WO2014087501A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2014087501A1
WO2014087501A1 PCT/JP2012/081518 JP2012081518W WO2014087501A1 WO 2014087501 A1 WO2014087501 A1 WO 2014087501A1 JP 2012081518 W JP2012081518 W JP 2012081518W WO 2014087501 A1 WO2014087501 A1 WO 2014087501A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
temperature
catalyst
system efficiency
predetermined value
Prior art date
Application number
PCT/JP2012/081518
Other languages
English (en)
French (fr)
Inventor
善仁 菅野
木下 剛生
泰毅 森田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/432,409 priority Critical patent/US9248830B2/en
Priority to JP2014550846A priority patent/JP5987918B2/ja
Priority to PCT/JP2012/081518 priority patent/WO2014087501A1/ja
Publication of WO2014087501A1 publication Critical patent/WO2014087501A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/12Catalyst or filter state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device applied to a hybrid vehicle including an internal combustion engine capable of switching between a lean combustion mode and a stoichiometric combustion mode.
  • the internal combustion engine is applied to a hybrid vehicle having an EGR device that can switch between a lean combustion mode and a stoichiometric combustion mode and that circulates exhaust gas, a first motor generator, and a second motor generator.
  • the exhaust gas is circulated by the EGR device while the internal combustion engine is motored by the first motor / generator while the EV motor is running with the second motor / generator as the drive source while the combustion of the engine is stopped.
  • a control device that suppresses the temperature drop of the catalyst is known (Patent Document 1).
  • Patent Documents 2 to 4 exist as prior art documents related to the present invention.
  • JP 2010-38147 A Japanese Patent Laid-Open No. 2001-50086 JP 2008-68802 A JP 2002-97980 A
  • the control device of Patent Document 1 can suppress a temperature drop of the exhaust purification catalyst when the EV mode is executed.
  • the first motor / generator consumes electric power due to the motoring of the internal combustion engine, the system efficiency when the EV mode is executed decreases.
  • an object of the present invention is to provide a control device for a hybrid vehicle that can suppress a temperature decrease of an exhaust purification catalyst while suppressing fuel consumption of an internal combustion engine.
  • the control device of the present invention includes an internal combustion engine having an exhaust purification catalyst for purifying exhaust gas and capable of switching between lean combustion and stoichiometric combustion, and an electric motor as a driving power source, and stops the internal combustion engine. And applied to a hybrid vehicle capable of executing a plurality of modes including an EV mode for driving the electric motor, a lean combustion mode for operating the internal combustion engine by the lean combustion, and a stoichiometric combustion mode for operating the internal combustion engine by the stoichiometric combustion.
  • the hybrid vehicle control device including a mode selection unit that preferentially selects a mode having a high system efficiency with respect to the required power among the plurality of modes, the mode selection unit has the system efficiency set to the EV mode.
  • the system efficiency is higher than that of the EV mode.
  • a case of the conditions towards the sigh combustion mode is below, when the temperature of the exhaust purification catalyst is equal to or less than the first predetermined value, and selects the stoichiometric combustion mode.
  • an efficient hybrid vehicle can be operated. Since lean combustion has a lower exhaust temperature than stoichiometric combustion, when the lean combustion mode is performed, the temperature of the exhaust purification catalyst decreases.
  • the priority of mode selection based on the system efficiency is the lean combustion mode, the EV mode, The order of stoichiometric combustion mode.
  • the control device of the present invention selects the stoichiometric combustion mode without following the priority order based on the system efficiency when the temperature of the exhaust purification catalyst is equal to or lower than the first predetermined value under such conditions. Therefore, since the exhaust temperature becomes higher than other modes by selecting the stoichiometric combustion mode, the temperature reduction of the exhaust purification catalyst can be suppressed.
  • the control device selects the stoichiometric combustion mode in which the system efficiency is lower than that in the EV mode when the temperature of the exhaust purification catalyst is equal to or lower than the first predetermined value under the above conditions. For this reason, the fuel consumption of the internal combustion engine increases in the short term as compared with the case where the EV mode is selected in the same situation.
  • the temperature reduction of the exhaust purification catalyst is suppressed, thereby increasing the period during which the lean combustion mode can be implemented. Therefore, fuel consumption of the internal combustion engine can be suppressed in the long term. Therefore, the temperature reduction of the exhaust purification catalyst can be suppressed while suppressing the fuel consumption of the internal combustion engine.
  • the mode selection means is in the case of the above condition, and when the temperature of the exhaust purification catalyst becomes equal to or lower than a second predetermined value lower than the first predetermined value,
  • the EV mode may be selected.
  • the temperature of the exhaust purification catalyst may decrease even if the stoichiometric combustion mode is selected.
  • the internal combustion engine further includes a three-way catalyst having a smaller capacity than the exhaust purification catalyst, and the temperature of the three-way catalyst is equal to or lower than a lower limit value of a temperature range in which the three-way catalyst is activated.
  • it may further comprise a catalyst temperature increase control means for performing catalyst temperature increase control for forcibly increasing the temperature of the exhaust purification catalyst and the temperature of the three-way catalyst.
  • a NOx catalyst may be provided as the exhaust purification catalyst, and a lower limit value of a temperature range in which the NOx catalyst is activated may be set as the first predetermined value. According to this aspect, the temperature of the NOx catalyst can be easily maintained within the temperature range in which the NOx catalyst is activated.
  • the stoichiometric combustion includes not only combustion targeting an air-fuel ratio that exactly matches the theoretical air-fuel ratio but also combustion targeting an air-fuel ratio in the vicinity of the theoretical air-fuel ratio.
  • the lean combustion is combustion that targets a value larger than the target air-fuel ratio in stoichiometric combustion, that is, the lean-side air-fuel ratio.
  • FIG. 6 is a flowchart illustrating an example of a control routine according to an embodiment of the present invention.
  • the flowchart which showed an example of the special process which concerns on the 1st form of this invention.
  • the timing chart which showed an example of the control result with the comparative example.
  • the timing chart which showed the other example of the control result with the comparative example.
  • the flowchart which showed an example of the special process which concerns on the 2nd form of this invention.
  • the vehicle 1 is configured as a hybrid vehicle in which a plurality of power sources are combined.
  • the vehicle 1 includes an internal combustion engine 3 and two motor generators 4 and 5 as electric motors as a power source for traveling.
  • the internal combustion engine 3 is an in-line 4-cylinder internal combustion engine including four cylinders 10.
  • An intake passage 11 and an exhaust passage 12 are connected to each cylinder 10.
  • the intake passage 11 is provided with an air cleaner 13 for air filtration and a throttle valve 14 capable of adjusting the air flow rate.
  • the exhaust passage 12 is provided with an A / F sensor 15 that outputs a signal corresponding to the air-fuel ratio (A / F) of the internal combustion engine 3.
  • the exhaust passage 12 is provided with a start catalyst 16 and a NOx catalyst 17 that purify harmful components in the exhaust.
  • the start catalyst 16 on the upstream side of the exhaust passage 12 is configured as a three-way catalyst.
  • the start catalyst 16 has a smaller capacity than the downstream NOx catalyst 17 and functions mainly as a catalyst for purifying exhaust gas when the internal combustion engine 3 is started.
  • the NOx catalyst 17 as an exhaust purification catalyst is a known NOx storage reduction catalyst.
  • the start catalyst 16 is provided with a temperature sensor 18, and the NOx catalyst 17 is provided with a temperature sensor 19.
  • the internal combustion engine 3 and the first motor / generator 4 are connected to a power split mechanism 6.
  • the output of the power split mechanism 6 is transmitted to the output gear 20.
  • the output gear 20 and the second motor / generator 5 are connected to each other and rotate together.
  • the power output from the output gear 20 is transmitted to the drive wheels 23 via the speed reducer 21 and the differential device 22.
  • the first motor / generator 4 has a stator 4a and a rotor 4b.
  • the first motor / generator 4 functions as a generator that generates power by receiving the power of the internal combustion engine 3 divided by the power split mechanism 6 and also functions as an electric motor driven by AC power.
  • the second motor / generator 5 includes a stator 5a and a rotor 5b, and functions as an electric motor and a generator, respectively.
  • Each motor / generator 4, 5 is connected to a battery 26 via a motor control device 25.
  • the motor control device 25 converts the electric power generated by the motor / generators 4 and 5 into direct current and stores it in the battery 26, and converts the electric power of the battery 26 into alternating current and supplies it to the motor / generator 4 and 5.
  • the power split mechanism 6 is configured as a single pinion type planetary gear mechanism, and a planetary carrier C that holds a sun gear S, a ring gear R, and a pinion P meshing with these gears S and R in a state capable of rotating and revolving. And have.
  • the sun gear S is connected to the rotor 4 a of the first motor / generator 4, the ring gear R is connected to the output gear 20, and the planetary carrier C is connected to the crankshaft 7 of the internal combustion engine 3.
  • a damper 8 is interposed between the crankshaft 7 and the planetary carrier C, and the damper 8 absorbs torque fluctuations of the internal combustion engine 3.
  • the control of the vehicle 1 is controlled by an electronic control unit (ECU) 30.
  • the ECU 30 performs various controls on the internal combustion engine 3 and the motor / generators 4 and 5.
  • main control performed by the ECU 30 in relation to the present invention will be described.
  • the ECU 30 controls the vehicle 1 while switching various modes so that the system efficiency with respect to the required power required by the driver is optimized. For example, in the low load region where the thermal efficiency of the internal combustion engine 3 decreases, the EV mode in which the combustion of the internal combustion engine 3 is stopped and the second motor / generator 5 is driven is selected. When the torque is insufficient with only the internal combustion engine 3, a hybrid mode is selected in which at least one of the first motor / generator 4 and the second motor / generator 5 is used together with the internal combustion engine 3 as a travel drive source.
  • the internal combustion engine 3 is operated between stoichiometric combustion that targets the stoichiometric air-fuel ratio and the air-fuel ratio in the vicinity thereof, and lean combustion that targets the air-fuel ratio set on the lean side of the target of the air-fuel ratio of stoichiometric combustion. You can switch modes.
  • the ECU 30 refers to the output value of the A / F sensor 15 to measure the air / fuel ratio, and performs feedback control so that the deviation between the actual air / fuel ratio and the target air / fuel ratio decreases.
  • a hybrid mode in which the internal combustion engine 3 is operated by lean combustion is called a lean combustion mode
  • a hybrid mode in which the internal combustion engine 3 is operated by stoichiometric combustion is called a stoichiometric combustion mode.
  • the selection of each mode is performed based on the system efficiency with respect to the required power.
  • the system efficiency is a parameter determined in consideration of various factors such as the power consumption of each motor / generator 4, 5, the fuel consumption and thermal efficiency of the internal combustion engine 3, and the electrical efficiency of each motor / generator 4, 5. is there. Although details of the system efficiency calculation method are omitted, the ECU 30 calculates the system efficiency by a known method.
  • efficiency branch points Pe1 and Pe2 of the system efficiency that make the required power between the EV mode and the hybrid mode.
  • the system efficiency is higher when the lean combustion mode is selected than when the EV mode is selected.
  • the system efficiency is higher when the EV mode is selected than when the lean combustion mode is selected.
  • the system efficiency is higher when the stoichiometric combustion mode is selected than when the EV mode is selected.
  • the system efficiency is higher when the stoichiometric combustion mode is selected than when the EV mode is selected.
  • the required power can be divided into three regions R1, R2, and R3 by two efficiency branch points Pe1 and Pe2.
  • region R1 when the modes are arranged in descending order of the system efficiency, the EV mode, the lean combustion mode, and the stoichiometric combustion mode are in order.
  • region R2 when the modes are arranged in descending order of system efficiency, the order becomes the lean combustion mode, the EV mode, and the stoichiometric combustion mode.
  • the stoichiometric combustion mode, EV mode, and lean combustion mode are in order.
  • the ECU30 performs control so as to preferentially select a mode having a high system efficiency with respect to the required power among a plurality of modes. For example, when the required power corresponds to the region R1, the ECU 30 selects the EV mode with the highest priority, and when the EV mode cannot be selected for some reason, such as when the storage rate of the battery 26 is low, the system efficiency is next high. Select lean combustion mode.
  • the present embodiment is characterized by control performed when the required power corresponds to the region R2.
  • the present embodiment is implemented in a specific condition where the system efficiency with respect to the required power is higher in the lean combustion mode than in the EV mode and the system efficiency is lower in the stoichiometric combustion mode than in the EV mode. There is a feature in control. This specific condition corresponds to a “condition” according to the present invention.
  • step S1 the ECU 30 refers to the output signal of the temperature sensor 18 and acquires the temperature Tsc of the start catalyst 16.
  • step S ⁇ b> 2 the ECU 30 refers to the output signal of the temperature sensor 19 and acquires the temperature Tnc of the NOx catalyst 17.
  • the temperature sensors 18 and 19 at least one of the temperatures Tsc and Tnc can be estimated and acquired from the operating state of the internal combustion engine 3.
  • step S3 the ECU 30 determines whether or not the temperature Tsc of the start catalyst 16 is higher than the lower limit value Tscm of the activation temperature range. If the temperature Tsc is higher than the lower limit value Tscm, the process proceeds to step S5. When the temperature Tsc is equal to or lower than the lower limit scm, the process proceeds to step S4, and catalyst temperature increase control for forcibly increasing the temperatures of the start catalyst 16 and the NOx catalyst 17 is performed. In the present embodiment, the catalyst temperature increase control is performed by operating the internal combustion engine 3 in the stoichiometric combustion mode and a high load.
  • step S5 the ECU 30 acquires the required power.
  • the ECU 30 refers to the output signal of the accelerator opening sensor 31 that outputs a signal corresponding to the depression amount of the accelerator pedal 28 shown in FIG. 1 and the output signal of the vehicle speed sensor 32 that outputs a signal corresponding to the vehicle speed,
  • the required power is obtained by calculating with a predetermined method.
  • step S6 the ECU 30 determines to which of the regions R1 to R3 shown in FIG. 2 the required power acquired in step S5 belongs. If it is determined in step S7 that the required power belongs to the region R1, the process proceeds to step S9, and the EV mode having the highest system efficiency with respect to the required power is selected.
  • step S8 If it is determined in step S8 that the required power belongs to the region R2, the process proceeds to step S10 and the special process shown in FIG. 4 is performed. If a negative determination is made in step S8, the required power belongs to the region R3. Therefore, the process proceeds to step S11, and the stoichiometric combustion mode having the highest system efficiency with respect to the required power is selected.
  • the ECU 30 determines whether or not the temperature Tnc of the NOx catalyst 17 is equal to or lower than the first predetermined value T ⁇ .
  • the first predetermined value T ⁇ is set as the lower limit value of the temperature range in which the NOx catalyst 17 is activated.
  • the first predetermined value T ⁇ may be set to a temperature slightly higher than the lower limit value of the temperature range in which the NOx catalyst 17 is activated in consideration of control stability.
  • the process proceeds to step S103, and the lean combustion mode with the highest system efficiency for the required power is set. select.
  • step S102 the ECU 30 determines whether or not the temperature Tnc of the NOx catalyst 17 is equal to or lower than a second predetermined value T ⁇ that is lower than the first predetermined value T ⁇ .
  • a second predetermined value T ⁇ that is lower than the first predetermined value T ⁇ .
  • the ECU 30 proceeds to step S104 and selects the stoichiometric combustion mode.
  • the system efficiency is lower than that in the case of selecting the EV mode, but the temperature of the NOx catalyst 17 can be increased.
  • the temperature Tnc of the NOx catalyst 17 is equal to or lower than the second predetermined value T ⁇ , the temperature Tnc of the NOx catalyst 17 is completely below the lower limit value T ⁇ of the activation temperature range. In such a case, even if the stoichiometric combustion mode is continuously selected, early recovery of the NOx catalyst temperature Tnc to the activation temperature range cannot be expected. Therefore, when the temperature Tnc of the NOx catalyst 17 is equal to or lower than the second predetermined value T ⁇ , the ECU 30 proceeds to step S105 and selects the EV mode. Here, when the EV mode is selected, the temperature Tnc of the NOx catalyst 17 is lower than the present time.
  • the EV mode having higher system efficiency than the stoichiometric combustion mode is selected here giving priority to the system efficiency.
  • ECU 30 when the ECU 30 executes the control routines of FIGS. 3 and 4, the ECU 30 functions as mode selection means according to the present invention. Moreover, when ECU30 performs step S4 of FIG. 3, ECU30 functions as a catalyst temperature increase control means based on this invention.
  • the lean combustion mode is selected when the temperature Tnc of the NOx catalyst 17 is higher than the first predetermined value T ⁇ under the specific condition.
  • the temperature Tnc of the NOx catalyst 17 gradually decreases and reaches the first predetermined value T ⁇ at time t1.
  • the stoichiometric combustion mode is selected and the exhaust temperature rises.
  • the temperature Tnc of the NOx catalyst 17 rises and is switched to the lean combustion mode at time t2.
  • the lean combustion mode and the stoichiometric combustion mode are alternately performed.
  • the average value of the system efficiency when controlled in this way is a.
  • the EV mode is selected at time t1 when the temperature Tnc of the NOx catalyst 17 reaches the first predetermined value T ⁇ .
  • the system efficiency is higher than when the stoichiometric combustion mode is selected.
  • the temperature Tnc of the NOx catalyst 17 gradually decreases.
  • the temperature Tsc of the start catalyst 16 is lowered together with the temperature Tnc of the NOx catalyst 17.
  • catalyst temperature increase control is performed (see step S4 in FIG. 3).
  • the temperature Tnc of the NOx catalyst 17 starts to rise due to the catalyst temperature increase control.
  • the catalyst temperature raising control is stopped and the operation mode is switched to the lean combustion mode.
  • the average value of the system efficiency in the comparative example is b.
  • the average value b of the comparative example is smaller than the average value a of the present embodiment.
  • the system efficiency is higher when the control according to the present embodiment is performed under a specific condition than when the control according to the comparative example is performed.
  • the control according to the present embodiment when the required power is in the specific condition belonging to the region R2, the period during which the lean combustion mode can be performed is longer than when the control according to the comparative example is performed.
  • the fuel consumption increases in the short term by selecting the stoichiometric combustion mode instead of the EV mode, but in the long term, the fuel consumption of the internal combustion engine 3 increases due to the increase in the implementation period of the stoichiometric combustion mode. Can be suppressed.
  • FIG. 6 another example of the system efficiency and the temporal change in the temperature Tnc of the NOx catalyst 17 when the control of the present embodiment is performed under the specific condition where the required power belongs to the region R ⁇ b> 2 together with the comparative example.
  • the ambient environment of the vehicle 1 is different from that of FIG. Even in this case, each control of the present embodiment and the comparative example is performed in the surrounding environment where the temperature of the NOx catalyst 17 continues to decrease.
  • the comparative example of FIG. 6 performs control for selecting the stoichiometric combustion mode even when the temperature Tnc of the NOx catalyst 17 becomes equal to or lower than the second predetermined value T ⁇ under the specific condition. That is, the control of the comparative example in FIG. 6 corresponds to the control in which steps S102 and S105 in FIG. 4 are omitted.
  • the lean combustion mode is selected when the temperature Tnc of the NOx catalyst 17 is higher than the first predetermined value T ⁇ under the specific condition. Therefore, the temperature Tnc of the NOx catalyst 17 gradually decreases and reaches the first predetermined value T ⁇ at time t1.
  • the stoichiometric combustion mode is selected and the exhaust temperature rises.
  • the situation of FIG. 6 has a large amount of heat radiation from the exhaust passage of the internal combustion engine 3 and each catalyst. Therefore, the temperature Tnc of the NOx catalyst 17 does not increase, and the rate of decrease is moderated compared to the period before time t1, but the temperature Tnc continues to decrease.
  • the EV mode is selected. By selecting the EV mode, the system efficiency is increased compared to continuing the stoichiometric combustion mode.
  • the temperature Tsc of the start catalyst 16 is lowered together with the temperature Tnc of the NOx catalyst 17.
  • catalyst temperature increase control is performed (see step S4 in FIG. 3). The temperature Tnc of the NOx catalyst 17 starts to rise due to the catalyst temperature increase control. Thereafter, an opportunity to select the lean combustion mode is obtained.
  • the stoichiometric combustion mode is selected at time t1, and the stoichiometric combustion mode is continued even when the temperature Tnc of the NOx catalyst 17 becomes equal to or lower than the second predetermined value T ⁇ .
  • the temperature decrease rate of the NOx catalyst Tnc is higher when the EV mode is selected than when the stoichiometric combustion mode is selected. In other words, the temperature Tnc of the NOx catalyst 17 is more likely to decrease when the EV mode is selected than when the stoichiometric combustion mode is selected.
  • the rate of decrease in the temperature Tnc of the NOx catalyst 17 is slow, and the timing when the catalyst temperature increase control is executed is delayed compared to the case of this embodiment. Therefore, in the comparative example, the opportunity to select the lean combustion mode is not obtained within the same period as in the present embodiment. Further, since the EV mode is not selected until the catalyst temperature increase control is performed, the average value d of the system efficiency is lower than the average value c of the system efficiency of the present embodiment.
  • the ECU 30 repeatedly executes the control routines of FIGS. 3 and 7 at predetermined intervals. Programs for these control routines are held in the ECU 30, and are read out in a timely manner and repeatedly executed at predetermined intervals. When the ECU 30 repeatedly executes these control routines, the ECU 30 functions as a mode selection unit according to the present invention. Moreover, when ECU30 performs step S4 of FIG. 3, ECU30 functions as a catalyst temperature increase control means based on this invention.
  • step S201 the ECU 30 substitutes the value of the temperature Tnc of the NOx catalyst 17 acquired in step S2 of FIG. 3 for the temperature variable Tnci used in the current routine.
  • step S202 the ECU 30 calculates the temperature change amount ⁇ of the temperature Tnc of the NOx catalyst 17.
  • the temperature change amount ⁇ is calculated by subtracting the value of the temperature variable Tnci ⁇ 1 used in the previous routine from the value of the temperature variable Tnci.
  • the temperature variable Tnci-1 is updated to the value of the temperature variable Tnci in step S208 described later.
  • step S203 the ECU 30 determines whether or not the temperature change amount ⁇ is smaller than the threshold value ⁇ sd.
  • the threshold ⁇ sd is a predetermined negative value. Therefore, it is possible to determine whether or not the temperature Tnc of the NOx catalyst 17 has changed in a decreasing direction at a predetermined change rate or more by the process of step S203.
  • the temperature Tnc of the NOx catalyst 17 changes in a decreasing direction at a predetermined change rate or more, it is handled that the temperature Tnc is equal to or lower than the first predetermined value T ⁇ according to the first embodiment.
  • the process proceeds to step S205.
  • the process proceeds to step S204 to select the lean combustion mode.
  • step S205 the ECU 30 determines whether or not the temperature Tnc of the NOx catalyst 17 is equal to or lower than a predetermined value T ⁇ .
  • the predetermined value T ⁇ is a value lower than the first predetermined value T ⁇ described in the first embodiment. Therefore, the predetermined value T ⁇ is a value lower than the lower limit value of the activation temperature range of the NOx catalyst 17.
  • the predetermined value T ⁇ may be the same as or different from the second predetermined value T ⁇ described in the first embodiment.
  • the ECU 30 proceeds to step S206 and selects the stoichiometric combustion mode.
  • the system efficiency is lower than that in the case of selecting the EV mode, but the temperature of the NOx catalyst 17 can be increased.
  • the ECU 30 proceeds to step S207 and selects the EV mode.
  • the temperature Tnc of the NOx catalyst 17 is decreased from the current level.
  • the temperature Tnc is activated later by executing the catalyst temperature increase control in step S4 of FIG. It is possible to recover to temperature. Therefore, the EV mode having higher system efficiency than the stoichiometric combustion mode is selected here giving priority to the system efficiency.
  • step S208 the ECU 30 substitutes the value of the temperature variable Tnci used in this routine for the temperature variable Tnci-1. Then, the value of the temperature variable Tnci-1 is stored for the process of step S202 executed in the next routine.
  • the stoichiometric combustion mode is selected by treating that the temperature is lower than the first predetermined value T ⁇ .
  • the fuel consumption of the internal combustion engine 3 increases in the short term, but the fuel consumption of the internal combustion engine 3 can be suppressed by increasing the period in which the lean combustion mode can be implemented in the long term. Therefore, the temperature reduction of the NOx catalyst 17 can be suppressed while suppressing the fuel consumption of the internal combustion engine 3.
  • the present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention.
  • the exhaust purification catalyst is not limited to the NOx catalyst provided in the above-described embodiments, and the present invention can be applied to a hybrid vehicle including an internal combustion engine provided with another type of exhaust purification catalyst.
  • the system efficiency of each mode is higher in the lean combustion mode than in the EV mode, and is lower in the stoichiometric combustion mode than in the EV mode. It was made into an example of specific conditions. However, the present invention can be applied even when the required power does not belong to the region R2 in FIG.
  • the start catalyst 16 as a three-way catalyst is arranged on the upstream side of the NOx catalyst 17, but the number and arrangement of the exhaust purification catalysts are not limited. As long as the capacity of the other three-way catalyst is small with respect to one catalyst, a three-way catalyst may be provided on the downstream side of one catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明の制御装置は、リーン燃焼とストイキ燃焼との間で運転時の運転モードを変更可能な内燃機関を有するハイブリッド車両に適用される。制御装置は、要求パワーに対するシステム効率が高い運転モードを優先的に選択する一方で、システム効率がEVモードに比べてリーン燃焼モードの方が上回り、かつEVモードに比べてストイキ燃焼モードの方が下回る特定条件の場合であって、排気浄化触媒の温度(Tnc)が第1所定値(Tα)以下となる場合(S101、S102)、ストイキ燃焼モードを選択する(S104)。

Description

ハイブリッド車両の制御装置
 本発明は、リーン燃焼モードとストイキ燃焼モードとを切り替え可能な内燃機関を備えたハイブリッド車両に適用される制御装置に関する。
 リーン燃焼モードとストイキ燃焼モードとを切り替え可能で、かつ排気を循環させるEGR装置を有する内燃機関と、第1モータ・ジェネレータと、第2モータ・ジェネレータとを備えたハイブリッド車両に適用され、内燃機関の燃焼を停止して第2モータ・ジェネレータを駆動源として走行するEVモードの実行中に、第1モータ・ジェネレータで内燃機関をモータリングさせながらEGR装置で排気を循環させて排気通路の排気浄化触媒の温度低下を抑える制御装置が知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2~4が存在する。
特開2010-38147号公報 特開2001-50086号公報 特開2008-68802号公報 特開2002-97980号公報
 特許文献1の制御装置は、EVモードの実行時の排気浄化触媒の温度低下を抑えることができる。しかし、内燃機関のモータリングによって第1モータ・ジェネレータが電力を消費するのでEVモード実行時のシステム効率が低下する。
 そこで、本発明は、内燃機関の燃料消費を抑えながら排気浄化触媒の温度低下を抑制できるハイブリッド車両の制御装置を提供することを目的とする。
 本発明の制御装置は、排気を浄化する排気浄化触媒を有し、かつリーン燃焼とストイキ燃焼とを切り替え可能な内燃機関と、電動機と、を走行用動力源として備え、前記内燃機関を停止して前記電動機を駆動するEVモード、前記内燃機関を前記リーン燃焼で運転するリーン燃焼モード、及び前記内燃機関を前記ストイキ燃焼で運転するストイキ燃焼モードを含む複数のモードを実行可能なハイブリッド車両に適用され、前記複数のモードのうち、要求パワーに対するシステム効率が高いモードを優先的に選択するモード選択手段を備えたハイブリッド車両の制御装置において、前記モード選択手段は、前記システム効率が前記EVモードに比べて前記リーン燃焼モードの方が上回り、かつ前記システム効率が前記EVモードに比べて前記ストイキ燃焼モードの方が下回る条件の場合であって、前記排気浄化触媒の温度が第1所定値以下となる場合、前記ストイキ燃焼モードを選択するものである。
 本発明の制御装置によれば、要求パワーに対するシステム効率が高いモードが優先的に選択されるので効率の良いハイブリッド車両の運転が可能となる。リーン燃焼はストイキ燃焼に比べて排気温度が低いので、リーン燃焼モードを実施すると排気浄化触媒の温度が低下する。システム効率がEVモードに比べてリーン燃焼モードの方が上回り、かつEVモードに比べてストイキ燃焼モードの方が下回る条件の場合、システム効率に基づくモード選択の優先順位はリーン燃焼モード、EVモード、ストイキ燃焼モードの順番となる。この状況で排気浄化触媒の温度が第1所定値以下となった場合、システム効率に基づく優先順位に従ってリーン燃焼モード又はEVモードを選択すると排気浄化触媒の温度の更なる低下を招く。本発明の制御装置は、こうした条件の場合であって排気浄化触媒の温度が第1所定値以下となった場合に、システム効率に基づく優先順位に従わずにストイキ燃焼モードを選択する。したがって、ストイキ燃焼モードの選択によって排気温が他のモードよりも高くなるため排気浄化触媒の温度低下を抑制できる。本発明の制御装置は、上記条件の場合であって排気浄化触媒の温度が第1所定値以下となった場合にEVモードよりもシステム効率が低いストイキ燃焼モードを選択する。このため、これと同一状況でEVモードを選択する場合に比べて短期的には内燃機関の燃料消費が増加する。しかし、ストイキ燃焼モードを選択することによって排気浄化触媒の温度低下が抑制されることにより、リーン燃焼モードを実施可能な期間が増加する。したがって、長期的には内燃機関の燃料消費を抑えることができる。よって、内燃機関の燃料消費を抑えながら排気浄化触媒の温度低下を抑制できる。
 本発明の制御装置の一態様において、前記モード選択手段は、前記条件の場合であって、前記排気浄化触媒の温度が前記第1所定値よりも低い第2所定値以下となる場合に、前記EVモードを選択してもよい。例えば、外気温が常温よりも低い場合や走行風の流量が多い高速走行の場合、ストイキ燃焼モードを選択しても排気浄化触媒の温度が下がるおそれがある。このような場合には、ストイキ燃焼モードの実施を続けるよりも、システム効率を優先してEVモードを選択し、その後、何らかの方法で排気浄化触媒の温度を強制的に上昇させることがシステム効率上有利になる。
 例えば、前記内燃機関は前記排気浄化触媒よりも容量が小さい三元触媒を更に有し、前記三元触媒の温度が、前記三元触媒が活性化する温度範囲の下限値以下となった場合に、前記排気浄化触媒の温度及び前記三元触媒の温度を強制的に上昇させる触媒昇温制御を実施する触媒昇温制御手段を更に備えてもよい。
 本発明の制御装置の一態様において、前記排気浄化触媒として、NOx触媒が設けられており、前記第1所定値として、前記NOx触媒が活性化する温度範囲の下限値が設定されてもよい。この態様によれば、NOx触媒が活性化する温度範囲内にNOx触媒の温度を容易に維持できる。
 なお、本発明の制御装置において、ストイキ燃焼とは、理論空燃比と厳密に一致する空燃比を目標とした燃焼のみならず、理論空燃比の近辺の空燃比を目標とした燃焼も含む。また、リーン燃焼とはストイキ燃焼で目標とする空燃比よりも大きな値、つまりリーン側の空燃比を目標とする燃焼である。
本発明の一形態の制御装置が適用された車両の全体構成を示した図。 各運転モードの効率分岐点と要求パワーとの関係を示した図。 本発明の一形態に係る制御ルーチンの一例を示したフローチャート。 本発明の第1の形態に係る特別処理の一例を示したフローチャート。 制御結果の一例を比較例とともに示したタイミングチャート。 制御結果の他の例を比較例とともに示したタイミングチャート。 本発明の第2の形態に係る特別処理の一例を示したフローチャート。
(第1の形態)
 図1に示すように、車両1は複数の動力源を組み合わせたハイブリッド車両として構成されている。車両1は、内燃機関3と、電動機としての2つのモータ・ジェネレータ4、5とを走行用の動力源として備えている。内燃機関3は4つの気筒10を備えた直列4気筒型の内燃機関である。各気筒10には吸気通路11と排気通路12とがそれぞれ接続されている。吸気通路11には、空気濾過用のエアクリーナ13、及び空気流量を調整可能なスロットルバルブ14がそれぞれ設けられている。排気通路12には、内燃機関3の空燃比(A/F)に対応した信号を出力するA/Fセンサ15が設けられている。また、排気通路12には、排気中の有害成分を浄化するスタート触媒16及びNOx触媒17が設けられている。排気通路12の上流側のスタート触媒16は三元触媒として構成されている。スタート触媒16は下流側のNOx触媒17よりも容量が小さく、主として内燃機関3の始動時の排気を浄化する触媒として機能する。排気浄化触媒としてのNOx触媒17は周知の吸蔵還元型のNOx触媒である。各触媒16、17の温度を検出するため、スタート触媒16には温度センサ18が、NOx触媒17には温度センサ19がそれぞれ設けられている。
 内燃機関3と第1モータ・ジェネレータ4とは動力分割機構6に接続されている。動力分割機構6の出力は出力ギア20に伝達される。出力ギア20と第2モータ・ジェネレータ5とは互いに連結されていて一体回転する。出力ギア20から出力した動力は減速装置21及び差動装置22を介して駆動輪23に伝達される。第1モータ・ジェネレータ4はステータ4aとロータ4bとを有する。第1モータ・ジェネレータ4は、動力分割機構6にて分割された内燃機関3の動力を受けて発電する発電機として機能するとともに、交流電力にて駆動される電動機としても機能する。同様に、第2モータ・ジェネレータ5はステータ5aとロータ5bとを有し、電動機及び発電機としてそれぞれ機能する。各モータ・ジェネレータ4、5はモータ用制御装置25を介してバッテリ26に接続される。モータ用制御装置25は各モータ・ジェネレータ4、5が発電した電力を直流変換してバッテリ26に蓄電するとともにバッテリ26の電力を交流変換して各モータ・ジェネレータ4、5に供給する。
 動力分割機構6はシングルピニオン型の遊星歯車機構として構成されており、サンギアSと、リングギアRと、これらのギアS、Rに噛み合うピニオンPを自転及び公転可能な状態で保持するプラネタリキャリアCとを有している。サンギアSは第1モータ・ジェネレータ4のロータ4aに連結され、リングギアRは出力ギア20に連結され、プラネタリキャリアCは内燃機関3のクランク軸7に連結される。なお、クランク軸7とプラネタリキャリアCとの間にはダンパ8が介在し、そのダンパ8は内燃機関3のトルク変動を吸収する。
 車両1の制御は電子制御装置(ECU)30にて制御される。ECU30は内燃機関3及び各モータ・ジェネレータ4、5に対して各種の制御を行う。以下、本発明に関連してECU30が行う主要な制御について説明する。ECU30は、運転者が要求する要求パワーに対するシステム効率が最適となるように各種のモードを切り替えながら車両1を制御する。例えば、内燃機関3の熱効率が低下する低負荷領域では内燃機関3の燃焼を停止して第2モータ・ジェネレータ5を駆動するEVモードが選択される。また、内燃機関3だけではトルクが不足する場合は、内燃機関3とともに第1モータ・ジェネレータ4及び第2モータ・ジェネレータ5の少なくとも一方を走行用駆動源とするハイブリッドモードが選択される。
 内燃機関3は、理論空燃比及びその近辺の空燃比を目標とするストイキ燃焼と、ストイキ燃焼の空燃比の目標よりもリーン側に設定された空燃比を目標とするリーン燃焼との間で運転モードを切り替えることができる。ECU30はA/Fセンサ15の出力値を参照して空燃比を計測し、その実際の空燃比と目標空燃比との偏差が低下するようにフィードバック制御を行う。リーン燃焼は目標とする空燃比がストイキ燃焼の目標とする空燃比よりも大きいので、運転モードをストイキ燃焼に維持する場合と比べて燃料消費量を低減できる。ここでは、内燃機関3をリーン燃焼で運転するハイブリッドモードをリーン燃焼モードと呼び、内燃機関3をストイキ燃焼で運転するハイブリッドモードをストイキ燃焼モードと呼ぶ。
 各モードの選択は、要求パワーに対するシステム効率に基づいて行う。システム効率は各モータ・ジェネレータ4、5の電力消費量、内燃機関3の燃料消費量及び熱効率、各モータ・ジェネレータ4、5の電気的効率等の種々の要素が考慮されて定められたパラメータである。システム効率の算出方法の詳細は省略するが公知の方法によってECU30が計算する。
 図2に示すように、EVモードとハイブリッドモードとの間には要求パワーにするシステム効率の効率分岐点Pe1、Pe2が存在する。リーン燃焼モードとEVモードとの間の効率分岐点Pe1よりも要求パワーが大きい状況では、EVモードを選択するよりもリーン燃焼モードを選択するほうがシステム効率は高い。逆に、効率分岐点Pe1よりも要求パワーが小さい状況ではリーン燃焼モードを選択するよりもEVモードを選択するほうがシステム効率は高い。また、ストイキ燃焼モードとEVモードとの間の効率分岐点Pe2よりも要求パワーが大きい状況では、EVモードを選択するよりもストイキ燃焼モードを選択するほうがシステム効率は高い。逆に、効率分岐点Pe2よりも要求パワーが小さい状況ではストイキ燃焼モードを選択するよりもEVモードを選択するほうがシステム効率は高い。
 要求パワーは2つの効率分岐点Pe1、Pe2によって3つの領域R1、R2、R3に分けることができる。領域R1では、システム効率が高い順に各モードを並べると、EVモード、リーン燃焼モード、ストイキ燃焼モードの順番となる。領域R2では、システム効率が高い順に各モードを並べると、リーン燃焼モード、EVモード、ストイキ燃焼モードの順番となる。領域R3では、システム効率が高い順に各モードを並べると、ストイキ燃焼モード、EVモード、リーン燃焼モードの順番となる。
 ECU30は、原則として、複数のモードのうち要求パワーに対するシステム効率が高いモードを優先的に選択するように制御する。例えば、ECU30は、要求パワーが領域R1に該当する場合、EVモードを最優先で選択し、バッテリ26の蓄電率が低い場合等の何らかの原因でEVモードを選択できない場合は次にシステム効率が高いリーン燃焼モードを選択する。本形態は、要求パワーが領域R2に該当する場合に実施する制御に特徴がある。換言すれば、本形態は、要求パワーに対するシステム効率がEVモードに比べてリーン燃焼モードの方が上回り、かつシステム効率がEVモードに比べてストイキ燃焼モードの方が下回る特定条件の場合に実施する制御に特徴がある。この特定条件は本発明に係る「条件」に相当する。
 図3及び図4を参照しながら、ECU30が実施する制御の一例を説明する。図3の制御ルーチンのプログラムはECU30に保持されており、適時に読み出されて所定間隔で繰り返し実行される。ステップS1において、ECU30は温度センサ18の出力信号を参照してスタート触媒16の温度Tscを取得する。次に、ステップS2において、ECU30は温度センサ19の出力信号を参照してNOx触媒17の温度Tncを取得する。なお、温度センサ18、19の代わりに、温度Tsc、Tncの少なくとも一方を内燃機関3の運転状態から推定して取得することもできる。
 ステップS3において、ECU30はスタート触媒16の温度Tscが活性化温度範囲の下限値Tscmよりも高いか否かを判定する。温度Tscが下限値Tscmよりも高い場合はステップS5に進む。温度Tscが下限値scm以下の場合はステップS4に進み、スタート触媒16及びNOx触媒17のそれぞれの温度を強制的に上昇させる触媒昇温制御を実施する。本形態において、触媒昇温制御は内燃機関3をストイキ燃焼モードかつ高負荷で運転することにより実施する。
 ステップS5において、ECU30は要求パワーを取得する。ECU30は、図1に示したアクセルペダル28の踏み込み量に応じた信号を出力するアクセル開度センサ31の出力信号と、車速に応じた信号を出力する車速センサ32の出力信号とを参照し、所定の方法で計算することにより要求パワーを取得する。ステップS6において、ECU30はステップS5で取得した要求パワーが図2に示した領域R1~R3のいずれに属するかを判定する。ステップS7において、要求パワーが領域R1に属すると判定した場合、ステップS9に進み、要求パワーに対するシステム効率が最も高いEVモードを選択する。ステップS8において、要求パワーが領域R2に属すると判定した場合、ステップS10に進み図4に示した特別処理を実施する。ステップS8で否定的判定がされた場合は要求パワーが領域R3に属することになるので、ステップS11に進み、要求パワーに対するシステム効率が最も高いストイキ燃焼モードを選択する。
 図4のステップS101において、ECU30はNOx触媒17の温度Tncが第1所定値Tα以下であるか否かを判定する。第1所定値TαはNOx触媒17が活性化する温度範囲の下限値として設定されている。なお、第1所定値Tαとしては、制御の安定性を考慮してNOx触媒17が活性化する温度範囲の下限値よりも少し高めの温度に設定してもよい。NOx触媒17の温度Tncが第1所定値Tα以下の場合はステップS102に進む。NOx触媒17の温度Tncが第1所定値Tαよりも高い場合、すなわちNOx触媒17の温度Tncが活性化温度範囲内の場合はステップS103に進み、要求パワーに対するシステム効率が最も高いリーン燃焼モードを選択する。
 ステップS102において、ECU30はNOx触媒17の温度Tncが第1所定値Tαよりも低い第2所定値Tβ以下であるか否かを判定する。NOx触媒17の温度Tncが第2所定値Tβ以下でない場合は、NOx触媒17の温度Tncは活性化温度範囲の下限値付近にある。そのため、ストイキ燃焼モードを選択することによってNOx触媒17の温度Tncの活性化温度範囲への早期回復が期待できる。そこで、ECU30は、NOx触媒17の温度Tncが第1所定値Tα以下であるが第2所定値Tβ以下でない場合、ステップS104に進みストイキ燃焼モードを選択する。ここで、ストイキ燃焼モードを選択することによって、システム効率はEVモードを選択する場合よりも下回るがNOx触媒17を昇温できる。
 一方、NOx触媒17の温度Tncが第2所定値Tβ以下の場合、NOx触媒17の温度Tncが活性化温度範囲の下限値Tαを完全に下回る。このような場合は、ストイキ燃焼モードの選択を継続してもNOx触媒の温度Tncの活性化温度範囲への早期回復が期待できない。そのため、ECU30は、NOx触媒17の温度Tncが第2所定値Tβ以下の場合、ステップS105に進みEVモードを選択する。ここで、EVモードを選択するとNOx触媒17の温度Tncが現在よりも低下するが、温度Tncが低下しても上述した図3のステップS4の触媒昇温制御の実行によって、後で活性化温度まで回復することが可能である。したがって、ここではシステム効率を優先して、ストイキ燃焼モードよりもシステム効率が高いEVモードを選択する。
 以上のように、図3及び図4の制御ルーチンをECU30が実行することにより、ECU30は本発明に係るモード選択手段として機能する。また、図3のステップS4をECU30が実行することにより、ECU30は本発明に係る触媒昇温制御手段として機能する。
 次に、図5を参照しながら、要求パワーが領域R2に属する特定条件で本形態の制御を実施した場合のシステム効率及びNOx触媒17の温度Tncの時間的変化の一例を比較例とともに説明する。図5の比較例は、特定条件の場合にNOx触媒17の温度Tncが第1所定値Tα以下となった場合に、システム効率を優先してリーン燃焼モードの次にシステム効率が高いEVモードを選択する制御を実施するものである。つまり、比較例の制御は図4のステップS102及びステップS104を省略したものに相当する。
 図5に示したように、本形態は、特定条件の場合にNOx触媒17の温度Tncが第1所定値Tαよりも高い場合にリーン燃焼モードが選択される。リーン燃焼モードが選択された結果、NOx触媒17の温度Tncが徐々に低下し、時刻t1で第1所定値Tαに達する。温度Tncが第1所定値Tαに達するとストイキ燃焼モードが選択されて排気温が上昇する。これによりNOx触媒17の温度Tncが上昇して時刻t2でリーン燃焼モードに切り替えられる。以下同様にリーン燃焼モードとストイキ燃焼モードとが交互に実施される。このように制御された場合のシステム効率の平均値はaとなる。
 これに対して、図5の比較例はNOx触媒17の温度Tncが第1所定値Tαに達した時刻t1で、EVモードが選択される。EVモードを選択する場合はシステム効率がストイキ燃焼モードを選択する場合よりも高くなる。しかし、EVモードは内燃機関3を停止させるため、NOx触媒17の温度Tncが徐々に低下する。EVモードを継続するとNOx触媒17の温度Tncとともにスタート触媒16の温度Tscも低下する。時刻t3で、スタート触媒16の温度Tscが活性化温度範囲の下限値Tscmに達すると、触媒昇温制御が実施される(図3ステップS4参照)。触媒昇温制御によってNOx触媒17の温度Tncは上昇に転じる。時刻t4で触媒昇温制御が停止され運転モードがリーン燃焼モードに切り替えられる。比較例の場合のシステム効率の平均値はbとなる。比較例の平均値bは本形態の平均値aよりも小さい。
 したがって、図5に示した例においては、特定条件で本形態の制御を実施した方が比較例の制御を実施する場合に比べてシステム効率が高いといえる。また、図5から理解できるように、要求パワーが領域R2に属する特定条件の場合に本形態の制御を実施すると、リーン燃焼モードを実施可能な期間が比較例の制御を実施する場合よりも長くなる。そのため、本形態はEVモードの代わりにストイキ燃焼モードを選択することで短期的には燃料消費が増加するが、長期的にはストイキ燃焼モードの実施期間が増加することによって内燃機関3の燃料消費を抑えることができる。
 次に、図6を参照しながら、要求パワーが領域R2に属する特定条件で本形態の制御を実施した場合のシステム効率及びNOx触媒17の温度Tncの時間的変化の他の例を比較例とともに説明する。図6の場合は、車両1の周辺環境が図5の場合と異なり、例えば外気温が常温よりも低い場合や走行風の流量が多い高速走行の場合等のように、ストイキ燃焼モードを選択してもNOx触媒17の温度が下がり続ける周辺環境で本形態及び比較例の各制御を実施した場合である。図6の比較例は、特定条件の場合にNOx触媒17の温度Tncが第2所定値Tβ以下となっても、ストイキ燃焼モードを選択する制御を実施するものである。つまり、図6の比較例の制御は図4のステップS102及びステップS105を省略したものに相当する。
 図6に示したように、本形態は、特定条件の場合にNOx触媒17の温度Tncが第1所定値Tαよりも高い場合はリーン燃焼モードが選択される。そのため、NOx触媒17の温度Tncが徐々に低下し、時刻t1で第1所定値Tαに達する。温度Tncが第1所定値Tαに達するとストイキ燃焼モードが選択され排気温が上昇する。しかしながら、図6の状況は図5の状況と異なり、内燃機関3の排気通路や各触媒からの放熱量が大きい。そのため、NOx触媒17の温度Tncは上昇せず、時刻t1以前の期間よりも低下率が緩和されるが温度Tncは低下を続ける。NOx触媒17の温度Tncが更に低下して時刻t2で第2所定値Tβに達すると、EVモードが選択される。EVモードを選択することによって、ストイキ燃焼モードを続行する場合に比べてシステム効率は高まる。EVモードを継続するとNOx触媒17の温度Tncとともにスタート触媒16の温度Tscも低下する。時刻t3でスタート触媒16の温度Tscが活性化温度範囲の下限値Tscmに達すると、触媒昇温制御が実施される(図3ステップS4参照)。触媒昇温制御によってNOx触媒17の温度Tncは上昇に転じる。その後において、リーン燃焼モードを選択する機会が得られる。
 これに対して、図6の比較例の場合は、時刻t1でストイキ燃焼モードが選択され、NOx触媒17の温度Tncが第2所定値Tβ以下になってもストイキ燃焼モードが続行される。NOx触媒Tncの温度低下率は、ストイキ燃焼モードを選択した場合よりもEVモードを選択したほうが高い。換言すれば、EVモードを選択した場合の方がストイキ燃焼モードを選択した場合に比べてNOx触媒17の温度Tncが下がりやすい。そのため、比較例の場合はNOx触媒17の温度Tncの低下速度が遅く、触媒昇温制御が実行される時期が本形態の場合よりも遅れる。したがって、比較例は、リーン燃焼モードを選択する機会が本形態と同じ期間内で得られない。また、触媒昇温制御が実施されるまでの間にEVモードが選択されないため、システム効率の平均値dは、本形態のシステム効率の平均値cよりも低くなる。
 したがって、図6に示した状況では、NOx触媒17の温度Tncが第2所定値Tβ以下となった場合にEVモードに切り替えた方が、そのままストイキ燃焼モードを継続する場合よりもシステム効率上有利である。
(第2の形態)
 次に、図7を参照しながら本発明の第2の形態を説明する。第2の形態は特定条件の場合に実施する特別処理を除き第1の形態と共通する。以下、第2の形態の特徴部分を説明し、第1の形態との共通部分の説明を省略する。ECU30は図3及び図7の制御ルーチンを所定間隔で繰り返し実行する。これらの制御ルーチンのプログラムはECU30に保持されており、適時に読み出されて所定間隔で繰り返し実行される。ECU30がこれらの制御ルーチンを繰り返し実行することにより、ECU30は本発明に係るモード選択手段として機能する。また、図3のステップS4をECU30が実行することにより、ECU30は本発明に係る触媒昇温制御手段として機能する。
 図7に示すように、ECU30はステップS201において、今回のルーチンで用いる温度変数Tnciに図3のステップS2で取得したNOx触媒17の温度Tncの値を代入する。ステップS202において、ECU30はNOx触媒17の温度Tncの温度変化量δを算出する。温度変化量δは、温度変数Tnciの値から前回のルーチンで用いた温度変数Tnci-1の値を減算することによって算出する。なお、温度変数Tnci-1は後述するステップS208にて、温度変数Tnciの値に更新される。
 ステップS203において、ECU30は温度変化量δが閾値δsdよりも小さいか否かを判定する。閾値δsdは所定の負の値である。したがって、ステップS203の処理によって、NOx触媒17の温度Tncが減少方向に所定の変化率以上で変化したか否かを判定できる。NOx触媒17の温度Tncが減少方向に所定の変化率以上で変化した場合は温度Tncが第1の形態に係る第1所定値Tα以下になるものとして取り扱う。温度変化量δが閾値δsdよりも小さい場合はステップS205に進む。一方、温度変化量δが閾値δsd以上の場合はNOx触媒17の温度Tncが所定の変化率以上で減少方向に変化していない。したがって、要求パワーに対するシステム効率が最も高いリーン燃焼モードを選択することに支障がないので、ステップS204に進んでリーン燃焼モードを選択する。
 ステップS205において、ECU30はNOx触媒17の温度Tncが所定値Tγ以下であるか否かを判定する。所定値Tγは第1の形態で説明した第1所定値Tαよりも低い値である。したがって、所定値TγはNOx触媒17の活性化温度範囲の下限値よりも低い値である。所定値Tγは第1の形態で説明した第2所定値Tβと同じ値でもよいし異なる値でもよい。NOx触媒17の温度Tncが所定値Tγ以下でない場合は、ストイキ燃焼モードを選択することによってNOx触媒17の温度Tncの早期回復が期待できる。そこで、ECU30は、NOx触媒17の温度Tncが所定値Tγ以下でない場合、ステップS206に進みストイキ燃焼モードを選択する。ここで、ストイキ燃焼モードを選択することによって、システム効率はEVモードを選択する場合よりも下回るがNOx触媒17を昇温できる。
 一方、NOx触媒17の温度Tncが所定値Tγ以下の場合は、ストイキ燃焼モードの選択を継続してもNOx触媒の温度Tncの活性化温度範囲への早期回復が期待できない。そのため、ECU30は、NOx触媒17の温度Tncが所定値Tγ以下の場合、ステップS207に進みEVモードを選択する。ここで、EVモードを選択するとNOx触媒17の温度Tncが現在よりも低下するが、温度Tncが低下しても図3のステップS4の触媒昇温制御の実行によって、温度Tncを後で活性化温度まで回復することが可能である。したがって、ここではシステム効率を優先して、ストイキ燃焼モードよりもシステム効率が高いEVモードを選択する。
 ステップS208において、ECU30は今回のルーチンで使用した温度変数Tnciの値を温度変数Tnci-1に代入する。そして、次回のルーチンで実行するステップS202の処理のために温度変数Tnci-1の値を記憶する。
 第2の形態の制御によれば、NOx触媒17の温度Tncが減少方向に変化した場合に第1所定値Tα以下になったものと扱ってストイキ燃焼モードを選択するので、第1の形態と同様に、短期的には内燃機関3の燃料消費が増加するが、長期的にはリーン燃焼モードを実施可能な期間が増加することにより内燃機関3の燃料消費を抑えることができる。よって、内燃機関3の燃料消費を抑えながらNOx触媒17の温度低下を抑制できる。また、第2の形態は、NOx触媒17の温度Tncが減少方向に変化した場合であっても、NOx触媒17の温度Tncが活性化温度範囲の下限よりも低い所定値Tγ以下の場合はEVモードを選択する。そのため、第1の形態と同様に、NOx触媒17の温度Tncが減少方向に変化した場合にストイキ燃焼モードを継続するよりもシステム効率上有利となる場合がある(図6参照)。
 本発明は上記各形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。排気浄化触媒は上記各形態で設けられたNOx触媒に限らず、他の形式の排気浄化触媒を備えた内燃機関を備えたハイブリッド車両に対して本発明を適用できる。上記各形態では、要求パワーが図2の領域R2に属する場合を、各モードのシステム効率がEVモードに比べてリーン燃焼モードの方が上回り、かつEVモードに比べてストイキ燃焼モードの方が下回る特定条件の一例とした。しかし、3つのモード間のシステム効率の大小関係が特定条件の場合と同じである限り、要求パワーが図2の領域R2に属しない場合であっても本発明を適用できる。上記各形態では、三元触媒としてのスタート触媒16がNOx触媒17の上流側に配置されているが排気浄化触媒の個数や配置に制限はない。一方の触媒に対して他方の三元触媒の容量が小さい限り、一方の触媒の下流側に三元触媒を設ける形態で実施してもよい。

Claims (4)

  1.  排気を浄化する排気浄化触媒を有し、かつリーン燃焼とストイキ燃焼とを切り替え可能な内燃機関と、電動機と、を走行用動力源として備え、前記内燃機関を停止して前記電動機を駆動するEVモード、前記内燃機関を前記リーン燃焼で運転するリーン燃焼モード、及び前記内燃機関を前記ストイキ燃焼で運転するストイキ燃焼モードを含む複数のモードを実行可能なハイブリッド車両に適用され、前記複数のモードのうち、要求パワーに対するシステム効率が高いモードを優先的に選択するモード選択手段を備えたハイブリッド車両の制御装置において、
     前記モード選択手段は、前記システム効率が前記EVモードに比べて前記リーン燃焼モードの方が上回り、かつ前記システム効率が前記EVモードに比べて前記ストイキ燃焼モードの方が下回る条件の場合であって、前記排気浄化触媒の温度が第1所定値以下となる場合、前記ストイキ燃焼モードを選択するハイブリッド車両の制御装置。
  2.  前記モード選択手段は、前記条件の場合であって、前記排気浄化触媒の温度が前記第1所定値よりも低い第2所定値以下となる場合、前記EVモードを選択する請求項1の制御装置。
  3.  前記内燃機関は前記排気浄化触媒よりも容量が小さい三元触媒を更に有し、
     前記三元触媒の温度が、前記三元触媒が活性化する温度範囲の下限値以下となった場合に、前記排気浄化触媒の温度及び前記三元触媒の温度を強制的に上昇させる触媒昇温制御を実施する触媒昇温制御手段を更に備える請求項2の制御装置。
  4.  前記排気浄化触媒として、NOx触媒が設けられており、
     前記第1所定値として、前記NOx触媒が活性化する温度範囲の下限値が設定されている請求項1~3のいずれか一項の制御装置。
PCT/JP2012/081518 2012-12-05 2012-12-05 ハイブリッド車両の制御装置 WO2014087501A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/432,409 US9248830B2 (en) 2012-12-05 2012-12-05 Control apparatus of hybrid vehicle
JP2014550846A JP5987918B2 (ja) 2012-12-05 2012-12-05 ハイブリッド車両の制御装置
PCT/JP2012/081518 WO2014087501A1 (ja) 2012-12-05 2012-12-05 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081518 WO2014087501A1 (ja) 2012-12-05 2012-12-05 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2014087501A1 true WO2014087501A1 (ja) 2014-06-12

Family

ID=50882951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081518 WO2014087501A1 (ja) 2012-12-05 2012-12-05 ハイブリッド車両の制御装置

Country Status (3)

Country Link
US (1) US9248830B2 (ja)
JP (1) JP5987918B2 (ja)
WO (1) WO2014087501A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107903A (zh) * 2015-03-18 2017-08-29 宝马股份公司 用于运行混合动力车辆的方法
CN107792055A (zh) * 2016-08-30 2018-03-13 比亚迪股份有限公司 混合动力汽车及其控制方法和控制系统
JP2023521021A (ja) * 2020-04-02 2023-05-23 ジャガー・ランド・ローバー・リミテッド 希薄運転ハイブリッドガソリンエンジン

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006556B4 (de) * 2013-01-31 2019-01-17 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für ein Hybridfahrzeug
JP6296228B2 (ja) * 2013-12-13 2018-03-20 三菱自動車工業株式会社 ハイブリッド車両の制御装置
JP6544342B2 (ja) * 2016-11-29 2019-07-17 トヨタ自動車株式会社 ハイブリッド自動車
US11008111B2 (en) * 2017-06-26 2021-05-18 General Electric Company Propulsion system for an aircraft
FR3075260B1 (fr) * 2017-12-14 2021-01-15 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3075259B1 (fr) * 2017-12-14 2021-01-15 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3075261B1 (fr) * 2017-12-15 2021-01-22 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur et d’un filtre a particules d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
US11560136B2 (en) 2018-03-02 2023-01-24 Toyota Jidosha Kabushiki Kaisha Control device
JP7067387B2 (ja) * 2018-09-21 2022-05-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7190048B2 (ja) * 2019-08-02 2022-12-14 日産自動車株式会社 内燃機関の制御方法及び内燃機関の制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284916A (ja) * 1996-04-10 1997-10-31 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2001050086A (ja) * 1999-08-09 2001-02-23 Denso Corp 内燃機関の空燃比制御装置
JP2003343253A (ja) * 2002-05-28 2003-12-03 Mitsubishi Motors Corp ハイブリッド車両の排気浄化装置
JP2005133563A (ja) * 2003-10-28 2005-05-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008150023A (ja) * 2006-12-13 2008-07-03 Hyundai Motor Co Ltd ハイブリッド車両のパワートレイン制御方法
JP2010215190A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用動力伝達装置の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832288B2 (ja) 2001-08-10 2006-10-11 三菱自動車工業株式会社 排ガス浄化装置
JP2007077857A (ja) * 2005-09-13 2007-03-29 Mitsubishi Motors Corp 内燃機関の運転モード制御装置
JP4197025B2 (ja) 2006-09-15 2008-12-17 トヨタ自動車株式会社 ハイブリッド車両
US8073610B2 (en) * 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
JP2010038147A (ja) 2008-07-10 2010-02-18 Toyota Motor Corp エンジンの排気浄化システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284916A (ja) * 1996-04-10 1997-10-31 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2001050086A (ja) * 1999-08-09 2001-02-23 Denso Corp 内燃機関の空燃比制御装置
JP2003343253A (ja) * 2002-05-28 2003-12-03 Mitsubishi Motors Corp ハイブリッド車両の排気浄化装置
JP2005133563A (ja) * 2003-10-28 2005-05-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008150023A (ja) * 2006-12-13 2008-07-03 Hyundai Motor Co Ltd ハイブリッド車両のパワートレイン制御方法
JP2010215190A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用動力伝達装置の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107903A (zh) * 2015-03-18 2017-08-29 宝马股份公司 用于运行混合动力车辆的方法
CN107792055A (zh) * 2016-08-30 2018-03-13 比亚迪股份有限公司 混合动力汽车及其控制方法和控制系统
CN107792055B (zh) * 2016-08-30 2020-04-24 比亚迪股份有限公司 混合动力汽车及其控制方法和控制系统
JP2023521021A (ja) * 2020-04-02 2023-05-23 ジャガー・ランド・ローバー・リミテッド 希薄運転ハイブリッドガソリンエンジン

Also Published As

Publication number Publication date
US20150298687A1 (en) 2015-10-22
JPWO2014087501A1 (ja) 2017-01-05
JP5987918B2 (ja) 2016-09-07
US9248830B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
JP5987918B2 (ja) ハイブリッド車両の制御装置
JP5861745B2 (ja) 内燃機関の制御装置
JP4552921B2 (ja) ハイブリッド車およびその制御方法
US9610938B2 (en) Control apparatus for hybrid vehicle
JP5929699B2 (ja) ハイブリッド車両の制御装置
US9527497B2 (en) Control device for hybrid vehicle
WO2010079609A1 (ja) 車両の制御装置
JP5459144B2 (ja) ハイブリッド車
US9434376B2 (en) Control apparatus for hybrid vehicle
JP6361684B2 (ja) ハイブリッド車両の制御装置
JP5494398B2 (ja) ハイブリッド自動車
US10710573B2 (en) Vehicle and control method of vehicle
JP2015058786A (ja) ハイブリッド車両の制御装置
JP2011031674A (ja) ハイブリッド車およびその制御方法
JP6398943B2 (ja) 車両
JP2016164037A (ja) 車両制御装置
JP2015223907A (ja) ハイブリッド車両の制御装置
JP2012153250A (ja) 車両の制御装置
JP6459916B2 (ja) 車両
JP2015051734A (ja) ハイブリッド車両の制御装置
JP2014012518A (ja) ハイブリッド車
JP2021161936A (ja) 車両の制御装置
JP2010138833A (ja) 内燃機関装置および内燃機関の制御方法
JP2009154701A (ja) ハイブリッド車両及びその制御方法並びに駆動装置
JP5077064B2 (ja) 内燃機関装置及びこれを搭載した車両並びに内燃機関装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432409

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014550846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889682

Country of ref document: EP

Kind code of ref document: A1