status (3)

Country Link
JP (1) JP6101926B2 (ja)
CN (1) CN104823010B (ja)
WO (1) WO2014087584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669938A (zh) * 2021-07-27 2021-11-19 澳柯玛股份有限公司 冰箱制冷及自清洁控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241949A (ja) * 2011-05-18 2012-12-10 Panasonic Corp 冷蔵庫
JP6469966B2 (ja) * 2014-05-16 2019-02-13 日立アプライアンス株式会社 冷蔵庫
JP2016223698A (ja) * 2015-06-01 2016-12-28 パナソニックIpマネジメント株式会社 冷蔵庫

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159984A (ja) * 1997-12-01 1999-06-15 Hitachi Ltd 熱交換器
JP2002130912A (ja) * 2000-10-30 2002-05-09 Matsushita Refrig Co Ltd 冷蔵庫
JP2002327969A (ja) * 2001-04-26 2002-11-15 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2003207252A (ja) * 2002-01-18 2003-07-25 Toshiba Corp 冷蔵庫
JP2005265269A (ja) * 2004-03-18 2005-09-29 Matsushita Electric Ind Co Ltd 冷凍サイクル用熱交換パイプ
JP2012122692A (ja) * 2010-12-09 2012-06-28 Hitachi Cable Ltd 内面溝付伝熱管
WO2012157263A1 (ja) * 2011-05-18 2012-11-22 パナソニック株式会社 冷蔵庫

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2833458Y (zh) * 2005-04-12 2006-11-01 合肥美菱股份有限公司 低温电冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159984A (ja) * 1997-12-01 1999-06-15 Hitachi Ltd 熱交換器
JP2002130912A (ja) * 2000-10-30 2002-05-09 Matsushita Refrig Co Ltd 冷蔵庫
JP2002327969A (ja) * 2001-04-26 2002-11-15 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2003207252A (ja) * 2002-01-18 2003-07-25 Toshiba Corp 冷蔵庫
JP2005265269A (ja) * 2004-03-18 2005-09-29 Matsushita Electric Ind Co Ltd 冷凍サイクル用熱交換パイプ
JP2012122692A (ja) * 2010-12-09 2012-06-28 Hitachi Cable Ltd 内面溝付伝熱管
WO2012157263A1 (ja) * 2011-05-18 2012-11-22 パナソニック株式会社 冷蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669938A (zh) * 2021-07-27 2021-11-19 澳柯玛股份有限公司 冰箱制冷及自清洁控制方法

Also Published As

Publication number Publication date
CN104823010B (zh) 2017-03-22
JP6101926B2 (ja) 2017-03-29
CN104823010A (zh) 2015-08-05
JP2014112008A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
EP2339276B1 (en) Refrigerator
WO2017179500A1 (ja) 冷蔵庫および冷却システム
JP5261066B2 (ja) 冷凍冷蔵庫及び冷却庫
JP6177605B2 (ja) 冷蔵庫
JP2017161093A (ja) 空気調和機の室外ユニットおよび制御方法
WO2014087584A1 (ja) 冷蔵庫
GB2579476A (en) Heat exchange unit and refrigeration cycle device
JP2008116100A (ja) 物品貯蔵装置
JP5492845B2 (ja) 冷蔵庫
WO2004113804A1 (ja) 冷蔵庫
JP2013155910A (ja) 冷蔵庫
JP2013019598A (ja) 冷蔵庫
JP2019100585A (ja) 冷蔵庫
JP2012241949A (ja) 冷蔵庫
JP5402176B2 (ja) 冷蔵庫
WO2019225237A1 (ja) 輸送用冷凍装置
JP5625734B2 (ja) 冷凍装置
JP6543811B2 (ja) 冷蔵庫
KR20120003224A (ko) 냉장 장치의 냉매 순환 시스템
JP5068340B2 (ja) 冷凍冷蔵庫
WO2018147113A1 (ja) 冷蔵庫
WO2021244077A1 (zh) 冰箱的控制方法及冰箱
JP7442045B2 (ja) 冷蔵庫
JP5796588B2 (ja) オープンショーケース
JP2014020673A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860028

Country of ref document: EP

Kind code of ref document: A1