WO2014086093A1 - 隔离式电源转换装置及其电源转换方法 - Google Patents

隔离式电源转换装置及其电源转换方法 Download PDF

Info

Publication number
WO2014086093A1
WO2014086093A1 PCT/CN2013/001366 CN2013001366W WO2014086093A1 WO 2014086093 A1 WO2014086093 A1 WO 2014086093A1 CN 2013001366 W CN2013001366 W CN 2013001366W WO 2014086093 A1 WO2014086093 A1 WO 2014086093A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
diode
power conversion
inductor
isolated
Prior art date
Application number
PCT/CN2013/001366
Other languages
English (en)
French (fr)
Inventor
潘晴财
陈伯彦
洪大胜
Original Assignee
东林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东林科技股份有限公司 filed Critical 东林科技股份有限公司
Priority to EP13860928.4A priority Critical patent/EP2930836A4/en
Priority to JP2015545631A priority patent/JP6122137B2/ja
Publication of WO2014086093A1 publication Critical patent/WO2014086093A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to power conversion, and more particularly to an isolated power conversion device and a power conversion method thereof. Background technique
  • the biggest difference between the isolated power transmission system and the general contact type power transmission system is that the isolated power transmission system does not need to directly transmit energy through the power line, but uses the electromagnetic coupling of the isolated transformer to transfer energy from the primary side to the secondary side circuit.
  • isolated transformers have low power conversion efficiency due to their innate coupling problems. Therefore, the traditional isolated power transmission system often uses the resonant impedance matching method to improve the power conversion efficiency, but the circuit realized by the impedance matching circuit is easily affected by the transformer coupling coefficient parameter, and the expected effect is not achieved, resulting in the power supply. Conversion efficiency is low.
  • the output voltage of the power transmission system needs to be greater than the load voltage, the potential of the output terminal can be overcome to transfer energy to the load.
  • the main object of the present invention is to provide an isolated power conversion device and a power conversion method thereof, which can provide a negative potential to compensate for a barrier of a load voltage, thereby reducing the turns ratio of the transformer to reduce copper.
  • the loss improves the power conversion efficiency, so that the primary side energy of the transformer can be transmitted to the load more smoothly and more efficiently, further improving the power conversion efficiency.
  • the isolated power conversion device is configured to convert power of a pulse power supply and output the load to the load;
  • the isolated power conversion device includes an isolated transformer and an automatic charge pump (auto charge pump) circuit
  • the isolated transformer has a primary side and a secondary side, and the primary side is electrically connected to the pulse power source, and the secondary side has a first end and a second end;
  • the side of the automatic charge pumping circuit is electrically The isolator is connected to the isolated transformer, and the other side is electrically connected to the load;
  • the automatic charge pumping circuit comprises: a first diode having a positive pole connected to the second end of the secondary side, and a cathode electrically connected to the second side a first end of the second side; a first capacitor, one end of which is electrically connected to the first end of the second side and the negative electrode of the first diode; and an inductor, one end of which is connected
  • the inductor is electrically connected to the negative electrode of the first diode through the second diode; in addition, the anode of the second diode is connected to the negative electrode of the first diode, and Its negative pole is connected to the inductor.
  • a third diode is disposed on a first end of the secondary side of the isolation transformer, and a cathode of the third diode is connected to a cathode of the first diode
  • the first capacitor is connected to the secondary side.
  • the first capacitor is a non-polar capacitor.
  • the second capacitor is a non-electrolytic capacitor.
  • the power conversion method of the isolated power conversion device according to the present invention comprises the following steps:
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the secondary side of the isolated transformer transmits the stored energy to the second capacitor through the resonant circuit formed by the first capacitor and the inductor.
  • step B after the resonant circuit formed by the first capacitor and the inductor, the polarity of the voltage across the first capacitor is reversed, and the first diode is turned on, and enters Step C.
  • the pulse power source has an electronic switch, and when the electronic switch is turned on, the pulse power source outputs electric energy; when the electronic switch is turned off, the pulse power source stops outputting electric energy.
  • an automatic charge pumping circuit for receiving power of a pulse power source and supplying power to a load, and the pulse power source has a first output end and a second output end;
  • the automatic charge pumping circuit includes the first a diode, a first capacitor, an inductor, and a second capacitor; wherein a cathode of the first diode is connected to a second output end of the pulse power source, and a cathode of the first diode is electrically connected to a first output end of the pulse power source;
  • One end of a capacitor is electrically connected to the first of the pulse power supply An output end and a negative pole of the first diode; one end of the inductor is connected to the other end of the first capacitor, and the other end is electrically connected to the negative pole of the first diode;
  • the second capacitor is connected in parallel to the load And one end is connected to the first capacitor and
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the automatic charge pumping circuit wherein the inductor is electrically connected to the cathode of the first diode through the second diode; in addition, the anode of the second diode is connected to the cathode of the first diode, and Its negative pole is connected to the inductor.
  • the present invention has at least the following advantages: a negative potential can be provided to compensate for the barrier of the load voltage during power conversion, and the coil turns ratio of the isolated transformer can be reduced to reduce copper loss.
  • the power conversion efficiency is improved, so that the primary side energy of the isolated transformer can be more smoothly and efficiently transmitted to the load, thereby further improving the power conversion efficiency.
  • FIG. 1 is a circuit diagram of an isolated power conversion device according to a preferred embodiment of the present invention
  • FIG. 1 Figure 2 to Figure 4 are equivalent circuit diagrams of the various steps.
  • Figure 5 is a voltage waveform diagram of the first capacitor.
  • Figure 6 is a waveform diagram of the output voltage and current.
  • L inductance
  • 100 pulse power supply
  • V in power source
  • SW electronic switch
  • an isolated power conversion device configured to convert the power of the pulse power source 100 and output the power to the load 200 , and the pulse power source 100 includes a power source Vin and an electronic switch SW.
  • the isolated power conversion device includes an isolated transformer 10 and an automatic An electric chagge pump circuit 20. among them:
  • the isolated transformer 10 is a non-contact transformer in the present embodiment, and has a detachable primary side 11 and a secondary side 12, and the primary side 11 is electrically connected to the pulse power supply 100.
  • the secondary side 12 has a first end 121 and a second end 122.
  • the automatic charge pumping circuit 20 is electrically connected to the isolated transformer 10 on one side and electrically connected to the load 200 on the other side; the automatic charge drain circuit 20 includes two diodes (the first diode D1 and the first Two diodes D2), two capacitors (a first capacitor C1 and a second capacitor C2) and an inductor L.
  • the connection relationship of these elements is as follows: The anode of the first diode D1 is connected to the second end 122 of the secondary side 12, and the cathode of the first diode D1 is electrically connected to the first end 121 of the secondary side 12.
  • the first capacitor C1 is a non-polar capacitor, and one end thereof is electrically connected to the first end 121 of the secondary side 12 and the cathode of the first diode D1.
  • the anode of the second diode D2 is connected to the first capacitor Cl.
  • One end of the inductor L is connected to the other end of the first capacitor C1, and the other end is connected to the cathode of the second diode D2.
  • the second capacitor C2 is a non-electrolytic capacitor for connecting the load 200 in parallel, and one end is connected to the first capacitor C1 and the inductor L, and the other end is connected to the anode of the first diode D1 and the secondary side.
  • the isolated transformer 10 is further provided with a third diode D3 on the line of the first side of the secondary side 12.
  • the anode of the third diode D3 is connected to the first end 121 of the secondary side 12, and the cathode of the second diode D1 is connected to the cathode of the first diode D1, the anode of the second diode D2, and the first Capacitor Cl.
  • the capacitances C1 to C2 are as follows:
  • the method includes the following steps:
  • the electronic switch SW is turned on, and the power source Vin of the pulse power source 100 outputs electric energy to charge the primary side 11 of the isolated transformer 10, and the inductor is first.
  • the capacitor CI and the second capacitor C2 release the load 200.
  • the electronic switch SW is disconnected, and the power source V in of the pulse power supply 100 stops outputting power.
  • the secondary side 12 of the isolated transformer 10 charges the inductor L and the first capacitor C1. And storing the stored energy to the second capacitor C2 through the resonant circuit formed by the first capacitor C1 and the inductor L, so that the second capacitor C2 continues to release the load 200.
  • the polarity of the first capacitor C1 is reversed across the voltage, thereby turning on the first diode D1 to make the first capacitor C1.
  • a reverse voltage is generated with the inductor L, and the second capacitor C2 is charged, so that the second capacitor C2 continues to discharge the load 200.
  • step A to step C the action of one cycle is completed. Therefore, in the case where the isolated power conversion device continues to operate, after the step C, the steps A to (steps) are repeated (: until the isolated power conversion device stops operating).
  • the voltage across the first capacitor C1 Vcl can automatically provide a negative potential and turn on the first during each operation cycle.
  • the diode D1 changes the overall circuit structure before and after the first diode D1 is turned on, and compensates for the barrier generated by the voltage of the load 200 by the negative voltage. In this way, the coil turns ratio of the isolated transformer 10 can be reduced, thereby reducing the copper loss, and the energy of the primary side of the isolated transformer 10 can be more smoothly and efficiently transmitted to the load 200, further Improve power conversion efficiency.
  • the output voltage of the isolated power conversion device when the output voltage of the isolated power conversion device is 5V, the output voltage chopping is only about 0.2 V, which is about 4% of the output voltage.
  • the circuit design of the isolated power conversion device of the present invention has the effect of lower output voltage chopping, and the electrolytic capacitor having a shorter service life of the second capacitor C2 can be avoided, thereby improving the use of the isolated power conversion device. life.
  • the design of the second diode D2 can also effectively prevent the circuit in the vicinity of the load 200 from generating circuit reflow, thereby making the overall circuit more stable, thereby improving the energy conversion and suppressing the chopping effect of the isolated power conversion device.
  • the purpose of suppressing chopping can be achieved even without using the second diode D2.
  • the automatic charge pumping circuit 20 of the present invention can be applied to other circuit designs for receiving power of a pulse power source in addition to the circuit structure for receiving power generated by the transformer, thereby achieving the purpose of reducing output voltage ripple.
  • the above is only the preferred embodiment of the present invention, and is not intended to be limited thereto, and variations of the equivalent structures and methods of the present invention are intended to be included in the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种隔离式电源转换装置及其电源转换方法。隔离式电源转换装置包含有隔离式变压器(10)以及自动电荷抽放电路(20)。隔离式变压器具有一次侧(11)以及二次侧(12),且一次侧与脉冲电源(100)电性连接,二次侧具有第一端(121)以及第二端(122)。自动电荷抽放电路一侧电性连接隔离式变压器,另一侧电性连接负载(200),用于增进电源转换效率,并可抑制输出电压涟波。

Description

隔离式电源转换装置及其电源转换方法 技术领域
本发明与电源转换有关, 更详细来说是指一种隔离式电源转换装置及 其电源转换方法。 背景技术
隔离型电能传输系统与一般接触型电能传输系统最大的不同, 在于隔 离型电能传输系统不须经由电力线直接传输能量, 而是利用隔离型变压器 电磁耦合而将能量由一次侧传递至二次侧电路, 然而隔离型变压器因其先 天耦合不良因素, 使得电力转换效率较低。 因此, 传统隔离型电能传输系 统常利用共振式阻抗匹配方式, 来提升电源转换效率, 但是利用阻抗匹配 电路方式实现的电路, 甚易受变压器耦合系数参数影响, 而达不到预期效 果, 造成电源转换效率低落。 此外, 由于电能传输系统的输出电压需大于 负载电压, 才能够克服输出端的电位而将能量传送至负载, 因此隔离型电 能传输电路中, 往往需要较大匝数比的变压器才能够将电压提升至所需电 压, 如此一来, 而变压器的铜损随着线圈匝数增加而增加, 以致电源转换 效率降低。 发明内容
有鉴于此, 本发明的主要目的在于提供一种隔离式电源转换装置及其 电源转换方法, 可以提供负电位以补偿负载电压的阻障, 进而可降低变压 器的线圏匝数比, 以降低铜损提升电源转换效率, 使得变压器一次侧能量 能够更平顺更有效率的传送至负载, 进一步增进电源转换效率。
为了达成上述目的, 本发明的目的及解决其技术问题是采用以下技术 方案来实现的。 依据本发明所提出的隔离式电源转换装置, 用于将脉冲电 源的电能转换后, 输出供予负载; 该隔离式电源转换装置包含有隔离式变 压器以及自动电荷抽放( auto cha rge pump ) 电路; 其中, 该隔离式变压 器具有一次侧以及二次侧, 且该一次侧与该脉冲电源电性连接, 而该二次 侧具有第一端以及第二端; 该自动电荷抽放电路一側电性连接该隔离式变 压器, 另一侧电性连接该负载; 该自动电荷抽放电路包含有: 第一二极管, 其正极连接该二次侧的第二端, 其负极电性连接该二次侧的第一端; 第一 电容, 其一端电性连接该二次侧的第一端与该第一二极管的负极; 电感, 其一端连接该第一电容的另一端, 而另外一端则电性连接该第一二极管的 负极; 第二电容, 并联连接该负载, 且其一端连接该第一电容与该电感, 而另一端连接该第一二极管的正极与该二次侧的第二端。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的隔离式电源转换装置, 其中该电感通过第二二极管电性连接该 第一二极管的负极; 另外, 该第二二极管的正极连接该第一二极管的负极, 而其负极连接该电感。
前述的隔离式电源转换装置, 其中该隔离式变压器的二次侧的第一端 上设有第三二极管, 且该第三二极管的负极连接该第一二极管的负极与该 第一电容, 而其正极连接该二次侧。
前述的隔离式电源转换装置, 其中该第一电容为无极性电容。
前述的隔离式电源转换装置, 其中该第二电容为非电解电容。
依据上述构思, 本发明的目的及解决其技术问题还采用以下技术方案 来实现。 依据本发明提出的该隔离式电源转换装置的电源转换方法, 包含 有下列步骤:
A. 当该脉沖电源输出电能时, 对该隔离式变压器的一次侧充电, 而该 电感、 该第一电容与该第二电容对该负载释能;
B. 当该脉沖电源停止输出电能时,该隔离式变压器的二次侧对该电感、 该第一电容与该第二电容充电, 使该第二电容持续对该负载释能;
C. 导通该第一二极管, 使该第一电容与该电感产生反向的电压, 并对 该第二电容充电, 使该第二电容持续对该负载释能。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的电源转换方法, 其中在步骤 C后, 还包含有重复执行步骤 A至 步骤 C的步骤。
前述的电源转换方法, 其中在步骤 B 中, 该隔离式变压器的二次侧通 过该第一电容与该电感形成的共振电路, 将其储能传导至该第二电容。
前述的电源转换方法, 其中在步骤 B 中, 该第一电容与该电感形成的 共振电路后, 该第一电容的跨压极性反转, 而使该第一二极管导通, 而进 入步骤 C。
前述的电源转换方法, 其中所述的脉冲电源具有电子开关, 当该电子 开关导通时, 该脉冲电源输出电能; 当该电子开关断开时, 该脉冲电源停 止输出电能。
依据上述构思, 本发明的目的及解决其技术问题另外再采用以下技术 方案来实现。 依据本发明还提供的自动电荷抽放电路, 用于接收脉沖电源 的电能, 并供电予负载, 且该脉沖电源具有第一输出端以及第二输出端; 该自动电荷抽放电路包含有第一二极管、 第一电容、 电感以及第二电容; 其中, 该第一二极管的正极连接该脉冲电源的第二输出端, 其负极电性连 接该脉冲电源的第一输出端; 该第一电容的一端电性连接该脉沖电源的第 一输出端与该第一二极管的负极; 该电感的一端连接该第一电容的另一端, 而另外一端则电性连接该第一二极管的负极; 该第二电容并联连接该负载, 且其一端连接该第一电容与该电感, 而另一端连接该第一二极管的正极与 该二次侧的第二端。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的自动电荷抽放电路, 其中该电感通过第二二极管电性连接该第 一二极管的负极; 另外, 该第二二极管的正极连接该第一二极管的负极, 而其负极连接该电感。
借此, 通过上述的技术方案, 本发明至少具有下列优点: 可以在电源 转换时, 提供负电位以补偿负载电压的阻障, 进而可降低该隔离式变压器 的线圈匝数比, 以降低铜损提升电源转换效率, 使得该隔离式变压器一次 侧能量能够更平顺更有效率的传送至负载, 进一步增进电源转换效率。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图, 详细说明: ^下。 附图的简要说明
图 1为本发明优选实施例的隔离式电源转换装置的电路图
图 2至图 4为各步骤的等效电路图。
图 5为第一电容的电压波型图。
图 6为输出电压与电流的波型图。
【主要元件符号说明】
10: 隔离式变压器; 11: 一次侧;
12: 二次侧; 121 : 第一端;
122: 第二端; 20: 自动电荷抽放电路;
Dl、 D2、 D3: 二极管; Cl、 C2: 电容;
L: 电感; 100: 脉沖电源;
V in: 电力源; SW: 电子开关;
200: 负载。 实现发明的最佳方式
为能更清楚地说明本发明, 现举优选实施例并配合图示详细说明如后。 请参阅图 1, 本发明优选实施的隔离式电源转换装置用于将脉冲电源 100的电能转换后,输出供予负载 200,且该脉冲电源 100包含有电力源 Vin 以及电子开关 SW。该隔离式电源转换装置包含有隔离式变压器 10以及自动 电荷抽放 ( auto cha rge pump ) 电路 20。 其中:
该隔离式变压器 10 在本实施例中为非接触式变压器 (noncontact t ransformer ), 且具有可分离设置的一次侧 11 以及二次侧 12, 该一次侧 11与该脉冲电源 100电性连接,而该二次侧 12具有第一端 121以及第二端 122。 当然,在实际实施上,也可以一次侧与二次侧不可分离的变压器代替。
该自动电荷抽放电路 20其一側电性连接该隔离式变压器 10,另一側电 性连接该负载 200; 该自动电荷抽放电路 20包含有两个二极管 (第一二极 管 D1与第二二极管 D2 )、 两个电容(第一电容 C1与第二电容 C2 ) 以及一 个电感 L。 这些元件的连接关系如下所述: 该第一二极管 D1的正极连接该 二次侧 12的第二端 122, 其负极电性连接该二次侧 12的第一端 121。 该第 一电容 C1为无极性电容, 其一端电性连接该二次侧 12的第一端 121与该 第一二极管 D1的负极。 该第二二极管 D2的正极连接至该第一电容 Cl。 该 电感 L的一端连接该第一电容 C1的另一端, 而另外一端则连接该第二二极 管 D2的负极。 该第二电容 C2为非电解电容, 用于并联连接该负载 200, 且 其一端连接该第一电容 C1与该电感 L,而另一端连接该第一二极管 D1的正 极与该二次侧 12的第二端 122。
另外, 为避免电路产生回流影响该隔离式变压器 10的动作, 该隔离式 变压器 10在其二次侧 12该第一端的线路上, 还设置有第三二极管 D3。 该 第三二极管 D3的正极连接该二次側 12的该第一端 121,而其负极则连接该 第一二极管 D1的负极、 该第二二极管 D2的正极与该第一电容 Cl。
在本实施例中, 这些电容 C1~C2、 该电感 L、 输入电压、 输出电压、 该 隔离式变压器 10的匝数比、 以及该负载 200的电阻如下表所示:
Figure imgf000005_0001
借此, 通过上述结构设计与规格, 再利用下述的电源转换方法, 便可 达到增进电源转换效率的目的, 而该方法包含有下列步骤:
A. 请参阅图 2 , 导通该电子开关 SW, 使该脉冲电源 100的电力源 Vin 输出电能, 以对该隔离式变压器 10的一次侧 11充电, 而该电感 该第一 电容 CI与该第二电容 C2对该负载 200释能。
B. 请参阅图 3 , 断开该电子开关 SW, 使该脉沖电源 100的电力源 V in 停止输出电能, 该隔离式变压器 10的二次侧 12对该电感 L、 该第一电容 C1充电, 并通过该第一电容 C1与该电感 L形成的共振电路,将其储能传导 至该第二电容 C2 , 以使该第二电容 C2持续对该负载 200释能。
C. 请参阅图 4, 当该第一电容 C1与该电感 L共振后, 该第一电容 C1 跨压的极性反转, 进而导通该第一二极管 Dl, 使该第一电容 C1与该电感 L 产生反向的电压, 并对该第二电容 C2充电, 使该第二电容 C2持续对该负 载 200释能。
每执行一次步骤 A至步驟 C , 则完成一次周期的动作。 所以, 在该隔离 式电源转换装置持续动作的情况下, 在步骤 C后, 便重复执行步骤 A至步 骤 (:, 直至该隔离式电源转换装置停止动作。
借此, 请参阅图 5, 通过上述的该自动电荷抽放电路 20的设计, 在每 次动作周期中, 该第一电容 C1的跨压 Vcl可自动地提供负电位, 而导通该 第一二极管 Dl, 以使该第一二极管 D1导通前后的整体电路结构改变, 并通 过负压补偿负载 200 的电压所产生的阻障。 如此一来, 便可降低该隔离式 变压器 10 的线圈匝数比, 进而降低铜损, 且也可使得该隔离式变压器 10 一次側的能量能够更平顺更有效率的传送至负栽 200,进一步增进电源转换 效率。
另外, 由图 6 可看出, 在本实施例中, 该隔离式电源转换装置的输出 电压为 5V的情况下, 其输出电压涟波仅为 0. 2V左右, 约为输出电压的 4%。 换句话说, 本发明的隔离电源转换装置的电路设计同时具有较低输出电压 涟波的效果, 而可避免该第二电容 C2使用寿命较短的电解电容, 借以提升 该隔离电源转换装置的使用寿命。
此外, 该第二二极管 D2的设计还可有效地防止该负载 200附近的电路 产生电路回流, 进而使得整体电路更加地稳定, 借以提升该隔离电源转换 装置能源转换与抑制涟波的效果。 当然, 在实际实施上, 即使不使用该第 二二极管 D2仍可达到抑制涟波的目的。
还有, 本发明的自动电荷抽放电路 20除使用于接收变压器产生的电能 的电路结构外, 也可适用于其它接收脉冲电源的电能的电路设计上, 来达 到降低输出电压涟波的目的。 以上所述仅为本发明优选可行实施例而已, 并不以此为限, 且但凡应用本发明说明书及权利要求所为等效结构与方法 的变化, 理应包含在本发明的专利保护范围内。

Claims

权 利 要 求
1、 一种隔离式电源转换装置, 其特征在于, 用于将脉冲电源的电能转 换后, 输出供予负载; 该隔离式电源转换装置包含有:
隔离式变压器, 具有一次侧以及二次侧, 且该一次侧与该脉沖电源电 性连接, 而该二次侧具有第一端以及第二端; 以及
自动电荷抽放电路, 其一侧电性连接该隔离式变压器, 另一侧电性连 接该负载; 该自动电荷抽放电路包含有:
第一二极管, 其正极连接该二次侧的第二端, 其负极电性连接该二次 侧的第一端;
第一电容, 其一端电性连接该二次侧的第一端与该第一二极管的负极; 电感, 其一端连接该第一电容的另一端, 而另外一端则电性连接该第 一二极管的负极;
第二电容, 并联连接该负载, 且其一端连接该第一电容与该电感, 而 另一端连接该第一二极管的正极与该二次侧的第二端。
2、 根据权利要求 1所述隔离式电源转换装置, 其特征在于, 该电感通 过第二二极管电性连接该第一二极管的负极; 另外, 该第二二极管的正极 连接该第一二极管的负极, 而其负极连接该电感。
3、 根据权利要求 1所述隔离式电源转换装置, 其特征在于, 该隔离式 变压器的二次侧的第一端上设有第三二极管, 且该第三二极管的负极连接 该第一二极管的负极与该第一电容, 而其正极连接该二次侧。
4、 根据权利要求 1所述隔离式电源转换装置, 其特征在于, 该第一电 容为无极性电容。
5、 根据权利要求 1所述隔离式电源转换装置, 其特征在于, 该第二电 容为非电解电容。
6、 一种根据权利要求 1所述的隔离式电源转换装置的电源转换方法, 其特征在于, 包含有下列步骤:
A. 当该脉沖电源输出电能时, 对该隔离式变压器的一次侧充电, 而该 电感、 该第一电容与该第二电容对该负载释能;
B. 当该脉冲电源停止输出电能时,该隔离式变压器的二次侧对该电感、 该第一电容与该第二电容充电, 使该第二电容持续对该负载释能;
C. 导通该第一二极管, 使该第一电容与该电感产生反向的电压, 并对 该第二电容充电, 使该第二电容持续对该负载释能。
7、 根椐权利要求 6所述的电源转换方法, 其特征在于, 在步骤 C后, 还包含有重复执行步骤 A至步骤 C的步骤。
8、 根据权利要求 6所述的电源转换方法, 其特征在于, 在步骤 B中, 该隔离式变压器的二次侧通过该第一电容与该电感形成的共振电路, 将其 储能传导至该第二电容。
9、 根据权利要求 8所述的电源转换方法, 其特征在于, 在步骤 B中, 该第一电容与该电感形成的共振电路后, 该第一电容的跨压极性反转, 而 使该第一二极管导通, 而进入步骤(:。
10、 根据权利要求 8 所述的电源转换方法, 其特征在于, 所述的脉冲 电源具有电子开关, 当该电子开关导通时, 该脉冲电源输出电能; 当该电 子开关断开时, 该脉沖电源停止输出电能。
11、 一种自动电荷抽放电路, 其特征在于, 用于接收脉沖电源的电能, 并供电予负载, 且该脉冲电源具有第一输出端以及第二输出端; 该自动电 荷抽放电路包含有:
第一二极管, 其正极连接该脉沖电源的第二输出端, 其负极电性连接 该脉沖电源的第一输出端;
第一电容, 其一端电性连接该脉沖电源的第一输出端与该第一二极管 的负极;
电感, 其一端连接该第一电容的另一端, 而另外一端则电性连接该第 一二极管的负极;
第二电容, 并联连接该负载, 且其一端连接该第一电容与该电感, 而 另一端连接该第一二极管的正极与该二次侧的第二端。
12、 根据权利要求 11所述的自动电荷抽放电路, 其特征在于, 该电感 通过第二二极管电性连接该第一二极管的负极; 另外, 该第二二极管的正 极连接该第一二极管的负极, 而其负极连接该电感。
PCT/CN2013/001366 2012-12-06 2013-11-11 隔离式电源转换装置及其电源转换方法 WO2014086093A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13860928.4A EP2930836A4 (en) 2012-12-06 2013-11-11 Isolated power conversion device and power conversion method therefor
JP2015545631A JP6122137B2 (ja) 2012-12-06 2013-11-11 隔離式電源転換装置及びその電源転換方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210521642.7 2012-12-06
CN201210521642.7A CN103856054A (zh) 2012-12-06 2012-12-06 隔离式电源转换装置及其电源转换方法

Publications (1)

Publication Number Publication Date
WO2014086093A1 true WO2014086093A1 (zh) 2014-06-12

Family

ID=50863351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001366 WO2014086093A1 (zh) 2012-12-06 2013-11-11 隔离式电源转换装置及其电源转换方法

Country Status (4)

Country Link
EP (1) EP2930836A4 (zh)
JP (1) JP6122137B2 (zh)
CN (1) CN103856054A (zh)
WO (1) WO2014086093A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660069A (zh) * 2013-11-18 2015-05-27 东林科技股份有限公司 电源转换装置及其转换方法
CN104682733B (zh) * 2013-11-27 2017-03-22 东林科技股份有限公司 返驰式交直流转换装置及其转换方法
JP6845672B2 (ja) * 2016-12-06 2021-03-24 Ntn株式会社 スイッチング電源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943224A (en) * 1998-04-06 1999-08-24 Lucent Technologies Inc. Post regulator with energy recovery snubber and power supply employing the same
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN202435262U (zh) * 2012-01-18 2012-09-12 宁波奥克斯空调有限公司 用于变频空调的无源pfc电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700801B2 (ja) * 1988-07-29 1998-01-21 新電元工業株式会社 Dc−dcコンバータ
JPH09285126A (ja) * 1996-04-18 1997-10-31 Fuji Electric Co Ltd 半導体整流装置のスナバ回路
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
JP3280615B2 (ja) * 1998-02-18 2002-05-13 ティーディーケイ株式会社 スイッチング電源装置
US6052294A (en) * 1998-09-14 2000-04-18 Lucent Technologies Inc. Power supply snubber reset circuit
US6069472A (en) * 1999-02-05 2000-05-30 General Electronics Applications, Inc. Converter/inverter using a high efficiency switching circuit
KR100333089B1 (ko) * 1999-06-02 2002-04-24 권영한 디지털 제어방식의 직류/직류 컨버터
US6781351B2 (en) * 2002-08-17 2004-08-24 Supertex Inc. AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
TWI238590B (en) * 2004-06-10 2005-08-21 Wai Zheng Zhong High-efficiency DC/DC converter with high voltage gain
DE102005030601A1 (de) * 2005-06-30 2007-01-11 Siemens Ag Österreich Netzteil mit Vollbrückenschaltung und großem Regelungsbereich
US7579814B2 (en) * 2007-01-12 2009-08-25 Potentia Semiconductor Corporation Power converter with snubber
JP2008193878A (ja) * 2007-02-08 2008-08-21 Sony Corp スイッチング電源回路
TW201414158A (zh) * 2012-09-26 2014-04-01 Nat Univ Tsing Hua 降壓轉換電路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943224A (en) * 1998-04-06 1999-08-24 Lucent Technologies Inc. Post regulator with energy recovery snubber and power supply employing the same
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN202435262U (zh) * 2012-01-18 2012-09-12 宁波奥克斯空调有限公司 用于变频空调的无源pfc电路

Also Published As

Publication number Publication date
JP2016502837A (ja) 2016-01-28
CN103856054A (zh) 2014-06-11
EP2930836A1 (en) 2015-10-14
JP6122137B2 (ja) 2017-04-26
EP2930836A4 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
TWI463773B (zh) Isolated power conversion device and its automatic charge and discharge circuit and power conversion method
WO2015078095A1 (zh) 返驰式交直流转换装置及其转换方法
CN106961220B (zh) 一种具有均流特性的高效并联llc谐振变换器
WO2014086093A1 (zh) 隔离式电源转换装置及其电源转换方法
TWI462451B (zh) AC / DC conversion device and its function correction method
WO2015070514A1 (zh) 隔离式交直流转换装置及其转换方法
WO2014063591A1 (zh) 一种功率因数校正电路
WO2015078093A1 (zh) 交交流电源转换装置及其转换方法
TWI441430B (zh) 具漏感能量回收高升壓直流-直流轉換系統
WO2015070515A1 (zh) 电源转换装置及其转换方法
TWI506940B (zh) A fly - back AC / DC converter and its conversion method
TWI504127B (zh) Isolated AC / DC converter and its conversion method
CN203608101U (zh) 返驰式交直流转换装置
TWM477732U (zh) 交交流電源轉換裝置
TWI504124B (zh) AC - to - AC power conversion device and its conversion method
CN104467465A (zh) 应用于桥式开关电源的双半波整流电路
WO2014086096A1 (zh) 交直流转换装置及其功因校正方法
TWI524641B (zh) Power conversion device and conversion method thereof
TWI504116B (zh) Power conversion device and conversion method thereof
CN201878011U (zh) 一种反激式开关电源及ups功率板
TW201308858A (zh) 單級化高升壓比直流-直流轉換器
TWM479562U (zh) 電源轉換裝置
CN105024550A (zh) 电源转换装置
TW201537878A (zh) 電源轉換裝置
CN103490644A (zh) 单级高功率因数电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013860928

Country of ref document: EP