WO2021218343A1 - 冰箱及其控制方法 - Google Patents

冰箱及其控制方法 Download PDF

Info

Publication number
WO2021218343A1
WO2021218343A1 PCT/CN2021/078170 CN2021078170W WO2021218343A1 WO 2021218343 A1 WO2021218343 A1 WO 2021218343A1 CN 2021078170 W CN2021078170 W CN 2021078170W WO 2021218343 A1 WO2021218343 A1 WO 2021218343A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
storage compartment
refrigerator
cooling
refrigeration cycle
Prior art date
Application number
PCT/CN2021/078170
Other languages
English (en)
French (fr)
Inventor
宋向鹏
刘山山
戚斐斐
刘建如
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021218343A1 publication Critical patent/WO2021218343A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to the field of refrigeration, in particular to a refrigerator and a control method thereof.
  • the temperature range of the refrigerator variable temperature compartment on the market is mostly adjusted between 8-18°C, and the overall design is more conventional. With the gradual improvement of people’s living standards, this type of temperature zone refrigerator can no longer meet everyone’s needs. It is necessary to design high-end refrigerators with a wider temperature range, more complete functions, and can meet more needs of users. Preservation in the glass state below -40°C is conducive to maximizing the nutritional value of food. There is a demand for ultra-low temperature compartments (-40 ⁇ -60°C) in the high-end user market. In order to improve user satisfaction, focus on user experience.
  • the conventional cascade compression refrigeration system is usually composed of two separate refrigeration cycles, which are called a high-temperature refrigeration cycle (referred to as a high-temperature part) and a low-temperature refrigeration cycle (referred to as a low-temperature part).
  • the high-temperature part uses a first refrigerant with a relatively high evaporation temperature
  • the low-temperature part uses a second refrigerant with a relatively low evaporation temperature.
  • a condensing evaporator is used, which uses the cold energy produced by the first refrigerant in the high-temperature part to condense the second refrigerant vapor discharged from the compressor in the low-temperature part, so as to achieve a low temperature below -60.
  • the high-temperature refrigeration cycle is only used to supply cold to the condenser of the low-temperature refrigeration cycle, resulting in low refrigeration efficiency of the cascade compression refrigeration system and the conventional deep refrigeration system.
  • the refrigerator has only a single temperature function, which also makes the system inefficient.
  • the inventor of the present invention proposes to use an air-cooled evaporator to perform cryogenic operation of the storage compartment.
  • the inventor found that if the low-temperature system is set as an air-cooled evaporator, The temperature of the compartment is low, and the evaporator frosts faster.
  • the surface temperature of the evaporator needs to be heated to above 0°C, and the room temperature rises higher, which cannot guarantee the effect of food preservation. Based on this, the present invention proposes a novel refrigerator and its control method.
  • the present invention provides a refrigerator, including a box body with a first storage compartment formed inside the box body, which further includes a high-temperature refrigeration cycle circuit and a low-temperature refrigeration cycle circuit;
  • the high-temperature refrigeration cycle circuit includes a first evaporator for absorbing heat and an evaporator, and the first evaporator is used for cooling the first storage compartment;
  • the low-temperature refrigeration cycle includes a condensing part and a second evaporator for absorbing heat, the condensing part is thermally connected to the evaporating part, and the second evaporator serves the first storage by direct cooling. Room for cooling.
  • the box body includes an inner liner, and the inner liner has the first storage compartment; the second evaporator is arranged on the outer wall of the inner liner.
  • the second evaporator includes an evaporation tube that is wound around the two side walls, top wall and bottom wall of the inner container; or,
  • the second evaporator is a tube-plate evaporator, which is arranged on the two side walls, the top wall and the bottom wall of the inner container.
  • the high-temperature refrigeration cycle circuit further includes a control valve having a first outlet and a second outlet, and the inlet of the evaporator is in communication with the first outlet; The inlet is in communication with the second outlet; the outlet of the first evaporator is in communication with the inlet of the evaporator.
  • a second storage compartment is further formed inside the box;
  • the high-temperature refrigeration cycle circuit further includes a third evaporator;
  • the third evaporator is used for cooling the second storage compartment; the inlet of the third evaporator is connected to the outlet of the evaporator.
  • a third storage compartment is further formed inside the box;
  • the high-temperature refrigeration cycle circuit further includes a fourth evaporator, and the fourth evaporator is used to supply the third storage compartment Cold, the fourth evaporator is arranged between the inlet of the evaporation part and the first outlet;
  • the control valve has a third outlet, and the third outlet is in communication with the inlet of the third evaporator;
  • a first throttling device is provided between the inlet of the fourth evaporator and the first outlet;
  • a second throttling device is provided between the inlet of the first evaporator and the second outlet;
  • a third throttling device is provided between the inlet of the third evaporator and the third outlet;
  • the first storage compartment and the second storage compartment are arranged side by side along the lateral extension direction of the refrigerator, and the third storage compartment is arranged in the first storage compartment and the first storage compartment. 2.
  • the outlet pipe of the first evaporator is provided with a valve that only allows the refrigerant from the second evaporator to flow out in one direction.
  • the refrigerator further includes an air supply device, so that the first evaporator provides cooling for the first storage compartment through an air-cooling manner, and works when the refrigerator is in the second evaporator.
  • the air supply device In the deep cooling mode, turn on the air supply device;
  • the box body is further formed with a first refrigeration chamber for arranging the first evaporator at a position corresponding to the rear side of the first storage compartment, and the first refrigeration chamber is connected with the first air supply structure through a first air supply structure.
  • the first storage compartment is in communication to provide a cooling airflow to the first storage compartment through the first air blowing structure.
  • the box body is further formed with a second refrigeration chamber for arranging the third evaporator at a position corresponding to the rear side of the second storage compartment, and the second refrigeration chamber passes through the second refrigeration chamber.
  • the air supply structure communicates with the second storage compartment to provide a cooling air flow to the second storage compartment through the second air supply structure;
  • the evaporating part and the condensing part are arranged in the second refrigeration chamber.
  • the present invention also provides a control method of a refrigerator.
  • the refrigerator includes a cabinet, a high-temperature refrigeration cycle circuit, and a low-temperature refrigeration cycle circuit.
  • a first storage compartment is formed inside the cabinet, so
  • the high-temperature refrigeration cycle circuit includes a first evaporator for absorbing heat and an evaporator, the first evaporator cools the first storage compartment by air cooling;
  • the low-temperature refrigeration cycle circuit includes A condensation part and a second evaporator for absorbing heat, the condensation part is thermally connected to the evaporator, and the second evaporator provides cooling for the first storage compartment through a direct cooling method, wherein,
  • the control methods include:
  • the refrigerator When the frosting amount reaches the preset frosting amount, the refrigerator is placed in a normal cooling mode in which the first evaporator works.
  • the refrigerator further includes an air supply device, so that the first evaporator provides cooling for the first storage compartment through an air-cooling manner, and works when the refrigerator is in the second evaporator. In the deep cooling mode, turn on the air supply device.
  • the high-temperature refrigeration cycle includes a first evaporator
  • the low-temperature refrigeration cycle includes a second evaporator.
  • Both the first evaporator and the second evaporator can supply the first storage compartment. Cold, can make the single storage compartment of the refrigerator have the function of multiple temperature zones, even if the first storage compartment can obtain different refrigeration effects to meet different refrigeration requirements and storage requirements, it can expand the capacity of the first storage compartment.
  • the temperature range which means that the refrigerator can not only have the deep cooling function, but also meet the energy-saving requirements of daily refrigeration.
  • the second evaporator provides cooling for the first storage compartment through direct cooling, which can prevent the second evaporator from frosting faster, prevent frequent defrosting, and reduce the temperature fluctuation of the compartment, and ensure the food preservation effect .
  • the first evaporator and the second evaporator are arranged separately, which can prevent the temperature of the two evaporators from affecting each other, and can also prevent the evaporator from being large in size and occupying a large space, so that The storage space becomes smaller.
  • the refrigerator when the first evaporator is working, that is, in the normal cooling mode, the refrigerator is an air-cooled product, and there is no hidden danger of frosting.
  • the second evaporator works with direct cooling, and it works with the fan used when the first evaporator works, which can cool down quickly and cool evenly.
  • the refrigerator can run for a long time. , Less frost.
  • the deep cooling mode is running for a long time and the compartment is too frosted and icing, the user can switch to the normal cooling mode and use the normal air-cooled first evaporator to refrigerate and defrost.
  • each evaporator and evaporator in the high-temperature refrigeration cycle circuit can ensure the refrigeration efficiency of each evaporator during normal refrigeration, improve the energy efficiency of the refrigerator, and have obvious energy-saving effects. That is to say, the refrigerator can ensure the temperature control of each compartment when the high-temperature refrigeration cycle is operated independently, so as to achieve the purpose of energy saving, and can use the low-temperature refrigeration cycle to realize the deep cooling function of the refrigerator.
  • the second evaporator is wound around the two side walls, top wall and bottom wall of the inner tank, which significantly improves the direct cooling efficiency.
  • Fig. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a refrigeration system in a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a refrigeration system in a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is a partial structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 5 is a schematic sectional view of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 6 is a partial structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator may include a cabinet 20 and a refrigeration system. Wherein, one or more storage compartments are also formed in the box body 20.
  • the storage compartments may include the first storage compartment 21.
  • the storage compartment may include a first storage compartment 21, a second storage compartment 22 and a third storage compartment 23.
  • the refrigeration system may be arranged in the box 20.
  • the refrigeration system includes a high-temperature refrigeration cycle 30 and a low-temperature refrigeration cycle 40.
  • the refrigeration system may also be referred to as a cascade compression refrigeration system.
  • the high-temperature refrigeration cycle 30 is used to circulate the first refrigerant, and a first evaporator 36 and an evaporator 37 for absorbing heat are provided therein.
  • the first evaporator 36 is used to encourage the first refrigerant flowing therethrough to absorb heat and to provide cooling for the first storage compartment 21.
  • the high-temperature refrigeration cycle 30 further includes a high-temperature compressor 31 and a high-temperature condensing device 32.
  • the low-temperature refrigeration cycle 40 is used to circulate the second refrigerant, and a condensing part 42 and a second evaporator 44 are provided therein.
  • the second evaporator 44 is used to promote the second refrigerant flowing through it to absorb heat and to provide cooling for the first storage compartment 21.
  • the low-temperature refrigeration cycle 40 also includes a low-temperature compressor 41.
  • the evaporating part 37 is used for urging the first refrigerant flowing therethrough to absorb the heat of the second refrigerant flowing through the condensing part 42 in the low-temperature refrigeration cycle 40.
  • the first refrigerant and the second refrigerant may be the same refrigerant, such as R600a, or different refrigerants.
  • Refrigerant also known as refrigerant, usually uses phase change to complete energy conversion. It is a working substance circulating in the refrigeration system of refrigeration equipment. Its working principle is: the refrigerant absorbs the heat of the cooled substance in the evaporator and evaporates , In the condenser, the absorbed heat is transferred to the surrounding air or water, and it is cooled into a liquid, reciprocating, and achieving the effect of refrigeration by means of the change of state.
  • the "high temperature” and “low temperature” in the "high-temperature refrigeration cycle 30" and the "low-temperature refrigeration cycle 40" are relative terms. Relatively speaking, the first refrigeration flowing through the high-temperature refrigeration cycle 30 The evaporation temperature of the refrigerant is higher than the evaporation temperature of the second refrigerant flowing in the low-temperature refrigeration cycle 40.
  • a first evaporator 36 is provided in the high-temperature refrigeration cycle 30.
  • the first evaporator 36 is used for cooling the first storage compartment 21, and a second evaporator 44 is provided in the low-temperature refrigeration cycle 40 for cooling the first storage compartment 21.
  • the energy utilization efficiency in the high-temperature refrigeration cycle 30 is improved, and the refrigeration efficiency of the refrigerator is improved.
  • Both the first evaporator 36 and the second evaporator 44 can supply cold to the first storage compartment 21, so that a single storage compartment of the refrigerator can have the function of multiple temperature zones, even if the first storage compartment 21 can obtain different
  • the refrigeration effect can meet different refrigeration requirements and can expand the temperature range of the first storage compartment 21, which means that the refrigerator can not only have a deep cooling function, but also meet the energy-saving requirements of daily refrigeration.
  • the temperature of the first storage compartment 21 can be at -18°C by the first evaporator 36, and the temperature of the first storage compartment 21 can be at -60°C by the second evaporator 44.
  • the second evaporator 44 supplies cold to the first storage compartment 21 through a direct cooling method.
  • the box body 20 includes an inner liner, and the inner liner has a first storage compartment 21; the second evaporator 44 is arranged on the outer wall of the inner liner.
  • the second evaporator 44 includes an evaporation tube, which is wound around the two side walls, the top wall and the bottom wall of the inner container, and can be spirally wound or other winding methods.
  • the second evaporator 44 is a tube-plate evaporator, which is arranged on the two side walls, the wall and the bottom wall of the inner container.
  • the second evaporator 44 provides cold for the first storage compartment 21 by direct cooling, which can prevent the second evaporator 44 from frosting faster, prevent frequent defrosting, and reduce the temperature fluctuation of the compartment, and ensure the food preservation effect . It can maintain low temperature and cryogenic operation for a long time to ensure long-term storage of ingredients, which greatly improves the product use effect and user experience.
  • the first evaporator 36 and the second evaporator 44 are arranged separately, which can prevent the temperature of the two evaporators from affecting each other, and can also prevent the evaporator from being large in size and occupying a large space, which reduces the storage space.
  • the second evaporator 44 is wound around the two side walls, the top wall and the bottom wall of the inner tank, which significantly improves the direct cooling efficiency.
  • the high-temperature refrigeration cycle 30 further includes a control valve 33.
  • the inlet of the control valve 33 can be communicated with the inlet of the high-temperature condensing device 32.
  • the control valve 33 has a first outlet and a second outlet.
  • the inlet of the first evaporator 36 is in communication with the second outlet; the inlet of the evaporator 37 is in communication with the first outlet.
  • the outlet of the first evaporator 36 communicates with the inlet of the evaporator 37.
  • the control valve 33 may be a switching valve.
  • the high-temperature refrigeration cycle circuit further includes a third evaporator 35.
  • the third evaporator 35 is used for cooling the second storage compartment 22; the inlet of the third evaporator 35 is connected to the outlet of the evaporator 37.
  • the high-temperature refrigeration cycle circuit further includes a fourth evaporator 38.
  • the fourth evaporator 38 is used for cooling the third storage compartment 23.
  • the fourth evaporator 38 is provided between the inlet of the evaporation part 37 and the first outlet.
  • each evaporator and evaporator 37 in the high-temperature refrigeration cycle loop can ensure the refrigeration efficiency of each evaporator during conventional refrigeration, improve the energy efficiency of the refrigerator, and have obvious energy-saving effects. That is to say, the refrigerator can ensure the temperature control of each compartment when the high-temperature refrigeration cycle 30 is operating alone, so as to achieve the purpose of energy saving, and can use the low-temperature refrigeration cycle 40 to realize the deep cooling function of the refrigerator.
  • the control valve 33 has a third outlet.
  • the third outlet communicates with the inlet of the third evaporator 35.
  • a first throttling device 343 is arranged between the inlet and the first outlet of the fourth evaporator 38; a second throttling device 342 is arranged between the inlet and the second outlet of the first evaporator 36;
  • a third throttle device 341 is provided between the inlet and the third outlet.
  • an overall throttling device may be provided at the inlet of the control valve 33.
  • the first throttling device 343, the second throttling device 342, and the third throttling device 341 may all be capillary tubes.
  • the first throttle device 343, the second throttle device 342, and the third throttle device 341 may all be electromagnetic expansion valves.
  • the control valve 33 can be selected as a diverter valve with one inlet and multiple outlets.
  • the first storage compartment 21 and the second storage compartment 22 are arranged side by side along the lateral extension direction of the refrigerator, and the third storage compartment 23 is arranged in the first storage compartment.
  • the second storage compartment 22 may be a freezer compartment
  • the first storage compartment 21 may be a multi-functional room with multiple temperature zones
  • the third storage compartment 23 may be a refrigerating compartment. This arrangement makes the layout of the compartments more reasonable and makes it easier to access the corresponding items.
  • the refrigerator further includes an air blowing device 50, so that the first evaporator 36 provides cooling to the first storage compartment 21 through air cooling, that is,
  • the air blowing device 50 is used to encourage the airflow to flow through the first evaporator 36 and to encourage the airflow to enter the first storage compartment 21.
  • the air blowing device 50 is turned on.
  • the refrigerator when the first evaporator 36 is working, that is, in the normal cooling mode, the refrigerator is an air-cooled product, and there is no hidden danger of frosting.
  • the second evaporator 44 works in direct cooling, and cooperates with the fan 50 used when the first evaporator 36 works, which can cool down quickly and evenly cool the refrigerator. It can run for a long time with less frost.
  • the user can switch to the normal cooling mode and cool and defrost through the normal air-cooled first evaporator 36. It can maintain low temperature and cryogenic operation for a long time to ensure long-term storage of ingredients.
  • the residual frost layer in the compartment can be removed by the air cooling system of the first evaporator 36, which greatly improves the product use effect and user experience.
  • the box body 20 is further formed with a first refrigeration chamber 24 for arranging the first evaporator 36 at a position corresponding to the rear side of the first storage compartment 21, and the first refrigeration chamber 24 passes through the first air supply structure 51 It communicates with the first storage compartment 21, and provides a cooling air flow to the first storage compartment 21 through the first air blowing structure 51.
  • the box body 20 is further formed with a second refrigeration system for arranging the third evaporator 35 at a position corresponding to the rear side of the second storage compartment 22.
  • the second refrigeration chamber communicates with the second storage compartment 22 through the second air supply structure 52, so as to provide a cooling airflow to the second storage compartment 22 through the second air supply structure 52.
  • the box body 20 is also formed with a third refrigeration chamber for arranging the fourth evaporator 38 at a position corresponding to the rear side of the third storage compartment 23.
  • the third refrigeration chamber is connected to the third storage compartment through the third air supply structure.
  • the chamber 23 communicates to provide a cooling airflow to the third storage compartment 23 through the third air blowing structure.
  • the first air supply structure is arranged between the first refrigeration chamber 24 and the first storage compartment 21; the rear side of the first air supply structure 51 is provided with an air inlet, and the air supply device 50 is arranged at the air inlet.
  • a plurality of air blowing ports 54 are provided on the front side of the first air blowing structure 51, and air blowing ducts 55 are provided in the first air blowing structure 51.
  • a return air duct 56 can be provided on the lower side of the first air supply structure, so that the evaporator delivers air from the bottom to the upper part.
  • Both the second air supply structure and the third air supply structure are similar to the first air supply structure 51.
  • the outlet pipe of the first evaporator 36 is provided with a valve that only allows the refrigerant from the first evaporator 36 to flow out in one direction.
  • the valve may be a one-way valve 39, and the one-way valve 39 can prevent the first refrigerant downstream of the one-way valve 39 from passing in reverse.
  • the temperature of the second evaporator 44 is very low. The low temperature in the first storage compartment 21 will cause the pipe temperature of the first evaporator 36 to be relatively low, and may even be significantly lower than that of other evaporators located downstream of the first evaporator 36 in the high-temperature refrigeration cycle 30. temperature.
  • the valve can prevent the first refrigerant in other cooling evaporators downstream of the first evaporator 36 from flowing into the first evaporator 36 from the discharge port of the first evaporator 36, thereby avoiding the high temperature refrigeration cycle 30
  • the reverse flow of the first refrigerant ensures the effective circulation of the first refrigerant and improves the overall refrigeration efficiency. This can prevent the first refrigerant of the high-temperature refrigeration cycle from gradually accumulating in the first evaporator 36, and the refrigerant of the high-temperature refrigeration cycle is gradually reduced, resulting in poor cooling.
  • the check valve 39 can prevent the refrigerant from flowing backward and accumulating in the first evaporator 36 to cause poor cooling.
  • the check valve 39 can solve the problem of refrigerant accumulation caused by low temperature without controlling the program to adjust the operation of the valve body.
  • the structure is simple and the operability is strong.
  • the high-temperature condensing device 32 may include a condenser and an anti-dew pipe.
  • the low-temperature refrigeration cycle 40 further includes a low-temperature condensing device 45 and a low-temperature throttling device 43.
  • the inlet of the high-temperature stage condenser 32 is connected to the outlet of the high-temperature stage compressor 31, and the outlet of the third evaporator 35 is connected to the inlet of the high-temperature stage compressor 31.
  • the outlet of the low-temperature compressor 41 is connected to the inlet of the low-temperature condensing device 45, the outlet of the low-temperature condensing device 45 is connected to the inlet of the condensing section 42, and the outlet of the condensing section 42 is connected to the low-temperature throttling device 43 and the low-temperature throttling device 43.
  • the outlet is connected to the inlet of the second evaporator 44, and the outlet of the second evaporator 44 is connected to the inlet of the low-temperature stage compressor 41.
  • the condensing part 42 and the evaporating part 37 may form a condensing evaporator.
  • the condensing evaporator can be a double-pipe heat exchanger.
  • the double-pipe heat exchanger uses two standard pipes of different sizes to be sleeved and connected to each other to form a concentric round sleeve.
  • the outer channel is called the shell side and the inner channel is called the tube side. Two different media can flow in the opposite direction (or the same direction) in the shell side and the tube side to achieve the effect of heat exchange.
  • the evaporation part 37 may be a tube pass
  • the condensing part 42 may be a shell pass.
  • the condensing part 42 and the evaporating part 37 may also be two copper pipes that abut against each other.
  • the two copper pipes are arranged close to each other.
  • the contact part between the two copper pipes can be fixed by soldering to enhance heat transfer.
  • the outside of the two copper tubes can be wrapped with aluminum foil.
  • the condensing part 42 and the evaporating part 37 may share heat exchange fins.
  • the evaporating unit 37 and the condensing unit 42 are provided in the second refrigerating chamber.
  • the evaporating part 37 and the condensing part 42 may also be arranged at other positions of the refrigerator.
  • the embodiment of the present invention also provides a control method of a refrigerator.
  • the refrigerator includes a cabinet 20, a high-temperature refrigeration cycle 30, and a low-temperature refrigeration cycle 40.
  • the refrigeration cycle includes a first evaporator 36 and an evaporator 37 for absorbing heat.
  • the first evaporator 36 provides cooling for the first storage compartment 21 by means of air cooling.
  • the low-temperature refrigeration cycle 40 includes a condensing part 42 and a second evaporator 44 for absorbing heat.
  • the condensing part 42 is thermally connected to the evaporating part 37.
  • the second evaporator 44 supplies the first storage compartment 21 through direct cooling. cold.
  • control method includes detecting the amount of frost in the first storage compartment 21 when the refrigerator is in a deep cooling mode in which the second evaporator 44 is working.
  • the frosting amount reaches the preset frosting amount, the refrigerator is placed in the normal cooling mode in which the first evaporator 36 works.
  • control method of the refrigerator further includes turning on the air blowing device 50 when the refrigerator is in the deep cooling mode in which the second evaporator 44 works.
  • the refrigerator when the first evaporator 36 is working, that is, in the normal cooling mode, the refrigerator is an air-cooled product, and there is no hidden danger of frosting.
  • the second evaporator 44 works with direct cooling, and cooperates with the fan used when the first evaporator 36 works, which can cool down quickly and cool evenly. Long-term operation, less frost.
  • the user can switch to the normal cooling mode and cool and defrost through the normal air-cooled first evaporator 36.

Abstract

一种冰箱及其控制方法。冰箱包括箱体,箱体内部形成有第一储物间室,还包括高温级制冷循环回路和低温级制冷循环回路;高温级制冷循环回路包括用于吸热的第一蒸发器和蒸发部,第一蒸发器用于为第一储物间室供冷;低温级制冷循环回路包括冷凝部和用于吸热的第二蒸发器,冷凝部与蒸发部热连接,第二蒸发器通过直冷方式为第一储物间室供冷。使冰箱单一储物间室具有多温区功能,即使第一储物间室能获得不同的制冷效果,以满足不同的制冷需求和储物需求,第二蒸发器通过直冷方式为第一储物间室供冷,可防止第二蒸发器结霜较快,防止需要频繁化霜时,间室温度波动较小,保证食品保鲜效果。

Description

冰箱及其控制方法 技术领域
本发明涉及制冷领域,特别是涉及一种冰箱及其控制方法。
背景技术
目前,市场上的冰箱变温间室温度范围大多在8-18℃之间调节,整体设计较常规。随着人们生活水平的逐渐提升,此类温区冰箱已不能很好地满足大家的需求,需要设计出温度范围更广,功能更齐全,可以满足用户的更多需求的高端冰箱,针对食材在-40℃以下玻璃态保存,有利于最大保存食物营养价值,高端用户市场上存在对超低温间室(-40~-60℃)的需求,为提高用户满意度,紧抓用户体验。为此,常规的复叠式压缩制冷系统通常由两个单独的制冷循环回路组成,分别称为高温级制冷循环回路(简称高温部分)及低温级制冷循环回路(简称低温部分)。高温部分使用蒸发温度相对较高的第一制冷剂,低温部分使用蒸发温度相对较低的第二制冷剂。并采用冷凝蒸发器,其利用高温部分的第一制冷剂制取的冷量,使低温部分的压缩机排出的第二制冷剂蒸气凝结,从而实现-60以下低温。然而,现有技术中的部分复叠式压缩制冷系统,高温级制冷循环回路仅用于向低温级制冷循环回路的冷凝器供冷,导致复叠式压缩制冷系统的制冷效率低,而且常规深冷冰箱只具备单一温度功能,也使得系统效率较低。
发明内容
为了克服现有深冷冰箱的至少一个技术缺陷,本发明的发明人提出了利用风冷蒸发器进行储物间室的深冷操作,然而发明人发现,低温系统若设置为风冷蒸发器,间室温度较低,蒸发器结霜较快,化霜时需将蒸发器表面温度加热至0℃以上,间室温升较高,无法保证食品保鲜效果。基于此,本发明提出了一种新颖的冰箱及其控制方法。
一方面,本发明提供了一种冰箱,包括箱体,所述箱体内部形成有第一储物间室,其还包括高温级制冷循环回路和低温级制冷循环回路;
所述高温级制冷循环回路包括用于吸热的第一蒸发器和蒸发部,所述第一蒸发器用于为所述第一储物间室供冷;
所述低温级制冷循环回路包括冷凝部和用于吸热的第二蒸发器,所述冷凝部与所述蒸发部热连接,所述第二蒸发器通过直冷方式为所述第一储物间室供冷。
可选地,所述箱体包括内胆,所述内胆内具有所述第一储物间室;所述第二蒸发器设置于所述内胆的外壁上。
可选地,所述第二蒸发器包括蒸发管,所述蒸发管缠绕于所述内胆的两个侧壁、顶壁和底壁;或,
所述第二蒸发器为管板式蒸发器,设置于所述内胆的两个侧壁、顶壁和底壁上。
可选地,所述高温级制冷循环回路还包括控制阀,所述控制阀具有第一出口和第二出口,所述蒸发部的进口与所述第一出口连通;所述第一蒸发器的进口与所述第二出口连通;所述第一蒸发器的出口连通所述蒸发部的进口。
可选地,所述箱体内部还形成有第二储物间室;所述高温级制冷循环回路还包括第三蒸发器;
所述第三蒸发器用于为所述第二储物间室供冷;所述第三蒸发器的进口连通所述蒸发部的出口。
可选地,所述箱体内部还形成有第三储物间室;所述高温级制冷循环回路还包括第四蒸发器,所述第四蒸发器用于为所述第三储物间室供冷,所述第四蒸发器设置于所述蒸发部的进口和所述第一出口之间;
所述控制阀具有第三出口,所述第三出口与所述第三蒸发器的进口连通;
所述第四蒸发器的进口与所述第一出口之间设置有第一节流装置;
所述第一蒸发器的进口与所述第二出口之间设置有第二节流装置;
所述第三蒸发器的进口与所述第三出口之间设置有第三节流装置;
所述第一储物间室和所述第二储物间室沿所述冰箱的横向延伸方向并列设置,所述第三储物间室设置于所述第一储物间室和所述第二储物间室的上侧;
所述第一蒸发器的出口管上设置有仅允许来自所述第二蒸发器的制冷剂单向流出的阀门。
可选地,所述冰箱还包括送风装置,以使所述第一蒸发器通过风冷方式 为所述第一储物间室供冷,且在所述冰箱处于所述第二蒸发器工作的深冷模式时,开启所述送风装置;
所述箱体在所述第一储物间室的后侧对应的位置处还形成有用于布置所述第一蒸发器的第一制冷室,所述第一制冷室通过第一送风结构与所述第一储物间室连通,以通过所述第一送风结构向所述第一储物间室提供制冷气流。
可选地,所述箱体在所述第二储物间室的后侧对应的位置处还形成有用于布置所述第三蒸发器的第二制冷室,所述第二制冷室通过第二送风结构与所述第二储物间室连通,以通过所述第二送风结构向所述第二储物间室提供制冷气流;
所述蒸发部和所述冷凝部设置于所述第二制冷室内。
另一方面,本发明还提供了一种冰箱的控制方法,所述冰箱包括箱体、高温级制冷循环回路和低温级制冷循环回路,所述箱体内部形成有第一储物间室,所述高温级制冷循环回路包括用于吸热的第一蒸发器和蒸发部,所述第一蒸发器通过风冷方式为所述第一储物间室供冷;所述低温级制冷循环回路包括冷凝部和用于吸热的第二蒸发器,所述冷凝部与所述蒸发部热连接,所述第二蒸发器通过直冷方式为所述第一储物间室供冷,其中,所述控制方法包括:
在所述冰箱处于所述第二蒸发器工作的深冷模式时,检测所述第一储物间室内的结霜量;
在所述结霜量达到预设结霜量时,使所述冰箱处于所述第一蒸发器工作的正常制冷模式。
可选地,所述冰箱还包括送风装置,以使所述第一蒸发器通过风冷方式为所述第一储物间室供冷,且在所述冰箱处于所述第二蒸发器工作的深冷模式时,开启所述送风装置。
本发明的冰箱及其控制方法,高温级制冷循环回路包括第一蒸发器,低温级制冷循环回路包括第二蒸发器,第一蒸发器和第二蒸发器均能够向第一储物间室供冷,可使冰箱单一储物间室具有多温区功能,即使第一储物间室能获得不同的制冷效果,以满足不同的制冷需求和储物需求,能扩大第一储物间室的温区范围,也就是说可使冰箱既具备深冷功能,又能满足日常制冷的节能需求。特别地,第二蒸发器通过直冷方式为第一储物间室供冷,可防 止第二蒸发器结霜较快,防止需要频繁化霜时,间室温度波动较小,保证食品保鲜效果。
进一步地,本发明的冰箱及其控制方法中,第一蒸发器和第二蒸发器分开设置,可防止两个蒸发器温度相互影响,也可防止蒸发器尺寸较大,占用较大空间,使得储物空间变小。
进一步地,本发明的冰箱及其控制方法,在第一蒸发器工作时,即正常制冷模式下,冰箱为风冷产品,无结霜隐患。当用户切换为第二蒸发器工作的深冷模式时,第二蒸发器直冷工作,与第一蒸发器工作时用的风机配合,既可快速降温,又可均匀制冷,冰箱可长时间运行,结霜较少。当深冷模式长时间运行导致间室结霜结冰过多时,用户可切换为正常制冷模式,通过正常风冷的第一蒸发器制冷化霜。可长时间维持低温深冷运行,保证食材长时间存储,同时若需要除霜,可通过第一蒸发器的风冷系统除去间室残留霜层,大大提高产品使用效果和用户体验。
进一步地,高温级制冷循环回路中各个蒸发器和蒸发部的布置位置,可保证正常制冷时各个蒸发器的制冷效率,提高冰箱能效,节能效果明显。也就是说,该冰箱能保证高温级制冷循环回路单独运行时各间室温度控制,达到节能目的,又能利用低温级制冷循环回路实现冰箱深冷功能。第二蒸发器缠绕于内胆的两个侧壁、顶壁和底壁,显著提高了直冷效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱中制冷系统的示意图;
图3是根据本发明一个实施例的冰箱中制冷系统的示意图;
图4是根据本发明一个实施例的冰箱的局部结构示意图;
图5是根据本发明一个实施例的冰箱的局部结构剖切示意图;
图6是根据本发明一个实施例的冰箱的局部结构示意图。
具体实施方式
图1是根据本发明一个实施例的冰箱的示意图。如图1所示,并参考图2至图6,本发明实施例提供了一种冰箱,冰箱可包括箱体20和制冷系统。其中,箱体20内还形成有一个或多个储物间室,在一些实施例中,储物间室可以包括第一储物间室21。在一些实施例中,储物间室可以包括第一储物间室21、第二储物间室22和第三储物间室23。制冷系统可设置于箱体20内,制冷系统包括高温级制冷循环回路30和低温级制冷循环回路40,该制冷系统也可被称为复叠式压缩制冷系统。
如图2和图3所示,高温级制冷循环回路30用于流通第一制冷剂,并且其内设置有用于吸热的第一蒸发器36和蒸发部37。第一蒸发器36用于促使流经其的第一制冷剂吸热,并用于为第一储物间室21供冷。高温级制冷循环回路30还包括高温级压缩机31和高温级冷凝装置32。低温级制冷循环回路40用于流通第二制冷剂,并且其内设置有冷凝部42和第二蒸发器44。其中,第二蒸发器44用于促使流经其的第二制冷剂吸热,并用于为第一储物间室21供冷。低温级制冷循环回路40还包括低温级压缩机41。蒸发部37用于促使流经其的第一制冷剂吸收流经低温级制冷循环回路40内的冷凝部42的第二制冷剂的热量。第一制冷剂和第二制冷剂可为相同的制冷剂,如R600a,或不同的制冷剂。
制冷剂,又称冷媒,通常以相变来完成能量转化,是在制冷设备的制冷系统中进行循环流动的工作物质,其工作原理是:制冷剂在蒸发器内吸收被冷却物质的热量而蒸发,在冷凝器中将所吸收的热量传给周围的空气或者水,而被冷却为液体,往复循环,借助于状态的变化来达到制冷的作用。“高温级制冷循环回路30”和“低温级制冷循环回路40”中的“高温”和“低温”是相对而言的,相对而言,高温级制冷循环回路30内所流经的第一制冷剂的蒸发温度高于低温级制冷循环回路40内所流经的第二制冷剂的蒸发温度。
本发明实施例的冰箱,其高温级制冷循环回路30内设置有第一蒸发器36。第一蒸发器36用于为第一储物间室21供冷,低温级制冷循环回路40内设置有第二蒸发器44,用于为第一储物间室21供冷。提高了高温级制冷循环回路30内的能量利用效率,提高了冰箱的制冷效率。第一蒸发器36和第二蒸发器44均能够向第一储物间室21供冷,可使冰箱单一储物间室具有 多温区功能,即使第一储物间室21能获得不同的制冷效果,以满足不同的制冷需求,能扩大第一储物间室21的温区范围,也就是说可使冰箱既具备深冷功能,又能满足日常制冷的节能需求。例如,通过第一蒸发器36可使第一储物间室21的温度处于-18℃,通过第二蒸发器44可使第一储物间室21的温度处于-60℃。
优选地,如图4和图5所示,在本发明实施例中,第二蒸发器44通过直冷方式为第一储物间室21供冷。例如,箱体20包括内胆,内胆内具有第一储物间室21;第二蒸发器44设置于内胆的外壁上。具体地,第二蒸发器44包括蒸发管,蒸发管缠绕于内胆的两个侧壁、顶壁和底壁,可采用螺旋缠绕的方式,或者其他缠绕方式。或者,第二蒸发器44为管板式蒸发器,设置于内胆的两个侧壁、壁和底壁上。
第二蒸发器44通过直冷方式为第一储物间室21供冷,可防止第二蒸发器44结霜较快,防止需要频繁化霜时,间室温度波动较小,保证食品保鲜效果。可长时间维持低温深冷运行,保证食材长时间存储,大大提高产品使用效果和用户体验。第一蒸发器36和第二蒸发器44分开设置,可防止两个蒸发器温度相互影响,也可防止蒸发器尺寸较大,占用较大空间,使得储物空间变小。第二蒸发器44缠绕于内胆的两个侧壁、顶壁和底壁,显著提高了直冷效率。
在本发明的一些实施例中,高温级制冷循环回路30还包括控制阀33。控制阀33的进口可与高温级冷凝装置32的进口连通。控制阀33具有第一出口和第二出口,第一蒸发器36的进口与第二出口连通;蒸发部37的进口与第一出口连通。第一蒸发器36的出口连通蒸发部37的进口。控制阀33可为切换阀。
在本发明的一些实施例中,如图2和图3所示,高温级制冷循环回路还包括第三蒸发器35。第三蒸发器35用于为第二储物间室22供冷;第三蒸发器35的进口连通蒸发部37的出口。在本发明的一些实施例中,如图3所示,高温级制冷循环回路还包括第四蒸发器38,第四蒸发器38用于为第三储物间室23供冷,第四蒸发器38设置于蒸发部37的进口和第一出口之间。高温级制冷循环回路中各个蒸发器和蒸发部37的布置位置,可保证常规制冷时各个蒸发器的制冷效率,提高冰箱能效,节能效果明显。也就是说,该冰箱能保证高温级制冷循环回路30单独运行时各间室温度控制,达到节能目 的,又能利用低温级制冷循环回路40实现冰箱深冷功能。
在本发明的一些实施例中,控制阀33具有第三出口。第三出口与第三蒸发器35的进口连通。第四蒸发器38的进口与第一出口之间设置有第一节流装置343;第一蒸发器36的进口与第二出口之间设置有第二节流装置342;第三蒸发器35的进口与第三出口之间设置有第三节流装置341。在一些可选实施例中,控制阀33的进口处可设置一总的节流装置。进一步地,第一节流装置343、第二节流装置342和第三节流装置341均可为毛细管。可选地,第一节流装置343、第二节流342和第三节流装置341均可为电磁膨胀阀。则控制阀33此时可选为一进多出的分流阀。
在本发明的一些实施例中,如图1所示,第一储物间室21和第二储物间室22沿冰箱的横向延伸方向并列设置,第三储物间室23设置于第一储物间室21和第一储物间室21的上侧。第二储物间室22可为冷冻室,第一储物间室21为具有多温区的多功能室,第三储物间室23可为冷藏室。这样设置可使间室布局更加合理,存取相应物品更加方便。
在本发明的一些实施例中,如图4和图5所示,冰箱还包括送风装置50,以使第一蒸发器36通过风冷方式为第一储物间室21供冷,也就是说,送风装置50用于促使气流流经第一蒸发器36并促使气流进入第一储物间室21。优选地,在冰箱处于第二蒸发器44工作的深冷模式时,开启送风装置50。
在本实施例中,在第一蒸发器36工作时,即正常制冷模式下,冰箱为风冷产品,无结霜隐患。当用户切换为第二蒸发器44工作的深冷模式时,第二蒸发器44直冷工作,与第一蒸发器36工作时用的风机50配合,既可快速降温,又可均匀制冷,冰箱可长时间运行,结霜较少。当深冷模式长时间运行导致间室结霜结冰过多时,用户可切换为正常制冷模式,通过正常风冷的第一蒸发器36制冷化霜。可长时间维持低温深冷运行,保证食材长时间存储,同时若需要除霜,可通过第一蒸发器36的风冷系统除去间室残留霜层,大大提高产品使用效果和用户体验。
进一步地,箱体20在第一储物间室21的后侧对应的位置处还形成有用于布置第一蒸发器36的第一制冷室24,第一制冷室24通过第一送风结构51与第一储物间室21连通,通过第一送风结构51向第一储物间室21提供制冷气流。
在本发明的一些实施例中,如图1和图6所示,箱体20在第二储物间 室22的后侧对应的位置处还形成有用于布置第三蒸发器35的第二制冷室,第二制冷室通过第二送风结构52与第二储物间室22连通,以通过第二送风结构52向第二储物间室22提供制冷气流。箱体20在第三储物间室23的后侧对应的位置处还形成有用于布置第四蒸发器38的第三制冷室,第三制冷室通过第三送风结构与第三储物间室23连通,以通过第三送风结构向第三储物间室23提供制冷气流。
第一送风结构设置于第一制冷室24和第一储物间室21之间;第一送风结构51的后侧面上设置有进风口,送风装置50设置于进风口处。第一送风结构51的前侧面上设置有多个送风口54,第一送风结构51内设置有送风风道55。第一送风结构的下侧可设置回风风道56,实现蒸发器从底部送风上部出风。第二送风结构和第三送风结构均与第一送风结构51类似。
第一蒸发器36的出口管上设置有仅允许来自第一蒸发器36的制冷剂单向流出的阀门。该阀门可为单向阀39,单向阀39能起到防止单向阀39下游的第一制冷剂逆向通过。当低温级压缩机41运行时,第二蒸发器44的温度很低。第一储物间室21内的低温会使得第一蒸发器36的管路温度也比较低,甚至会明显低于高温级制冷循环回路30内的位于第一蒸发器36下游的其他蒸发器的温度。该阀门能避免位于第一蒸发器36下游的其他供冷蒸发器内的第一制冷剂从第一蒸发器36的排出口流入第一蒸发器36内,从而能够避免高温级制冷循环回路30内的第一制冷剂逆向流动,保证了第一制冷剂的有效流通量,提高了整体制冷效率。即可防止高温级制冷循环回路的第一制冷剂逐渐集聚在第一蒸发器36内,高温级制冷循环回路制冷剂逐渐减少,制冷不良。通过单向阀39可防止制冷剂逆流集聚第一蒸发器36内引发制冷不良。通过单向阀39无需控制程序调节阀体工作,即可解决因低温引起制冷剂集聚的问题,结构简单,可操作性强。
高温级冷凝装置32可包括冷凝器和防露管。低温级制冷循环回路40进一步包括低温级冷凝装置45和低温级节流装置43。高温级冷凝装置32的进口连通高温级压缩机31的出口,第三蒸发器35的出口连通高温级压缩机31的进口。低温级压缩机41的出口连通低温级冷凝装置45的进口,低温级冷凝装置45的出口连通冷凝部42的进口,冷凝部42的出口连通低温级节流装置43,低温级节流装置43的出口连通第二蒸发器44的进口,第二蒸发器44的出口连通低温级压缩机41的进口。
在一些可选的实施例中,冷凝部42和蒸发部37可以形成冷凝蒸发器。冷凝蒸发器可以为套管换热器,套管换热器是用两种尺寸不同的标准管相互套设连接而成同心圆套管,外面的通道叫壳程,内部的通道叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。蒸发部37可以为管程,冷凝部42可以为壳程。在另一些可选的实施例中,冷凝部42和蒸发部37也可以为两个相互贴靠的铜管。两个铜管相互贴靠设置。在两个铜管之间的接触部位,可以采用锡焊固定,以强化传热。两个铜管外部可以包裹上铝箔。在另一些可选实施例中,冷凝部42和蒸发部37可共用换热翅片。蒸发部37和冷凝部42设置于第二制冷室内。当然,蒸发部37和冷凝部42也可设置于冰箱的其他位置处。
本发明实施例还提供了一种冰箱的控制方法,冰箱包括箱体20、高温级制冷循环回路30和低温级制冷循环回路40,箱体20内部形成有第一储物间室21,高温级制冷循环回路包括用于吸热的第一蒸发器36和蒸发部37。第一蒸发器36通过风冷方式为第一储物间室21供冷。低温级制冷循环回路40包括冷凝部42和用于吸热的第二蒸发器44,冷凝部42与蒸发部37热连接,第二蒸发器44通过直冷方式为第一储物间室21供冷。特别地,控制方法包括:在冰箱处于第二蒸发器44工作的深冷模式时,检测第一储物间室21内的结霜量。在结霜量达到预设结霜量时,使冰箱处于第一蒸发器36工作的正常制冷模式。进一步地,冰箱的控制方法还包括在冰箱处于第二蒸发器44工作的深冷模式时,开启送风装置50。
本发明实施例的冰箱的控制方法中,在第一蒸发器36工作时,即正常制冷模式下,冰箱为风冷产品,无结霜隐患。当用户切换为第二蒸发器44工作的深冷模式时,第二蒸发器44直冷工作,与第一蒸发器36工作时用的风机配合,既可快速降温,又可均匀制冷,冰箱可长时间运行,结霜较少。当深冷模式长时间运行导致间室结霜结冰过多时,用户可切换为正常制冷模式,通过正常风冷的第一蒸发器36制冷化霜。可长时间维持低温深冷运行,保证食材长时间存储,同时若需要除霜,可通过第一蒸发器36的风冷系统除去间室残留霜层,大大提高产品使用效果和用户体验。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括箱体,所述箱体内部形成有第一储物间室,其特征在于,还包括高温级制冷循环回路和低温级制冷循环回路;
    所述高温级制冷循环回路包括用于吸热的第一蒸发器和蒸发部,所述第一蒸发器用于为所述第一储物间室供冷;
    所述低温级制冷循环回路包括冷凝部和用于吸热的第二蒸发器,所述冷凝部与所述蒸发部热连接,所述第二蒸发器通过直冷方式为所述第一储物间室供冷。
  2. 根据权利要求1所述的冰箱,其中,
    所述箱体包括内胆,所述内胆内具有所述第一储物间室;所述第二蒸发器设置于所述内胆的外壁上。
  3. 根据权利要求2所述的冰箱,其中,
    所述第二蒸发器包括蒸发管,所述蒸发管缠绕于所述内胆的两个侧壁、顶壁和底壁;或,
    所述第二蒸发器为管板式蒸发器,设置于所述内胆的两个侧壁、顶壁和底壁上。
  4. 根据权利要求1所述的冰箱,其中,
    所述高温级制冷循环回路还包括控制阀,所述控制阀具有第一出口和第二出口,所述蒸发部的进口与所述第一出口连通;所述第一蒸发器的进口与所述第二出口连通;所述第一蒸发器的出口连通所述蒸发部的进口。
  5. 根据权利要求4所述的冰箱,其中,
    所述箱体内部还形成有第二储物间室;所述高温级制冷循环回路还包括第三蒸发器;
    所述第三蒸发器用于为所述第二储物间室供冷;所述第三蒸发器的进口连通所述蒸发部的出口。
  6. 根据权利要求5所述的冰箱,其中,
    所述箱体内部还形成有第三储物间室;所述高温级制冷循环回路还包括第四蒸发器,所述第四蒸发器用于为所述第三储物间室供冷,所述第四蒸发器设置于所述蒸发部的进口和所述第一出口之间;
    所述控制阀具有第三出口,所述第三出口与所述第三蒸发器的进口连通;
    所述第四蒸发器的进口与所述第一出口之间设置有第一节流装置;
    所述第一蒸发器的进口与所述第二出口之间设置有第二节流装置;
    所述第三蒸发器的进口与所述第三出口之间设置有第三节流装置;
    所述第一储物间室和所述第二储物间室沿所述冰箱的横向延伸方向并列设置,所述第三储物间室设置于所述第一储物间室和所述第二储物间室的上侧;
    所述第一蒸发器的出口管上设置有仅允许来自所述第二蒸发器的制冷剂单向流出的阀门。
  7. 根据权利要求1所述的冰箱,其特征在于,还包括送风装置,以使所述第一蒸发器通过风冷方式为所述第一储物间室供冷,且在所述冰箱处于所述第二蒸发器工作的深冷模式时,开启所述送风装置;
    所述箱体在所述第一储物间室的后侧对应的位置处还形成有用于布置所述第一蒸发器的第一制冷室,所述第一制冷室通过第一送风结构与所述第一储物间室连通,以通过所述第一送风结构向所述第一储物间室提供制冷气流。
  8. 根据权利要求5所述的冰箱,其中,
    所述箱体在所述第二储物间室的后侧对应的位置处还形成有用于布置所述第三蒸发器的第二制冷室,所述第二制冷室通过第二送风结构与所述第二储物间室连通,以通过所述第二送风结构向所述第二储物间室提供制冷气流;
    所述蒸发部和所述冷凝部设置于所述第二制冷室内。
  9. 一种冰箱的控制方法,其中,所述冰箱包括箱体、高温级制冷循环回路和低温级制冷循环回路,所述箱体内部形成有第一储物间室,所述高温级制冷循环回路包括用于吸热的第一蒸发器和蒸发部,所述第一蒸发器通过风冷方式为所述第一储物间室供冷;所述低温级制冷循环回路包括冷凝部和用于吸热的第二蒸发器,所述冷凝部与所述蒸发部热连接,所述第二蒸发器通过直冷方式为所述第一储物间室供冷,其中,所述控制方法包括:
    在所述冰箱处于所述第二蒸发器工作的深冷模式时,检测所述第一储物间室内的结霜量;
    在所述结霜量达到预设结霜量时,使所述冰箱处于所述第一蒸发器工作的正常制冷模式。
  10. 根据权利要求9所述的冰箱的控制方法,其中,
    所述冰箱还包括送风装置,以使所述第一蒸发器通过风冷方式为所述第一储物间室供冷,且在所述冰箱处于所述第二蒸发器工作的深冷模式时,开启所述送风装置。
PCT/CN2021/078170 2020-05-22 2021-02-26 冰箱及其控制方法 WO2021218343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010444066.5 2020-05-22
CN202010444066.5A CN113701429A (zh) 2020-05-22 2020-05-22 冰箱及其控制方法

Publications (1)

Publication Number Publication Date
WO2021218343A1 true WO2021218343A1 (zh) 2021-11-04

Family

ID=78331750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078170 WO2021218343A1 (zh) 2020-05-22 2021-02-26 冰箱及其控制方法

Country Status (2)

Country Link
CN (1) CN113701429A (zh)
WO (1) WO2021218343A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100059441A (ko) * 2008-11-26 2010-06-04 엘지전자 주식회사 냉장고 및 그 제어방법
JP2012127514A (ja) * 2010-12-13 2012-07-05 Sharp Corp 冷凍冷蔵庫
CN202420018U (zh) * 2012-01-13 2012-09-05 重庆市威尔试验仪器有限公司 节能混合复叠制冷系统
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN208588141U (zh) * 2018-07-02 2019-03-08 青岛海尔股份有限公司 冰箱
CN209893747U (zh) * 2019-03-06 2020-01-03 青岛海尔电冰箱有限公司 冰箱
CN212378323U (zh) * 2020-05-22 2021-01-19 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100059441A (ko) * 2008-11-26 2010-06-04 엘지전자 주식회사 냉장고 및 그 제어방법
JP2012127514A (ja) * 2010-12-13 2012-07-05 Sharp Corp 冷凍冷蔵庫
CN202420018U (zh) * 2012-01-13 2012-09-05 重庆市威尔试验仪器有限公司 节能混合复叠制冷系统
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN208588141U (zh) * 2018-07-02 2019-03-08 青岛海尔股份有限公司 冰箱
CN209893747U (zh) * 2019-03-06 2020-01-03 青岛海尔电冰箱有限公司 冰箱
CN212378323U (zh) * 2020-05-22 2021-01-19 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN113701429A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
WO2018121426A1 (zh) 一种具有双蒸发器制冷系统的冰箱及其控制方法
JP2008116100A (ja) 物品貯蔵装置
JP2000018796A (ja) 冷蔵庫の結露防止装置
CN212778129U (zh) 冰箱
JP6101926B2 (ja) 冷蔵庫
JP4654539B2 (ja) 冷蔵庫
CN212378323U (zh) 冰箱
CN212378322U (zh) 冰箱
JP3826998B2 (ja) スターリング冷凍システム及びスターリング冷蔵庫
JP2004324902A (ja) 冷凍冷蔵庫
CN212778128U (zh) 冰箱
WO2021218343A1 (zh) 冰箱及其控制方法
CN212778127U (zh) 冰箱
WO2021218342A1 (zh) 冰箱的化霜控制方法
WO2021218344A1 (zh) 冰箱
JP2004293820A (ja) 冷蔵庫
CN212778133U (zh) 冰箱
JP2004333092A (ja) 冷凍冷蔵庫
CN212205242U (zh) 冷藏冷冻装置
WO2021244077A1 (zh) 冰箱的控制方法及冰箱
JP2004317069A (ja) 冷蔵庫
CN212378324U (zh) 冰箱
CN214536899U (zh) 冷藏冷冻装置
JP6543811B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797419

Country of ref document: EP

Kind code of ref document: A1