WO2015078093A1 - 交交流电源转换装置及其转换方法 - Google Patents

交交流电源转换装置及其转换方法 Download PDF

Info

Publication number
WO2015078093A1
WO2015078093A1 PCT/CN2014/000906 CN2014000906W WO2015078093A1 WO 2015078093 A1 WO2015078093 A1 WO 2015078093A1 CN 2014000906 W CN2014000906 W CN 2014000906W WO 2015078093 A1 WO2015078093 A1 WO 2015078093A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
diode
inductor
switch
circuit
Prior art date
Application number
PCT/CN2014/000906
Other languages
English (en)
French (fr)
Inventor
潘晴财
陈伯彦
洪大胜
Original Assignee
东林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东林科技股份有限公司 filed Critical 东林科技股份有限公司
Priority to US15/039,500 priority Critical patent/US20160380549A1/en
Publication of WO2015078093A1 publication Critical patent/WO2015078093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to power conversion; in particular to an AC power conversion device and a conversion method thereof.
  • the conventional AC power conversion device usually includes a rectifier circuit and an output capacitor, and an inverter, thereby converting the AC power into a DC power source, the output capacitor is connected across the output end of the rectifier circuit, and the inverter Connect to the output capacitor and connect to the load.
  • the input voltage of the AC power source and the input current often have different phases, resulting in a low power factor and a serious current total harmonic distortion.
  • the output capacitor is charged, thereby causing the output capacitor charging time to be shortened, resulting in diode conduction in the rectifier circuit.
  • the pass time is also shortened, which leads to an increase in the peak value of the on-current, resulting in distortion of the input current waveform and a decrease in the power factor, which in turn causes the current response speed of the inverter to be affected, so that the final output is loaded to the load.
  • AC power is severely distorted.
  • the object of the present invention is to overcome the defects of the prior art AC power conversion device, and to provide an AC power conversion device and a conversion method thereof, the technical problem to be solved is that in addition to having a high power factor In addition to the advantages, it can simultaneously take into account the purpose of fast response and low chopping output voltage.
  • An AC power conversion device configured to convert electrical energy of an AC power source into a load, and includes a rectifier circuit, an active power factor correction circuit, an automatic charge pump circuit, and an inverse Power inverter circuit.
  • the input side of the rectifier circuit is connected to the AC power source for receiving the power of the AC power source, and then converted into DC power and outputted from the output side thereof.
  • the output side has a positive terminal and a negative terminal.
  • the circuit is connected to the output end of the rectifier circuit for receiving the power outputted by the rectifier circuit and outputting the power factor, and includes a first diode, the negative pole of which is connected to the positive terminal; the first capacitor has one end Connected to the positive pole of the first diode; one end of the electronic switch is connected to the other end of the first capacitor, and the other end of the electronic switch is connected to the negative end; the first inductor has one end and the first diode a cathode of the tube and the junction of the positive terminal are connected, and the other end of the first inductor is connected to the connection of the first capacitor and the electronic switch; and the second diode has a cathode connected to the electronic switch and the negative terminal Connected to the second inductor, one end of which is connected to the junction of the anode of the first diode and the first capacitor, and the other end of which is connected to the cathode of the second diode.
  • the automatic charge pumping circuit is connected to the active power factor correction circuit, and is configured to receive the power output of the active power factor correction circuit and adjust the output, and includes a third diode, the positive pole thereof and the second second
  • the cathode of the pole tube and the junction of the second inductor are connected, and the cathode is electrically connected to the connection of the second inductor, the anode of the first diode and the first capacitor; the second capacitor is connected at one end thereof.
  • the inverter circuit is electrically connected to the equivalent capacitance of the automatic charge pumping circuit, and is connected to the load for receiving the electric energy output by the automatic charge pumping circuit, and converting it into AC power of a predetermined frequency, and then outputting Give the load.
  • the equivalent capacitance is composed of a third capacitor and a fourth capacitor, and the third capacitor is connected to one end of the fourth capacitor
  • the inverter circuit includes a first switch a switch and a second switch, wherein the first switch is connected to one end of the second switch; and the third capacitor and the other end of the first switch and the second capacitor and the third inductor
  • the connection is connected, and the fourth capacitor and the other end of the second switch are connected to the anode of the third diode, the cathode of the second diode, and the connection of the second inductor;
  • One end of the load is connected to the connection of the third capacitor and the fourth capacitor, and the other end is connected to the connection of the first switch and the second switch.
  • the inverter circuit includes a first switch, a second switch, a third switch, and a fourth switch; the first switch is connected to one end of the third switch And the second switch is connected to one end of the fourth switch; in addition, the other end of the first switch and the second switch and the equivalent capacitor, the second capacitor and the third inductor The connection is connected, and the other end of the third switch and the fourth switch is connected to the equivalent capacitor, the anode of the third diode, the cathode of the second diode, and the second inductor. Connected; further, one end of the load is connected to the connection of the first switch and the third switch, and the other end is connected to the second switch The junction of the fourth switch.
  • the automatic charge pumping circuit further includes a fourth diode, one end of which is connected to the connection of the negative electrode of the third diode and the second capacitor, and the other end is connected to the
  • the third inductor is electrically connected to the junction of the cathode of the third diode and the second capacitor through the fourth diode.
  • the anode of the fourth diode is connected to the junction of the cathode of the third diode and the second capacitor, and the cathode of the fourth diode is connected to the third inductor.
  • the automatic charge pumping circuit further includes a fifth diode, one end of which is connected to the second inductor, the anode of the first diode, and the junction of the first capacitor, The other end is connected to the junction of the cathode of the third diode and the second capacitor, and the cathode of the third diode and the second capacitor pass through the fifth diode and the second inductor.
  • the cathode of the first diode and the junction of the first capacitor are electrically connected.
  • the anode of the fifth diode is connected to the second inductor, the anode of the first diode and the junction of the first capacitor, and the anode is connected to the third The junction of the pole's negative pole and the second capacitor.
  • the power conversion method of the AC power conversion device includes the following steps:
  • the second inductor stops releasing energy, and the third diode is turned off, so that the energy storage of the third inductor charges the second capacitor, and the polarity of the second capacitor is reversed. And the stored energy of the equivalent capacitor continues to release the load through the inverter circuit;
  • step D there is further included a step of repeatedly performing steps A to D.
  • the first inductor stops releasing energy, and the first diode is turned off.
  • the second inductor is a resonant circuit formed by the second capacitor and the third inductor, and the stored energy thereof is conducted to the equivalent capacitor.
  • step C after the resonant circuit formed by the second capacitor and the third inductor, the energy storage of the third inductor charges the second capacitor, and the second capacitor The voltage across the voltage is reversed, and when the voltage across the third inductor is greater than the voltage across the equivalent capacitor, the third diode is turned on, and proceeds to step D.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the AC power conversion device and the conversion method thereof have at least the following advantages and beneficial effects: through the above design, the power factor can be improved during power conversion, and at the same time, both fast response and low chopping are considered.
  • the advantage of output voltage through the above design, the power factor can be improved during power conversion, and at the same time, both fast response and low chopping are considered.
  • FIG. 1 is a circuit diagram of an AC power conversion device according to a preferred embodiment of the present invention.
  • FIG. 6 is a circuit diagram of an AC power conversion device according to another preferred embodiment of the present invention.
  • Rectifier circuit 12 Positive terminal
  • the AC power conversion device of the preferred embodiment of the present invention is configured to convert the power of the AC power source 100 and output the power to the load 200.
  • the AC power conversion device includes The stream circuit 10, the active power factor correction circuit 20, an automatic charge pump circuit 30, and a power inverter circuit 40. among them:
  • the rectifier circuit 10 is a bridge rectifier in this embodiment, and the input side is connected to the AC power source 100 for receiving the power of the AC power source 100, converting it into DC power and outputting it from the output side.
  • the output side distinguishes between the positive terminal 12 and the negative terminal 14 depending on the polarity of the power supply.
  • the active power factor correction circuit 20 is connected to the output end of the rectifier circuit 10 for receiving the power output by the rectifier circuit 10 and outputting the power factor, and includes two diodes (the first diode D1 and the first Two diodes D2), one capacitor (first capacitor C1), two inductors (first inductor L1 and second inductor L2), and an electronic switch SW.
  • the connection relationship of the above components is as follows:
  • the negative electrode of the first diode D1 is connected to the positive terminal 12.
  • One end of the first capacitor C1 is connected to the anode of the first diode D1.
  • One end of the electronic switch SW is connected to the other end of the first capacitor C1, and the other end is connected to the negative end 14 .
  • One end of the first inductor L1 is connected to the cathode of the first diode D1 and the junction of the positive terminal 12, and the other end of the first inductor L1 is connected to the junction of the first capacitor C1 and the electronic switch SW. .
  • the anode of the second diode D2 is connected to the junction of the electronic switch SW and the negative terminal 14.
  • One end of the second inductor L2 is connected to the junction of the anode of the first diode D1 and the first capacitor C1, and the other end is connected to the cathode of the second diode D2.
  • the automatic charge pumping circuit 30 is connected to the active power factor correction circuit 20 for receiving the power output by the active power factor correction circuit 20 and adjusting the output, and includes three diodes (the third diode D3, The fourth diode D4 and the fifth diode D5), three capacitors (the second capacitor C2, the third capacitor C3, and the fourth capacitor C4) and one inductor (the third inductor L3).
  • the connection relationship of the above components is as follows:
  • the anode of the fifth diode D5 is connected to the second inductor L2, the anode of the first diode D1, and the junction of the first capacitor C1.
  • the anode of the third diode D3 is connected to the junction of the cathode of the second diode D2 and the second inductor L2, and the cathode is connected to the cathode of the fifth diode D2 to pass the fifth
  • the pole D5 is electrically connected to the junction of the anode of the first diode D1, the second inductor L2, and the first capacitor C1.
  • One end of the second capacitor C2 is connected to the junction of the negative electrode of the third diode D3 and the negative electrode of the fifth diode D5.
  • the anode of the fourth diode D4 is connected to the junction of the cathode of the third diode D3, the cathode of the fifth diode D5, and the second capacitor C2.
  • One end of the third inductor L3 is connected to the other end of the first capacitor C1, and the other end is connected to the cathode of the fourth diode D4, and the fourth diode D4 is electrically connected to the third diode.
  • the third capacitor C3 is connected to one end of the fourth capacitor C4, and the other end of the third capacitor C3 is connected to the junction of the second capacitor C2 and the third inductor L3, and the fourth capacitor C4 is connected to another One end is connected to the junction of the anode of the third diode D3, the cathode of the second diode D2, and the second inductor L2.
  • the inverter circuit 40 is electrically connected to the automatic charge pumping circuit 30 and connected to the load 200 for receiving the electric energy output by the automatic charge pumping circuit 30, and converting it into AC power of a predetermined frequency and outputting the power to the load 200.
  • the inverter circuit 40 is a half bridge structure and includes a first switch S1 and a second switch S2, and the first switch S1 is connected to one end of the second switch S2.
  • the other end of the first switch S1 is connected to the second capacitor C2
  • the third capacitor C3 is connected to the third inductor L3, and the other end of the second switch S2 is connected to the fourth capacitor.
  • C4 the anode of the third diode D3, the cathode of the second diode D2, and the junction of the second inductor L2 are connected.
  • the capacitances C1 to C4, the inductances L1 to L3, the input voltage, the switching frequency of the electronic switch SW and the switches S1 and S2, and the specifications of the load 200 are as follows:
  • one end of the load 200 is connected to the connection of the third capacitor C3 and the fourth capacitor C4, and the other end of the load 200 is connected to the first switch.
  • the connection between S1 and the second switch S2 can be improved by using the power conversion method described below, and the effect of fast response and low chopping output voltage can be achieved, and the method includes the following steps:
  • the electronic switch SW is turned on, and the rectifier circuit 10 is output.
  • the DC power is charged to the first inductor L1, and the energy storage of the first capacitor C1 charges the second inductor L2, and the energy storage of the second capacitor C2 and the third inductor L3 is performed on the third
  • the capacitor C3 and the fourth capacitor C4 are charged, so that the energy storage of the third capacitor C3 and the fourth capacitor C4 is discharged to the load through the inverter circuit 40.
  • the second change-over switch S2 is turned on, and at this time, the fourth capacitor C4 discharges the load 200, and the equivalent circuit thereof is as shown in FIG. 2A.
  • the first switch S1 is turned on.
  • the third capacitor C3 releases the load 200, and the equivalent circuit is as shown in FIG. 2B.
  • the electronic switch SW is disconnected to block the direct current outputted by the rectifier circuit 10, so that the energy storage of the first inductor L1 charges the first capacitor C1, and the second
  • the energy storage of the inductor L2 charges the third inductor L3 and the second capacitor C2, and the energy storage of the second inductor L2 is conducted to the resonant circuit formed by the second capacitor C2 and the third inductor L3.
  • the third capacitor C3 and the fourth capacitor C4 enable the energy storage of the third capacitor C3 and the fourth capacitor C4 to continue to be discharged to the load 200 through the inverter circuit 40 according to the positive half wave or the negative half waveguide state.
  • the first inductor L1 stops releasing energy
  • the first diode D1 is turned off
  • the second inductor L2 stops discharging the fifth diode D5 is turned off.
  • the second capacitor C2 and the third inductor L3 form a resonant circuit, so that the energy storage of the third inductor L3 charges the second capacitor C2, and the polarity of the second capacitor C2 is reversed.
  • the energy storage of the third capacitor C3 and the fourth capacitor C4 is continuously discharged to the load 200 through the inverter circuit 40 according to the positive half wave or the negative half waveguide pass state.
  • the third diode D3 When the voltage across the third inductor C3 is greater than the total voltage across the third capacitor C3 and the fourth capacitor C4, the third diode D3 is turned on, so that the second capacitor C2 and the third inductor L3 generates a voltage reversed from step C, and charges the third capacitor C3 and the fourth capacitor C4, so that the energy storage of the third capacitor C3 and the fourth capacitor C4 is continued according to the positive half wave or the negative half waveguide.
  • the pass state releases the load 200 through the inverter circuit 40.
  • step A to step D each time step A to step D is performed, it indicates that the operation of one cycle is completed. Therefore, in the case where the AC power conversion device is continuously operated, after the step D, the steps A to D are continuously repeated until the AC power conversion device stops operating.
  • the voltage across the second capacitor C2 can automatically provide a negative potential and turn on the third diode D3 during each actuation cycle.
  • the purpose of fast response and low chopping output voltage can be achieved, and the power factor can be improved by switching the electronic switch SW.
  • the design of the fourth diode D4 and the fifth diode D5 can effectively prevent the circuit from generating reflow to affect the operation of the active power factor correction circuit 20 and the automatic charge pumping circuit 30, respectively. Making the overall circuit more stable, thereby improving the AC power conversion device The effect of energy conversion and suppression of chopping.
  • the purpose of improving power conversion efficiency and suppressing chopping can be achieved.
  • the AC power conversion device of the present invention is applicable to the full-bridge inverter circuit 50 as shown in FIG. 6 in addition to the half-bridge inverter circuit 40, and the difference is that
  • the bridge type inverter circuit 50 has a first switch S3 to a fourth switch S6, and the third capacitor C3 and the fourth capacitor C4 are regarded as equivalent capacitors C5, and the connection relationship is as follows:
  • the first switch S3 is connected to one end of the third switch S5, and the second switch S4 is connected to one end of the fourth switch S6.
  • the other end of the first switch S3 and the second switch S4 are connected to the connection of the equivalent capacitor C5, the second capacitor C2 and the third inductor L3, and the third switch S5 and the The other end of the fourth switch S6 is connected to the junction of the equivalent capacitor C5, the anode of the third diode D3, the cathode of the second diode D2, and the second inductor L2.
  • one end of the load 200 is connected to the connection of the first switch S3 and the third switch S5, and the other end is connected to the second switch S4 and
  • the connection of the fourth switch S6 and the power switching method described above can also achieve the purpose of high power factor, fast response and low chopping output voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种交交流电源转换装置包含有整流电路(10)、主动式功率因子校正电路(20)、自动电荷抽放电路(30)及逆变电路(40)。该整流电路与交流电源(100)连接,接收该交流电源的电能后转换成直流的电能输出。该主动式功率因子校正电路与该整流电路连接,接收该整流电路输出的电能并提升功率因子后输出。该自动电荷抽放电路与该主动式功率因子校正电路连接,接收该主动式功率因子校正电路输出的电能后调整输出。该逆变电路连接该自动电荷抽放电路与负载(200),接收该自动电荷抽放电路输出的电能,并转换成交流电能后输出给该负载。此外,还提供有该交交流电源转换装置的电源转换方法。

Description

交交流电源转换装置及其转换方法 技术领域
本发明是与电源转换有关;特别是指一种交交流电源转换装置及其转换方法。
背景技术
传统的交交流电源转换装置通常包含有整流电路与输出电容以及逆变器,藉以将该整流电路将交流电源转换成直流电源,该输出电容跨接于该整流电路的输出端,且该逆变器与输出电容连接后,再连接至负载。
该交交流电源转换装置在作动时,该交流电源的输入电压与输入电流常会处于相位不同的情况,导致功率因子低且电流总谐波失真严重。此外,只有在该整流电路输出的直流电源的电压高于该输出电容的电压时,才会对该输出电容进行充能,因此造成输出电容充能时间短缩,导致该整流电路中的二极管导通时间亦随之缩短,进而导致导通电流的峰值随之增大,造成输入电流波形失真及功率因子降低外,更会导致该逆变器的电流响应速度受到影响,使得最后输出予负载的交流电能严重失真。
由此可见,上述现有的交交流电源转换装置在结构与使用上,显然仍存在有不便与缺陷,而亟待加以进一步改进。为了解决上述存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般产品又没有适切的结构能够解决上述问题,此显然是相关业者急欲解决的问题。因此如何能创设一种新的交交流电源转换装置及其转换方法,实属当前重要研发课题之一,亦成为当前业界极需改进的目标。
发明内容
有鉴于此,本发明的目的在于,克服现有的交交流电源转换装置存在的缺陷,而用于提供一种交交流电源转换装置及其转换方法,所要解决的技术问题是除了具有高功率因子的优点外,可以同时兼顾快速响应与低涟波输出电压的目的。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种交交流电源转换装置,用以将交流电源的电能转换后供予负载,且包含整流电路、主动式功因校正电路、自动电荷抽放(auto charge pump)电路以及逆变(Power inverter)电路。其中,该整流电路输入侧与该交流电源连接,用以接收该交流电源的电能后,转换成直流的电能并自其输出侧输出;另外,该输出侧具有正电端以及负电端。该主动式功因校正 电路与该整流电路的输出端连接,用以接收该整流电路输出的电能并提升功率因子后输出,且包含有第一二极管,其负极与该正电端连接;第一电容,其一端与该第一二极管的正极连接;电子开关,其一端与该第一电容另一端连接,而该电子开关另一端则与该负电端连接;第一电感,其一端与该第一二极管的负极以及该正电端的连接处连接,而该第一电感另一端与该第一电容以及该电子开关的连接处连接;第二二极管,其正极与该电子开关以及该负电端的连接处连接;第二电感,其一端与该第一二极管的正极以及该第一电容的连接处连接,另一端则与该第二二极管的负极连接。该自动电荷抽放电路与该主动式功因校正电路连接,是用以接收该主动式功因校正电路输出的电能后调整输出,且包含有第三二极管,其正极与该第二二极管的负极及该第二电感的连接处连接,而负极则与该第二电感、该第一二极管的正极以及该第一电容的连接处电性连接;第二电容,其一端连接该第三二极管的负极;第三电感,其一端连接该第一电容的另一端,而另外一端则电性连接至该第三二极管的负极与该第二电容的连接处;等效电容,其一端与该第二电容与该第三电感的连接处连接,而另一端则与该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;该逆变电路电性连接该自动电荷抽放电路的等效电容,并与该负载连接,用以接收该自动电荷抽放电路输出的电能,并转换成预定频率的交流电能后,输出予该负载。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的交交流电源转换装置,其中该等效电容是由第三电容及第四电容所组成,且该第三电容与该第四电容的一端相连接,而该逆变电路包含有第一切换开关及第二切换开关,且该第一切换开关与该第二切换开关的一端相连接;另外,该第三电容以及该第一切换开关的另一端与该第二电容与该第三电感的连接处连接,而该第四电容以及该第二切换开关的另一端与该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;再者,该负载的一端连接至该第三电容及该第四电容的连接处,而另外一端则连接至该第一切换开关及该第二切换开关的连接处。
前述的交交流电源转换装置,其中该逆变电路包含有第一切换开关、第二切换开关、第三切换开关以及第四切换开关;该第一切换开关与该第三切换开关的一端相连接,而该第二切换开关与该第四切换开关的一端相连接;另外,该第一切换开关以及该第二切换开关的另一端与该等效电容、该第二电容与该第三电感的连接处连接,而该第三切换开关以及该第四切换开关的另一端则与该等效电容、该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;再者,该负载的一端连接至该第一切换开关与该第三切换开关的连接处,而另外一端则连接至该第二切换开关与 该第四切换开关的连接处。
前述的交交流电源转换装置,其中该自动电荷抽放电路更包含有第四二极管,其一端连接至该第三二极管的负极与该第二电容的连接处,另一端连接至该第三电感,而使该第三电感通过该第四二极管电性连接至该第三二极管的负极与该第二电容的连接处。
前述的交交流电源转换装置,其中该第四二极管的正极连接至该第三二极管的负极与该第二电容的连接处,而其负极则连接至该第三电感。
前述的交交流电源转换装置,其中该自动电荷抽放电路更包含有第五二极管,其一端连接至该第二电感、该第一二极管的正极以及该第一电容的连接处,而另一端则连接至该第三二极管的负极与该第二电容的连接处,而使该第三二极管的负极以及该第二电容通过该第五二极管与该第二电感、该第一二极管的正极以及该第一电容的连接处电性连接。
前述的交交流电源转换装置,其中该第五二极管的正极连接至该第二电感、该第一二极管的正极以及该第一电容的连接处,而负极则连接至该第三二极的负极与该第二电容的连接处。
本发明的目的及解决其技术问题还采用以下技术方案来实现。依据上述构思,该交交流电源转换装置的电源转换方法,包含有下列步骤:
A.导通该电子开关,使该整流电路输出的直流电对该第一电感器充能,且该第一电容的储能对该第二电感器充能,而该第二电容与该第三电感的储能对该等效电容充能,使该等效电容的储能通过该逆变电路对该负载释能;
B.断开该电子开关以阻断该整流电路输出的直流电,使该第一电感的储能对该第一电容充能,并使该第二电感的储能对该第三电感、该第二电容与该等效电容充能,使该等效电容的储能持续通过该逆变电路对该负载释能;
C.该第二电感停止释能,使该第三二极管截止,以使该第三电感的储能对该第二电容充能,而使该第二电容的跨压极性反转,且该等效电容的储能持续通过该逆变电路对该负载释能;
D.导通该第三二极管,使该第二电容与该第三电感产生与前一步骤反向的电压,并对该等效电容充能,使该第二电容持续通过该逆变电路对该负载释能。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的电源转换方法,其中,在步骤D后,更包含有一步骤,是重复执行步骤A至步骤D。
前述的电源转换方法,其中,在步骤B的后,该第一电感停止释能,使该第一二极管截止。
前述的电源转换方法,其中,在步骤B中,该第二电感是通过该第二电容与该第三电感形成的共振电路,将其储能传导至该等效电容。
前述的电源转换方法,其中,在步骤C中,该第二电容与该第三电感形成的共振电路后,该第三电感的储能对该第二电容充能,而使该第二电容的跨压极性反转,且当该第三电感的跨压大于该等效电容的跨压时,该第三二极管导通,而进入步骤D。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明交交流电源转换装置及其转换方法至少具有下列优点及有益效果:通过上述的设计,便可以在电源转换时提高功率因子,更同时兼顾有快速响应与低涟波输出电压外的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图的简要说明
图1为本发明较佳实施例的交交流电源转换装置的电路图;
图2A、图2B至图5A、图5B为各步骤的等效电路图;
图6为本发明另一较佳实施例的交交流电源转换装置的电路图。
【主要元件符号说明】
10:整流电路         12:正电端
14:负电端           20:主动式功因校正电路
30:自动电荷抽放电路 40、50:逆变电路
100:交流电源        200:负载
01~05:电容         L1~L3:电感
D1~D5:二极管       SW:电子开关
S1~S6:切换开关
实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的交交流电源转换装置及其转换方法其具体实施方式、结构、特征及其功效,详细说明如后。
请参图1所示,本发明较佳实施例的交交流电源转换装置用以将交流电源100的电能转换后,输出供予负载200。该交交流电源转换装置包含整 流电路10、主动式功因校正电路20、自动电荷抽放(auto charge pump)电路30以及逆变(Power inverter)电路40。其中:
该整流电路10在本实施例中为桥式整流器,且输入侧与该交流电源100连接,用以接收该交流电源100的电能后,转换成直流的电能并自其输出侧输出。另外,该输出侧依据供电的极性而区分有正电端12以及负电端14。
该主动式功因校正电路20与该整流电路10的输出端连接,用以接收该整流电路10输出的电能并提升功率因子后输出,且包含有二个二极管(第一二极管D1以及第二二极管D2)、一个电容(第一电容C1)、二个电感(第一电感L1以及第二电感L2)以及一电子开关SW。上述组件的连接关系如下所述:
该第一二极管D1的负极与该正电端12连接。
该第一电容C1一端与该第一二极管D1的正极连接。
该电子开关SW一端与该第一电容C1另一端连接,而另一端则与该负电端14连接。
该第一电感L1一端与该第一二极管D1的负极以及该正电端12的连接处连接,而该第一电感L1另一端与该第一电容C1以及该电子开关SW的连接处连接。
该第二二极管D2正极与该电子开关SW以及该负电端14的连接处连接。
该第二电感L2一端与该第一二极管D1的正极以及该第一电容C1的连接处连接,另一端则与该第二二极管D2的负极连接。
该自动电荷抽放电路30与该主动式功因校正电路20连接,是用以接收该主动式功因校正电路20输出的电能后调整输出,且包含有三个二极管(第三二极管D3、第四二极管D4以及第五二极管D5)、三个电容(第二电容C2、第三电容C3以及第四电容C4)以及一个电感(第三电感L3)。上述组件的连接关系如下所述:
该第五二极管D5的正极连接至该第二电感L2、该第一二极管D1的正极以及该第一电容C1的连接处。
该第三二极管D3的正极与该第二二极管D2的负极及该第二电感L2的连接处连接,而负极则与该第五二极管D2的负极连接以通过该第五二极管D5与该第一二极管D1的正极、该第二电感L2以及该第一电容C1的连接处电性连接。
该第二电容C2一端则与该第三二极管D3的负极及该第五二极管D5的负极的连接处连接。
该第四二极管D4的正极与该第三二极管D3的负极、该第五二极管D5的负极及该第二电容C2的连接处连接。
该第三电感L3一端连接该第一电容C1的另一端,另外一端则与该第四二极管D4的负极连接,而通过该第四二极管D4电性连接至该第三二极管D3的负极、该第五二极管D5的负极及该第二电容C2的连接处。
该第三电容C3与该第四电容C4的一端相连接,且该第三电容C3的另一端与该第二电容C2与该第三电感L3的连接处连接,而该第四电容C4的另一端与该第三二极管D3的正极、该第二二极管D2的负极及该第二电感L2的连接处连接。
该逆变电路40电性连接该自动电荷抽放电路30并与该负载200连接,用以接收该自动电荷抽放电路30输出的电能,并转换成预定频率的交流电能后输出予该负载200。在本实施例中,该逆变电路40是呈半桥是架构而包含有第一切换开关S1及第二切换开关S2,且该第一切换开关S1与该第二切换开关S2的一端相连接。另外,该第一切换开关S1的另一端与该第二电容C2、该第三电容C3与该第三电感L3的连接处连接,而该第二切换开关S2的另一端则与该第四电容C4、该第三二极管D3的正极、该第二二极管D2的负极及该第二电感L2的连接处连接。
在本实施例中,该等电容C1~C4、该等电感L1~L3、输入电压、该电子开关SW以及该等切换开关S1、S2的切换频率以及该负载200的规格如下表所示:
第一电感L1 300μH
第二电感L2 300μH
第三电感L3 1000mH
第一电容C1 200μF
第二电容C2 8nF
第三电容C3 100μF
第四电容C4 100μF
输入电压Vin 220Vrms
电子开关SW切换频率 100KHz
切换开关S1、S2的切换频率 200Hz
负载电阻 100Ω
藉此,通过上述结构设计与规格,使用时便将该负载200的一端连接至该第三电容C3及该第四电容C4的连接处,而负载200的另外一端则连接至该第一切换开关S1及该第二切换开关S2的连接处,再利用下述的电源转换方法,便可达到提高功率因子,同时兼顾快速响应与低涟波输出电压的效果,而该方法包含有下列步骤:
A.请参阅图2A及图2B,导通该电子开关SW,使该整流电路10输出 的直流电对该第一电感器L1充能,且该第一电容C1的储能对该第二电感器L2充能,而该第二电容C2与该第三电感L3的储能对该第三电容C3与该第四电容C4充能,使该第三电容C3与该第四电容C4的储能通过该逆变电路40对该负载释能。另外,若交交流电源转换装置动作于正半波导通状态,则第二切换开关S2导通,此时第四电容器C4对该负载200释能,其等效电路如图2A所示。若交交流电源转换装置动作于负半波导通状态,则第一切换开关S1导通,此时则为该第三电容器C3对该负载200释能,其等效电路如图2B所示。
B.请参阅图3A及图3B,断开该电子开关SW以阻断该整流电路10输出的直流电,使该第一电感L1的储能对该第一电容C1充能,并使该第二电感L2的储能对该第三电感L3以及该第二电容C2充能,并通过该第二电容C2与该第三电感L3形成的共振电路,将该第二电感L2的储能传导至该第三电容C3与该第四电容C4,使该第三电容C3与该第四电容C4的储能持续依据正半波或负半波导通状态通过该逆变电路40对该负载200释能。
C.请参阅图4A及图4B,该第一电感L1停止释能后,该第一二极管D1截止,而该第二电感L2停止释能后,该第五二极管D5截止。此时,该第二电容C2与该第三电感L3形成共振电路,以使该第三电感L3的储能对该第二电容C2充能,而使该第二电容C2的跨压极性反转,而该第三电容C3与该第四电容C4的储能持续依据正半波或负半波导通状态通过该逆变电路40对该负载200释能。
D.当该第三电感C3的跨压大于该第三电容C3与该第四电容C4的总跨压时,该第三二极管D3导通,使该第二电容C2与该第三电感L3产生与步骤C反向的电压,并对该第三电容C3与该第四电容C4充能,使该第三电容C3与该第四电容C4的储能持续依据正半波或负半波导通状态通过该逆变电路40对该负载200释能。
另外,每执行一次步骤A至步骤D后,则表示完成一次周期的作动。是以,在该交交流电源转换装置持续作动的情况下,在步骤D后,便继续重复执行步骤A至步骤D,直至该交交流电源转换装置停止作动。
藉此,通过上述的该自动电荷抽放电路30的设计,在每次作动周期中,该第二电容C2的跨压可自动地提供负电位,而导通该第三二极管D3,以使该第三二极管D3导通前后的整体电路结构改变,而可达到快速响应与低涟波输出电压的目的,同时可通过该电子开关SW的切换达到提升功率因子的目的。
另外,该第四二极管D4以及该第五二极管D5的设计更可有效地分别防止电路产生回流影响该主动式功因校正电路20以及该自动电荷抽放电路30的作动,进而使得整体电路更加地稳定,藉以提升该交交流电源转换装 置能源转换与抑制涟波的效果。当然,在实际实施上,即使不使用该第四二极管D4以及该第五二极管D5仍可达到增进电源转换效率以及抑制涟波的目的。
再者,本发明的交交流电源转换装置除适用于半桥式的逆变电路40外,亦适用于如图6所示的全桥式的逆变电路50,而与前述不同之处在于全桥式的逆变电路50具有第一切换开关S3至第四切换开关S6,而第三电容C3与第四电容C4则视为等效电容C5,而连接关系如下:
该第一切换开关S3与该第三切换开关S5的一端相连接,而该第二切换开关S4与该第四切换开关S6的一端相连接。另外,该第一切换开关S3以及该第二切换开关S4的另一端与该等效电容C5、该第二电容C2与该第三电感L3的连接处连接,而该第三切换开关S5以及该第四切换开关S6的另一端则与该等效电容C5、该第三二极管D3的正极、该第二二极管D2的负极及该第二电感L2的连接处连接。
藉此,通过上述的结构设计,使用时便将该负载200的一端连接至该第一切换开关S3与该第三切换开关S5的连接处,而另外一端则连接至该第二切换开关S4与该第四切换开关S6的连接处,并利用前述的电源切换方法,同样能达到高功率因子、快速响应与低涟波输出电压的目的。
以上所述仅为本发明较佳可行实施例而已,且在电气特性以及电路动作原理相同的情况下,前述各电路组件的设置位置以及数量、以及举凡应用本发明说明书及申请专利范围所为的等效电路变化,理应包含在本发明的专利范围内。

Claims (12)

  1. 一种交交流电源转换装置,其特征在于其用以将交流电源的电能转换后供予负载,且包括:
    整流电路,其输入侧与该交流电源连接,用以接收该交流电源的电能后,转换成直流的电能并自其输出侧输出;另外,该输出侧具有正电端以及负电端;
    主动式功因校正电路,与该整流电路的输出端连接,用以接收该整流电路输出的电能并提升功率因子后输出,且包含有:
    第一二极管,其负极与该正电端连接;
    第一电容,其一端与该第一二极管的正极连接;
    电子开关,其一端与该第一电容另一端连接,而该电子开关另一端则与该负电端连接;
    第一电感,其一端与该第一二极管的负极以及该正电端的连接处连接,而该第一电感另一端与该第一电容以及该电子开关的连接处连接;
    第二二极管,其正极与该电子开关以及该负电端的连接处连接;
    第二电感,其一端与该第一二极管的正极以及该第一电容的连接处连接,另一端则与该第二二极管的负极连接;
    自动电荷抽放电路,与该主动式功因校正电路连接,是用以接收该主动式功因校正电路输出的电能后调整输出,且包含有:
    第三二极管,其正极与该第二二极管的负极及该第二电感的连接处连接,而负极则与该第二电感、该第一二极管的正极以及该第一电容的连接处电性连接;
    第二电容,其一端连接该第三二极管的负极;
    第三电感,其一端连接该第一电容的另一端,而另外一端则电性连接至该第三二极管的负极与该第二电容的连接处;
    等效电容,其一端与该第二电容与该第三电感的连接处连接,而另一端则与该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;
    逆变电路,电性连接该自动电荷抽放电路的等效电容,并与该负载连接,用以接收该自动电荷抽放电路输出的电能,并转换成预定频率的交流电能后,输出予该负载。
  2. 根据权利要求1所述的交交流电源转换装置,其特征在于其中该等效电容是由第三电容及第四电容所组成,且该第三电容与该第四电容的一端相连接,而该逆变电路包含有第一切换开关及第二切换开关,且该第一切换开关与该第二切换开关的一端相连接;另外,该第三电容以及该第一 切换开关的另一端与该第二电容与该第三电感的连接处连接,而该第四电容以及该第二切换开关的另一端与该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;再者,该负载的一端连接至该第三电容及该第四电容的连接处,而另外一端则连接至该第一切换开关及该第二切换开关的连接处。
  3. 根据权利要求1所述的交交流电源转换装置,其特征在于其中该逆变电路包含有第一切换开关、第二切换开关、第三切换开关以及第四切换开关;该第一切换开关与该第三切换开关的一端相连接,而该第二切换开关与该第四切换开关的一端相连接;另外,该第一切换开关以及该第二切换开关的另一端与该等效电容、该第二电容与该第三电感的连接处连接,而该第三切换开关以及该第四切换开关的另一端则与该等效电容、该第三二极管的正极、该第二二极管的负极及该第二电感的连接处连接;再者,该负载的一端连接至该第一切换开关与该第三切换开关的连接处,而另外一端则连接至该第二切换开关与该第四切换开关的连接处。
  4. 根据权利要求1所述的交交流电源转换装置,其特征在于其中该自动电荷抽放电路更包含有第四二极管,其一端连接至该第三二极管的负极与该第二电容的连接处,另一端连接至该第三电感,而使该第三电感通过该第四二极管电性连接至该第三二极管的负极与该第二电容的连接处。
  5. 根据权利要求4所述的交交流电源转换装置,其特征在于其中该第四二极管的正极连接至该第三二极管的负极与该第二电容的连接处,而其负极则连接至该第三电感。
  6. 根据权利要求1所述的交交流电源转换装置,其特征在于其中该自动电荷抽放电路更包含有第五二极管,其一端连接至该第二电感、该第一二极管的正极以及该第一电容的连接处,而另一端则连接至该第三二极管的负极与该第二电容的连接处,而使该第三二极管的负极以及该第二电容通过该第五二极管与该第二电感、该第一二极管的正极以及该第一电容的连接处电性连接。
  7. 根据权利要求6所述的交交流电源转换装置,其特征在于其中该第五二极管的正极连接至该第二电感、该第一二极管的正极以及该第一电容的连接处,而负极则连接至该第三二极管的负极与该第二电容的连接处。
  8. 一种根据权利要求1所述的交交流电源转换装置的电源转换方法,其特征在于包含有下列步骤:
    A.导通该电子开关,使该整流电路输出的直流电对该第一电感器充能,且该第一电容的储能对该第二电感器充能,而该第二电容与该第三电感的储能对该等效电容充能,使该等效电容的储能通过该逆变电路对该负载释能;
    B.断开该电子开关以阻断该整流电路输出的直流电,使该第一电感的储能对该第一电容充能,并使该第二电感的储能对该第三电感、该第二电容与该等效电容充能,使该等效电容的储能持续通过该逆变电路对该负载释能;
    C.该第二电感停止释能,以使该第三电感的储能对该第二电容充能,而使该第二电容的跨压极性反转,且该等效电容的储能持续通过该逆变电路对该负载释能;
    D.导通该第三二极管,使该第二电容与该第三电感产生与前一步骤反向的电压,并对该等效电容充能,使该等效电容持续通过该逆变电路对该负载释能。
  9. 根据权利要求8所述的电源转换方法,其特征在于其中,在步骤D后,更包含有一步骤,是重复执行步骤A至步骤D。
  10. 根据权利要求8所述的电源转换方法,其特征在于其中,在步骤B的后,该第一电感停止释能,使该第一二极管截止。
  11. 根据权利要求8所述的电源转换方法,其特征在于其中,在步骤B中,该第二电感是通过该第二电容与该第三电感形成的共振电路,将其储能传导至该等效电容。
  12. 根据权利要求11所述的电源转换方法,其特征在于其中,在步骤C中,该第二电容与该第三电感形成的共振电路后,该第三电感的储能对该第二电容充能,而使该第二电容的跨压极性反转,且当该第三电感的跨压大于该等效电容的跨压时,该第三二极管导通,而进入步骤D。
PCT/CN2014/000906 2013-11-29 2014-10-14 交交流电源转换装置及其转换方法 WO2015078093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/039,500 US20160380549A1 (en) 2013-11-29 2014-10-14 Ac-ac power source conversion device and conversion method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310636703.9 2013-11-29
CN201310636703.9A CN104682720A (zh) 2013-11-29 2013-11-29 交交流电源转换装置及其转换方法

Publications (1)

Publication Number Publication Date
WO2015078093A1 true WO2015078093A1 (zh) 2015-06-04

Family

ID=53198268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000906 WO2015078093A1 (zh) 2013-11-29 2014-10-14 交交流电源转换装置及其转换方法

Country Status (3)

Country Link
US (1) US20160380549A1 (zh)
CN (1) CN104682720A (zh)
WO (1) WO2015078093A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893604B2 (en) * 2015-07-21 2018-02-13 Robert W. Horst Circuit with low DC bias storage capacitors for high density power conversion
CN107070263B (zh) * 2017-01-11 2019-04-16 深圳市拓革科技有限公司 单级高功因低纹波电压输出转换器电路
CN110224584A (zh) * 2019-07-03 2019-09-10 广东美的制冷设备有限公司 家电设备及其无源功率因数校正电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN101106327A (zh) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 多功能集成直流变换器
TW201338377A (zh) * 2012-03-01 2013-09-16 Nat Univ Tsing Hua 單級式單開關電源轉換裝置
TWM477732U (zh) * 2013-11-01 2014-05-01 Hep Tech Co Ltd 交交流電源轉換裝置
CN203617910U (zh) * 2013-11-29 2014-05-28 东林科技股份有限公司 交交流电源转换装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465011A (en) * 1992-12-14 1995-11-07 Square D Company Uninterruptible power supply with improved output regulation
US5510974A (en) * 1993-12-28 1996-04-23 Philips Electronics North America Corporation High frequency push-pull converter with input power factor correction
EP0698310B1 (en) * 1994-02-10 1999-05-06 Koninklijke Philips Electronics N.V. High frequency ac/ac converter with power factor correction
JPH0956161A (ja) * 1995-08-19 1997-02-25 Toko Inc 力率改善回路
US6057652A (en) * 1995-09-25 2000-05-02 Matsushita Electric Works, Ltd. Power supply for supplying AC output power
JPH11500861A (ja) * 1995-12-08 1999-01-19 フィリップス、エレクトロニクス、ネムローゼ、フェンノートシャップ バラスト・システム
CN101814843A (zh) * 2009-02-20 2010-08-25 国琏电子(上海)有限公司 电源系统
JP2011029002A (ja) * 2009-07-24 2011-02-10 Panasonic Electric Works Co Ltd 高圧放電灯点灯装置及びこれを用いた照明器具、照明システム
JP4850279B2 (ja) * 2009-11-27 2012-01-11 三菱電機株式会社 電力変換装置
US8339056B1 (en) * 2010-06-17 2012-12-25 Universal Lighting Technologies, Inc. Lamp ballast with protection circuit for input arcing and line interruption
US8570775B2 (en) * 2011-02-17 2013-10-29 Rockwell Automation Technologies, Inc. CMV reduction under bus transient condition
US9960696B2 (en) * 2011-11-14 2018-05-01 CognilPower, LLC Switched-mode compound power converter with main and supplemental regulators
US20150365003A1 (en) * 2014-06-12 2015-12-17 Laurence P. Sadwick Power Conversion System
KR101679964B1 (ko) * 2015-04-23 2016-11-25 현대자동차주식회사 친환경 차량의 전원장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN101106327A (zh) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 多功能集成直流变换器
TW201338377A (zh) * 2012-03-01 2013-09-16 Nat Univ Tsing Hua 單級式單開關電源轉換裝置
TWM477732U (zh) * 2013-11-01 2014-05-01 Hep Tech Co Ltd 交交流電源轉換裝置
CN203617910U (zh) * 2013-11-29 2014-05-28 东林科技股份有限公司 交交流电源转换装置

Also Published As

Publication number Publication date
CN104682720A (zh) 2015-06-03
US20160380549A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
CN105958823A (zh) 一种电流连续型高增益开关升压准z源变换器电路
US7869230B2 (en) Resonance circuit for use in H-bridge DC-DC converter
TW201324071A (zh) 功率因數校正諧振式轉換器與並聯式功率因數校正諧振式轉換器
CN105939112A (zh) 一种高增益准开关升压dc-dc变换器
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
TW201931747A (zh) 用於不斷電電源供應器的充放電平衡轉換器
WO2015078093A1 (zh) 交交流电源转换装置及其转换方法
WO2015078095A1 (zh) 返驰式交直流转换装置及其转换方法
TWI462451B (zh) AC / DC conversion device and its function correction method
WO2015070514A1 (zh) 隔离式交直流转换装置及其转换方法
CN108347174B (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN105978322A (zh) 一种开关电容型高增益准z源dc-dc变换器
TWI466421B (zh) Method of Activation Method of Passive AC and DC Converter and Its Function Correction Circuit
TWM477732U (zh) 交交流電源轉換裝置
WO2015070515A1 (zh) 电源转换装置及其转换方法
TWI504124B (zh) AC - to - AC power conversion device and its conversion method
WO2014086093A1 (zh) 隔离式电源转换装置及其电源转换方法
TWI504127B (zh) Isolated AC / DC converter and its conversion method
CN203617910U (zh) 交交流电源转换装置
JP6089115B2 (ja) 交直流転換装置及びその力率校正方法
JP2016502838A (ja) 受動式力率校正交直流転換装置及び力率校正回路の動作方法
TW202002450A (zh) 高效能多階電能充電裝置及其方法
TWI506940B (zh) A fly - back AC / DC converter and its conversion method
TWI504116B (zh) Power conversion device and conversion method thereof
JP2014003828A (ja) 充放電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039500

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866507

Country of ref document: EP

Kind code of ref document: A1