WO2018121425A1 - 串并联双蒸发器制冷系统及其控制方法 - Google Patents

串并联双蒸发器制冷系统及其控制方法 Download PDF

Info

Publication number
WO2018121425A1
WO2018121425A1 PCT/CN2017/117942 CN2017117942W WO2018121425A1 WO 2018121425 A1 WO2018121425 A1 WO 2018121425A1 CN 2017117942 W CN2017117942 W CN 2017117942W WO 2018121425 A1 WO2018121425 A1 WO 2018121425A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating
evaporator
refrigeration system
freezing
compressor
Prior art date
Application number
PCT/CN2017/117942
Other languages
English (en)
French (fr)
Inventor
姬立胜
戚斐斐
陶海波
聂圣源
刘建如
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018121425A1 publication Critical patent/WO2018121425A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the field of household appliances, in particular to a series-parallel double-evaporator refrigeration system and a control method thereof.
  • FIG. 1 A series-parallel double-evaporator refrigeration system of a conventional refrigerator is shown in Fig. 1, and includes a compressor 11, a condenser 12, an electromagnetic three-way valve 13, a refrigerating chamber capillary 141, a freezing chamber capillary 142, a refrigerating chamber evaporator 151, and a freezing The chamber evaporator 152, the refrigerating fan 161, and the freezing fan 162.
  • the specific refrigerant connection direction of the refrigerant in the refrigerating compartment is: compressor 11 ⁇ condenser 12 ⁇ electromagnetic three-way valve 13 ⁇ refrigerating chamber capillary 141 ⁇ refrigerating evaporator 151 ⁇ refrigerating evaporator 152 ⁇ compression
  • the refrigerant 11 at the time of cooling in the freezing compartment is: compressor 11 ⁇ condenser 12 ⁇ electromagnetic three-way valve 13 ⁇ freezing capillary 142 ⁇ freezing evaporator 152 ⁇ compressor 11 .
  • the compressed refrigerant of the compressor 11 enters the condenser 12, and the refrigerant condensed by the condenser 12 flows into the electromagnetic three-way valve 13, and the electromagnetic three-way valve 13 selectively communicates with the refrigerator.
  • Capillary 141 or freezer capillary 142 During the refrigeration inside the refrigerating compartment, the electromagnetic three-way valve 13 communicates with the refrigerating chamber capillary 141, and the refrigerant depressurized by the refrigerating chamber capillary 141 enters the refrigerating evaporator 151, and is evaporated by the refrigerating evaporator 151 to realize internal refrigeration of the refrigerating compartment.
  • the refrigerating fan 161 realizes uniform distribution of the cooling amount in the refrigerating compartment, and the refrigerant of the refrigerating evaporator 151 needs to be further evaporated by the freezing evaporator 152 and then returned to the compressor 11, so that the refrigerant which is returned to the compressor 11 can be ensured.
  • a suitable pressure and temperature range during the freezing process in the freezing chamber, the electromagnetic three-way valve 13 communicates with the freezing chamber capillary 142, and the refrigerant depressurized by the freezing capillary 142 enters the freezing evaporator 152 and is evaporated by the freezing evaporator 152.
  • the freezing fan 162 realizes uniform distribution of the cooling amount inside the refrigerating compartment, and the refrigerant of the freezing evaporator 152 directly flows back to the compressor 11.
  • the characteristic temperature of the refrigerator compartment is 5 °C
  • the characteristic temperature of the freezer compartment is -18 °C.
  • the refrigeration is evaporated.
  • the temperature of the 151 is relatively close to the temperature of the freezing evaporator 152 (generally, the refrigerating evaporator 151 is 2 to 3 ° C higher than the refrigerating evaporator 152), and if the evaporating temperature of the refrigerating compartment is raised to achieve a better preservation effect, the refrigerating is performed.
  • the temperature of the evaporator 151 is as close as possible to 0 ° C, which causes the temperature of the freezing evaporator 152 to be higher than the characteristic temperature of the freezing, which has a negative impact on the freezing compartment; if it is necessary to simultaneously realize the refrigeration of the freezing compartment during the refrigeration process in the refrigerator compartment Therefore, it is necessary to lower the evaporation temperature of the refrigerating evaporator 151 to keep it at -20 ° C, which is not conducive to the preservation of the food in the refrigerating compartment.
  • the temperature of the refrigerating evaporator 151 is generally controlled at about -15 ° C.
  • the temperature of the freezing evaporator 152 is about -18 ° C, and the freezing evaporation temperature of -18 ° C cannot meet the refrigeration requirements of the freezing compartment.
  • the present invention aims to at least solve one of the technical problems existing in the prior art.
  • the present invention provides a series-parallel double-evaporator refrigeration system, the specific design of which is as follows.
  • a series-parallel double-evaporator refrigeration system includes a refrigerating and cooling assembly, a refrigerating and cooling assembly, and the refrigerating and cooling assembly includes a compressor, a condenser, a first throttling device, and a refrigerating evaporator for refrigerating the interior of the freezing chamber.
  • the refrigerating and cooling assembly includes a compressor and a condenser shared with the refrigerating and cooling unit, The refrigerating and cooling assembly further includes a second throttling device, a refrigerating evaporator for refrigerating the interior of the refrigerating compartment, a vapor-liquid separator, a first electronic expansion valve, and the second throttling device is connected in parallel with the first throttling device Providing that an outlet end of the second throttle device is connected to an inlet end of the refrigerating evaporator, and an outlet end of the refrigerating evaporator is connected to an inlet end of the vapor-liquid separator, the gas of the vapor-liquid separator a discharge port directly connected to an inlet end of the compressor, a liquid discharge port of the
  • the outlet end of the freezing evaporator is provided with a check valve.
  • first throttling device and the second throttling device are both capillary tubes, and the outlet end of the condenser is provided with a three-way valve, and the two outlet ends of the three-way valve are respectively connected to the first throttling a device and the second throttling device.
  • the three-way valve is an electromagnetic three-way valve.
  • first throttling device and the second throttling device are both electronic expansion valves, and the first throttling device and the second throttling device are disposed in parallel with the outlet end of the condenser.
  • the series-parallel double-evaporator refrigeration system further includes a refrigerating fan and a refrigerating fan for realizing the cold-distribution of the refrigerating evaporator and the refrigerating evaporator, respectively.
  • the compressor is an oil-free compressor.
  • the invention also provides a control method for a series-parallel double-evaporator refrigeration system, which comprises the following steps:
  • the refrigerant flows through the first throttling device, and after depressurizing, enters the refrigerating evaporator, and the refrigerating evaporator cools the inside of the freezing chamber;
  • the first electronic expansion valve is closed, the refrigerant flows through the second throttling device, and is depressurized to enter the refrigerating evaporator, and the refrigerating evaporator cools the interior of the refrigerating chamber;
  • the first electronic expansion valve is opened, and the refrigerant flows through the second throttle device, and after being depressurized, enters the refrigerating evaporator, and the refrigerating evaporator cools the interior of the refrigerating chamber.
  • the refrigerant flowing out from the outlet of the refrigerating evaporator enters the vapor-liquid separator, and the gas-phase refrigerant is returned to the compressor through the gas discharge port, and the liquid-phase refrigerant is throttled and depressurized by the first electronic expansion valve, and then enters the refrigerating evaporator, and is evaporated from the freezing
  • the outlet is returned to the compressor.
  • the beneficial effects of the present invention are: in the series-parallel double-evaporator refrigeration system of the present invention, during the refrigeration process in the refrigerating compartment, when the electronic expansion valve is closed, the refrigerating evaporator and the refrigerating evaporator form a parallel structure, and the refrigeration process in the refrigerating compartment is not It will interfere with the inside of the freezing chamber; when the electronic expansion valve is opened, the refrigerant needs to pass through the vapor-liquid separator and the first electronic expansion valve to enter the freezing evaporator, and the treated refrigerant can be compared in the freezing evaporator.
  • the low evaporation temperature enables the refrigeration system to simultaneously maintain a lower temperature inside the freezing compartment during the refrigeration of the interior of the refrigerating compartment without adversely affecting the interior of the freezing compartment.
  • FIG. 1 is a schematic structural view of a series-parallel double evaporator refrigeration system in the prior art
  • FIG. 2 is a schematic structural view of a series-parallel double evaporator refrigeration system according to the present invention
  • FIG. 3 is a schematic view showing another structure of the series-parallel double evaporator refrigeration system of the present invention.
  • 11 is a compressor
  • 12 is a condenser
  • 13 is an electromagnetic three-way valve
  • 141 is a refrigerating chamber capillary
  • 142 is a freezing chamber capillary
  • 151 is a refrigerating chamber evaporator
  • 152 is a freezing chamber evaporator
  • 161 is Refrigerating fan
  • 162 is a freezing fan;
  • 21 is a compressor
  • 22 is a condenser
  • 23 is a three-way valve
  • 241 is a second throttling device
  • 242 is a first throttling device
  • 251 is a refrigerating evaporator
  • 252 is a refrigerating evaporator
  • 261 is The refrigerating fan
  • 262 is a refrigerating fan
  • 27 is a vapor-liquid separator
  • 28 is a first electronic expansion valve.
  • the series-parallel double-evaporator refrigeration system includes a refrigerating and cooling assembly and a refrigerating and cooling assembly.
  • the refrigeration and refrigeration unit includes a compressor 21, a condenser 22, a first throttle device 242, and a freezing evaporator 252 for cooling the interior of the freezing chamber.
  • the refrigerant pipe for the refrigerant to flow is sequentially connected to the compressor 21 and the condenser. 22.
  • the first throttle device 242 and the freezing evaporator 252 form a loop.
  • the refrigerating and cooling unit includes a compressor 21 shared by the refrigerating and cooling unit and a condenser 22, and the refrigerating and refrigerating unit further includes a second throttling device 241, a refrigerating evaporator 251 for refrigerating the inside of the refrigerating compartment, a vapor-liquid separator 27, and a An electronic expansion valve 28, the second throttle device 241 is disposed in parallel with the first throttle device 242, the outlet end of the second throttle device 241 is connected to the inlet end of the refrigerating evaporator 251, and the outlet end of the refrigerating evaporator 251 is connected to the steam.
  • the inlet end of the liquid separator 27 is connected, the gas discharge port of the vapor-liquid separator 27 is directly connected to the inlet end of the compressor 21, and the liquid discharge port of the vapor-liquid separator 27 is provided with the first electronic expansion valve 28 and is expanded by the first electron.
  • Valve 28 is coupled to the inlet end of freezing evaporator 252.
  • a vapor-liquid separator 27 is disposed at the outlet end of the refrigerating evaporator 251, and the gas discharge port of the vapor-liquid separator 27 is connected to the inlet end of the compressor 21 through a refrigerant pipe for direct reflux of the gas-phase refrigerant;
  • the refrigerant can enter the first electronic expansion valve 28 through the liquid discharge port of the vapor-liquid separator 27, and is further throttled and depressurized by the first electronic expansion valve 28, and then evaporated in the freezing evaporator 252, so that the interior of the freezing chamber can be kept low. temperature.
  • the refrigeration system of the present invention it is possible to achieve a large temperature difference between the refrigerating evaporator 251 and the refrigerating evaporator 252 during the normal refrigeration process in the home, that is, the evaporating temperature of the refrigerating evaporator 252 is much lower than the evaporating temperature of the refrigerating evaporator 251.
  • the temperature difference can be 5-6 ° C (the temperature difference of the traditional refrigeration system is 2-3 ° C), of course, the temperature difference can be designed according to the user's needs, specifically by controlling the opening of the first electronic expansion valve 28, the first The smaller the opening degree of the electronic expansion valve 28, the better the throttling effect is, and the temperature difference between the two evaporators can be expanded to some extent.
  • the outlet end of the freezing evaporator 252 is provided with a check valve 29. Due to the throttling and anti-pressure action of the first electronic expansion valve 28, one side of the refrigerating evaporator 252 is in a low pressure state during the normal refrigerating and cooling process, and the check valve 29 is provided to prevent the gas-liquid separator 27 from being shut down when the compressor 21 is stopped. The vapor-phase refrigerant discharged from the discharge port flows to the freezing evaporator 252, which adversely affects the freezing compartment.
  • the first throttle device 242 and the second throttle device 241 are both capillary tubes, and the outlet end of the condenser 22 is provided with a three-way valve 23 and two three-way valves 23 The outlet end is connected to the first throttle device 242 and the second throttle device 241, respectively.
  • the three-way valve 23 is an electromagnetic three-way valve, and the control system of the refrigerator (not shown) controls the flow of the three-way valve 23 to realize the selection of the freezing function and the refrigerating function, that is, the three-way valve 23 is selectively
  • the condenser 22 is connected to the first throttle device 242 or the communication condenser 22 and the second throttle device 241.
  • the first throttling device 242 and the second throttling device 241 are both electronic expansion valves, and the first throttling device 242 and the second throttling device 241 are arranged in parallel.
  • the control system of the refrigerator selectively activates the first throttle device 242 and the second throttle device 241 to effect a freezing or refrigerating function.
  • the first throttle device 242 and the second throttle device 241 are not simultaneously opened.
  • the series-parallel dual-evaporator refrigeration system further includes a refrigerating fan 261 and a refrigerating fan 262 for respectively implementing the refrigerating evaporator 251 and the refrigerating evaporator 252 for cooling transfer.
  • the compressor 21 in the present invention is preferably an oil-free compressor.
  • the present invention also provides a refrigerator comprising a refrigerating compartment, a freezing compartment and the above-mentioned series-parallel double-evaporator refrigeration system, and the refrigerating evaporator 251 is used for refrigerating The indoor unit is cooled, and the freezing evaporator 252 is used to cool the inside of the freezing chamber.
  • the refrigerator also has a control system for controlling the operation of the refrigerator, and is not specifically described herein.
  • the invention also provides a control method for a series-parallel double-evaporator refrigeration system, which comprises the following steps:
  • the refrigerant flows through the first throttling device 242, and after depressurization, enters the refrigerating evaporator 252, and the refrigerating evaporator 252 cools the inside of the freezing chamber;
  • the first electronic expansion valve 28 is closed, the refrigerant flows through the second throttle device 241, and after being depressurized, it enters the refrigerating evaporator 251, and the refrigerating evaporator 251 cools the interior of the refrigerating chamber;
  • the first electronic expansion valve 28 is opened, the refrigerant flows through the second throttle device 241, and after being depressurized, it enters the refrigerating evaporator 251, and the refrigerating evaporator 251 cools the interior of the refrigerating chamber, and exits from the outlet of the refrigerating evaporator 251.
  • the refrigerant enters the vapor-liquid separator 27, and the gas-phase refrigerant is returned to the compressor 21 through the gas discharge port.
  • the liquid-phase refrigerant is throttled and reduced by the first electronic expansion valve 28, and then enters the freezing evaporator 252, and is returned from the outlet of the freezing evaporator 252. To the compressor 21.
  • the control system of the refrigerator selects the operation steps according to the internal needs of the refrigerator. For example, when the refrigerating compartment needs to be refrigerated, the refrigerator can be operated in a normal refrigerating step, and while the refrigerating compartment is being cooled, the freezing compartment can be kept at a lower temperature; and when a large amount of food to be refrigerated is suddenly placed inside the refrigerating compartment, the cooling is performed.
  • the system operates in a fast refrigerating and cooling step to achieve rapid cooling inside the refrigerating compartment without adversely affecting the freezing compartment; when the freezing compartment needs cooling and the refrigerating compartment does not need to be cooled for a while, the refrigerator can be operated in a freezing step.
  • the series-parallel double-evaporator refrigeration system provided by the invention has various operation modes, and the use thereof can better meet the daily needs of the user, and can better realize the stability during the operation of the refrigerator.

Abstract

串并联双蒸发器制冷系统及控制方法,在冰箱制冷过程中,冷媒是在经过汽液分离器(27)及第一电子膨胀阀(28)处理之后才进入冷冻蒸发器(252),经处理后的冷媒在冷冻蒸发器(252)内可以达到较低的蒸发温度,使得制冷系统在实现冷藏室内部制冷的过程中能够同时对冷冻室内部保持较低温度。

Description

串并联双蒸发器制冷系统及其控制方法
本申请要求了申请日为2016年12月26日,申请号为201611219140.3,发明名称为“串并联双蒸发器制冷系统、具有该系统的冰箱及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及家用电器领域,尤其涉及一种串并联双蒸发器制冷系统及其控制方法。
背景技术
传统冰箱的串并联双蒸发器制冷系统参考图1所示,其包括,压缩机11、冷凝器12、电磁三通阀13、冷藏室毛细管141、冷冻室毛细管142、冷藏室蒸发器151、冷冻室蒸发器152、冷藏风机161以及冷冻风机162。其具体连接方式参考图1所示,冷藏室内部制冷时的冷媒走向为:压缩机11→冷凝器12→电磁三通阀13→冷藏室毛细管141→冷藏蒸发器151→冷冻蒸发器152→压缩机11;冷冻室内部制冷时冷媒走向为:压缩机11→冷凝器12→电磁三通阀13→冷冻毛细管142→冷冻蒸发器152→压缩机11。
更为具体的,在冰箱制冷过程中,压缩机11压缩后的冷媒进入冷凝器12,由冷凝器12冷凝处理后的冷媒流进电磁三通阀13,电磁三通阀13选择性连通冷藏室毛细管141或冷冻室毛细管142。在冷藏室内部制冷过程中,电磁三通阀13连通冷藏室毛细管141,经冷藏室毛细管141降压后的冷媒进入冷藏蒸发器151,并通过冷藏蒸发器151进行蒸发以实现冷藏室的内部制冷,由冷藏风机161实现冷藏室内部冷量的均匀分布,冷藏蒸发器151的冷媒需要经过冷冻蒸发器152进一步蒸发后再流回压缩机11,如此设计可以保证回流到压缩机11时的冷媒具有较为合适的压力及温度范围;在冷冻室内部制冷过程中,电磁三通阀13连通冷冻室毛细管142,经冷冻毛细管142降压后的冷媒进入冷冻蒸发器152,并通过冷冻蒸发器152进行蒸发以实现冷冻室的内部制冷,由冷冻风机162实现冷藏室内部冷量的均匀分布,冷冻蒸发器152的冷媒直接流回压缩机11。
冰箱正常使用时冷藏室的特性温度为5℃,冷冻室的特性温度为-18℃,采用以上串并联双蒸发器制冷系统冰箱制冷时,存在以下问题:在冷藏室内部制冷过程中,冷藏蒸发器151的温度与冷冻蒸发器152的温度较为接近(一般冷藏蒸发器151比冷冻蒸发器152高2~3℃),如果为了提升冷藏室的蒸发温度以达到较好的保鲜效果,会使冷藏蒸发器151的温度尽量接近0℃,如此会使得冷冻蒸发器152的温度高于冷冻的特性温度,对冷冻室造成负面的影响;如果需要在冷藏室内部制冷过程中需要同时实现冷冻室的制冷,就需要降低冷藏蒸发器151的蒸发温度,使其保持在-20℃,如此又不利于冷藏室食物的保鲜。
现有技术中,为了使冷藏室内部制冷时冷藏蒸发器151的蒸发温度尽量高而又不会对冷冻室造成过大的影响,一般冷藏蒸发器151的温度控制在-15℃左右,此时冷冻蒸发器152的温度为-18℃左右,而-18℃的冷冻蒸发温度是不能满足冷冻室的制冷需求的。
有鉴于此,有必要提供一种改进的冰箱制冷系统以解决上述问题。
发明内容
本发明旨在至少解决现有技术存在的技术问题之一,为实现上述发明目的,本发明提供了一种串并联双蒸发器制冷系统,其具体设计方式如下。
一种串并联双蒸发器制冷系统,包括冷冻制冷组件、冷藏制冷组件,所述冷冻制冷组件包括压缩机、冷凝器、第一节流装置以及用以对冷冻室内部制冷的冷冻蒸发器,用以供冷媒流动的冷媒管道依次连接所述压缩机、冷凝器、第一节流装置以及冷冻蒸发器并形成回路;所述冷藏制冷组件包括与所述冷冻制冷组件共用的压缩机以及冷凝器,所述冷藏制冷组件还包括第二节流装置、用以对冷藏室内部制冷的冷藏蒸发器、汽液分离器、第一电子膨胀阀,所述第二节流装置与第一节流装置并联设置,所述第二节流装置的出口端与所述冷藏蒸发器的入口端相连,所述冷藏蒸发器的出口端与所述汽液分离器入口端相连,所述汽液分离器的气体排出端口直接连接至所述压缩机的入口端,所述汽液分离器的液体排出端口设置有所述第一电子膨胀阀并通过所述第一电子膨胀阀与所述冷冻蒸发器的入口端相连。
进一步,所述冷冻蒸发器的出口端设置有单向阀。
进一步,所述第一节流装置与所述第二节流装置均为毛细管,所述冷凝器的出口端设置有三通阀,所述三通阀两个出口端分别连接所述第一节流装置与所述第二节流装置。
进一步,所述三通阀为电磁三通阀。
进一步,所述第一节流装置与所述第二节流装置均为电子膨胀阀,所述第一节流装置与所述第二节流装置并联的设置于所述冷凝器的出口端。
进一步,所述串并联双蒸发器制冷系统还包括分别用以实现所述冷藏蒸发器、冷冻蒸发器冷量转移的冷藏风扇、冷冻风扇。
进一步,所述压缩机为无油压缩机。
本发明还提供了一种串并联双蒸发器制冷系统的控制方法,其包括以下步骤:
冷冻步骤,冷媒流经所述第一节流装置,经降压后进入所述冷冻蒸发器,所述冷冻蒸发器对冷冻室内部进行制冷;
快速冷藏步骤,所述第一电子膨胀阀关闭,冷媒流经所述第二节流装置,经降压后进入所述冷藏蒸发器,所述冷藏蒸发器对冷藏室内部进行制冷;
普通冷藏步骤,所述第一电子膨胀阀开启,冷媒流经所述第二节流装置,经降压后进入所述冷藏蒸发器,所述冷藏蒸发器对冷藏室内部进行制冷,由所述冷藏蒸发器出口流出的冷媒进入汽液分离器,气相冷媒经气体排出端口回流至压缩机,液相冷媒经第一电子膨胀阀节流降压后进入所述冷冻蒸发器,从所述冷冻蒸发器出口回流至所述压缩机。
本发明的有益效果是:本发明的串并联双蒸发器制冷系统在冷藏室内部制冷过程中,当电子膨胀阀关闭时,冷藏蒸发器与冷冻蒸发器形成并联结构,冷藏室内部的制冷过程不会对冷冻室内部形成干扰;当电子膨胀阀开启时,冷媒需要经过汽液分离器及第一电子膨胀阀处理后才进入冷冻蒸发器,经处理后过的冷媒在冷冻蒸发器内可以达到较低的蒸发温度,使得制冷系统在实现冷藏室内部制冷的过程中能够同时对冷冻室内部保持较低温度,而不会对冷冻室内部产生负面影响。
附图说明
图1所示为现有技术中串并联双蒸发器制冷系统结构示意图;
图2所示为本发明串并联双蒸发器制冷系统一种结构示意图;
图3所示为本发明串并联双蒸发器制冷系统另一种结构示意图。
图中,
现有技术中,11为压缩机,12为冷凝器,13为电磁三通阀,141为冷藏室毛细管,142为冷冻室毛细管,151为冷藏室蒸发器,152为冷冻室蒸发器,161为冷藏风机,162为冷冻风机;
本发明中,21为压缩机,22为冷凝器,23为三通阀,241为第二节流装置,242为第一节流装置,251为冷藏蒸发器,252为冷冻蒸发器,261为冷藏风机,262为冷冻风机,27为汽液分离器,28为第一电子膨胀阀。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述,请参照图2、图3所示,其为本发明两个较佳实施方式。
如图2所示,本发明的一实施例中,串并联双蒸发器制冷系统包括冷冻制冷组件、冷藏制冷组件。
其中,冷冻制冷组件包括压缩机21、冷凝器22、第一节流装置242以及用以对冷冻室内部制冷的冷冻蒸发器252,用以供冷媒流动的冷媒管道依次连接压缩机21、冷凝器22、第一节流装置242以及冷冻蒸发器252并形成回路。
冷藏制冷组件包括与冷冻制冷组件共用的压缩机21以及冷凝器22,冷藏制冷组件还包括第二节流装置241、用以对冷藏室内部制冷的冷藏蒸发器251、汽液分离器27、第一电子膨胀阀28,第二节流装置241与第一节流装置242并联设置,第二节流装置241的出口端与冷藏蒸发器251的入口端相连,冷藏蒸发器251的出口端与汽液分离器27入口端相连,汽液分离器27的气体排出端口直接连接至压缩机21的入口端,汽液分离器27的液体排出端口设置有第一电子膨胀阀28并通过第一电子膨胀阀28与冷冻蒸发器252的入口端相连。
本发明中,在冷藏蒸发器251出口端设置有一个汽液分离器27,汽液分离器27的气体排出端口通过冷媒管道连接至压缩机21入口端,用于气相冷媒直接回流;而液相的冷媒可通过汽液分离器27的液体排出端口进入第一电子膨胀阀28,经第一电子膨胀阀28进一步节流降压后在冷冻蒸发器252内蒸发,可以实现冷冻室内部保持较低温度。
通过本发明的制冷系统,在家庭普通冷藏过程中,可以实现冷藏蒸发器251与冷冻蒸发器252具有较大的温差,即冷冻蒸发器252的蒸发温度相对冷藏蒸发器251的蒸发温度低很多。例如:温差可以为5-6℃(传统制冷系统的温差为2-3℃),当然温差幅度可根据用户需求进行设计,具体可以通过控制第一电子膨胀阀28的开度来实现,第一电子膨胀阀28的开度越小,节流降压效果更好,可以在一定程度上扩大两蒸发器之间的温差。
在本发明中,冷冻蒸发器252的出口端设置有单向阀29。由于第一电子膨胀阀28的节流降压作用,在普通冷藏制冷过程中,冷冻蒸发器252的一侧处于低压状态,设置单向阀29可以防止压缩机21停机时汽液分离器27气体排出端口排出的气相冷媒流向冷冻蒸发器252,对冷冻室造成负面影响。
参考图2所示,本实施例的具体实施过程中,第一节流装置242与第二节流装置241均为毛细管,冷凝器22的出口端设置有三通阀23,三通阀23两个出口端分别连接第一节流装置242与第二节流装置241。为便于控制,三通阀23为电磁三通阀,冰箱的控制系统(图中未示出)通过控制三通阀23的流向以实现冷冻功能与冷藏功能的选择,即三通阀23选择性连通冷凝器22与第一节流装置242或连通冷凝器22与第二节流装置241。
参考图3所示,本发明的另一实施例中,第一节流装置242与第二节流装置241均为电子膨胀阀,第一节流装置242与第二节流装置241并联的设置于冷凝器22的出口端。在冰箱制冷过程中,冰箱的控制系统(图中未示出)通过选择性开启第一节流装置242与第二节流装置241以实现冷冻或冷藏功能。一般,第一节流装置242与第二节流装置241不同时开启。
在本发明的一些实施例中,串并联双蒸发器制冷系统还包括分别用以实现冷藏蒸发器251、冷冻蒸发器252冷量转移的冷藏风扇261、冷冻风扇262。
此外,本发明的冷媒中如果混有油滴,油滴易积存于汽液分离器27中,难以回至压缩 机,故本发明中的压缩机21优选为为无油压缩机。
在以上串并联双蒸发器制冷系统的基础上,本发明还提供了一种冰箱,其包括冷藏室、冷冻室以及以上所述的串并联双蒸发器制冷系统,冷藏蒸发器251用以对冷藏室内部制冷,冷冻蒸发器252用以对冷冻室内部制冷。当然,冰箱还具有用于控制冰箱运行的控制系统,具体在此不作过多陈述。
本发明还提供了一种串并联双蒸发器制冷系统的控制方法,其包括以下步骤:
冷冻步骤,冷媒流经第一节流装置242,经降压后进入冷冻蒸发器252,冷冻蒸发器252对冷冻室内部进行制冷;
快速冷藏步骤,第一电子膨胀阀28关闭,冷媒流经第二节流装置241,经降压后进入冷藏蒸发器251,冷藏蒸发器251对冷藏室内部进行制冷;
普通冷藏步骤,第一电子膨胀阀28开启,冷媒流经第二节流装置241,经降压后进入冷藏蒸发器251,冷藏蒸发器251对冷藏室内部进行制冷,由冷藏蒸发器251出口流出的冷媒进入汽液分离器27,气相冷媒经气体排出端口回流至压缩机21,液相冷媒经第一电子膨胀阀28节流降压后进入冷冻蒸发器252,从冷冻蒸发器252的出口回流至压缩机21。
在具体应用过程中,冰箱的控制系统根据冰箱内部需求选择运行步骤。例如,当冷藏室需要制冷时,冰箱可按普通冷藏步骤运行,在实现冷藏室制冷的同时,可以保证冷冻室具有较低的温度;而当冷藏室内部突然放置大量需要冷藏的食物时,制冷系统按快速冷藏制冷步骤运行,实现冷藏室内部的快速制冷而不会对冷冻室造成负面影响;当冷冻室需要制冷而冷藏室暂时无需制冷时,冰箱即可按冷冻步骤运行即可。
本发明所提供的串并联双蒸发器制冷系统具有多种运行模式,通过其配合使用,可以较好的满足用户日常需求,且可以较好的实现冰箱运行过程中的稳定性。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们 并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种串并联双蒸发器制冷系统,包括冷冻制冷组件、冷藏制冷组件,其特征在于,
    所述冷冻制冷组件包括压缩机、冷凝器、第一节流装置以及用以对冷冻室内部制冷的冷冻蒸发器,用以供冷媒流动的冷媒管道依次连接所述压缩机、冷凝器、第一节流装置以及冷冻蒸发器并形成回路;
    所述冷藏制冷组件包括与所述冷冻制冷组件共用的压缩机以及冷凝器,所述冷藏制冷组件还包括第二节流装置、用以对冷藏室内部制冷的冷藏蒸发器、汽液分离器、第一电子膨胀阀,所述第二节流装置与第一节流装置并联设置,所述第二节流装置的出口端与所述冷藏蒸发器的入口端相连,所述冷藏蒸发器的出口端与所述汽液分离器入口端相连,所述汽液分离器的气体排出端口直接连接至所述压缩机的入口端,所述汽液分离器的液体排出端口设置有所述第一电子膨胀阀并通过所述第一电子膨胀阀与所述冷冻蒸发器的入口端相连。
  2. 根据权利要求1所述的串并联双蒸发器制冷系统,其特征在于,所述冷冻蒸发器的出口端设置有单向阀。
  3. 根据权利要求1所述的串并联双蒸发器制冷系统,其特征在于,所述第一节流装置与所述第二节流装置均为毛细管,所述冷凝器的出口端设置有三通阀,所述三通阀两个出口端分别连接所述第一节流装置与所述第二节流装置。
  4. 根据权利要求3所述的串并联双蒸发器制冷系统,其特征在于,所述三通阀为电磁三通阀。
  5. 根据权利要求1所述的串并联双蒸发器制冷系统,其特征在于,所述第一节流装置与所述第二节流装置均为电子膨胀阀,所述第一节流装置与所述第二节流装置并联的设置于所述冷凝器的出口端。
  6. 根据权利要求1所述的串并联双蒸发器制冷系统,其特征在于,所述串并联双蒸发器制冷系统还包括分别用以实现所述冷藏蒸发器、冷冻蒸发器冷量转移的冷藏风扇、冷冻风扇。
  7. 根据权利要求1所述的串并联双蒸发器制冷系统,其特征在于,所述压缩机为无油 压缩机。
  8. 一种如权利要求1所述的串并联双蒸发器制冷系统的控制方法,其特征在于,包括以下步骤:
    冷冻步骤,冷媒流经所述第一节流装置,经降压后进入所述冷冻蒸发器,所述冷冻蒸发器对冷冻室内部进行制冷;
    快速冷藏步骤,所述第一电子膨胀阀关闭,冷媒流经所述第二节流装置,经降压后进入所述冷藏蒸发器,所述冷藏蒸发器对冷藏室内部进行制冷;
    普通冷藏步骤,所述第一电子膨胀阀开启,冷媒流经所述第二节流装置,经降压后进入所述冷藏蒸发器,所述冷藏蒸发器对冷藏室内部进行制冷,由所述冷藏蒸发器出口流出的冷媒进入汽液分离器,气相冷媒经气体排出端口回流至压缩机,液相冷媒经第一电子膨胀阀节流降压后进入所述冷冻蒸发器,从所述冷冻蒸发器出口回流至所述压缩机。
PCT/CN2017/117942 2016-12-26 2017-12-22 串并联双蒸发器制冷系统及其控制方法 WO2018121425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611219140.3 2016-12-26
CN201611219140.3A CN106766526A (zh) 2016-12-26 2016-12-26 串并联双蒸发器制冷系统、具有该系统的冰箱及控制方法

Publications (1)

Publication Number Publication Date
WO2018121425A1 true WO2018121425A1 (zh) 2018-07-05

Family

ID=58926831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117942 WO2018121425A1 (zh) 2016-12-26 2017-12-22 串并联双蒸发器制冷系统及其控制方法

Country Status (2)

Country Link
CN (1) CN106766526A (zh)
WO (1) WO2018121425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098929B2 (en) 2019-01-10 2021-08-24 Haier Us Appliance Solutions, Inc. Fast switching multiple evaporator system for an appliance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766526A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 串并联双蒸发器制冷系统、具有该系统的冰箱及控制方法
CN107270569A (zh) * 2017-06-16 2017-10-20 珠海格力电器股份有限公司 制冷系统及包括其的饮水机
CN110986410A (zh) * 2019-11-28 2020-04-10 海信(山东)冰箱有限公司 一种低温储藏装置的制冷系统、低温储藏装置及控制方法
CN113324361B (zh) * 2020-02-12 2022-09-13 合肥华凌股份有限公司 制冷系统、冷媒灌注方法和制冷设备
CN111623545B (zh) * 2020-04-28 2021-07-30 珠海格力电器股份有限公司 一种制冷系统及其控制方法
EP4253869A4 (en) 2020-11-24 2024-01-10 Mitsubishi Electric Corp REFRIGERANT CIRCUIT DEVICE
CN113091341A (zh) * 2021-03-29 2021-07-09 广东美芝制冷设备有限公司 双温制冷系统及制冷装置
CN112932195B (zh) * 2021-03-31 2022-06-14 青岛海容商用冷链股份有限公司 一种生鲜柜展示柜及其制冷控制方法
CN113915895B (zh) * 2021-05-17 2022-12-16 海信冰箱有限公司 冰箱及其制冷方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028370A (ja) * 2002-06-21 2004-01-29 Toshiba Corp 冷凍冷蔵庫
JP2004132618A (ja) * 2002-10-10 2004-04-30 Toshiba Corp 冷蔵庫
CN1149373C (zh) * 2000-12-12 2004-05-12 东芝株式会社 冰箱
DE19644583B4 (de) * 1996-10-26 2004-12-30 Behr Gmbh & Co. Kg Fahrzeugklimaanlage mit mehreren Kondensatoren und/oder Verdampfern
CN1898505A (zh) * 2003-12-24 2007-01-17 株式会社东芝 冰箱
EP2631572A2 (en) * 2012-02-21 2013-08-28 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
CN103363704A (zh) * 2013-06-26 2013-10-23 青岛澳柯玛超低温冷冻设备有限公司 制冷设备中蒸发器连接系统结构及运作方法
CN203464527U (zh) * 2013-06-26 2014-03-05 青岛澳柯玛超低温冷冻设备有限公司 制冷设备中蒸发器连接系统结构
CN104748423A (zh) * 2013-12-30 2015-07-01 苏州三星电子有限公司 一种双蒸发器冰箱制冷系统及其运行方法
CN106766526A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 串并联双蒸发器制冷系统、具有该系统的冰箱及控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644583B4 (de) * 1996-10-26 2004-12-30 Behr Gmbh & Co. Kg Fahrzeugklimaanlage mit mehreren Kondensatoren und/oder Verdampfern
CN1149373C (zh) * 2000-12-12 2004-05-12 东芝株式会社 冰箱
JP2004028370A (ja) * 2002-06-21 2004-01-29 Toshiba Corp 冷凍冷蔵庫
JP2004132618A (ja) * 2002-10-10 2004-04-30 Toshiba Corp 冷蔵庫
CN1898505A (zh) * 2003-12-24 2007-01-17 株式会社东芝 冰箱
EP2631572A2 (en) * 2012-02-21 2013-08-28 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
CN103363704A (zh) * 2013-06-26 2013-10-23 青岛澳柯玛超低温冷冻设备有限公司 制冷设备中蒸发器连接系统结构及运作方法
CN203464527U (zh) * 2013-06-26 2014-03-05 青岛澳柯玛超低温冷冻设备有限公司 制冷设备中蒸发器连接系统结构
CN104748423A (zh) * 2013-12-30 2015-07-01 苏州三星电子有限公司 一种双蒸发器冰箱制冷系统及其运行方法
CN106766526A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 串并联双蒸发器制冷系统、具有该系统的冰箱及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098929B2 (en) 2019-01-10 2021-08-24 Haier Us Appliance Solutions, Inc. Fast switching multiple evaporator system for an appliance

Also Published As

Publication number Publication date
CN106766526A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
EP3299747B1 (en) Switchable two-stage cascade energy-saving ultralow-temperature refrigeration system for ships
WO2018121593A1 (zh) 冰箱节能制冷系统及具有该系统的冰箱运行方法
US11635233B2 (en) Cooling system
CN112393452B (zh) 冰箱制冷系统及其运行方法
WO2017194035A1 (zh) 一种提高制冷或热泵系统效率的方法及运行方法
CN109737624B (zh) 一种双温制冷系统及其控制方法
WO2018121426A1 (zh) 一种具有双蒸发器制冷系统的冰箱及其控制方法
US10962266B2 (en) Cooling system
CN107816818A (zh) 一种冷库用带热气融霜的复叠式制冷系统
WO2021036115A1 (zh) 制冷系统
CN210374250U (zh) 冷藏冷冻装置
US10895411B2 (en) Cooling system
CN110617655A (zh) 一种超低温环境室用两级搭配制冷系统
CN206593361U (zh) 一种车载节能冰箱
EP3839377A1 (en) Cooling system with partly flooded low side heat exchanger
WO2014030238A1 (ja) 冷凍装置
CN114739026A (zh) 一种用于展示柜的混合制冷剂制冷系统
CN210425610U (zh) 制冷系统
KR20180056854A (ko) 압축기의 흡입온도 조절이 가능한 고용량 급속 냉각 초저온 냉동기
JP2003207220A (ja) 冷却装置
WO2006017959A1 (fr) Refrigerateur composite possedant un systeme de refrigeration a cycles multiples et son procede de controle
KR100394008B1 (ko) 냉장고용 냉동사이클 및 그 제어방법
JPH04263746A (ja) 冷凍装置
CN214250222U (zh) 一种制冷装置及具有该制冷装置的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886465

Country of ref document: EP

Kind code of ref document: A1