WO2021244077A1 - 冰箱的控制方法及冰箱 - Google Patents

冰箱的控制方法及冰箱 Download PDF

Info

Publication number
WO2021244077A1
WO2021244077A1 PCT/CN2021/078167 CN2021078167W WO2021244077A1 WO 2021244077 A1 WO2021244077 A1 WO 2021244077A1 CN 2021078167 W CN2021078167 W CN 2021078167W WO 2021244077 A1 WO2021244077 A1 WO 2021244077A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
storage compartment
refrigerator
storage
Prior art date
Application number
PCT/CN2021/078167
Other languages
English (en)
French (fr)
Inventor
李晓峰
戚斐斐
宋向鹏
刘山山
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021244077A1 publication Critical patent/WO2021244077A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to the field of refrigeration storage, in particular to a control method of a refrigerator and a refrigerator.
  • the conventional cascade compression refrigeration system is usually composed of two separate refrigeration cycles, which are called a high-temperature refrigeration cycle (referred to as a high-temperature part) and a low-temperature refrigeration cycle (referred to as a low-temperature part).
  • the high temperature part uses a first refrigerant with a relatively high evaporation temperature
  • the low temperature part uses a second refrigerant with a relatively low evaporation temperature.
  • a condensing evaporator is used, which uses the cold energy produced by the first refrigerant in the high-temperature part to condense the second refrigerant vapor discharged from the compressor in the low-temperature part, so as to achieve a low temperature below -60°C.
  • the inventor of the present invention found that if there is a demand for cryogenic cooling when the refrigerator is in use, the refrigerator can be required to realize the cryogenic function.
  • cryogenics work all the time, which requires high energy consumption and noise, and the technical realization is complicated, and ordinary food materials are not available. It is necessary to reach such a high cooling depth. If the special ingredients are not exited in time after the use of special ingredients, energy consumption will be wasted, and after the cryogenic function is exited, the temperature cannot be restored to the set temperature of the original compartment in time, and the temperature of the ingredients fluctuates greatly or appears The phenomenon of frostbite common ingredients. In other words, if you exit this deep cooling function, how to quickly restore to the original refrigerator set temperature. Based on this, the present invention proposes a refrigerator control method and refrigerator. When the deep cooling function is withdrawn, the refrigerator can be restored to the original set temperature as soon as possible, and the energy-saving effect is obvious.
  • the present invention provides a method for controlling a refrigerator.
  • the refrigerator includes a cabinet, a low-temperature refrigeration cycle, and an on-off device.
  • a first storage compartment and a second storage compartment are formed inside the cabinet.
  • a communicating air duct is provided between the first storage compartment and the second storage compartment, and the on-off device is installed in the communicating duct;
  • the low-temperature refrigeration cycle circuit includes The first evaporator for cooling the first storage compartment;
  • the on-off device is controlled to switch on the communicating air passage, so that the gas in the second storage compartment enters the first storage compartment.
  • control method of the refrigerator further includes: when the temperature rise in the first storage compartment reaches a first preset temperature value or within a first preset temperature range, controlling the switching device to disconnect the Connect the air duct.
  • the refrigerator further includes a high-temperature refrigeration cycle, the high-temperature refrigeration cycle including a valve device, a second evaporator for cooling the second storage compartment, and a refrigeration cycle for the first storage compartment.
  • the third evaporator for cooling the material compartment, and the valve device is configured to prevent the third evaporator from turning off when the second evaporator is operating when the on-off device conducts the communicating air duct. Work.
  • control method of the refrigerator further includes: when the on-off device conducts the communicating air duct, if the second evaporator is activated according to a preset condition, the second evaporator may be sent to the second storage room. After the cooling capacity is provided in the second storage room, the second evaporator is turned off when the temperature in the second storage room drops to a second preset temperature value, wherein the second preset temperature value is higher than the second storage room temperature. The preset shutdown temperature value of the material compartment.
  • the high-temperature refrigeration cycle circuit further includes a frequency conversion compressor, and when the on-off device conducts the communicating air duct, if the second evaporator is started according to a preset condition, the frequency conversion compressor The machine runs at the lowest operating power.
  • the difference between the second preset temperature value and the preset shutdown temperature value of the second storage compartment is 2°C to 5°C.
  • the preset temperature ranges are different, or the preset temperature ranges for storage of the second storage compartment are the same.
  • the present invention also provides a refrigerator, including a box body in which a first storage compartment and a second storage compartment are formed, and the refrigerator further includes a low-temperature refrigeration cycle circuit and an on-off device ;
  • the low-temperature refrigeration cycle circuit includes a first evaporator for cooling the first storage compartment;
  • a communicating air duct is provided between the first storage compartment and the second storage compartment, and the on-off device is installed in the communicating duct to end the operation of the first evaporator In the cryogenic mode, the on-off device is controlled to switch on the communicating air passage, so that the gas in the second storage compartment enters the first storage compartment.
  • the refrigerator further includes a high-temperature refrigeration cycle, the high-temperature refrigeration cycle including a valve device, a second evaporator for cooling the second storage compartment, and a refrigeration cycle for the first storage compartment.
  • a high-temperature refrigeration cycle including a valve device, a second evaporator for cooling the second storage compartment, and a refrigeration cycle for the first storage compartment.
  • a third evaporator for cooling the material compartment; the valve device is configured to make the third evaporator inoperative when the second evaporator is working when the on-off device conducts the communicating air passage ;and
  • the on-off device When the on-off device conducts the communicating air passage, if the second evaporator is activated according to a preset condition, it will be shut down when the temperature in the second storage room drops to a second preset temperature value In the second evaporator, the second preset temperature value is higher than the preset shutdown temperature value of the second storage compartment;
  • the on-off device is controlled to disconnect the communicating air duct.
  • the on-off device is a damper, and an outer side of the action part of the damper is provided with a heat preservation structure.
  • the control method of the refrigerator and the refrigerator of the present invention because of the connecting air duct and the on-off device, can quickly make the deep cooling after the first storage compartment exits the deep cooling mode without increasing additional power consumption.
  • the cold room is switched back to the ordinary room to achieve a rapid rise in the temperature of the cryogenic room.
  • the cryogenic compressor stops working.
  • the air door is opened. Since the cryogenic compartment is in a negative pressure state (the temperature and low pressure are small), the air in other compartments flows to the cryogenic compartment , To achieve the mixing of indoor air to achieve a rapid rise in the temperature of the cryogenic compartment without external heating.
  • the compressor in the high-temperature refrigeration cycle circuit runs at the minimum power, and The separate evaporator circuit of the cryogenic compartment is closed, that is, the valve does not switch to this side.
  • T other compartment Tset-off+ ⁇ T1
  • the compressor in the high-temperature refrigeration cycle will stop working until it reaches the start-up point next time.
  • the setting of ⁇ T1 is set according to the actual test conditions, the temperature range is 2-5°C, which can make the compressor in the high-temperature refrigeration cycle stop as soon as possible, strengthen the heat exchange with the cryogenic compartment, and make the temperature of the cryogenic compartment as fast as possible Pick up.
  • Fig. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a cascade compression refrigeration system in a refrigerator according to an embodiment of the present invention
  • Fig. 3 is a partial structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is a schematic sectional view of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 5 is a partial structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 6 is a schematic block diagram of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 7 is a schematic flowchart of a method for controlling a refrigerator according to an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator may include a cabinet 20, an evaporator, and a refrigeration system.
  • a plurality of storage compartments are also formed in the box body 20, which may include a first storage compartment 21 and at least one high-temperature storage compartment.
  • the first storage compartment 21 may also be referred to as a low-temperature storage compartment.
  • the refrigeration system may be arranged in the box 20.
  • the refrigeration system includes a high-temperature refrigeration cycle 30 and a low-temperature refrigeration cycle 40.
  • the refrigeration system may also be referred to as a cascade compression refrigeration system.
  • the "high temperature” and “low temperature” in the "high-temperature refrigeration cycle 30" and the "low-temperature refrigeration cycle 40" are relative terms. Relatively speaking, the refrigerant flowing in the high-temperature refrigeration cycle 30 The evaporation temperature is higher than the evaporation temperature of the refrigerant flowing in the low-temperature refrigeration cycle 40.
  • the high-temperature refrigeration cycle 30 is used to circulate the first refrigerant, and has a first high-temperature evaporator 35, a third evaporator 36, an evaporator 37, and a second high-temperature evaporator 38 for absorbing heat.
  • the third evaporator 36 is used to provide cooling for the first storage compartment 21, the first high-temperature stage evaporator 35 can provide cooling for the first high-temperature storage compartment 22, and the second high-temperature evaporator 38 can be the second The high-temperature storage compartment 23 provides cooling.
  • the second storage compartment may be the first high temperature level storage compartment 22 and/or the second high temperature level storage compartment 23, and correspondingly, the second evaporator may be the first high temperature level evaporator 35 and/or The second high temperature stage evaporator 38.
  • the high-temperature refrigeration cycle 30 further includes a high-temperature compressor 31 and a high-temperature condensing device 32.
  • the low-temperature refrigeration cycle 40 is used to circulate the second refrigerant, and is provided with a condensing part 42 and a first evaporator 44 therein.
  • the first evaporator 44 is used to encourage the second refrigerant flowing through it to absorb heat and to provide cooling for the first storage compartment 21.
  • the first evaporator 44 may also be called a low-temperature evaporator.
  • the condensing part 42 is thermally connected to the evaporating part 37.
  • the low-temperature refrigeration cycle 40 also includes a low-temperature compressor 41, which may be referred to as a cryogenic compressor.
  • the first refrigerant and the second refrigerant may be the same refrigerant, such as R600a, or different refrigerants.
  • the third evaporator 36 and the first evaporator 44 can both supply cold to the first storage compartment 21, so that a single storage compartment of the refrigerator can have the function of multiple temperature zones, even if the first storage compartment
  • the compartment 21 can obtain different refrigeration effects to meet different refrigeration requirements, and can expand the temperature range of the first storage compartment 21, which means that the refrigerator can not only have the deep cooling function, but also meet the energy saving of daily refrigeration. need.
  • the second evaporator and the third evaporator 36 can work simultaneously, for example in series, so that the high-temperature refrigeration cycle 30 is a single system.
  • a valve device 33 is provided in the high-temperature refrigeration cycle 30. The valve device 33 can make the third evaporator 36 inoperative when the second evaporator is working, so that the high-temperature refrigeration cycle 30 can be a multi-system.
  • the inlet of the valve device 33 may be in communication with the outlet of the high-temperature condensing device 32.
  • the valve device 33 has a first outlet, a second outlet, and a third outlet.
  • the inlet of the first high-temperature stage evaporator 35 is in communication with the first outlet;
  • the inlet of the third evaporator 36 is in communication with the second outlet.
  • the outlet of the third evaporator 36 communicates with the inlet of the first high-temperature stage evaporator 35
  • the inlet of the evaporator 37 communicates with the outlet of the first high-temperature stage evaporator 35.
  • the outlet of the third evaporator 36 is connected to the inlet of the evaporation part 37, and the outlet of the evaporation part 37 is connected to the inlet of the first high-temperature stage evaporator 35.
  • the third outlet communicates with the inlet of the evaporation part 37.
  • the evaporator 37 can be made to work alone or the evaporator 37 and the first high-temperature stage evaporator 35 can work but the third evaporator 36 does not work, thereby improving the cryogenic efficiency.
  • the second high temperature stage evaporator 38 is provided between the third outlet and the evaporation part 37.
  • a first throttling device 341 is arranged between the inlet and the first outlet of the first high-temperature stage evaporator 35; a second throttling device 342 is arranged between the inlet and the second outlet of the third evaporator 36; the second high-temperature stage A third throttling device 343 is provided between the inlet and the third outlet of the evaporator 38.
  • the first storage compartment 21 and the first high-temperature storage compartment 22 are arranged side by side along the lateral extension direction of the refrigerator, and the second high-temperature storage compartment 23 is arranged in the first storage compartment.
  • the first high-temperature storage compartment 22 may be a freezing compartment
  • the second high-temperature storage compartment 23 may be a refrigerating compartment.
  • the first storage compartment 21 is a multi-functional room with multiple temperature zones. This arrangement makes the layout of the compartments more reasonable and makes it easier to access the corresponding items.
  • the refrigerator further includes an air supply device 50 for urging the airflow to flow through the first evaporator 44 and the third evaporator 36, and for urging the airflow Enter the first storage compartment 21.
  • the third evaporator 36 includes a first cooling evaporating tube
  • the first evaporator 44 includes a second cooling evaporating tube.
  • the first cooling evaporating tube and the second cooling evaporating tube are arranged on the same fin group. .
  • the third evaporator 36 may be provided on the upper side of the first evaporator 44.
  • the box body 20 is further formed with a first refrigeration chamber 24 for arranging the third evaporator 36 and the first evaporator 44 at a position corresponding to the rear side of the first storage compartment 21, and the first refrigeration chamber 24 passes
  • the first air supply structure communicates with the first storage compartment 21 to provide a cooling air flow to the first storage compartment 21 through the first air supply structure.
  • the evaporator with the third evaporator 36 and the first evaporator 44 can be a two-in-two-out dual-channel evaporator, and the structure is an upper and lower structure.
  • the refrigerator When the refrigerator is set to operate normally, the high temperature The first-stage refrigeration cycle 30 runs, and the upper third evaporator 36 cools. At this time, the evaporator shares the lower evaporator fins, which has a large heat exchange area and high heat exchange efficiency; when the refrigerator is set to cryogenic operation, the lower part first evaporates The device 44 is connected, the cryogenic system works, the lower evaporator cools down, and the upper evaporator fin is shared at the same time, the heat exchange area is large, and the heat exchange efficiency is high.
  • Arranging the evaporator structure up and down can also make the heat exchange even. It can ensure the utilization rate of the heat exchange area of the evaporator, reduce the size of the dual-channel evaporator, and at the same time heat exchange uniformly, and ensure uniform pipeline distribution. With the air duct system and the refrigeration fan, it can achieve two functions of normal temperature refrigeration and cryogenic refrigeration. It can ensure the purpose of energy saving during conventional refrigeration.
  • the box body 20 is further formed at a position corresponding to the rear side of the first high temperature level storage compartment 22 for arranging the first high temperature level evaporator 35.
  • the second refrigeration chamber communicates with the first high-temperature storage compartment 22 through the second air supply structure 52, so as to provide refrigerating airflow to the first high-temperature storage compartment 22 through the second air supply structure 52 .
  • the box body 20 further forms a third refrigeration chamber for arranging the second high temperature evaporator 38 at a position corresponding to the rear side of the second high temperature storage compartment 23.
  • the third refrigeration chamber is connected to the third refrigeration chamber through the third air supply structure
  • the second high-temperature storage compartment 23 is connected to provide a cooling air flow to the second high-temperature storage compartment 23 through the third air blowing structure.
  • the first air supply structure is arranged between the first refrigeration chamber 24 and the first storage compartment 21; the rear side of the first air supply structure is provided with an air inlet, and the air supply device 50 is arranged at the air inlet.
  • a plurality of air blowing ports 54 are provided on the front side of the first air blowing structure, and air blowing ducts 55 are provided in the first air blowing structure 51.
  • a return air duct 56 can be provided on the lower side of the first air supply structure, so that the evaporator can supply air from the bottom to the upper part. Both the second air supply structure and the third air supply structure are similar to the first air supply structure 51.
  • the outlet pipe of the third evaporator 36 is provided with a valve that only allows the refrigerant from the third evaporator 36 to flow out in one direction.
  • the valve may be a one-way valve 39, and the one-way valve 39 can prevent the first refrigerant downstream of the one-way valve 39 from passing in reverse.
  • the temperature of the first evaporator 44 is very low. Because the distance between the third evaporator 36 and the first evaporator 44 is relatively short, the temperature of the pipeline of the third evaporator 36 is also relatively low, and it is even significantly lower than that of the third evaporator in the high-temperature refrigeration cycle 30.
  • the temperature of other evaporators downstream of the evaporator 36 The valve can prevent the first refrigerant in other cooling evaporators downstream of the third evaporator 36 from flowing into the third evaporator 36 from the discharge port of the third evaporator 36, thereby avoiding the high temperature refrigeration cycle 30
  • the reverse flow of the first refrigerant ensures the effective circulation of the first refrigerant and improves the overall refrigeration efficiency.
  • the pressure is about 0.017Mpa
  • the suction pressure of the compressor of R600a is about 0.06Mpa
  • the pressure on the side of the third evaporator 36 is lower than the suction pressure of the high-temperature compressor 31
  • the check valve 39 can prevent the refrigerant from flowing backward and accumulating in the third evaporator 36 to cause poor cooling.
  • the check valve 39 can solve the problem of refrigerant accumulation due to low temperature without controlling the program to adjust the operation of the valve body.
  • the structure is simple and the operability is strong.
  • the high-temperature condensing device 32 may include a condenser and an anti-dew pipe.
  • the low-temperature refrigeration cycle 40 further includes a low-temperature condensing device 45 and a low-temperature throttling device 43.
  • the inlet of the high temperature stage condenser 32 is connected to the outlet of the high temperature stage compressor 31, the outlet of the evaporator 37 is connected to the inlet of the first high temperature stage evaporator 35, and the outlet of the first high temperature stage evaporator 35 is connected to the inlet of the high temperature stage compressor 31.
  • the outlet of the low-temperature compressor 41 is connected to the inlet of the low-temperature condensing device 45, the outlet of the low-temperature condensing device 45 is connected to the inlet of the condensing section 42, and the outlet of the condensing section 42 is connected to the low-temperature throttling device 43 and the low-temperature throttling device 43.
  • the outlet is connected to the inlet of the first evaporator 44, and the outlet of the first evaporator 44 is connected to the inlet of the low-temperature stage compressor 41.
  • the condensing part 42 and the evaporating part 37 may form a condensing evaporator.
  • the condensing evaporator can be a double-pipe heat exchanger.
  • the condensing part 42 and the evaporating part 37 may also be two copper pipes abutting against each other. The two copper pipes are arranged close to each other. The contact part between the two copper pipes can be fixed by soldering to enhance heat transfer. The outside of the two copper tubes can be wrapped with aluminum foil.
  • the condensing part 42 and the evaporating part 37 may share heat exchange fins.
  • the evaporating unit 37 and the condensing unit 42 are provided in the second refrigerating chamber. Of course, the evaporating part 37 and the condensing part 42 may also be arranged at other positions of the refrigerator.
  • the refrigerator further includes an on-off device 62.
  • a communicating air duct 61 is provided between the first storage compartment 21 and the second storage compartment, and the on-off device 62 is installed in the communicating duct 61, so that when the deep cooling mode for operating the first evaporator 44 is ended, The on-off device 62 is controlled to communicate with the air passage 61 so that the gas in the second storage compartment enters the first storage compartment 21.
  • Fig. 6 is a block diagram schematically showing that when the first high-temperature-level storage compartment 22 is used as the second storage compartment, the connecting air duct 61 and the on-off device 62 are connected to the first storage compartment 21 and the second storage compartment. The connection relationship of a high-temperature storage compartment 22.
  • the second high-temperature storage compartment 23 can also be used as the second storage compartment.
  • the gas in the first high-temperature storage compartment 22 can enter the first storage compartment 21.
  • the second storage compartment is the second high-temperature storage compartment 23
  • the gas in the second high-temperature storage compartment 23 can enter the first storage compartment 21.
  • valve device 33 is configured to disable the third evaporator 36 when the second evaporator is working when the on-off device 62 is connected to the communicating air passage 61.
  • the on-off device 62 is connected to the air passage 61, if the second evaporator is started according to a preset condition, the second evaporator will be turned off when the temperature in the second storage room drops to a second preset temperature value, wherein The second preset temperature value is higher than the preset shutdown temperature value of the second storage compartment.
  • the on-off device 62 is controlled to disconnect the communicating air duct 61.
  • the on-off device 62 is a damper, and a heat preservation structure is arranged on the outside of the action part of the damper to avoid loss of cooling capacity and frost damage of the damper during cryogenic work.
  • a heat preservation structure is arranged on the outside of the action part of the damper to avoid loss of cooling capacity and frost damage of the damper during cryogenic work.
  • other cascade refrigeration systems may also be used.
  • an embodiment of the present invention also provides a method for controlling a refrigerator.
  • the method for controlling a refrigerator includes at least the following steps S702 to S704:
  • step S702 the deep cooling mode for operating the first evaporator 44 is ended, so as to increase the temperature in the first storage compartment 21.
  • Step S704 controlling the on-off device 62 to conduct the communicating air duct 61 so that the gas in the second storage compartment (the first high-temperature storage compartment 22 and/or the second high-temperature storage compartment 23) enters The first storage room 21.
  • the cryogenic chamber can be quickly switched back to the ordinary compartment without increasing additional power consumption. Achieve a rapid rise in the temperature of the cryogenic compartment. Specifically, when the cryogenic compartment exits, the cryogenic compressor stops working. At this time, the air door is opened. Since the cryogenic compartment is in a negative pressure state (the temperature and low pressure are small), the air in other compartments flows to the cryogenic compartment , To achieve the mixing of indoor air to achieve a rapid rise in the temperature of the cryogenic compartment without external heating.
  • control method of the refrigerator further includes controlling the on-off device 62 to turn off when the temperature rise in the first storage compartment 21 reaches a first preset temperature value or within a first preset temperature range. Open the connecting air duct 61. It can make full use of the cold capacity of the cryogenic compartment, the energy saving effect is obvious, and the degree of intelligence and intelligence is high.
  • the on-off device 62 when the on-off device 62 is connected to the air passage 61, if the second evaporator is activated according to the preset conditions to provide cold energy to the second storage compartment, the temperature in the second storage compartment will drop The second evaporator is turned off when the second preset temperature value is reached, where the second preset temperature value is higher than the preset shutdown temperature value of the second storage compartment.
  • the high-temperature compressor 31 may be an inverter compressor.
  • the on-off device 62 is connected to the communicating air duct 61, if the second evaporator is started according to a preset condition, the inverter compressor operates at the lowest operating power.
  • the difference between the second preset temperature value and the preset shutdown temperature value of the second storage compartment is 2°C to 5°C.
  • the compressor in the high-temperature refrigeration cycle circuit runs at the minimum power, and the cryogenic compartment has a separate evaporator The circuit is closed, that is, the valve does not switch to this side.
  • T other compartment Tset-off+ ⁇ T1
  • the compressor in the high-temperature refrigeration cycle will stop working until it reaches the start-up point next time.
  • the setting of ⁇ T1 is set according to the actual test conditions, the temperature range is 2-5°C, which can make the compressor in the high-temperature refrigeration cycle stop as soon as possible, strengthen the heat exchange with the cryogenic compartment, and make the temperature of the cryogenic compartment as fast as possible Pick up.
  • the second evaporator and the third evaporator 36 work synchronously, even if the second storage compartment corresponding to the second evaporator needs to open the second evaporator, the second evaporator is not turned on. The evaporator until the on-off device 62 shuts off the communicating air duct 61.

Abstract

提供了一种冰箱的控制方法及冰箱。控制方法包括:结束使第一蒸发器工作的深冷模式,以提高第一储物间室内的温度;控制通断装置导通连通风道,以使第二储物间室内的气体进入第一储物间室。因为具有连通风道和通断装置,可在第一储物间室退出深冷模式后,在不增加额外耗电量的情况下,快速地使深冷间室切回普通间室,实现深冷间室的温度快速回升。具体地,当深冷间室退出时,深冷压缩机停止工作,此时,风门打开,由于深冷间室处于负压状态(温度低压强小),其他间室的空气流向深冷间室,实现间室内空气的混合,来达到不通过外部加热的方式,使深冷间室温度快速回升。

Description

冰箱的控制方法及冰箱 技术领域
本发明涉及制冷储物领域,特别是涉及一种冰箱的控制方法及冰箱。
背景技术
目前,市场上的冰箱变温间室温度范围大多在8-18℃之间调节,整体设计较常规。随着人们生活水平的逐渐提升,此类温区冰箱已不能很好地满足大家的需求,需要设计出温度范围更广,功能更齐全,可以满足用户的更多需求的高端冰箱,针对食材在-40℃以下玻璃态保存,有利于最大保存食物营养价值,高端用户市场上存在对超低温间室(-40~-60℃)的需求,以提高用户满意度,紧抓用户体验。为此,常规的复叠式压缩制冷系统通常由两个单独的制冷循环回路组成,分别称为高温级制冷循环回路(简称高温部分)及低温级制冷循环回路(简称低温部分)。高温部分使用蒸发温度相对较高的第一制冷剂,低温部分使用蒸发温度相对较低的第二制冷剂。并采用冷凝蒸发器,其利用高温部分的第一制冷剂制取的冷量,使低温部分的压缩机排出的第二制冷剂蒸气凝结,从而实现-60℃以下低温。
发明内容
本发明的发明人发现,在冰箱使用时如果有对深冷的需求,可要求冰箱实现深冷功能,然而深冷一直工作,对能耗和噪声要求高,技术实现复杂,且普通食材并不需要达到这么高的制冷深度,如果在特殊食材使用完毕不及时退出,会浪费能耗,而且深冷功能退出后,温度不能及时恢复到原有间室的设定温度,食材温度波动大或者出现冻伤普通食材的现象。也就是说,如果退出此深冷功能,如何更快的恢复到原有冰箱的设定温度。基于此,本发明提出了一种冰箱的控制方法及冰箱,当深冷功能退出时,能够尽快的恢复到原有的设定温度,且节能效果明显。
一方面,本发明提供了一种冰箱的控制方法,所述冰箱包括箱体、低温级制冷循环回路和通断装置,所述箱体内部形成有第一储物间室和第二储物间室,所述第一储物间室和所述第二储物间室之间设置有连通风道,所述通断装置安装于所述连通风道;所述低温级制冷循环回路包括为所述第一储物间室供冷的第一蒸发器;其中,所述冰箱的控制方法包括:
结束使所述第一蒸发器工作的深冷模式,以提高所述第一储物间室内的温度;
控制所述通断装置导通所述连通风道,以使所述第二储物间室内的气体进入所述第一储物间室。
可选地,冰箱的控制方法还包括:在所述第一储物间室内的温度上升达到第一预设温度值或第一预设温度范围内时,控制所述通断装置断开所述连通风道。
可选地,所述冰箱还包括高温级制冷循环回路,所述高温级制冷循环回路包括阀门装置、为所述第二储物间室供冷的第二蒸发器,以及为所述第一储物间室供冷的第三蒸发器,且所述阀门装置配置成在所述通断装置导通所述连通风道时,在所述第二蒸发器工作时使所述第三蒸发器不工作。
可选地,所述冰箱的控制方法还包括:在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器,以向所述第二储物间室提供冷量后,在所述第二储物间室内的温度下降达到第二预设温度值时关闭所述第二蒸发器,其中所述第二预设温度值高于所述第二储物间室的预设停机温度值。
可选地,所述高温级制冷循环回路还包括变频压缩机,在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器时,所述变频压缩机以最低运行功率运行。
可选地,所述第二预设温度值与所述第二储物间室的预设停机温度值之间的差值为2℃至5℃。
可选地,所述第二储物间室为多个,所述通断装置和所述连通风道也均为多个,至少两个所述第二储物间室的用于储物的预设温度范围不相同,或者所述第二储物间室的用于储物的预设温度范围相同。
另一方面,本发明还提供了一种冰箱,包括箱体,所述箱体内部形成有第一储物间室和第二储物间室,冰箱还包括低温级制冷循环回路和通断装置;
所述低温级制冷循环回路包括为所述第一储物间室供冷的第一蒸发器;
所述第一储物间室和所述第二储物间室之间设置有连通风道,所述通断装置安装于所述连通风道,以在结束使所述第一蒸发器工作的深冷模式时,控制所述通断装置导通所述连通风道,以使所述第二储物间室内的气体进入 所述第一储物间室。
可选地,所述冰箱还包括高温级制冷循环回路,所述高温级制冷循环回路包括阀门装置、为所述第二储物间室供冷的第二蒸发器,以及为所述第一储物间室供冷的第三蒸发器;所述阀门装置配置成在所述通断装置导通所述连通风道时,在所述第二蒸发器工作时使所述第三蒸发器不工作;且
在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器后,在所述第二储物间室内的温度下降达到第二预设温度值时关闭所述第二蒸发器,其中所述第二预设温度值高于所述第二储物间室的预设停机温度值;
在所述第一储物间室内的温度上升达到第一预设温度值或第一预设温度范围内时,控制所述通断装置断开所述连通风道。
可选地,所述通断装置为风门,所述风门的动作部分外侧设置有保温结构。
本发明的冰箱的控制方法及冰箱中,因为具有连通风道和通断装置,可在第一储物间室退出深冷模式后,在不增加额外耗电量的情况下,快速地使深冷间室切回普通间室,实现深冷间室的温度快速回升。具体地,当深冷间室退出时,深冷压缩机停止工作,此时,风门打开,由于深冷间室处于负压状态(温度低压强小),其他间室的空气流向深冷间室,实现间室内空气的混合,来达到不通过外部加热的方式,使深冷间室温度快速回升。
进一步地,本发明的冰箱的控制方法及冰箱中,当其他间室温度达到开机点且第一储物间室未达到设定值,高温级制冷循环回路中的压缩机按照最小功率运行,且深冷间室单独的蒸发器回路关闭,即阀不切换向此侧。当T 其他间室=Tset-off+△T1时,高温级制冷循环回路中的压缩机停止工作,直到下次再达到开机点。△T1的设置根据实际试验条件设定,温度范围在2-5℃,可让高温级制冷循环回路中的压缩机尽快停机,加强与深冷间室的换热,使深冷间室温度尽快回升。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具 体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱中复叠式压缩制冷系统的示意图;
图3是根据本发明一个实施例的冰箱的局部结构示意图;
图4是根据本发明一个实施例的冰箱的局部结构剖切示意图;
图5是根据本发明一个实施例的冰箱的局部结构示意图;
图6是根据本发明一个实施例的冰箱的局部结构的示意性框图;
图7是根据本发明一个实施例的冰箱的控制方法的示意性流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱的示意图。如图1所示,并参考图2至图5,本发明实施例提供了一种冰箱,冰箱可包括箱体20、蒸发器和制冷系统。其中,箱体20内还形成有多个储物间室,可以包括第一储物间室21、至少一个高温级储物间室。例如,高温级储物间室可为两个,分别为第一高温级储物间室22和第二高温级储物间室23。第一储物间室21也可被称为低温级储物间室。制冷系统可设置于箱体20内,制冷系统包括高温级制冷循环回路30和低温级制冷循环回路40,该制冷系统也可被称为复叠式压缩制冷系统。“高温级制冷循环回路30”和“低温级制冷循环回路40”中的“高温”和“低温”是相对而言的,相对而言,高温级制冷循环回路30内所流经的制冷剂的蒸发温度高于低温级制冷循环回路40内所流经的制冷剂的蒸发温度。
高温级制冷循环回路30用于流通第一制冷剂,具有用于吸热的第一高温级蒸发器35、第三蒸发器36、蒸发部37和第二高温级蒸发器38。第三蒸发器36用于为第一储物间室21供冷,第一高温级蒸发器35可为第一高温级储物间室22供冷,第二高温级蒸发器38可为第二高温级储物间室23供冷。第二储物间室可为第一高温级储物间室22和/或第二高温级储物间室23,则对应地,第二蒸发器可为第一高温级蒸发器35和/或第二高温级蒸发器38。高温级制冷循环回路30还包括高温级压缩机31和高温级冷凝装置32。
低温级制冷循环回路40用于流通第二制冷剂,并且其内设置有冷凝部42和第一蒸发器44。其中,第一蒸发器44用于促使流经其的第二制冷剂吸 热,并用于为第一储物间室21供冷,第一蒸发器44也可被称为低温级蒸发器。冷凝部42与蒸发部37热连接。低温级制冷循环回路40还包括低温级压缩机41,低温级压缩机41可被称为深冷压缩机。第一制冷剂和第二制冷剂可为相同的制冷剂,如R600a,或者不同的制冷剂。
本发明实施例的冰箱,第三蒸发器36和第一蒸发器44均能够向第一储物间室21供冷,可使冰箱单一储物间室具有多温区功能,即使第一储物间室21能获得不同的制冷效果,以满足不同的制冷需求,能扩大第一储物间室21的温区范围,也就是说可使冰箱既具备深冷功能,又能满足日常制冷的节能需求。
在本发明的一些实施例中,第二蒸发器和第三蒸发器36可同步工作,例如串联,使高温级制冷循环回路30为单系统。在本发明的一些实施例中,高温级制冷循环回路30内设置阀门装置33。阀门装置33可在第二蒸发器工作时使第三蒸发器36不工作,可使高温级制冷循环回路30为多系统。
进一步地,阀门装置33的进口可与高温级冷凝装置32的出口连通。阀门装置33具有第一出口、第二出口和第三出口,第一高温级蒸发器35的进口与第一出口连通;第三蒸发器36的进口与第二出口连通。第三蒸发器36的出口连通第一高温级蒸发器35的进口,蒸发部37的进口连通第一高温级蒸发器35的出口。在另一些实施例中,第三蒸发器36的出口连通蒸发部37的进口,蒸发部37的出口连通第一高温级蒸发器35的进口。第三出口连通蒸发部37的进口。可使得蒸发部37单独工作或使得蒸发部37与第一高温级蒸发器35工作而第三蒸发器36不工作,提高深冷效率。第二高温级蒸发器38设置于第三出口和蒸发部37之间。在蒸发部37工作时,也可同时对第二高温级储物间室23制冷,提高高温级制冷循环回路30的工作效率,节能效果明显。第一高温级蒸发器35的进口与第一出口之间设置有第一节流装置341;第三蒸发器36的进口与第二出口之间设置有第二节流装置342;第二高温级蒸发器38的进口与第三出口之间设置有第三节流装置343。
在本发明的一些实施例中,第一储物间室21和第一高温级储物间室22沿冰箱的横向延伸方向并列设置,第二高温级储物间室23设置于第一储物间室21和第一高温级储物间室22的上侧。例如,第一高温级储物间室22可为冷冻室,第二高温级储物间室23可为冷藏室。第一储物间室21为具有多温区的多功能室。这样设置可使间室布局更加合理,存取相应物品更加方 便。
在本发明的一些实施例中,如图2、图3、图4所示,冰箱还包括送风装置50,用于促使气流流经第一蒸发器44和第三蒸发器36,并促使气流进入第一储物间室21。进一步地,第三蒸发器36包括第一供冷蒸发管,第一蒸发器44包括第二供冷蒸发管,第一供冷蒸发管与第二供冷蒸发管穿设于同一翅片组上。第三蒸发器36可设置于第一蒸发器44的上侧。进一步地,箱体20在第一储物间室21的后侧对应的位置处还形成有用于布置第三蒸发器36和第一蒸发器44的第一制冷室24,第一制冷室24通过第一送风结构与第一储物间室21连通,以通过第一送风结构向第一储物间室21提供制冷气流。
如图2至图4所示,具有第三蒸发器36和第一蒸发器44的蒸发器可为两进两出双流道蒸发器,结构为上下结构,当冰箱设定为正常运行时,高温级制冷循环回路30运行,上部第三蒸发器36制冷,此时蒸发器共用下部蒸发器翅片,换热面积大,换热效率高;当冰箱设定为深冷运行时,下部第一蒸发器44连接,深冷系统工作,下部蒸发器降温,同时共用上部蒸发器翅片,换热面积大,换热效率高。上下排布蒸发器结构,也可使换热均匀。可保证蒸发器换热面积利用率,减小双流道蒸发器尺寸,同时换热均匀,保证管路分布均匀,配合风道系统与制冷风机,既实现常温制冷与深冷制冷两种功能,又能保证常规制冷时节能目的。
在本发明的一些实施例中,如图1和图5所示,箱体20在第一高温级储物间室22的后侧对应的位置处还形成有用于布置第一高温级蒸发器35的第二制冷室,第二制冷室通过第二送风结构52与第一高温级储物间室22连通,以通过第二送风结构52向第一高温级储物间室22提供制冷气流。箱体20在第二高温级储物间室23的后侧对应的位置处还形成有用于布置第二高温级蒸发器38的第三制冷室,第三制冷室通过第三送风结构与第二高温级储物间室23连通,以通过第三送风结构向第二高温级储物间室23提供制冷气流。第一送风结构设置于第一制冷室24和第一储物间室21之间;第一送风结构的后侧面上设置有进风口,送风装置50设置于进风口处。第一送风结构的前侧面上设置有多个送风口54,第一送风结构51内设置有送风风道55。第一送风结构的下侧可设置回风风道56,实现蒸发器从底部送风上部出风。第二送风结构和第三送风结构均与第一送风结构51类似。
如图2所示,第三蒸发器36的出口管上设置有仅允许来自第三蒸发器36的制冷剂单向流出的阀门。该阀门可为单向阀39,单向阀39能起到防止单向阀39下游的第一制冷剂逆向通过。当低温级压缩机41运行时,第一蒸发器44的温度很低。由于第三蒸发器36与第一蒸发器44之间的距离较近,使得第三蒸发器36的管路温度也比较低,甚至会明显低于高温级制冷循环回路30内的位于第三蒸发器36下游的其他蒸发器的温度。该阀门能避免位于第三蒸发器36下游的其他供冷蒸发器内的第一制冷剂从第三蒸发器36的排出口流入第三蒸发器36内,从而能够避免高温级制冷循环回路30内的第一制冷剂逆向流动,保证了第一制冷剂的有效流通量,提高了整体制冷效率。
以R600a举例,当制冷剂温度为-50℃时,压力约为0.017Mpa,而R600a的压缩机吸气压力约为0.06Mpa,第三蒸发器36侧压力低于高温级压缩机31吸气压力,导致高温级制冷循环回路逐渐集聚在第三蒸发器36内,高温级制冷循环回路制冷剂逐渐减少,制冷不良。通过单向阀39可防止制冷剂逆流集聚第三蒸发器36内引发制冷不良。通过单向阀39无需控制程序调节阀体工作,即可解决因低温引起制冷剂集聚的问题,结构简单,可操作性强。
高温级冷凝装置32可包括冷凝器和防露管。低温级制冷循环回路40进一步包括低温级冷凝装置45和低温级节流装置43。高温级冷凝装置32的进口连通高温级压缩机31的出口,蒸发部37的出口连通第一高温级蒸发器35的进口,第一高温级蒸发器35的出口连通高温级压缩机31的进口。低温级压缩机41的出口连通低温级冷凝装置45的进口,低温级冷凝装置45的出口连通冷凝部42的进口,冷凝部42的出口连通低温级节流装置43,低温级节流装置43的出口连通第一蒸发器44的进口,第一蒸发器44的出口连通低温级压缩机41的进口。
在一些可选的实施例中,冷凝部42和蒸发部37可以形成冷凝蒸发器。冷凝蒸发器可以为套管换热器。在另一些可选的实施例中,冷凝部42和蒸发部37也可以为两个相互贴靠的铜管。两个铜管相互贴靠设置。在两个铜管之间的接触部位,可以采用锡焊固定,以强化传热。两个铜管外部可以包裹上铝箔。在另一些可选实施例中,冷凝部42和蒸发部37可共用换热翅片。蒸发部37和冷凝部42设置于第二制冷室内。当然,蒸发部37和冷凝部42也可设置于冰箱的其他位置处。
在本发明的一些实施例中,冰箱还包括通断装置62。第一储物间室21 和第二储物间室之间设置有连通风道61,通断装置62安装于连通风道61,以在结束使第一蒸发器44工作的深冷模式时,控制通断装置62导通连通风道61,以使第二储物间室内的气体进入第一储物间室21。图6中以结构框图示意性地示出了以第一高温级储物间室22作为第二储物间室时,连通风道61和通断装置62与第一储物间室21和第一高温级储物间室22的连接关系。当然,也可以以第二高温级储物间室23作为第二储物间室。例如,当第二储物间室为第一高温级储物间室22时,可以使第一高温级储物间室22内的气体进入第一储物间室21。当第二储物间室为第二高温级储物间室23时,可以使第二高温级储物间室23内的气体进入第一储物间室21。
进一步地,阀门装置33配置成在通断装置62导通连通风道61时,在第二蒸发器工作时使第三蒸发器36不工作。在通断装置62导通连通风道61时,若根据预设条件启动第二蒸发器后,在第二储物间室内的温度下降达到第二预设温度值时关闭第二蒸发器,其中第二预设温度值高于第二储物间室的预设停机温度值。在第一储物间室21内的温度上升达到第一预设温度值或第一预设温度范围内时,控制通断装置62断开连通风道61。通断装置62为风门,风门的动作部分外侧设置有保温结构,避免深冷工作时冷量损失以及风门冻坏。在本发明的一些其他实施例中,还可采用其他复叠式制冷系统。
如图7所示,本发明实施例还提供了一种冰箱的控制方法,冰箱的控制方法至少包括以下步骤S702至步骤S704:
步骤S702,结束使第一蒸发器44工作的深冷模式,以提高第一储物间室21内的温度。
步骤S704,控制通断装置62导通连通风道61,以使第二储物间室(第一高温级储物间室22和/或第二高温级储物间室23)内的气体进入第一储物间室21。
因为具有连通风道61和通断装置62,可在第一储物间室退出深冷模式后,在不增加额外耗电量的情况下,快速地使深冷间室切回普通间室,实现深冷间室的温度快速回升。具体地,当深冷间室退出时,深冷压缩机停止工作,此时,风门打开,由于深冷间室处于负压状态(温度低压强小),其他间室的空气流向深冷间室,实现间室内空气的混合,来达到不通过外部加热的方式,使深冷间室温度快速回升。
在本发明的一些实施例中,冰箱的控制方法还包括在第一储物间室21 内的温度上升达到第一预设温度值或第一预设温度范围内时,控制通断装置62断开连通风道61。可充分利用深冷间室的冷量,节能效果明显,智能化、智慧化程度高。
进一步地,在通断装置62导通连通风道61时,若根据预设条件启动第二蒸发器,以向第二储物间室提供冷量后,在第二储物间室内的温度下降达到第二预设温度值时关闭第二蒸发器,其中第二预设温度值高于第二储物间室的预设停机温度值。优选地,高温级压缩机31可为变频压缩机,在通断装置62导通连通风道61时,若根据预设条件启动第二蒸发器时,变频压缩机以最低运行功率运行。第二预设温度值与第二储物间室的预设停机温度值之间的差值为2℃至5℃。
在该实施例中,当其他间室温度达到开机点且第一储物间室未达到设定值,高温级制冷循环回路中的压缩机按照最小功率运行,且深冷间室单独的蒸发器回路关闭,即阀不切换向此侧。当T 其他间室=Tset-off+△T1时,高温级制冷循环回路中的压缩机停止工作,直到下次再达到开机点。△T1的设置根据实际试验条件设定,温度范围在2-5℃,可让高温级制冷循环回路中的压缩机尽快停机,加强与深冷间室的换热,使深冷间室温度尽快回升。
在本发明的一些实施例中,当第二蒸发器与第三蒸发器36同步工作时,即使与第二蒸发器对应的第二储物间室需要开启第二蒸发器,也不开启第二蒸发器,直至通断装置62关断连通风道61。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的控制方法,所述冰箱包括箱体、低温级制冷循环回路和通断装置,所述箱体内部形成有第一储物间室和第二储物间室,所述第一储物间室和所述第二储物间室之间设置有连通风道,所述通断装置安装于所述连通风道;所述低温级制冷循环回路包括为所述第一储物间室供冷的第一蒸发器;其中,所述冰箱的控制方法包括:
    结束使所述第一蒸发器工作的深冷模式,以提高所述第一储物间室内的温度;
    控制所述通断装置导通所述连通风道,以使所述第二储物间室内的气体进入所述第一储物间室。
  2. 根据权利要求1所述的冰箱的控制方法,还包括:
    在所述第一储物间室内的温度上升达到第一预设温度值或第一预设温度范围内时,控制所述通断装置断开所述连通风道。
  3. 根据权利要求1所述的冰箱的控制方法,其中,
    所述冰箱还包括高温级制冷循环回路,所述高温级制冷循环回路包括阀门装置、为所述第二储物间室供冷的第二蒸发器,以及为所述第一储物间室供冷的第三蒸发器,且所述阀门装置配置成在所述通断装置导通所述连通风道时,在所述第二蒸发器工作时使所述第三蒸发器不工作。
  4. 根据权利要求3所述的冰箱的控制方法,还包括:
    在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器,以向所述第二储物间室提供冷量后,在所述第二储物间室内的温度下降达到第二预设温度值时关闭所述第二蒸发器,其中所述第二预设温度值高于所述第二储物间室的预设停机温度值。
  5. 根据权利要求3或4所述的冰箱的控制方法,其中,
    所述高温级制冷循环回路还包括变频压缩机,在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器时,所述变频压缩机以最低运行功率运行。
  6. 根据权利要求4所述的冰箱的控制方法,其中,
    所述第二预设温度值与所述第二储物间室的预设停机温度值之间的差值为2℃至5℃。
  7. 根据权利要求1所述的冰箱的控制方法,其中,
    所述第二储物间室为多个,所述通断装置和所述连通风道也均为多个,至少两个所述第二储物间室的用于储物的预设温度范围不相同,或者所述第二储物间室的用于储物的预设温度范围相同。
  8. 一种冰箱,包括箱体,所述箱体内部形成有第一储物间室和第二储物间室,其中,所述冰箱还包括低温级制冷循环回路和通断装置;
    所述低温级制冷循环回路包括为所述第一储物间室供冷的第一蒸发器;且
    所述第一储物间室和所述第二储物间室之间设置有连通风道,所述通断装置安装于所述连通风道,以在结束使所述第一蒸发器工作的深冷模式时,控制所述通断装置导通所述连通风道,以使所述第二储物间室内的气体进入所述第一储物间室。
  9. 根据权利要求8所述的冰箱,其中,
    所述冰箱还包括高温级制冷循环回路,所述高温级制冷循环回路包括阀门装置、为所述第二储物间室供冷的第二蒸发器,以及为所述第一储物间室供冷的第三蒸发器;所述阀门装置配置成在所述通断装置导通所述连通风道时,在所述第二蒸发器工作时使所述第三蒸发器不工作;且
    在所述通断装置导通所述连通风道时,若根据预设条件启动所述第二蒸发器后,在所述第二储物间室内的温度下降达到第二预设温度值时关闭所述第二蒸发器,其中所述第二预设温度值高于所述第二储物间室的预设停机温度值;
    在所述第一储物间室内的温度上升达到第一预设温度值或第一预设温度范围内时,控制所述通断装置断开所述连通风道。
  10. 根据权利要求8所述的冰箱,其中,
    所述通断装置为风门,所述风门的动作部分外侧设置有保温结构。
PCT/CN2021/078167 2020-06-05 2021-02-26 冰箱的控制方法及冰箱 WO2021244077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010506521.XA CN113758134B (zh) 2020-06-05 2020-06-05 冰箱的控制方法及冰箱
CN202010506521.X 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244077A1 true WO2021244077A1 (zh) 2021-12-09

Family

ID=78785014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078167 WO2021244077A1 (zh) 2020-06-05 2021-02-26 冰箱的控制方法及冰箱

Country Status (2)

Country Link
CN (1) CN113758134B (zh)
WO (1) WO2021244077A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243055A (ja) * 2009-04-06 2010-10-28 Panasonic Corp 冷蔵庫
CN102538339A (zh) * 2012-02-13 2012-07-04 海尔集团公司 冰箱及冰箱控制方法
CN103175365A (zh) * 2013-04-23 2013-06-26 合肥美的荣事达电冰箱有限公司 冰箱
CN105222459A (zh) * 2014-06-30 2016-01-06 青岛海尔股份有限公司 冰箱
CN111059832A (zh) * 2019-12-27 2020-04-24 青岛海尔智能技术研发有限公司 冷藏冷冻装置
CN111059824A (zh) * 2018-10-17 2020-04-24 青岛海尔股份有限公司 一种风冷冰箱

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615434B2 (ja) * 1999-09-30 2005-02-02 三洋電機株式会社 冷蔵庫
JP2005201533A (ja) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd 保存庫
DE102012207684A1 (de) * 2012-05-09 2013-11-14 BSH Bosch und Siemens Hausgeräte GmbH Haushaltskältegerät mit zwei über einen Luftkanal verbundenen Innenräumen und zumindest einem Kältespeicher
WO2015184997A1 (zh) * 2014-06-06 2015-12-10 广东海洋大学 风循环智能解冻冰箱
CN106403341A (zh) * 2016-09-05 2017-02-15 珠海格力电器股份有限公司 一种多温区复叠式制冷系统及低温冷藏箱
CN107289711A (zh) * 2017-06-30 2017-10-24 青岛海尔股份有限公司 多门冰箱
CN208154896U (zh) * 2018-02-09 2018-11-27 松下电器研究开发(苏州)有限公司 热交换用箱体和具有该热交换用箱体的冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243055A (ja) * 2009-04-06 2010-10-28 Panasonic Corp 冷蔵庫
CN102538339A (zh) * 2012-02-13 2012-07-04 海尔集团公司 冰箱及冰箱控制方法
CN103175365A (zh) * 2013-04-23 2013-06-26 合肥美的荣事达电冰箱有限公司 冰箱
CN105222459A (zh) * 2014-06-30 2016-01-06 青岛海尔股份有限公司 冰箱
CN111059824A (zh) * 2018-10-17 2020-04-24 青岛海尔股份有限公司 一种风冷冰箱
CN111059832A (zh) * 2019-12-27 2020-04-24 青岛海尔智能技术研发有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN113758134A (zh) 2021-12-07
CN113758134B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2018121593A1 (zh) 冰箱节能制冷系统及具有该系统的冰箱运行方法
CN102102934B (zh) 冰箱及操作控制方法
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
CN108759138B (zh) 二次节流中间不完全冷却制冷系统的运行方法及系统
WO2018121426A1 (zh) 一种具有双蒸发器制冷系统的冰箱及其控制方法
CN212778129U (zh) 冰箱
JP6101926B2 (ja) 冷蔵庫
KR101204300B1 (ko) 이원 사이클 히트펌프시스템 및 이에 따른 히트펌프시스템의 제상방법
WO2021244077A1 (zh) 冰箱的控制方法及冰箱
WO2021218342A1 (zh) 冰箱的化霜控制方法
JP2004293820A (ja) 冷蔵庫
WO2022222587A1 (zh) 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机
CN212378323U (zh) 冰箱
CN212378322U (zh) 冰箱
CN212778133U (zh) 冰箱
CN213687346U (zh) 一种蒸发冷热泵机组
WO2021218343A1 (zh) 冰箱及其控制方法
WO2021218344A1 (zh) 冰箱
JP2000283626A (ja) 冷蔵庫
CN214536899U (zh) 冷藏冷冻装置
WO2006017959A1 (fr) Refrigerateur composite possedant un systeme de refrigeration a cycles multiples et son procede de controle
WO2018147113A1 (ja) 冷蔵庫
CN212378324U (zh) 冰箱
CN212778131U (zh) 冰箱
CN212778134U (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817110

Country of ref document: EP

Kind code of ref document: A1