WO2014086096A1 - 交直流转换装置及其功因校正方法 - Google Patents

交直流转换装置及其功因校正方法 Download PDF

Info

Publication number
WO2014086096A1
WO2014086096A1 PCT/CN2013/001413 CN2013001413W WO2014086096A1 WO 2014086096 A1 WO2014086096 A1 WO 2014086096A1 CN 2013001413 W CN2013001413 W CN 2013001413W WO 2014086096 A1 WO2014086096 A1 WO 2014086096A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
capacitor
inductor
cathode
power factor
Prior art date
Application number
PCT/CN2013/001413
Other languages
English (en)
French (fr)
Inventor
潘晴财
陈伯彦
洪大胜
Original Assignee
东林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东林科技股份有限公司 filed Critical 东林科技股份有限公司
Priority to GB1509592.0A priority Critical patent/GB2522820B/en
Priority to JP2015545632A priority patent/JP6089115B2/ja
Publication of WO2014086096A1 publication Critical patent/WO2014086096A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power conversion device, and more particularly to an AC/DC conversion device and a power factor correction method thereof. Background technique
  • the conventional AC/DC converter includes a rectifier circuit 300 and an output capacitor C.
  • the rectifier circuit 300 converts an AC power source into a DC power source, and the output capacitor C is connected across the output of the rectifier circuit. And the output capacitor C is connected in parallel with a load 400.
  • the input voltage of the AC power source and the input current are in different phases, resulting in a low power factor and a serious total harmonic distortion of the current.
  • the output capacitor C is charged only when the voltage of the DC power source is higher than the voltage of the output capacitor C. Therefore, the charging time of the output capacitor C is shortened, and the diode conduction time in the rectifier circuit 300 is also shortened.
  • the AC/DC converter having the power factor correction circuit is born.
  • the power factor correction circuit traditionally used for the AC/DC converter can be divided into active and passive.
  • the active power factor correction circuit uses an active switching component to control the input current.
  • the advantage is that the power factor can reach above 0.9. 99, the total current harmonic distortion is less than 10%, the input voltage range is wide, the output voltage is stable, and Output power fluctuations.
  • the active power factor correction circuit requires the use of an additional active switch component, which is prone to the disadvantages of large electromagnetic noise and low durability. Therefore, how to improve the above disadvantages has been the direction of improvement.
  • the output capacitor in order to reduce the chopping of the output voltage on the load, the output capacitor must use a high-capacitance electrolytic capacitor, and the electrolytic capacitor is likely to be leaked due to long-term heating, resulting in the use of the circuit. Life expectancy is reduced. Summary of the invention
  • An object of the present invention is to provide an AC/DC converter and a power factor correction method thereof, which can effectively improve a power factor and can also effectively suppress voltage ripple outputted to a load.
  • the AC/DC conversion device configured to convert an AC power of a power source into a DC power and supply power to a load;
  • the AC/DC converter device includes:
  • An active power factor correction circuit is electrically connected to the rectifier circuit on one side and electrically connected to the load on the other side for suppressing voltage chopping of the output to the load, and includes:
  • a first diode having a cathode connected to a positive output terminal of the rectifier circuit
  • a second diode having a positive electrode connected to a negative output terminal of the rectifier circuit
  • a third diode having a positive electrode connected to a positive electrode of the first diode
  • a first inductor having one end connected to a cathode of the first diode and a positive output terminal of the rectifier circuit
  • a second inductor having one end connected to the cathode of the second diode and the other end connected to the anodes of the first diode and the third diode;
  • An electronic switch one end is connected to the first inductor and the first capacitor, and the other end is connected to the negative output end of the rectifying circuit and the positive pole of the second diode;
  • a fourth diode having a cathode connected to a cathode of the second diode and the second inductor, and a negative pole connected to a cathode of the third diode;
  • a third inductor one end of which is electrically connected to the negative electrode of the third diode and the negative electrode of the fourth diode;
  • a second capacitor having one end connected to the negative terminal of the third diode and the negative electrode of the fourth diode, and the other end connected to the third inductor;
  • a third capacitor connected in parallel with the load, and one end connected to the third inductor and the second capacitor, and the other end connected to the cathode of the second diode, the second inductor, and the anode of the fourth diode .
  • the AC/DC converter device wherein the third inductor of the active power factor correction circuit is electrically connected to the cathode of the third diode and the fourth diode through a fifth diode a cathode; a cathode of the fifth diode is connected to a cathode of the third diode and a cathode of the fourth diode, and a cathode is connected to the third inductor.
  • the AC/DC conversion device wherein the first capacitor is a non-polar capacitor.
  • the AC/DC conversion device wherein the second capacitor is a non-polar capacitor.
  • the third capacitor is a non-electrolytic capacitor.
  • the power factor correction method of the active power factor correction circuit of the AC/DC converter provided by the present invention is for receiving DC power output by the rectifier circuit and suppressing voltage chopping of the output to the load, which includes the following steps :
  • step D the step of repeatedly performing steps A to D is included.
  • the second inductor is a resonant circuit formed by the second capacitor and the third inductor, and the stored energy is conducted to the third capacitor.
  • the power factor correction method wherein, in step C, the first inductor continues to release the first capacitor.
  • the AC/DC converter has an effect of increasing the power factor and effectively suppressing voltage chopping of the output to the load.
  • Fig. 1 is a circuit diagram of a known AC/DC converter.
  • FIG. 2 is a circuit diagram of an AC/DC converter of a preferred embodiment of the present invention.
  • FIGS 3 through 6 are equivalent circuit diagrams of the various steps.
  • Figure 7 is a waveform diagram of the output voltage and current.
  • the AC/DC converter provided by the present invention is configured to convert AC power of a power source into DC power and supply power to a load.
  • the AC/DC converter includes a rectifier circuit and an active power factor correction circuit.
  • the rectifier circuit is electrically connected to the power source for converting alternating current into direct current, and has a positive output end for outputting direct current and a negative output end;
  • the active power factor correction circuit is electrically connected to the side a rectifier circuit, the other side is electrically connected to the load, for suppressing voltage chopping of the output to the load, and includes a first diode having a cathode connected to the positive output terminal of the rectifier circuit; a second diode
  • the anode is connected to the negative output end of the rectifier circuit; a third diode having a positive electrode connected to the positive electrode of the first diode; a first inductor having one end connected to the negative electrode of the first diode and a positive output terminal of the rectifier circuit; a second induct
  • the present invention also provides a method for correcting the active power factor correction circuit for receiving DC power output by the rectifier circuit and suppressing voltage chopping of the output to the load, and comprising the following steps:
  • the AC/DC converter of the preferred embodiment of the present invention is configured to convert AC power of a power source 100 into DC power and supply power to a load 200.
  • the AC/DC converter includes a rectification circuit 10 and an active power factor correction circuit 20. among them:
  • the rectifier circuit 10 is electrically connected to the power source 100 for converting alternating current into direct current, and has a positive output terminal 12 and a negative output terminal 14 for outputting direct current.
  • the active power factor correction circuit 20 is electrically connected to the rectifier circuit 10, and the other side is electrically connected to the load 200 for improving the power factor and suppressing voltage ripple output to the load 200.
  • the active power factor correction circuit 20 includes five diodes (first diode D1 to fifth diode D5). Three inductors (first inductor L1 to third inductor L3), three capacitors (first Capacitor C1 to third Capacitor C3), and an electronic switch SW. The connection relationship of these components is as follows: The cathode of the first diode D1 is connected to the positive output terminal 12 of the rectifier circuit 10. The anode of the second diode D 2 is connected to the negative output terminal 14 of the rectifier circuit 10.
  • the anode of the third diode D3 is connected to the anode of the first diode D1.
  • One end of the first inductor L1 is connected to the negative electrode of the first diode D1 and the positive output terminal 12 of the rectifier circuit 10.
  • One end of the second inductor L2 is connected to the cathode of the second diode D2, and the other end is connected to the anodes of the first diode D1 and the third diode D3.
  • the first capacitor C1 is a non-polar capacitor, one end of which is connected to the first inductor L1, and the other end is connected to the second inductor L2 and the anodes of the first diode D1 and the third diode D3.
  • the electronic switch SW-terminal is connected to the first inductor L1 and the first capacitor L2, and the other end is connected to the negative output terminal 14 of the rectifier circuit 10 and the anode of the second diode D2.
  • the anode of the fourth diode D4 is connected to the cathode of the second diode D2 and the second inductor L2, and the cathode is connected to the cathode of the third diode D3.
  • the anode of the fifth diode D5 is connected to the cathode of the third diode D3 and the cathode of the fourth diode D4.
  • One end of the third inductor L3 is electrically connected to the cathode of the fourth diode D4.
  • the second capacitor C2 is a non-polar capacitor, one end of which is connected to the third diode D3 and the cathode of the fourth diode D4, and the other end is connected to the third inductor L3.
  • the third capacitor C3 is a non-electrolytic capacitor, and is connected in parallel to the load 200, one end of which is connected to the third inductor L3 and the second capacitor C2, and the other end is connected to the cathode of the second diode D2, the second inductor L2 and the anode of the fourth diode D4.
  • the capacitances C1 to C3, the inductances L1 to L3, the input voltage, the output voltage, the electronic switching frequency, and the resistance of the load 200 are as follows:
  • the active power factor correction circuit 20 receives the DC power output from the rectifier circuit 10, and can effectively increase the power factor and suppress the voltage output to the load by using the action method of correcting the power factor.
  • Chopper which contains the following steps:
  • the electronic switch SW is turned on, the DC outputted by the rectifier circuit 10 is charged to the first inductor L1, and the first capacitor C1 charges the second inductor L2, and the third The inductor L3, the second capacitor L2 and the third capacitor L3 release the load 200.
  • the electronic switch SW is disconnected to turn on the first diode D1, so that the first inductor L1 releases the first capacitor C1, and the second inductor L2 passes the second
  • the resonant circuit formed by the capacitor C2 and the third inductor L3 continuously transfers its energy storage to the third capacitor C3, and the third capacitor C3 is supplied to the load 200, and the cross-voltage polarity of the second capacitor C2 at this time Reverse.
  • step A to step D the action of one cycle is completed. Therefore, in the case where the AC/DC converter continues to operate, after step D, steps A through D are repeatedly executed until the AC/DC converter stops operating.
  • the high frequency chopping is about 0. 9V.
  • the third inductor L3 is simultaneously used as the circuit structure design for energy storage and filtering, which can suppress the increase of each input energy ( That is, the output voltage is chopped when the electronic switch is turned on.
  • the voltage storage energy of the second capacitor C2 can be converted into an inductor current, and the second The polarity of the capacitor C2 across the voltage is reversed, thereby changing the overall circuit structure before and after the fourth diode D2 is turned on, so as to suppress the output voltage caused by stopping the input of energy (that is, when the electronic switch SW is turned off). wave.
  • the design of the fifth diode D5 can also effectively prevent the circuit in the vicinity of the load 200 from generating a circuit reflow, thereby making the overall circuit more stable, thereby improving the AC/DC conversion device to enhance the power factor and suppress the chopping. effect.
  • the purpose of suppressing chopping can be achieved even without using the fifth diode D5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种交直流转换装置及其功因校正方法。交直流转换装置包含有整流电路(10)、以及主动式功因校正电路(20)。整流电路与电源(100)电性连接,用以将交流电转换成直流电,且具有用以输出直流电的正极输出端(12)以及负极输出端(14)。主动式功因校正电路一侧电性连接整流电路,另一侧电性连接负载(200),用以抑制输出给负载的电压涟波。

Description

交直流转换装置及其功因校正方法 技术领域
本发明与电源转换装置有关, 更详细地是指一种交直流转换装置及其 功因校正方法。 背景技术
按,传统的交直流转换装置如图 1所示, 包含有一整流电路 300与一输 出电容 C, 该整流电路 300将一交流电源转换成一直流电源, 该输出电容 C 跨接于该整流电路的输出端,且该输出电容 C供并联一负载 400。该交直流 转换装置在动作时, 该交流电源的输入电压与输入电流处于相位不同的情 况, 导致功率因子低且电流总谐波失真严重。 此外, 只有在该直流电源的 电压高于输出电容 C的电压时, 才会对输出电容 C进行充电, 因此造成输 出电容 C充电时间缩短, 导致整流电路 300中的二极管导通时间也随之缩 短, 以及导通电流的峰值随之增大, 造成输入电流波形失真及功率因子降 低。 功率因子降低除了浪费能源外, 也增加了电力公司的电力供应系统不 必要的负担。 因次, 为改善上述缺点, 具有功因校正电路的交直流转换装 置便因应而生。
而传统用于交直流转换装置的功因校正电路可分为主动式与被动式两 种。 主动式功因校正电路是使用一主动开关组件控制输入电流, 其优点在 于功率因子可达到 0. 99以上、 电流谐波失真总量小于 10%、 输入电压范围 广泛、 输出电压稳定及且不受输出功率变动影响。 然而, 主动式功因校正 电路需使用额外的主动开关组件, 其容易有电磁噪声大与耐用性低的缺点, 因此, 如何改善上述缺点一直是业者苦思改良的方向。 此外, 为了使该负 载上的输出电压的涟波减小, 前述的输出电容必须釆用高容值的电解电容, 电解电容容易因长时间受热而有电解液外漏的情形, 导致电路的使用寿命 减短。 发明内容
本发明的目的在于提供一种交直流转换装置及其功因校正方法,可有效 提高功率因子, 且也可有效地抑制输出予负载的电压涟波。
为实现上述目的, 本发明提供的交直流转换装置, 用以将一电源的交 流电转换成直流电后, 供电予一负载; 该交直流转换装置包含有:
一整流电路, 与该电源电性连接, 用以将交流电转换成直流电, 且具 有用以输出直流电的一正极输出端以及一负极输出端; 以及 一主动式功因校正电路, 一侧电性连接该整流电路, 另一侧电性连接 该负载, 用以抑制输出予负载的电压涟波, 且包含有:
一第一二极管, 其负极连接该整流电路的正极输出端;
一第二二极管, 其正极连接该整流电路的负极输出端;
一第三二极管, 其正极连接该第一二极管的正极;
一第一电感, 其一端连接该第一二极管的负极、 以及该整流电路的正 极输出端;
一第二电感, 其一端连接该第二二极管的负极, 而另一端连接该第一 二极管与第三二极管的正极;
一第一电容, 一端连接该第一电感, 另一端则连接该第二电感、 以及 该第一二极管与第三二极管的正极;
一电子开关, 一端连接该第一电感与该第一电容, 另一端连接该整流 电路的负极输出端与该第二二极管的正极;
一第四二极管, 其正极连接该第二二极管的负极与该第二电感, 而负 极连接该第三二极管的负极;
一第三电感, 其一端电性连接至该第三二极管的负极以及该第四二极 管的负极;
一第二电容, 其一端连接至该第三二极管的负极以及该第四二极管的 负极, 而另一端连接该第三电感;
一第三电容, 并联连接该负载, 且其一端连接该第三电感与该第二电 容, 而另一端连接该第二二极管的负极、 该第二电感以及该第四二极管的 正极。
所述的交直流转换装置, 其中, 该主动式功因校正电路的该第三电感 是通过一第五二极管电性连接至该第三二极管的负极以及该第四二极管的 负极; 该第五二极管的正极连接该第三二极管的负极以及该第四二极管的 负极, 而负极连接该第三电感。
所述的交直流转换装置, 其中, 该第一电容为无极性电容。
所述的交直流转换装置, 其中, 该第二电容为无极性电容。
所述的交直流转换装置, 其中, 该第三电容为非电解电容。
本发明提供的如上所述的交直流转换装置的主动式功因校正电路的功 因校正方法, 用以接收该整流电路输出的直流电, 并抑制输出予负载的电 压涟波, 其包含有下列步骤:
A )导通该电子开关, 使该整流电路输出的直流对该第一电感器充电, 且该第一电容对该第二电感充电, 而该第三电感、 该第二电容与该第三电 容对该负载释能;
B )断开该电子开关, 导通该第一二极管, 使该第一电感对该第一电容 释能, 且该第二电感的储能持续传输至该第三电容;
C )导通该第四二极管,使该第二电容与该第三电感对该第三电容幹能, 使该第三电容供电予该负载;
D ) 当该第一电感对该第一电容释能完毕时, 该第一二极管截止, 且该 第二电容与该第三电感持续对该第三电容释能, 使该第三电容供电予该负 载。
所述的功因校正方法, 其中, 在步骤 D后, 包含有重复执行步骤 A至 步骤 D的步骤。
所述的功因校正方法, 其中, 在步骤 B 中, 该第二电感是通过该第二 电容与该第三电感形成的共振电路, 将其储能传导至该第三电容。
所述的功因校正方法, 其中, 在步骤 C 中, 当该第三电感的跨压大于 该第三电容的跨压时, 该第四二极管导通。
所述的功因校正方法, 其中, 在步骤 C 中, 该第一电感持续对该第一 电容释能。 该交直流转换装置具有提高功率因子、 以及有效地抑制输出予负载的电压 涟波的效果。 附图的简要说明
图 1是公知交直流转换装置的电路图。
图 2是本发明较佳实施例的交直流转换装置的电路图。
图 3至图 6是各步骤的等效电路图。
图 7是输出电压与电流的波型图。
附图中主要组件符号说明
10: 整流电路, 12: 正极输出端, 14: 负极输出端, 20: 主动式功因 校正电路, Dl - D5: 二极管, L1 ~ L3: 电感, C1 ~ C3: 电容, SW: 电子开 关, 100: 电源, 200: 负载, 300: 整流电路, 400: 负载, C: 输出电容。 实现发明的最佳方式
本发明提供的交直流转换装置用以将一电源的交流电转换成直流电后, 供电予一负载。 该交直流转换装置包含有一整流电路、 以及一主动式功因 校正电路。 其中, 该整流电路与该电源电性连接, 用以将交流电转换成直 流电, 且具有用以输出直流电的一正极输出端以及一负极输出端; 该主动 式功因校正电路一侧电性连接该整流电路, 另一侧电性连接该负载, 用以 抑制输出予负载的电压涟波, 且包含有一第一二极管, 其负极连接该整流 电路的正极输出端; 一第二二极管, 其正极连接该整流电路的负极输出端; 一第三二极管, 其正极连接该第一二极管的正极; 一第一电感, 其一端连 接该第一二极管的负极、 以及该整流电路的正极输出端; 一第二电感, 其 一端连接该第二二极管的负极, 而另一端连接该第一二极管与第三二极管 的正极; 一第一电容, 一端连接该第一电感, 另一端则连接该第二电感以 及该第一二极管与第三二极管的正极; 一电子开关, 一端连接该第一电感 与该第一电容, 另一端连接该整流电路的负极输出端与该第二二极管的正 极; 一第四二极管, 其正极连接该第二二极管的负极与该第二电感, 而负 极连接该第三二极管的负极; 一第三电感, 其一端电性连接至该第三二极 管的负极以及该第四二极管的负极; 一第二电容, 其一端连接至该第三二 极管的负极以及该第四二极管的负极, 而另一端连接该第三电感的另一端; 一第三电容, 并联连接该负载, 且其一端连接该第三电感与该第二电容, 而另一端连接该第二二极管的负极、 该第二电感的正极以及该第四二极管 的正极。
依据上述构思,本发明还提供了该主动式功因校正电路的校正方法,用 以接收该整流电路输出的直流电, 并抑制输出予负载的电压涟波, 且包含 有下列步骤:
A. 导通该电子开关, 使该整流电路输出的直流对该第一电感器充电, 且该第一电容对该第二电感充电, 且该第三电感、 该第二电容与该第三电 容对该负载释能;
B. 断开该电子开关, 导通该第一二极管, 使该第一电感对该第一电容 释能, 且该第二电感的储能持续传输至该第三电容;
C. 导通该第四二极管, 使该第一电感持续对该第一电容释能, 且该第 二电容与该第三电感对该第三电容释能, 使该第三电容供电予该负栽;
D. 当该第一电感对该第一电容释能完毕时, 该第一二极管截止, 且该 第二电容与该第三电感持续对该第三电容释能, 使该第三电容供电予该负 栽。
为能更清楚地说明本发明, 举较佳实施例并配合附图详细说明如后。 请参阅图 2,本发明较佳实施例的交直流转换装置用以将一电源 100的 交流电转换成直流电后,供电予一负载 200。该交直流转换装置包含有一整 流电路 1 0、 以及一主动式功因校正电路 20。 其中:
该整流电路 10与该电源 100电性连接, 用以将交流电转换成直流电, 且具有用以输出直流电的一正极输出端 12以及一负极输出端 14。
该主动式功因校正电路 20一侧电性连接该整流电路 10, 另一侧电性连 接该负载 200, 用以改善功因并抑制输出予该负载 200的电压涟波。该主动 式功因校正电路 20包含有五个二极管 (第一二极管 D1至第五二极管 D5 ). 三个电感(第一电感 L1至第三电感 L3 )、 三个电容(第一电容 C1至第三电 容 C3 )、 以及一个电子开关 SW。 这些组件的连接关系如下所述: 该第一二 极管 D1的负极连接该整流电路 10的正极输出端 12。该第二二极管 D2的正 极连接该整流电路 10的负极输出端 14。 该第三二极管 D3的正极连接该第 一二极管 D1的正极。 该第一电感 L1一端连接该第一二极管 D1的负极、 以 及该整流电路 10的正极输出端 12。 该第二电感 L2的一端连接该第二二极 管 D2的负极, 而另一端连接该第一二极管 D1与第三二极管 D3的正极。 该 第一电容 C1为一无极性电容, 其一端连接该第一电感 L1 , 而另一端则连接 该第二电感 L2、 以及该第一二极管 D1与第三二极管 D3的正极。 该电子开 关 SW—端连接该第一电感 L1与该第一电容 L2 , 另一端连接该整流电路 10 的负极输出端 14与该第二二极管 D2的正极。 该第四二极管 D4的正极连接 该第二二极管 D2的负极与该第二电感 L2, 而负极连接该第三二极管 D3的 负极。 该第五二极管 D5的正极连接至该第三二极管 D3的负极与该第四二 极管 D4的负极。 该第三电感 L3的一端电性连接至第四二极管 D4的负极。 该第二电容 C2为一无极性电容, 其一端连接至该第三二极管 D3以及该第 四二极管 D4的负极, 而另一端连接该第三电感 L3。 该第三电容 C3为非电 解电容, 且并联连接该负载 200, 其一端连接该第三电感 L3与该第二电容 C2 , 而另一端连接该第二二极管 D2的负极、 该第二电感 L2以及该第四二 极管 D4的正极。
在本实施例中, 这些电容 C1 ~ C3、 这些电感 L1 ~ L3、 输入电压、 输出 电压、 电子开关切换频率以及该负载 200的电阻如下表 1所示:
表 1
Figure imgf000006_0001
由此, 通过上述结构设计与规格, 该主动式功因校正电路 20接收该整 流电路 10输出的直流电后, 利用校正功因的动作方法, 便可有效地提升功 因并抑制输出予负载的电压涟波, 其包含有下列步骤:
A. 请参阅图 3 , 导通该电子开关 SW, 使该整流电路 1 0输出的直流对 该第一电感器 L1充电, 且该第一电容 C1对该第二电感 L2充电, 且该第三 电感 L3、 该第二电容 L2与该第三电容 L3对该负载 200释能。
B.请参阅图 4, 断开该电子开关 SW, 以导通该第一二极管 Dl, 使该第 一电感 L1对该第一电容 C1释能, 且该第二电感 L2通过该第二电容 C2与 该第三电感 L3形成的共振电路,将其储能持续传输至该第三电容 C3,使该 第三电容 C3供电予负载 200, 且此时该第二电容 C2的跨压极性反转。
C.请参阅图 5, 当该第三电感 L3的跨压大于该第三电容 C3的跨压时, 该第四二极管 D4导通,使该第二电容 C2、该第三电感 L3与第三电容 C3的 跨压相等, 并使该第二电容 C2与该第三电感 L3对该第三电容 C3释能, 使 该第三电容 C3供电予该负载 200。 另外,该第一电感 L1持续对该第一电容 C1释能。
D. 请参阅图 6, 当该第一电感 L1对该第一电容 C1释能完毕时, 该第 一二极管 D1截止,且该第二电容 C2与该第三电感 L3持续对该第三电容 Π 释能, 使该第三电容 C3能持续供电予该负载 200。
每执行一次步骤 A至步骤 D便完成一次周期的动作。 因此,在该交直流 转换装置持续动作的情况下, 在步骤 D后, 便重复执行步骤 A至步骤 D, 直 至该交直流转换装置停止动作。
如此一来, 请参阅图 7, 在本实施例中, 输出为 12V时, 其高频涟波约 为 0. 9V而已。 换言之, 通过上述结构与方法的设计, 除可达到公知电路提 升功因的效果外,利用该第三电感 L3同时做为储能与滤波的电路结构设计, 更能抑制每次输入能量增加时(即该电子开关 导通时)造成的输出电压涟 波。 另外, 通过该主动式的电子开关 SW的切换, 以及第三电感 L3与该第 二电容 C2共振的设计, 便可将第二电容 C2的电压储能转换成电感电流, 且可将该第二电容 C2跨压的极性反转, 进而改变该第四二极管 D2导通前 后的整体电路结构, 以抑制因停止输入能量时(即该电子开关 SW断开时)所 造成的输出电压涟波。
再者, 该第五二极管 D5的设计还可有效地防止该负载 200附近的电路 产生电路回流, 进而使得整体电路更加地稳定, 以提升该交直流转换装置 提升功因与抑制涟波的效果。 当然, 在实际实施上, 即使不使用该第五二 极管 D5仍可达到抑制涟波的目的。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内, 当可利 用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实 施例, 但凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以 上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方 案的范围内。

Claims

权 利 要 求
1、 一种交直流转换装置, 用以将一电源的交流电转换成直流电后, 供 电予一负载; 其特征在于, 该交直流转换装置包含有:
一整流电路, 与该电源电性连接, 用以将交流电转换成直流电, 且具 有用以输出直流电的一正极输出端以及一负极输出端; 以及
一主动式功因校正电路, 一侧电性连接该整流电路, 另一侧电性连接 该负载, 用以抑制输出予负载的电压涟波, 且包含有:
一第一二极管, 其负极连接该整流电路的正极输出端; 一第二二极管, 其正极连接该整流电路的负极输出端; 一第三二极管, 其正极连接该第一二极管的正极;
一第一电感, 其一端连接该第一二极管的负极、 以及该整流电路 的正极输出端;
一第二电感, 其一端连接该第二二极管的负极, 而另一端连接该 第一二极管与第三二极管的正极;
一第一电容, 一端连接该第一电感,另一端则连接该第二电感、 以 及该第一二极管与第三二极管的正极;
一电子开关, 一端连接该第一电感与该第一电容, 另一端连接该 整流电路的负极输出端与该第二二极管的正极;
一第四二极管, 其正极连接该第二二极管的负极与该第二电感,而 负极连接该笫三二极管的负极;
一第三电感, 其一端电性连接至该第三二极管的负极以及该第四 二极管的负极;
一第二电容, 其一端连接至该第三二极管的负极以及该第四二极 管的负极, 而另一端连接该第三电感;
一第三电容, 并联连接该负载, 且其一端连接该第三电感与该第 二电容, 而另一端连接该第二二极管的负极、 该第二电感以及该第四二极 管的正极。
2、 根据权利要求 1所述的交直流转换装置, 其特征在于, 其中, 该主 动式功因校正电路的该第三电感是通过一第五二极管电性连接至该第三二 极管的负极以及该第四二极管的负极; 该第五二极管的正极连接该第三二 极管的负极以及该第四二极管的负极, 而负极连接该第三电感。
3、 根据权利要求 1所述的交直流转换装置, 其特征在于, 其中, 该第 一电容为无极性电容。
4 根据权利要求 1所述的交直流转换装置, 其特征在于, 其中, 该第 二电容为无极性电容。
5、 根据权利要求 1所述的交直流转换装置, 其特征在于, 其中, 该第 三电容为非电解电容。
6、 一种权利要求 1所述的交直流转换装置的主动式功因校正电路的功 因校正方法, 用以接收该整流电路输出的直流电, 并抑制输出予负载的电 压涟波, 其特征在于, 其包含有下列步骤:
A )导通该电子开关,使该整流电路输出的直流对该第一电感器充电,且 该第一电容对该第二电感充电, 而该第三电感、 该第二电容与该第三电容 对该负栽释能;
B )断开该电子开关, 导通该第一二极管, 使该第一电感对该第一电容 释能, 且该第二电感的储能持续传输至该第三电容;
C )导通该第四二极管,使该第二电容与该第三电感对该第三电容释能, 使该第三电容供电予该负载;
D ) 当该第一电感对该第一电容释能完毕时, 该第一二极管截止, 且该 第二电容与该第三电感持续对该第三电容释能, 使该第三电容供电予该负 载。
7、 根据权利要求 6所述的功因校正方法, 其特征在于, 其中, 在步骤 D后, 包含有重复执行步骤 A至步骤 D的步骤。
8、 根据权利要求 6所述的功因校正方法, 其特征在于, 其中, 在步骤 B中, 该第二电感是通过该第二电容与该第三电感形成的共振电路,将其储 能传导至该第三电容。
9、 根据权利要求 6所述的功因校正方法, 其特征在于, 其中, 在步骤 C中, 当该第三电感的跨压大于该第三电容的跨压时, 该第四二极管导通。
10、 根据权利要求 6所述的功因校正方法, 其特征在于, 其中, 在步 骤 C中, 该第一电感持续对该第一电容释能。
PCT/CN2013/001413 2012-12-06 2013-11-19 交直流转换装置及其功因校正方法 WO2014086096A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1509592.0A GB2522820B (en) 2012-12-06 2013-11-19 AC/DC converter and method of correcting power factor
JP2015545632A JP6089115B2 (ja) 2012-12-06 2013-11-19 交直流転換装置及びその力率校正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210518122.0A CN103856081B (zh) 2012-12-06 2012-12-06 交直流转换装置及其功因校正方法
CN201210518122.0 2012-12-06

Publications (1)

Publication Number Publication Date
WO2014086096A1 true WO2014086096A1 (zh) 2014-06-12

Family

ID=50863373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001413 WO2014086096A1 (zh) 2012-12-06 2013-11-19 交直流转换装置及其功因校正方法

Country Status (4)

Country Link
JP (1) JP6089115B2 (zh)
CN (1) CN103856081B (zh)
GB (1) GB2522820B (zh)
WO (1) WO2014086096A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660069A (zh) * 2013-11-18 2015-05-27 东林科技股份有限公司 电源转换装置及其转换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN101106327A (zh) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 多功能集成直流变换器
TW201101658A (en) * 2009-06-19 2011-01-01 Univ Nat Taipei Technology Boost converting device, boot converter, and the control module thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103660A (ja) * 1986-10-20 1988-05-09 Fuji Elelctrochem Co Ltd スイツチング電源の出力回路
JPH08149812A (ja) * 1994-11-14 1996-06-07 Daikin Ind Ltd 整流装置
ES2117945B1 (es) * 1996-06-20 1999-04-01 Alcatel Standard Electrica Dispositivo convertidor de energia alterna/continua.
JP2004023825A (ja) * 2002-06-13 2004-01-22 Tdk Corp 電力変換回路
JP3861220B2 (ja) * 2004-06-24 2006-12-20 ミネベア株式会社 Dc−dcコンバータ
CN101814843A (zh) * 2009-02-20 2010-08-25 国琏电子(上海)有限公司 电源系统
CN104638947A (zh) * 2013-11-14 2015-05-20 东林科技股份有限公司 隔离式交直流转换装置及其转换方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN101106327A (zh) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 多功能集成直流变换器
TW201101658A (en) * 2009-06-19 2011-01-01 Univ Nat Taipei Technology Boost converting device, boot converter, and the control module thereof

Also Published As

Publication number Publication date
JP6089115B2 (ja) 2017-03-01
GB2522820B (en) 2020-05-13
JP2015536638A (ja) 2015-12-21
GB2522820A (en) 2015-08-05
CN103856081B (zh) 2016-08-10
CN103856081A (zh) 2014-06-11
GB201509592D0 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2006076843A1 (fr) Alimentation novatrice a courant continu en haute frequence a correction de facteur de puissance
EP2709236B1 (en) Uninterrupted power supply circuit and control method therefor
TWI462451B (zh) AC / DC conversion device and its function correction method
WO2015078095A1 (zh) 返驰式交直流转换装置及其转换方法
WO2015078093A1 (zh) 交交流电源转换装置及其转换方法
TWI551024B (zh) 交流-直流電力轉換裝置及其控制方法
WO2014063591A1 (zh) 一种功率因数校正电路
CN101656468B (zh) 高频无源功率因数校正电路及方法
TWI466421B (zh) Method of Activation Method of Passive AC and DC Converter and Its Function Correction Circuit
WO2015070514A1 (zh) 隔离式交直流转换装置及其转换方法
TWI485961B (zh) 共鐵心式功率因數校正諧振轉換器
WO2014086096A1 (zh) 交直流转换装置及其功因校正方法
WO2014086093A1 (zh) 隔离式电源转换装置及其电源转换方法
WO2015070515A1 (zh) 电源转换装置及其转换方法
JP6026008B2 (ja) 受動式力率校正交直流転換装置及び力率校正回路の動作方法
TWM477732U (zh) 交交流電源轉換裝置
TW201605163A (zh) 高效率單級高功因電力轉換電路
TWI504124B (zh) AC - to - AC power conversion device and its conversion method
CN103916002A (zh) 共阳极半桥功率因数校正电路
TWI506940B (zh) A fly - back AC / DC converter and its conversion method
TWI504127B (zh) Isolated AC / DC converter and its conversion method
TWI436551B (zh) 高效率的不間斷電源裝置
TWI524641B (zh) Power conversion device and conversion method thereof
TWI504116B (zh) Power conversion device and conversion method thereof
TWI489749B (zh) 全橋諧振式單級主動式高功因電力轉換裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1509592

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131119

WWE Wipo information: entry into national phase

Ref document number: 1509592.0

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2015545632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861357

Country of ref document: EP

Kind code of ref document: A1