WO2014063591A1 - 一种功率因数校正电路 - Google Patents

一种功率因数校正电路 Download PDF

Info

Publication number
WO2014063591A1
WO2014063591A1 PCT/CN2013/085414 CN2013085414W WO2014063591A1 WO 2014063591 A1 WO2014063591 A1 WO 2014063591A1 CN 2013085414 W CN2013085414 W CN 2013085414W WO 2014063591 A1 WO2014063591 A1 WO 2014063591A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge pump
circuit
diode
energy storage
parallel
Prior art date
Application number
PCT/CN2013/085414
Other languages
English (en)
French (fr)
Inventor
张逸兴
Original Assignee
Zhang Yixing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Yixing filed Critical Zhang Yixing
Publication of WO2014063591A1 publication Critical patent/WO2014063591A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/06Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention belongs to the field of power sources, and in particular relates to a power factor correction circuit.
  • the invention patent "Power Factor Correction Circuit" (Patent No.: ZL 201010163269. 3 ) enables high-quality power factor correction with only inductors, capacitors and diodes. Its performance indicators are fully compatible with active power factor. Correction is better than beauty.
  • the core of the invention patent is a charge pump and freewheeling circuit. The essence of this is the conversion of electromagnetic energy occurring in the inductance of the freewheeling circuit during repeated charge and discharge of the charge pump capacitor. This energy conversion process, together with the charge pump, ensures that the rectifier bridge can supply charging current to the power frequency filter capacitor throughout the power frequency cycle, achieving power factor correction. Starting from the essence of this power factor correction process, we have changed the freewheeling circuit composed of two inductors and two diodes into a tank circuit composed of an inductor and a diode, and obtained the simplest structure with better performance. Power factor correction circuit.
  • a power factor correction circuit is composed of a storage circuit and a charge pump or a parallel charge pump; the energy storage circuit is composed of a diode and an inductor; the charge pump is composed of a capacitor and two diodes. Connecting the anode of one diode, the cathode of the other diode, and one end of a capacitor together, the charge pump is obtained, the other end of the capacitor is the charge pump capacitor external terminal, and the other two of the two diodes The end is the two diode external terminals of the charge pump; the two diode external terminals of several charge pumps are connected in parallel, and the conduction direction is the same, that is, the parallel charge pump is obtained, and the diode external terminals of the charge pump are connected in parallel.
  • the two ends obtained are the two diode external terminals of the parallel charge pump, and the other ends of the capacitors are the capacitor external terminals of the parallel charge pump; the external connection of the charge pump is generated by the switch circuit.
  • the high frequency signal terminal, the capacitors of the parallel charge pump are externally connected to several high frequency signal terminals generated by the switch circuit; the charge pump or the parallel charge pump
  • the two diode external terminals are connected in series with the inductance of the energy storage circuit between the rectifier circuit and the power frequency filter capacitor, and the conduction direction of the charge pump or the diode of the parallel charge pump is The direction of the direct current is the same.
  • the tank circuit consists of a diode and an inductor, or a diode and two inductors, or two diodes and two inductors.
  • the inductance of the energy storage circuit may be connected between the charge pump or the parallel charge pump and the power frequency filter capacitor, or may be connected to the rectifier circuit and the charge pump or The parallel connection between the charge pumps; the diode of the storage circuit is connected with the two diode external terminals of the charge pump or the parallel charge pump, and the conduction direction of the diode of the storage circuit is consistent with the direction of the direct current.
  • the energy storage circuit is composed of two inductors and one diode
  • two inductors of the tank circuit are respectively connected in series on two sides of the two diode external ends of the charge pump or the parallel charge pump
  • the tank circuit One diode is connected in parallel with the two diode external terminals of the charge pump or the parallel charge pump, and the conduction direction of the diode of the tank circuit coincides with the direction of the direct current.
  • the energy storage circuit is composed of two inductors and two diodes, it can be divided into three types.
  • the first one is: the first inductor of the energy storage circuit is connected in series with the power frequency filter capacitor and the charge pump or in parallel. Between the charge pumps, the second inductor of the energy storage circuit is connected in series between the rectifier circuit and the charge pump or the parallel charge pump; one end of the first diode of the energy storage circuit is connected to the output end of the rectifier circuit. The other end is connected to the junction of the first inductor and the diode external terminal of the charge pump or the parallel charge pump; the second diode of the tank circuit is connected to the power frequency filter capacitor at one end and the second inductor is connected to the other end.
  • the connection point of the charge pump or the diode external terminal of the parallel charge pump; the conduction direction of the two diodes of the tank circuit is consistent with the direction of the direct current.
  • the second case where the energy storage circuit is composed of two inductors and two diodes is: the first inductor of the energy storage circuit is connected in series between the power frequency filter capacitor and the charge pump or the parallel charge pump, The second inductor of the tank circuit is connected in series between the rectifier circuit and the charge pump or the parallel charge pump; the first diode of the tank circuit is connected to the two diode external terminals of the charge pump or the parallel charge pump; The second diode of the energy storage circuit is connected to the power frequency filter capacitor at one end, and the other end is connected to the connection point of the second inductor and the diode external terminal of the charge pump or the parallel charge pump; two diodes of the energy storage circuit The conduction direction is consistent with the direction of the direct current.
  • a third case where the energy storage circuit is composed of two inductors and two diodes is: the first inductor of the energy storage circuit is connected in series between the power frequency filter capacitor and the charge pump or the parallel charge pump, The second inductor of the tank circuit is connected in series between the rectifier circuit and the charge pump or the parallel charge pump; the first of the tank circuits One end of the diode is connected to the output end of the rectifier circuit, and the other end is connected to the connection point of the first inductor to the diode external terminal of the charge pump or the parallel charge pump; the second diode of the tank circuit is connected with the charge pump or in parallel The two diode external terminals of the charge pump are connected in parallel; the conduction directions of the two diodes of the energy storage circuit are consistent with the direction of the direct current.
  • a capacitor is connected between the positive and negative terminals of the power supply to ensure charge and discharge of the charge pump.
  • This capacitor can be part of the LC filter circuit.
  • This capacitor can also be connected as shown in Figure 8. After the bridge rectifier and LC filter circuit, the power frequency filter capacitor is connected in parallel with the entire circuit consisting of the tank circuit and the charge pump diode.
  • the conversion of this electromagnetic energy on the inductor not only avoids the energy loss that may be generated by charging and discharging the capacitance of the charge pump, but also provides additional energy for the rectifier bridge to charge the filter capacitor.
  • This energy together with the charge pump, ensures that the rectifier bridge can supply charging current to the power frequency filter capacitor throughout the power frequency cycle for power factor correction.
  • the inductance of the energy storage circuit can be connected between the charge pump and the rectifier bridge according to the actual situation, or can be connected between the charge pump and the power frequency filter capacitor, and if necessary, one of the two sides of the charge pump can be connected to each other. It is guaranteed that the voltage on the capacitance of the charge pump does not change during the charging and discharging of the capacitor of the charge pump.
  • the invention forms a practical power supply circuit together with a switching power supply circuit composed of a bridge rectifier circuit, an LC filter circuit and a switch circuit, including an AC-AC frequency conversion circuit, an AC-DC DC constant current circuit and an AC-DC DC constant voltage circuit. And other switching power supply circuits.
  • a capacitor is connected between the positive and negative terminals of the power supply, which may be part of the LC filter circuit. This capacitor can also be connected between the bridge rectifier and the LC filter circuit and the power frequency filter capacitor C as shown in Figure 9, in parallel with the entire circuit consisting of the tank circuit and the charge pump diode.
  • the power factor correction circuit adopting the above technical solution has a compact structure, good performance and low cost, and can be widely used in various power supply circuits powered by an alternating current power source.
  • Figure l (a), (b) are circuit diagrams of the charge pump and the parallel charge pump, respectively;
  • Figure 2 is a circuit diagram of a power factor correction circuit in Embodiment 1 of the present invention.
  • Figure 3 is a circuit diagram of a power factor correction circuit in Embodiment 2 of the present invention.
  • Figure 4 is a circuit diagram of a power factor correction circuit in Embodiment 3 of the present invention.
  • Figure 5 is a circuit diagram of a power factor correction circuit in Embodiment 4 of the present invention.
  • Figure 6 is a circuit diagram of a power factor correction circuit in Embodiment 5 of the present invention.
  • Figure 7 is a circuit diagram of a power factor correction circuit in Embodiment 6 of the present invention.
  • Figure 8 is a circuit diagram of a power factor correction circuit in Embodiment 7 of the present invention.
  • Figure 9 is a circuit diagram of a power factor correction circuit in Embodiment 8 of the present invention.
  • FIG. 1 A circuit diagram of the charge pump of the present invention and several charge pumps connected in parallel is shown in FIG.
  • the power factor correction circuit of the present invention can have various schemes, but there are only two basic circuits, as shown in Fig. 2 and Fig. 3. Other circuits, such as those shown in Figures 4, 5, 6, 7, and 8, can be seen as circuits that add inductors and diodes based on these two basic circuits.
  • the power factor correction circuit of the energy storage circuit is connected between the charge pump and the power frequency filter capacitor as shown in FIG. 2: the power factor correction circuit is composed of a charge pump and a tank circuit; A capacitor CI and two diodes D1, D2; the energy storage circuit is composed of a diode D3 and an inductor L1; the two diodes D1, D2 of the charge pump are connected in series with the inductor L1 of the tank circuit in bridge rectification and Between the LC filter circuit and the power frequency filter capacitor C, the anode of the first diode D1 of the charge pump is connected to one end of the inductor L1 of the tank circuit, and is connected to the bridge rectifier circuit through the other end of the inductor L1.
  • the cathode of the second diode D2 of the charge pump is connected to the positive pole of the power frequency filter capacitor C, and the external terminal of the capacitor C1 of the charge pump is connected to the high frequency signal end of the switch circuit.
  • the internal terminal of the capacitor C1 is connected to the cathode of the first diode D1 and the anode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the second diode D2 of the charge pump.
  • the anode of the diode D3 of the tank circuit is connected to the anode of the first diode D1 of the charge pump; a capacitor C2 of the LC filter circuit is connected between the positive and negative terminals of the power supply.
  • the power factor correction circuit of the energy storage circuit is connected between the charge pump and the rectifier circuit as shown in FIG. 3:
  • the power factor correction circuit is composed of a charge pump and a tank circuit;
  • the charge pump is composed of a capacitor C1 and
  • the two diodes D1, D2 are composed;
  • the energy storage circuit is composed of a diode D3 and an inductor L1;
  • the anode of the second diode D2 of the charge pump is connected to one end of the inductor L1 of the tank circuit, and passes through this
  • the other end of the inductor L1 is connected to the negative pole of the power frequency filter capacitor C.
  • the cathode of the first diode D1 of the charge pump is connected to the negative output end of the LC filter circuit and the rectifier circuit, and the external capacitance of the capacitor C1 of the charge pump Terminating the high frequency signal terminal of the switch circuit, the internal terminal of the capacitor C1 is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit Connected to the cathode of the first diode D1 of the charge pump, the anode of the diode D3 of the tank circuit is connected to the anode of the second diode D2 of the charge pump, bridged And a capacitor C2 LC filter circuit connected between the power supply positive and negative.
  • the energy storage circuit adds inductance and diodes, and various power factor correction schemes can be obtained, for example:
  • the circuit shown in FIG. 3 adds an inductor L2, and the two inductors are respectively connected to the two sides of the charge pump to obtain a power factor correction circuit as shown in FIG. 4.
  • the anode of the second diode D2 of the charge pump is connected to the tank circuit.
  • One end of the first inductor L1 is connected to the negative pole C of the power frequency filter capacitor through the other end of the inductor L1, and the external terminal of the capacitor C1 of the charge pump is connected to the high frequency signal end of the switch circuit, the charge Pump Internally, the internal terminal of the capacitor CI is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the cathode of the first diode D1 of the charge pump.
  • the anode of the diode D3 of the energy storage circuit is connected to the anode of the second diode D2 of the charge pump, and the bridge rectifier is connected with a capacitor C2 of the LC filter circuit between the positive and negative poles of the power supply, and the second of the energy storage circuit.
  • An inductor L2 is connected between the negative output of the bridge rectifier and LC filter circuit and the cathode of the first diode D1 of the charge pump.
  • the circuit shown in FIG. 3 adds an inductor L2 and a diode D4 to obtain a power factor correction circuit as shown in FIG. 5.
  • the anode of the second diode D2 of the charge pump is connected to the first inductor L1 of the tank circuit.
  • One end of the inductor L1 is connected to the negative terminal of the power frequency filter capacitor C.
  • the external terminal of the capacitor C1 of the charge pump is connected to the high frequency signal end of the switch circuit, and the capacitor C1 is inside the charge pump.
  • the internal terminal is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the negative output of the LC filter circuit and the rectifier circuit, and the storage circuit is
  • the anode of diode D3 is connected to the anode of the second diode D2 of the charge pump, and a second inductor L2 is added to the negative output of the LC filter circuit and the rectifier circuit and the first diode D 1 of the charge pump.
  • a diode D4 is added, the anode of which is connected to the negative pole of the power frequency filter capacitor C, the cathode of which is connected to the cathode of the first diode D1 of the charge pump, bridge rectification and LC filtering.
  • a capacitor C2 is connected between the positive and negative terminals of the power supply.
  • the circuit shown in FIG. 3 adds an inductor L2 and a diode D4 to obtain a power factor correction circuit as shown in FIG. 6.
  • the anode of the second diode D2 of the charge pump is connected to the first inductor L1 of the tank circuit.
  • One end of the inductor L1 is connected to the negative terminal of the power frequency filter capacitor C.
  • the external terminal of the capacitor C1 of the charge pump is connected to the high frequency signal end of the switch circuit, and the capacitor C1 is inside the charge pump.
  • the internal terminal is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the cathode of the first diode D1 of the charge pump, the tank circuit
  • the anode of diode D3 is connected to the anode of the second diode D2 of the charge pump, and a second inductor L2 is added to the negative output of the LC filter circuit and the rectifier circuit and the first diode D 1 of the charge pump.
  • a diode D4 is added, the anode of which is connected to the negative pole of the power filter capacitor C, the cathode of which is connected to the cathode of the first diode D1 of the charge pump, and a capacitor of the bridge rectifier and the LC filter circuit.
  • C2 is connected between the positive and negative poles of the power supply.
  • the circuit shown in FIG. 3 adds an inductor L2 and a diode D4 to obtain a power factor correction circuit as shown in FIG. 6.
  • the anode of the second diode D2 of the charge pump is connected to the first inductor L1 of the tank circuit.
  • One end of the inductor L1 is connected to the negative terminal of the power frequency filter capacitor C.
  • the external terminal of the capacitor C1 of the charge pump is connected to the high frequency signal end of the switch circuit, and the capacitor C1 is inside the charge pump.
  • the internal terminal is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the negative output of the LC filter circuit and the rectifier circuit, and the storage circuit is
  • the anode of diode D3 is connected to the anode of the second diode D2 of the charge pump, and a second inductor L2 is added, which is connected to the negative output of the LC filter circuit and the rectifier circuit and the first diode D1 of the charge pump.
  • a diode D4 is added, the anode of which is connected to the anode of the second diode D2 of the charge pump, and the cathode of which is connected to the cathode of the first diode D1 of the charge pump.
  • Bridge rectifier and LC filter A capacitor C2 is connected between the positive and negative poles of the power supply.
  • the above six power factor correction circuits are composed of a charge pump and a tank circuit, and the power factor correction circuit can also be composed of a parallel charge pump and a tank circuit.
  • a power factor correction circuit consisting of two charge pumps connected in parallel and a tank circuit is shown in FIG.
  • a power factor correction circuit consisting of two parallel charge pumps and a tank circuit as shown in Figure 8:
  • the two parallel charge pumps consist of two capacitors Cl l, C12 and four diodes Dl l, D12, D21
  • the D12 is composed of a diode D3 and an inductor L1; the anodes of the two diodes D21 and D22 of the two parallel charge pumps are connected to one end of the inductor L1 of the tank circuit.
  • the other end of the inductor L1 is connected to the negative pole of the power frequency filter capacitor C, and the cathodes of the other two diodes D12 and D12 of the two parallel charge pumps are connected to the negative output terminals of the LC filter circuit and the rectifier circuit.
  • the two external terminals of the capacitors C11 and C12 of the charge pump are respectively connected to two high-frequency signal terminals of the switch circuit.
  • the internal terminal of the capacitor C11 is connected to the anode of the first diode D11 and the first The cathode of the two diodes D21
  • the internal terminal of the capacitor C12 is connected to the anode of the first diode D12 and the cathode of the second diode D22
  • the cathode of the diode D3 of the tank circuit is connected to the first diode D1 of the charge pump.
  • the anode of the diode D3 is connected to the tank circuit charge pump anode of the second diode D2, a capacitor C2 and the bridge rectifier and LC filter circuit connected between the positive and negative polarity.
  • the capacitor C2 connected between the positive and negative terminals of the power supply is used to ensure that the connected high frequency filter circuit does not interfere with the charge and discharge process of the charge pump, and it may be part of the LC filter circuit.
  • This capacitor can also be connected between the bridge rectifier and the LC filter circuit and the power frequency filter capacitor C as shown in Figure 9, in parallel with the entire circuit consisting of the tank circuit and the charge pump diode.
  • Figure 9 shows a power factor correction circuit scheme: the anode of the second diode D2 of the charge pump is connected to one end of the inductor L1 of the tank circuit, and is connected to the power frequency filter through the other end of the inductor L1.
  • the cathode of the capacitor C On the cathode of the capacitor C, the cathode of the first diode D1 of the charge pump is connected to the negative output terminal of the LC filter circuit and the rectifier circuit, and the external terminal of the capacitor C1 of the charge pump is connected to the high-frequency signal terminal of the switch circuit.
  • the internal terminal of the capacitor C1 is connected to the anode of the first diode D1 and the cathode of the second diode D2, and the cathode of the diode D3 of the tank circuit is connected to the first diode D1 of the charge pump.
  • the anode of the diode D3 of the tank circuit is connected to the anode of the second diode D2 of the charge pump, and the capacitor C2 is connected to the negative output of the bridge rectifier and LC filter circuit and the cathode of the power frequency filter capacitor. between.
  • the principle of the above circuit is to utilize the conversion process of electromagnetic energy generated on the inductance of the energy storage circuit when charging and discharging the charge pump, so as to ensure that the rectifier bridge can supply charging current to the power frequency filter capacitor throughout the power frequency cycle, and realize the power factor. Correction.
  • directly adding the charge pump and increasing the energy storage circuit can also combine the connection of various power factor correction circuits.
  • the invention is applicable to all AC power supply power supply circuits, including AC-AC inverter circuits, AC-DC DC constant current circuits, AC-DC DC constant voltage circuits and other switching power supply circuits.
  • AC-AC inverter circuits AC-DC DC constant current circuits
  • AC-DC DC constant voltage circuits AC-DC DC constant voltage circuits and other switching power supply circuits.
  • the power factor correction circuit of the present invention has the most compact structure and the lowest cost, and the performance index achieved is the best.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种功率因数校正电路,由电荷泵和储能电路组成。电荷泵可以只由一个电容(C1)和两个二极管(D1,D2)组成。储能电路可以只由一个二极管(D3)和一个电感(L1)组成。电荷泵的电容外接端连接由开关电路产生的高频信号端。电荷泵的两个二极管(D1,D2)与储能电路的电感(L1)串接在整流电路与工频滤波电容(C)之间。储能电路的二极管(D3)与电荷泵的两个串联二极管(D1,D2)并接。该电路结构简单,成本低,能实现高质量的功率因数校正,适用于由交流电源供电的设备的电源电路中。

Description

一种功率因数校正电路 技术领域
本发明属于电源领域, 具体涉及一种功率因数校正电路。
背景技术
发明专利 "功率因数校正电路" (专利号: ZL 201010163269. 3 ) 使得可以 只用电感、 电容和二极管就能实现高质量的功率因数校正, 其各项性能指标, 完 全可以和有源功率因数校正相比美。该发明专利的核心是电荷泵和续流电路。究 其实质, 是在给电荷泵的电容反复充放电过程中, 发生在续流电路电感上的电磁 能量的转换。是这个能量转换过程与电荷泵一起, 保证整流桥在整个工频周期内 都能向工频滤波电容提供充电电流, 实现了功率因数校正。从这功率因数校正过 程的实质出发,我们把由两个电感和两个二极管组成的续流电路改成为由一个电 感和一个二极管组成的储能电路,得到了现在这个性能更好的最简结构的功率因 数校正电路。
发明内容
本发明的目的是提供一种使用电荷泵的功率因数校正电路。 它不用集成电 路, 无需增加开关管, 从而以最精简的结构, 最低的成本, 实现最高质量的功率 因数校正。
本发明所述的一种功率因数校正电路,由储能电路和电荷泵或并联的电荷泵 组成; 所述储能电路由二极管和电感组成; 所述电荷泵由一个电容和两个二极管 组成,把一个二极管的阳极、另一个二极管的阴极和一个电容的一端连接在一起, 即得所述电荷泵,所述电容的另一端即为电荷泵电容外接端, 而所述两个二极管 的其余两端即为电荷泵的两个二极管外接端;把几个电荷泵的两个二极管外接端 并联, 并使其导通方向一致, 即得所述并联的电荷泵, 电荷泵的二极管外接端并 接所得两端, 即为并联的电荷泵的两个二极管外接端, 几个电容的另一端, 即为 并联的电荷泵的几个电容外接端;所述电荷泵的电容外接端接由开关电路产生的 高频信号端,所述并联的电荷泵的几个电容外接端接由开关电路产生的几个高频 信号端;所述电荷泵或并联的电荷泵的两个二极管外接端与储能电路的电感串接 在整流电路与工频滤波电容之间,电荷泵或并联的电荷泵的二极管的导通方向与 直流电流的方向一致。
所述储能电路由一个二极管和一个电感组成,或由一个二极管和两个电感组 成, 或由两个二极管和两个电感组成。
对于所述储能电路由一个二极管和一个电感组成的情况,储能电路的电感可 以接在电荷泵或并联的电荷泵与工频滤波电容之间,也可以是接在整流电路与电 荷泵或并联的电荷泵之间;所述储能电路的二极管与电荷泵或并联的电荷泵的两 个二极管外接端并接, 储能电路的二极管的导通方向与直流电流的方向一致。
对于所述储能电路由两个电感和一个二极管组成的情况,所述储能电路的两 个电感分别串接在电荷泵或并联的电荷泵的两个二极管外接端的两边,所述储能 电路的一个二极管与电荷泵或并联的电荷泵的两个二极管外接端并联,所述储能 电路的二极管的导通方向与直流电流的方向一致。
对于所述储能电路由两个电感和两个二极管组成情况, 又可以分成三种, 第 一种是:所述储能电路第一个电感串接在工频滤波电容与电荷泵或并联的电荷泵 之间, 所述储能电路第二个电感串接在整流电路与电荷泵或并联的电荷泵之间; 所述储能电路的第一个二极管的一端接往整流电路的输出端,另一端接到第一个 电感与电荷泵或并联的电荷泵的二极管外接端的连接点上;所述储能电路的第二 个二极管一端接工频滤波电容,另一端接到第二个电感与电荷泵或并联的电荷泵 的二极管外接端的连接点上;所述储能电路的两个二极管的导通方向都与直流电 流的方向一致。
所述储能电路由两个电感和两个二极管组成的第二种情况是:所述储能电路 第一个电感串接在工频滤波电容与电荷泵或并联的电荷泵之间,所述储能电路第 二个电感串接在整流电路与电荷泵或并联的电荷泵之间;所述储能电路的第一个 二极管与电荷泵或并联的电荷泵的两个二极管外接端并接;所述储能电路的第二 个二极管一端接工频滤波电容,另一端接到第二个电感与电荷泵或并联的电荷泵 的二极管外接端的连接点上;所述储能电路的两个二极管的导通方向都与直流电 流的方向一致。
所述储能电路由两个电感和两个二极管组成的第三种情况是:所述储能电路 第一个电感串接在工频滤波电容与电荷泵或并联的电荷泵之间,所述储能电路第 二个电感串接在整流电路与电荷泵或并联的电荷泵之间;所述储能电路的第一个 二极管的一端接往整流电路的输出端,另一端接到第一个电感与电荷泵或并联的 电荷泵的二极管外接端的连接点上;所述储能电路的第二个二极管与电荷泵或并 联的电荷泵的两个二极管外接端并接;所述储能电路的两个二极管的导通方向都 与直流电流的方向一致。
有一个电容并接在电源正负极之间, 以保证实现对电荷泵的充放电过程, 这 个电容可以是 LC滤波电路的一部分。 这个电容也可以如图 8所示, 接在桥式整 流与 LC滤波电路之后, 工频滤波电容之前, 与整个由储能电路和电荷泵二极管 组成的电路并联。
在我们用一个直流电压 U给电容 C充电时, 电容 C上的电压由 0上升到 U, 电源供出的能量是
W=UQ=CU2,
而电容 C上得到的能量却是
W = / Uo C u du = 1/2 CU2
我们看到, 充电过程中有一半能量消耗在线路上。 因此, 我们在给电荷泵的 电容充放电时, 如果所加的电压反复在两个电压值之间突变, 那么能量在电源和 电容之间互相转换的同时,将会有相当一部分损耗在线路上。这个损耗往往造成 发热, 甚至损坏元件。
如果用一个和电荷泵二极管导通方向一致的二极管并接在这电荷泵两个二 极管的外接端上, 并让这并联的二极管与电感以串联的方式, 接在整流桥与工频 滤波电容之间。 这时, 当外加的电压或电流给电荷泵的电容充电 (或放电) 时, 电感上将流过电流, 这时电感积蓄磁场能量。 而当充电 (或放电) 结束的瞬间, 电荷泵的两个二极管都截止时, 由于电感上的电流不能突变为零, 所以电感上的 电流将取道并接的二极管继续流过, 这时磁场能量转变为电能。这里, 电感上的 这个电磁能量的转换不仅避免了给电荷泵的电容充放电可能产生的能量损耗,还 为整流桥向滤波电容充电提供了额外的能量。这个能量与电荷泵一起, 保证整流 桥在整个工频周期都能向工频滤波电容提供充电电流,实现功率因数校正。这里, 储能电路的电感可以根据实际情况接在电荷泵与整流桥之间,也可以接在电荷泵 与工频滤波电容之间, 如有必要, 也可以电荷泵的两边各接一个, 以保证在给电 荷泵的电容充放电的过程中, 电荷泵的电容上电压不出现突变。 因此功率因数校 正电路可以有多种方案, 但是最基本的电路只有两种, 如图 2和图 3所示。其它 电路, 如图 4、 图 5、 图 6、 图 7和图 8所示的电路, 都可以看成在这两种基本 电路的基础上增加电感和二极管所得到的电路。
本发明与由桥式整流电路、 LC 滤波电路和开关电路组成的开关电源电路一 起构成实际使用的电源电路,包括 AC-AC变频电路、 AC-DC直流恒流电路和 AC-DC 直流恒压电路以及其它开关电源电路。 为保证接入的 LC滤波电路不妨碍电荷泵 的充放电过程, 有一个电容并接在电源正负极之间的, 它可以是 LC滤波电路的 一部分。 这个电容也可以如图 9所示, 接在桥式整流与 LC滤波电路和工频滤波 电容 C之间, 与整个由储能电路和电荷泵二极管组成的电路并联。
采用上述技术方案的功率因数校正电路结构精简, 性能好且成本低, 可广泛 用于各种以交流电源供电的电源电路中。
附图说明
图 l (a),(b)分别是电荷泵和并联的电荷泵的电路图;
图 2是本发明实施例 1中的功率因数校正电路图;
图 3是本发明实施例 2中的功率因数校正电路图;
图 4是本发明实施例 3中的功率因数校正电路图;
图 5是本发明实施例 4中的功率因数校正电路图;
图 6是本发明实施例 5中的功率因数校正电路图;
图 7是本发明实施例 6中的功率因数校正电路图;
图 8是本发明实施例 7中的功率因数校正电路图;
图 9是本发明实施例 8中的功率因数校正电路图;
具体实施方式
本发明所述电荷泵和并联的几个电荷泵的电路图如图 1所示。
本发明所述功率因数校正电路可以有多种方案, 但是最基本的电路只有两 种, 如图 2、 图 3所示。其它电路, 如图 4、 图 5、 图 6、 图 7和图 8所示的电路, 都可以看成在这两种基本电路的基础上增加电感和二极管所得到的电路。
【实施例 1】
储能电路的电感接在电荷泵与工频滤波电容之间的功率因数校正电路如图 2所示: 该功率因数校正电路由一个电荷泵和一个储能电路组成; 所述电荷泵由 一个电容 CI和两个二极管 Dl、 D2组成; 所述储能电路由一个二极管 D3和一个 电感 L1组成; 电荷泵的两个二极管 Dl、 D2与储能电路的电感 L1串接在桥式整 流与 LC滤波电路与工频滤波电容 C之间,所述电荷泵的第一个二极管 D1的阳极 接所述储能电路的电感 L1的一端,并通过这个电感 L1的另一端接到桥式整流电 路与 LC滤波电路的正输出端上,所述电荷泵的第二个二极管 D2的阴极接到工频 滤波电容 C的正极, 所述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵内部, 电容 C1 的内接端接第一个二极管 D1 的阴极和第二个二极管 D2的阳极, 所述储能电路的二极管 D3的阴极接到电荷泵的第二个二极管 D2的 阴极上,所述储能电路的二极管 D3的阳极接到电荷泵的第一个二极管 D1的阳极 上; LC滤波电路的一个电容 C2并接在电源正负极之间。
【实施例 2】
储能电路的电感接在电荷泵与整流电路之间的功率因数校正电路如图 3 所 示: 该功率因数校正电路由一个电荷泵和一个储能电路组成; 所述电荷泵由一个 电容 C1和两个二极管 Dl、 D2组成; 所述储能电路由一个二极管 D3和一个电感 L1组成; 所述电荷泵的第二个二极管 D2的阳极接所述储能电路的电感 L1的一 端, 并通过这个电感 L1的另一端接到工频滤波电容 C的负极上, 所述电荷泵的 第一个二极管 D1的阴极接到 LC滤波电路和整流电路的负输出端,所述电荷泵的 电容 C1的外接端接开关电路的高频信号端,所述电荷泵内部, 这个电容 C1的内 接端接第一个二极管 D1的阳极和第二个二极管 D2的阴极,所述储能电路的二极 管 D3 的阴极接到电荷泵的第一个二极管 D1 的阴极上, 所述储能电路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极上, 桥式整流与 LC滤波电路的 一个电容 C2并接在电源正负极之间。
在这两种基本电路的基础上,储能电路增加电感和二极管, 可以得到多种功 率因数校正方案, 例如:
【实施例 3】
图 3所示电路增加一个电感 L2, 两个电感分别接在电荷泵两边,得到如图 4 所示的功率因数校正电路: 所述电荷泵的第二个二极管 D2的阳极接所述储能电 路的第一个电感 L1的一端,并通过这个电感 L1的另一端接到工频滤波电容的负 极 C上, 所述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵 内部, 电容 CI的内接端接第一个二极管 D1的阳极和第二个二极管 D2的阴极, 所述储能电路的二极管 D3的阴极接到电荷泵的第一个二极管 D1的阴极上,所述 储能电路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极上, 桥式整流 与 LC滤波电路的一个电容 C2并接在电源正负极之间, 储能电路的第二个电感 L2接在桥式整流与 LC滤波电路的负输出端与所述电荷泵的第一个二极管 D1的 阴极之间。
【实施例 4】
图 3所示电路增加一个电感 L2和一个二极管 D4, 得到如图 5所示的功率 因数校正电路: 所述电荷泵的第二个二极管 D2的阳极接所述储能电路的第一个 电感 L1的一端, 并通过这个电感 L1的另一端接到工频滤波电容 C的负极上, 所 述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵内部, 这个 电容 C1的内接端接第一个二极管 D1的阳极和第二个二极管 D2的阴极, 所述储 能电路的二极管 D3的阴极接到 LC滤波电路和整流电路的负输出端,所述储能电 路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极上,增加第二个电感 L2 , 接在 LC 滤波电路和整流电路的负输出端与所述电荷泵的第一个二极管 D 1 的阴极之间, 增加一个二极管 D4, 它的阳极接工频滤波电容 C的负极, 它的阴 极接所述电荷泵的第一个二极管 D1的阴极,桥式整流与 LC滤波电路的一个电容 C2并接在电源正负极之间。
【实施例 5】
图 3所示电路增加一个电感 L2和一个二极管 D4, 得到如图 6所示的功率 因数校正电路: 所述电荷泵的第二个二极管 D2的阳极接所述储能电路的第一个 电感 L1的一端, 并通过这个电感 L1的另一端接到工频滤波电容 C的负极上, 所 述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵内部, 这个 电容 C1的内接端接第一个二极管 D1的阳极和第二个二极管 D2的阴极, 所述储 能电路的二极管 D3的阴极接到电荷泵的第一个二极管 D1的阴极上,所述储能电 路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极上,增加第二个电感 L2 , 接在 LC 滤波电路和整流电路的负输出端与所述电荷泵的第一个二极管 D 1 的阴极之间, 增加一个二极管 D4, 它的阳极接工频滤波电容 C的负极, 它的阴 极接所述电荷泵的第一个二极管 D1的阴极,桥式整流与 LC滤波电路的一个电容 C2并接在电源正负极之间。
【实施例 6】
图 3所示电路增加一个电感 L2和一个二极管 D4, 得到如图 6所示的功率 因数校正电路: 所述电荷泵的第二个二极管 D2的阳极接所述储能电路的第一个 电感 L1的一端, 并通过这个电感 L1的另一端接到工频滤波电容 C的负极上, 所 述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵内部, 这个 电容 C1的内接端接第一个二极管 D1的阳极和第二个二极管 D2的阴极, 所述储 能电路的二极管 D3的阴极接到 LC滤波电路和整流电路的负输出端,所述储能电 路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极上,增加一个第二个 电感 L2, 接在 LC滤波电路和整流电路的负输出端与所述电荷泵的第一个二极管 D1的阴极之间, 增加一个二极管 D4, 它的阳极接所述电荷泵的第二个二极管 D2 的阳极, 它的阴极接所述电荷泵的第一个二极管 D1的阴极, 桥式整流与 LC滤波 电路的一个电容 C2并接在电源正负极之间。
上述六种功率因数校正电路都是由一个电荷泵和储能电路组成,功率因数校 正电路还可以由并联的电荷泵和储能电路组成。比如一种由并联的两个电荷泵和 一个储能电路组成的功率因数校正电路如图 8所示。
【实施例 7】
如图 8所示由并联的两个电荷泵和一个储能电路组成的功率因数校正电路: 所述并联的两个电荷泵由两个电容 Cl l、 C12和四个二极管 Dl l、 D12、 D21、 D22 组成; 所述储能电路由一个二极管 D3和一个电感 L1组成; 所述并联的两个电荷 泵的两个二极管 D21、 D22的阳极都接到所述储能电路的电感 L1的一端, 并通过 这个电感 L1的另一端接到工频滤波电容 C的负极上, 所述并联的两个电荷泵的 另外两个二极管 D12、 D12的阴极都接到 LC滤波电路和整流电路的负输出端, 所 述电荷泵的电容 C11和 C12的两个外接端分别接开关电路的两个高频信号端,所 述电荷泵内部,这个电容 C11的内接端接第一个二极管 D11的阳极和第二个二极 管 D21的阴极, 电容 C12的内接端接第一个二极管 D12的阳极和第二个二极管 D22的阴极, 所述储能电路的二极管 D3的阴极接到电荷泵的第一个二极管 D1的 阴极上,所述储能电路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳极 上, 桥式整流与 LC滤波电路的一个电容 C2并接在电源正负极之间。 上述七种电路中, 并接在电源正负极之间的电容 C2用以保证接入的高频滤 波电路不妨碍电荷泵的充放电过程, 它可以是 LC滤波电路的一部分。 这个电容 也可以如图 9所示, 接在桥式整流与 LC滤波电路和工频滤波电容 C之间, 与整 个由储能电路和电荷泵二极管组成的电路并联。
【实施例 8】
图 9给出的一种功率因数校正电路方案: 所述电荷泵的第二个二极管 D2的 阳极接所述储能电路的电感 L1的一端,并通过这个电感 L1的另一端接到工频滤 波电容 C的负极上,所述电荷泵的第一个二极管 D1的阴极接到 LC滤波电路和整 流电路的负输出端, 所述电荷泵的电容 C1的外接端接开关电路的高频信号端, 所述电荷泵内部,这个电容 C1的内接端接第一个二极管 D1的阳极和第二个二极 管 D2的阴极, 所述储能电路的二极管 D3的阴极接到电荷泵的第一个二极管 D1 的阴极上,所述储能电路的二极管 D3的阳极接到电荷泵的第二个二极管 D2的阳 极上,电容 C2接在桥式整流与 LC滤波电路的负输出端与工频滤波电容的负极之 间。
上述电路的原理都是利用给电荷泵充放电时储能电路的电感上发生的电磁 能量的转换过程,来保证整流桥在整个工频周期都能向工频滤波电容提供充电电 流, 实现功率因数校正。 当然, 根据具体需要, 直接增加电荷泵、 增加储能电路 还可以组合出多种功率因数校正电路的接法。
本发明适用于所有交流电源供电的电源电路, 包括 AC-AC变频电路、 AC-DC 直流恒流电路、 AC-DC直流恒压电路以及其它开关电源电路。 以一个采用本发明 的 20瓦的 LED驱动电源实验电路为例, 实测测得其交流电源输入端功率因数为 λ =0. 985, 输入电流各次谐波的实测数据及有关国家标准规定的限值为:
谐波次数 2次 3次 5次 7次 9次 1广 39次
实测数据 0. 3% 13. 5% 4. 2% 1. 5% 1. 1% 〈1. 3%
相关标准 2% 30 X λ % 10% 7% 5% 3%
显然, 性能指标大大优于有关国家标准的性能要求。
我们看到,本发明给出的功率因数校正电路的结构是最精简的, 成本是最低 的, 而达到的性能指标是最好的。

Claims

权 利 要 求 书
1、 一种功率因数校正电路, 其特征在于: 该电路由储能电路和电荷泵或并联的 电荷泵组成;所述储能电路由二极管和电感组成; 所述电荷泵由一个电容和两个 二极管组成,把一个二极管的阳极、另一个二极管的阴极和一个电容的一端连接 在一起, 即得所述电荷泵, 所述电容的另一端即为电荷泵电容外接端, 而所述两 个二极管的其余两端即为电荷泵的两个二极管外接端;把几个电荷泵的两个二极 管外接端并联, 并使其导通方向一致, 即得所述并联的电荷泵, 电荷泵的二极管 外接端并接所得两端, 即为并联的电荷泵的两个二极管外接端,几个电容的另一 端, 即为并联的电荷泵的几个电容外接端;所述电荷泵的电容外接端接由开关电 路产生的高频信号端,所述并联的电荷泵的几个电容外接端接由开关电路产生的 几个高频信号端;所述电荷泵或并联的电荷泵的两个二极管外接端与储能电路的 电感串接在整流电路与工频滤波电容之间,电荷泵或并联的电荷泵的二极管的导 通方向与直流电流的方向一致。
2、 根据权利要求 1所述的功率因数校正电路, 其特征在于, 所述储能电路由一 个二极管和一个电感组成,或由一个二极管和两个电感组成, 或由两个二极管和 两个电感组成。
3、 根据权利要求 2所述的功率因数校正电路, 其特征在于: 所述储能电路由一 个二极管和一个电感组成,储能电路的电感可以接在电荷泵或并联的电荷泵与工 频滤波电容之间,也可以是接在整流电路与电荷泵或并联的电荷泵之间; 所述储 能电路的二极管与电荷泵或并联的电荷泵的两个二极管外接端并接,储能电路的 二极管的导通方向也与直流电流的方向一致。
4、 根据权利要求 2所述的功率因数校正校正电路, 其特征在于: 所述储能电 路由两个电感和一个二极管组成,所述储能电路的两个电感分别串接在电荷泵或 并联的电荷泵的两个二极管外接端的两边,所述储能电路的一个二极管与电荷泵 或并联的电荷泵的两个二极管外接端并联,所述储能电路的二极管的导通方向也 与直流电流的方向一致。
5、 根据权利要求 2所述的功率因数校正电路, 其特征在于: 所述储能电路由 两个电感和两个二极管组成;所述储能电路第一个电感串接在工频滤波电容与电 荷泵或并联的电荷泵之间,所述储能电路第二个电感串接在整流电路与电荷泵或 并联的电荷泵之间; 所述储能电路的第一个二极管的一端接往整流电路的输出 端, 另一端接到第一个电感与电荷泵或并联的电荷泵的二极管外接端的连接点 上;所述储能电路的第二个二极管一端接工频滤波电容, 另一端接到第二个电感 与电荷泵或并联的电荷泵的二极管外接端的连接点上;所述储能电路的两个二极 管的导通方向都与直流电流的方向一致。
6、 根据权利要求 2所述的功率因数校正电路, 其特征在于: 所述储能电路由 两个电感和两个二极管组成;所述储能电路第一个电感串接在工频滤波电容与电 荷泵或并联的电荷泵之间,所述储能电路第二个电感串接在整流电路与电荷泵或 并联的电荷泵之间;所述储能电路的第一个二极管与电荷泵或并联的电荷泵的两 个二极管外接端并接;所述储能电路的第二个二极管一端接工频滤波电容, 另一 端接到第二个电感与电荷泵或并联的电荷泵的二极管外接端的连接点上;所述储 能电路的两个二极管的导通方向都与直流电流的方向一致。
7、 根据权利要求 2所述的功率因数校正电路, 其特征在于: 所述储能电路由 两个电感和两个二极管组成;所述储能电路第一个电感串接在工频滤波电容与电 荷泵或并联的电荷泵之间,所述储能电路第二个电感串接在整流电路与电荷泵或 并联的电荷泵之间; 所述储能电路的第一个二极管的一端接往整流电路的输出 端, 另一端接到第一个电感与电荷泵或并联的电荷泵的二极管外接端的连接点 上;所述储能电路的第二个二极管与电荷泵或并联的电荷泵的两个二极管外接端 并接; 所述储能电路的两个二极管的导通方向都与直流电流的方向一致。
8、 一种电源电路, 包含桥式整流与 LC滤波电路以及含有开关管的电路, 其特 征在于, 该电源电路包含权利要求 1-7中之一的功率因数校正电路。
9、 根据权利要求 8所述的电源电路, 其特征在于, LC滤波电路的一个电容接 在正负极之间, 或者接在桥式整流与 LC滤波电路和工频滤波电容之间, 与整个 由储能电路和电荷泵二极管组成的电路并联。
10、 一种由交流电源供电的设备, 其电源电路为权利要求 8或 9所述的电源电 路。
PCT/CN2013/085414 2012-10-22 2013-10-17 一种功率因数校正电路 WO2014063591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210402901.4 2012-10-22
CN201210402901.4A CN102904436B (zh) 2012-10-22 2012-10-22 一种新型功率因数校正电路

Publications (1)

Publication Number Publication Date
WO2014063591A1 true WO2014063591A1 (zh) 2014-05-01

Family

ID=47576527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085414 WO2014063591A1 (zh) 2012-10-22 2013-10-17 一种功率因数校正电路

Country Status (2)

Country Link
CN (1) CN102904436B (zh)
WO (1) WO2014063591A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901811B2 (en) 2018-12-13 2024-02-13 Danmarks Tekniske Universitet AC-DC power converter with power factor correction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904436B (zh) * 2012-10-22 2016-01-20 张逸兴 一种新型功率因数校正电路
US8724353B1 (en) 2013-03-15 2014-05-13 Arctic Sand Technologies, Inc. Efficient gate drivers for switched capacitor converters
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
US10193441B2 (en) 2015-03-13 2019-01-29 Psemi Corporation DC-DC transformer with inductor for the facilitation of adiabatic inter-capacitor charge transport
KR20240159021A (ko) 2015-07-08 2024-11-05 피세미 코포레이션 스위칭된 커패시터 전력 컨버터들

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316883B1 (en) * 1999-08-27 2001-11-13 Korea Advanced Institute Of Science And Technology Power-factor correction circuit of electronic ballast for fluorescent lamps
CN2896786Y (zh) * 2006-02-21 2007-05-02 苏州启明星科技有限公司 一种用于hid灯的电子镇流器
CN101860193A (zh) * 2010-05-05 2010-10-13 张逸兴 功率因数校正电路
CN102088810A (zh) * 2009-12-08 2011-06-08 奥斯兰姆有限公司 用于驱动至少一个发光二极管的电路装置
CN102904436A (zh) * 2012-10-22 2013-01-30 张逸兴 一种新型功率因数校正电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396153A (en) * 1993-12-09 1995-03-07 Motorola Lighting, Inc. Protection circuit for electronic ballasts which use charge pump power factor correction
US5416388A (en) * 1993-12-09 1995-05-16 Motorola Lighting, Inc. Electronic ballast with two transistors and two transformers
CN2744121Y (zh) * 2004-11-17 2005-11-30 中山正大照明有限公司 电荷泵式电子镇流器
CN1845440A (zh) * 2005-04-07 2006-10-11 魏其萃 用于开关电源准有源功率因数校正电路
CN101252802B (zh) * 2007-02-25 2013-08-21 电灯专利信托有限公司 用于低输入电压的电荷泵电子镇流器
US8130519B2 (en) * 2008-11-12 2012-03-06 Supertex, Inc. Led driver with low harmonic distortion of input AC current and methods of controlling the same
DE102011002830A1 (de) * 2010-07-19 2012-01-19 Tridonic Uk Ltd. Dimmbare LED-Lampe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316883B1 (en) * 1999-08-27 2001-11-13 Korea Advanced Institute Of Science And Technology Power-factor correction circuit of electronic ballast for fluorescent lamps
CN2896786Y (zh) * 2006-02-21 2007-05-02 苏州启明星科技有限公司 一种用于hid灯的电子镇流器
CN102088810A (zh) * 2009-12-08 2011-06-08 奥斯兰姆有限公司 用于驱动至少一个发光二极管的电路装置
CN101860193A (zh) * 2010-05-05 2010-10-13 张逸兴 功率因数校正电路
CN102904436A (zh) * 2012-10-22 2013-01-30 张逸兴 一种新型功率因数校正电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901811B2 (en) 2018-12-13 2024-02-13 Danmarks Tekniske Universitet AC-DC power converter with power factor correction

Also Published As

Publication number Publication date
CN102904436B (zh) 2016-01-20
CN102904436A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
TWI407677B (zh) Power conversion device
WO2014063591A1 (zh) 一种功率因数校正电路
WO2014000490A1 (zh) 五电平功率变换器及其控制方法、控制装置
CN103762873B (zh) 基于Boost变换器的高频隔离式三电平逆变器
CN103095134A (zh) 一种有源网络升压变换器
CN100438286C (zh) 双管双正激升压式单级功率因数校正电路
TW201012028A (en) Parallel-connectred uninterrupted power supply circuit
CN102025280B (zh) 对称控制型三相三电平直流变换器及其对称控制方法
CN202094804U (zh) 交错串联dc/dc变换器电路
WO2015078095A1 (zh) 返驰式交直流转换装置及其转换方法
CN207868995U (zh) 一种单级高功率因数半桥串联谐振dc/dc变换器
TWI462451B (zh) AC / DC conversion device and its function correction method
CN110336464A (zh) 一种lcclc五元件谐振变换器
CN116613981A (zh) 功率因数修正与dc-dc复用变换器及包括其的不间断电源
CN102723883A (zh) 电容储能型可控硅开关电源
CN103117645A (zh) Ld网络降压变换器
TW201720040A (zh) 無橋式交直流轉換器
TW201220665A (en) Single-phase PFC AC-DC power converter
CN117060709A (zh) 单级无桥隔离式Zeta型功率因数校正电路
JP2016537947A (ja) 分離式交流/直流変換装置及びその変換方法
CN205123617U (zh) 一种dc/ac转换装置、dc/dc转换装置和恒流驱动装置
JP6026008B2 (ja) 受動式力率校正交直流転換装置及び力率校正回路の動作方法
TW201424226A (zh) 被動式功因校正交直流轉換裝置及其功因校正電路之作動方法
TW201131957A (en) Boost converter circuit and boost converter
CN104638744A (zh) 一种不间断电源的蓄电池组挂接电路以及不间断电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848541

Country of ref document: EP

Kind code of ref document: A1