CN104682733B - 返驰式交直流转换装置及其转换方法 - Google Patents

返驰式交直流转换装置及其转换方法 Download PDF

Info

Publication number
CN104682733B
CN104682733B CN201310616349.3A CN201310616349A CN104682733B CN 104682733 B CN104682733 B CN 104682733B CN 201310616349 A CN201310616349 A CN 201310616349A CN 104682733 B CN104682733 B CN 104682733B
Authority
CN
China
Prior art keywords
electric capacity
diode
flyback
inductance
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310616349.3A
Other languages
English (en)
Other versions
CN104682733A (zh
Inventor
潘晴财
陈伯彦
洪大胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEP Tech Co Ltd
Original Assignee
HEP Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEP Tech Co Ltd filed Critical HEP Tech Co Ltd
Priority to CN201310616349.3A priority Critical patent/CN104682733B/zh
Priority to US15/038,553 priority patent/US20160301315A1/en
Priority to JP2016554771A priority patent/JP2016539621A/ja
Priority to PCT/CN2014/000914 priority patent/WO2015078095A1/zh
Priority to EP14866197.8A priority patent/EP3076538A4/en
Publication of CN104682733A publication Critical patent/CN104682733A/zh
Application granted granted Critical
Publication of CN104682733B publication Critical patent/CN104682733B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种返驰式交直流转换装置包含有一整流电路、一电子开关、一返驰式变压器以及一自动电荷抽放(auto charge pump)电路;其中,该返驰式变压器具有一一次侧以及一二次侧,且该第一次侧与该整流电路与该电子开关电性连接;该自动电荷抽放电路一侧电性连接该返驰式变压器的二次测,另一侧电性连接该负载,用以增进电源转换效率,并可抑制输出电压涟波。另外,本发明还揭示有该返驰式交直流转换装置的电源转换方法。

Description

返驰式交直流转换装置及其转换方法
技术领域
本发明是与电源转换有关;特别是指一种返驰式交直流转换装置及其转换方法。
背景技术
返驰式电能传输系统与一般接触型电能传输系统最大的不同,在于返驰式电能传输系统不须经由电力线直接传输能量,而是利用一返驰式变压器电磁耦合而将能量由一次侧传递至二次侧电路,然而返驰式变压器因其先天耦合不良因素,使得电力转换效率较低。因此,传统返驰式电能传输系统常利用共振式阻抗匹配方式,来提升电源转换效率,但是利用阻抗匹配电路方式实现的电路,甚易受返驰式变压器耦合系数参数影响,而达不到预期效果,造成电源转换效率低落。
此外,由于电能传输系统的输出电压需大于负载电压,才能够克服输出端的电位而将能量传送至负载,因此返驰式电能传输电路中,往往需要较大匝数比的变压器才能够将电压提升至所需电压,如此一来,而返驰式变压器的铜损随着线圈匝数增加而增加,以致电源转换效率降低。
发明内容
有鉴于此,本发明的目的用于提供一种返驰式交直流转换装置及其转换方法,可以提供负电位以补偿负载电压的阻障,进而可降低变压器的线圈匝数比,以降低铜损提升电源转换效率,使得变压器一次侧能量能够更平顺更有效率的传送至负载,进一步增进电源转换效率。
缘以达成上述目的,本发明所提供返驰式交直流转换装置用以将交流电源的电能转换后,输出供予一负载;该返驰式交直流转换装置包含有一整流电路、一电子开关、一返驰式(Flyback)变压器以及一自动电荷抽放(auto charge pump)电路。其中,该整流电路与该交流电源连接,且用以接收该交流电源的电能后转换成直流电输出。该电子开关与该整流电路电性连接。该返驰式变压器具有一一次侧以及一二次侧,且该一次侧两端分别电性连接该整流电路以及该电子开关,而该二次侧具有一第一端以及一第二端。该自动电荷抽放(auto charge pump)电路,其一侧电性连接该返驰式变压器,另一侧电性连接该负载;该自动电荷抽放电路包含有一第一二极管,其正极连接该二次侧的第二端,其负极电性连接该二次侧的第一端;一第一电容,其一端连接该第一二极管的负极;一电感,其一端连接该第一电容的另一端,而另外一端则电性连接该第一二极管的负极;一第二电容,并联连接该负载,且其一端连接该第一电容与该电感,而另一端连接该第一二极管的正极与该二次侧的第二端。
依据上述构思,该返驰式交直流转换装置的电源转换方法,包含有下列步骤:
A.导通该电子开关,使该整流电路输出的直流电对该返驰式变压器的一次侧充电,而该电感、该第一电容与该第二电容对该负载释能;
B.断开该电子开关以阻断该整流电路输出的直流电,使该返驰式变压器的二次侧对该电感、该第一电容与该第二电容充电,并使该第二电容持续对该负载释能;
C.该返驰式变压器停止释能,以使该电感的储能对该第一电容充能,而使该第一电容的跨压极性反转,且该第二电容对该负载释能;
D.导通该第一二极管,使该第一电容与该电感产生与前一步骤反向的电压,并对该第二电容充电,使该第二电容持续对该负载释能。
由此,通过上述的设计,便可以在电源转换时,提供负电位以补偿负载电压的阻障,进而可降低该返驰式变压器的线圈匝数比,以降低铜损提升电源转换效率,使得该返驰式变压器一次侧能量能够更平顺更有效率的传送至负载,进一步增进电源转换效率。
附图说明
为能更清楚地说明本发明,以下结合较佳实施例并配合附图详细说明如后,其中:
图1为本发明较佳实施例的返驰式交直流转换装置的电路图;
图2至图5为各步骤的等效电路图;
图6为第一电容的电压波型图。
具体实施方式
请参图1所示,本发明一较佳实施例的返驰式交直流转换装置用以将一交流电源100的电能转换后,输出供予一负载200。该返驰式交直流转换装置包含有一整流电路R、一电子开关SW、一返驰式(Flyback)变压器10以及一自动电荷抽放(auto charge pump)电路20。其中:
该整流电路R与该交流电源100连接,且于本实施例中为一桥式整流器,用以接收该交流电源100的电能后,转换成直流电输出。当然,在实际实施上,除使用桥式整流器之外,亦可使用中间抽头式、真空管式、或是其它架构的整流器来达到相同的目的。
该电子开关SW与该整流电路R电性连接,用以受控制地导通或阻断该整流电路R输出的直流电。
该返驰式变压器10具有一一次侧11以及一二次侧12。该一次侧11两端分别电性连接该整流电路R以及该电子开关SW,而该二次侧12具有一第一端121以及一第二端122。
该自动电荷抽放电路20其一侧电性连接该返驰式变压器10,另一侧电性连接该负载200。该自动电荷抽放电路20包含有三个二极管(第一二极管D1、第二二极管D2以及第三二极管D3)、两个电容(第一电容C1与一第二电容C2)以及一个电感L。所述元件的连接关系如下所述:
该第二二极管D2的正极连接该返驰式变压器10二次侧12的第一端121。
该第一二极管D1的正极连接该二次侧12的第二端122,其负极连接该第二二极管D2的负极,而通过该第二二极管D2电性连接至该二次侧12的第一端121。
该第一电容C1一端连接至该第一二极管D1的负极、以及第二二极管D2的负极。
该第三二极管D3的正极连接至该第一电容C1、第一二极管D1的负极以及第二二极管D2的负极。
该电感L的一端连接该第一电容C1的另一端,另外一端则连接该第三二极管D2的负极,而通过该第三二极管D3电性连接至该第一二极管D1的负极。
该第二电容C2为非电解电容并联连接该负载200,且其一端连接该第一电容C1与该电感L,而另一端连接该第一二极管D1的正极与该二次侧12的第二端122。
于本实施例中,所述电容C1-C2、该电感L、输入电压、输出电压、该电子开关SW的切换频率、以及该负载200的规格如下表所示:
电感L 100μH
第一电容C1 0.1μF
第二电容C2 10μF
输入电压Vin 110V
输出电压Vout 15V
切换频率 100KHz
负载电阻
由此,通过上述结构设计与规格,在利用下述的电源转换方法,便可达到增进电源转换效率的目的,而该方法包含有下列步骤:
A.请参阅图2,导通该电子开关SW,使该整流电路R输出的直流电对该返驰式变压器10的一次侧11充电,而该电感L、该第一电容C1与该第二电容C2对该负载200释能。
B.请参阅图3,断开该电子开关SW,以阻断整流电路R的直流电,而使该返驰式变压器10的二次侧12对该电感L、该第一电容C1充电,并通过该第一电容C1与该电感L形成的共振电路,将其储能传导至该第二电容C2,以使该第二电容C2持续对该负载200释能。
C.请参阅图4,当该返驰式变压器10停止释能,该第一电容C1与该电感L共振,使该电感L的储能对该第一电容C1充能,而使该第一电容C1的跨压极性反转,此时,该第二电容C2依旧持续对该负载200释能。
D.请参阅图5,当该电感的跨压L大于该第二电容C2的跨压时,进而导通该第一二极管D1,使该第一电容C1与该电感L产生与步骤C反向的电压,并对该第二电容C2充电,使该第二电容C2持续对该负载200释能。
每执行一次步骤A至步骤D后,则表示完成一次周期的作动。是以,在该返驰式交直流转换装置持续作动的情况下,于步骤D后,便继续重复执行步骤A至步骤D,直至该返驰式交直流转换装置停止作动。
由此,通过上述的该自动电荷抽放电路20的设计,于每次作动周期中,该第一电容C1的跨压Vc1可如图6所示般自动地提供负电位,而导通该第一二极管D1,以使该第一二极管D1导通前后的整体电路结构改变,并通过负压补偿负载200上的电压所产生的阻障。如此一来,便可降低该返驰式变压器10的线圈匝数比,进而降低铜损,且亦可使得该返驰式变压器10一次侧的能量能够更平顺更有效率的传送至负载200,进一步增进电源转换效率,同时具有较低输出电压涟波的效果,进而达到提升该第二电容C2的使用寿命的效果。
另外,该第二二极管D2以及该第三二极管D3的设计更可有效地分别防止电路产生回流影响该返驰式变压器10、以及该自动电荷抽放电路20的作动,进而使得整体电路更加地稳定,以提升该返驰式交直流转换装置能源转换与抑制涟波的效果。当然,在实际实施上,即使不使用该第二二极管D2以及该第三二极管D3仍可达到增进电源转换效率以及抑制涟波的目的。
再者,以上所述仅为本发明较佳可行实施例而已,且在电气特性以及电路动作原理相同的情况下,前述各电路元件的设置位置以及数量、以及凡是应用本发明说明书及申请专利范围所为的等效电路变化,理应包含在本发明的权利要求范围内。

Claims (8)

1.一种返驰式交直流转换装置,用以将交流电源的电能转换后,输出供予一负载;该返驰式交直流转换装置包含有:
一整流电路,与该交流电源连接,且用以接收该交流电源的电能后转换成直流电输出;
一电子开关,与该整流电路电性连接;
一返驰式变压器,具有一一次侧以及一二次侧,且该一次侧两端分别电性连接该整流电路以及该电子开关,而该二次侧具有一第一端以及一第二端;以及
一自动电荷抽放电路,其一侧电性连接该返驰式变压器,另一侧电性连接该负载;该自动电荷抽放电路包含有:
一第一二极管,其正极连接该二次侧的第二端,其负极电性连接该二次侧的第一端;
一第一电容,其一端连接该第一二极管的负极;
一第二电容,并联连接该负载,且其一端连接该第一二极管的正极与该二次侧的第二端;
一串联路径,包括一第一连接端、一第二连接端与一电感,其中,该电感的两端分别连接该第一连接端与该第二连接端,且该第一连接端直接电性连接该第一电容的另一端与该第二电容的另一端,而该第二连接端则直接电性连接该第一二极管的负极。
2.如权利要求1所述的返驰式交直流转换装置,其中该自动电荷抽放电路还包含有一第二二极管,一端连接该返驰式变压器二次侧的第一端,另一端连接该第一二极管的负极,而使该第一二极管通过该第二二极管电性连接至该返驰式变压器二次侧的第一端。
3.如权利要求2所述的返驰式交直流转换装置,其中该第二二极管的正极连接该返驰式变压器二次侧的第一端,而负极则连接该第一二极管的负极。
4.如权利要求1所述的返驰式交直流转换装置,其中该自动电荷抽放电路的串联路径还包含有一第三二极管与该电感串联,其中,该第三二极管的正极电性连接该第二连接端,该第三二极管的负极电性连接该第一连接端。
5.一种如权利要求1所述的返驰式交直流转换装置的电源转换方法,包含有下列步骤:
A.导通该电子开关,使该整流电路输出的直流电对该返驰式变压器的一次侧充电,而该电感、该第一电容与该第二电容对该负载释能;
B.断开该电子开关以阻断该整流电路输出的直流电,使该返驰式变压器的二次侧对该电感、该第一电容与该第二电容充电,并使该第二电容持续对该负载释能;
C.该返驰式变压器停止释能,以使该电感的储能对该第一电容充能,而使该第一电容的跨压极性反转,且该第二电容对该负载释能;
D.导通该第一二极管,使该第一电容与该电感产生与前一步骤反向的电压,并对该第二电容充电,使该第二电容持续对该负载释能。
6.如权利要求5所述的电源转换方法,其中,于步骤D后,还包含有一步骤,是重复执行步骤A至步骤D。
7.如权利要求5所述的电源转换方法,其中,于步骤B中,该返驰式变压器的二次侧通过该第一电容与该电感形成的共振电路,将其储能传导至该第二电容。
8.如权利要求7所述的电源转换方法,其中,于步骤C中,该第一电容与该电感形成的共振电路后,该电感的储能对该第一电容充能,而使该第一电容的跨压极性反转,且当该电感的跨压大于该第二电容的跨压时,该第一二极管导通,而进入步骤D。
CN201310616349.3A 2013-11-27 2013-11-27 返驰式交直流转换装置及其转换方法 Expired - Fee Related CN104682733B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310616349.3A CN104682733B (zh) 2013-11-27 2013-11-27 返驰式交直流转换装置及其转换方法
US15/038,553 US20160301315A1 (en) 2013-11-27 2014-10-15 Flyback ac-dc conversion device and conversion method thereof
JP2016554771A JP2016539621A (ja) 2013-11-27 2014-10-15 フライバック交流/直流変換装置及びその変換方法
PCT/CN2014/000914 WO2015078095A1 (zh) 2013-11-27 2014-10-15 返驰式交直流转换装置及其转换方法
EP14866197.8A EP3076538A4 (en) 2013-11-27 2014-10-15 Flyback ac-dc conversion device and conversion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310616349.3A CN104682733B (zh) 2013-11-27 2013-11-27 返驰式交直流转换装置及其转换方法

Publications (2)

Publication Number Publication Date
CN104682733A CN104682733A (zh) 2015-06-03
CN104682733B true CN104682733B (zh) 2017-03-22

Family

ID=53198270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310616349.3A Expired - Fee Related CN104682733B (zh) 2013-11-27 2013-11-27 返驰式交直流转换装置及其转换方法

Country Status (5)

Country Link
US (1) US20160301315A1 (zh)
EP (1) EP3076538A4 (zh)
JP (1) JP2016539621A (zh)
CN (1) CN104682733B (zh)
WO (1) WO2015078095A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219365A1 (de) * 2012-10-23 2014-04-24 Schmidhauser Ag Gleichspannungswandler
JP6840032B2 (ja) * 2017-05-22 2021-03-10 Ntn株式会社 絶縁型スイッチング電源
JP6930890B2 (ja) * 2017-10-11 2021-09-01 Ntn株式会社 絶縁型スイッチング電源
US10840004B2 (en) * 2018-08-23 2020-11-17 Hamilton Sundstrand Corporation Reducing reluctance in magnetic devices
CN111600492B (zh) * 2020-06-12 2023-03-24 电子科技大学 一种双有源全桥直流变换器的效率优化控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598326A (en) * 1994-02-10 1997-01-28 Philips Electronics North America High frequency AC/AC converter with PF correction
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
US6052294A (en) * 1998-09-14 2000-04-18 Lucent Technologies Inc. Power supply snubber reset circuit
US6069472A (en) * 1999-02-05 2000-05-30 General Electronics Applications, Inc. Converter/inverter using a high efficiency switching circuit
US6107753A (en) * 1998-12-18 2000-08-22 Philips Electronics North America Corporation Radio frequency electronic ballast with integrated power factor correction stage
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
CN203608101U (zh) * 2013-11-27 2014-05-21 东林科技股份有限公司 返驰式交直流转换装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103660A (ja) * 1986-10-20 1988-05-09 Fuji Elelctrochem Co Ltd スイツチング電源の出力回路
JP2700801B2 (ja) * 1988-07-29 1998-01-21 新電元工業株式会社 Dc−dcコンバータ
JPH05199758A (ja) * 1992-01-21 1993-08-06 Matsushita Electric Ind Co Ltd 空気調和機の整流装置
KR970008828B1 (en) * 1994-07-21 1997-05-29 Korea Telecommunication Energy regenerating snoover using booster converter
US5636114A (en) * 1995-11-30 1997-06-03 Electronic Measurements, Inc. Lossless snubber circuit for use in power converters
JPH09285126A (ja) * 1996-04-18 1997-10-31 Fuji Electric Co Ltd 半導体整流装置のスナバ回路
US5943224A (en) * 1998-04-06 1999-08-24 Lucent Technologies Inc. Post regulator with energy recovery snubber and power supply employing the same
JP3400443B2 (ja) * 1999-06-22 2003-04-28 ティーディーケイ株式会社 スイッチング電源装置
JP2003009527A (ja) * 2001-06-22 2003-01-10 Omron Corp スナバ回路およびこれを用いた電力変換器
JP3699082B2 (ja) * 2002-12-16 2005-09-28 エヌイーシーコンピュータテクノ株式会社 スイッチング電源回路
CN100382416C (zh) * 2004-12-31 2008-04-16 海尔集团公司 变频空调电源功率因数校正装置
JP2011120341A (ja) * 2009-12-01 2011-06-16 Nec Lighting Ltd 電源回路
TW201414158A (zh) * 2012-09-26 2014-04-01 Nat Univ Tsing Hua 降壓轉換電路
CN103856054A (zh) * 2012-12-06 2014-06-11 东林科技股份有限公司 隔离式电源转换装置及其电源转换方法
JP6185763B2 (ja) * 2013-06-14 2017-08-23 ローム株式会社 電力供給装置およびその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598326A (en) * 1994-02-10 1997-01-28 Philips Electronics North America High frequency AC/AC converter with PF correction
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
US6052294A (en) * 1998-09-14 2000-04-18 Lucent Technologies Inc. Power supply snubber reset circuit
US6107753A (en) * 1998-12-18 2000-08-22 Philips Electronics North America Corporation Radio frequency electronic ballast with integrated power factor correction stage
US6069472A (en) * 1999-02-05 2000-05-30 General Electronics Applications, Inc. Converter/inverter using a high efficiency switching circuit
CN1349297A (zh) * 2000-10-17 2002-05-15 欧姆龙株式会社 缓冲电路和使用该缓冲电路的功率变换器
CN203608101U (zh) * 2013-11-27 2014-05-21 东林科技股份有限公司 返驰式交直流转换装置

Also Published As

Publication number Publication date
JP2016539621A (ja) 2016-12-15
CN104682733A (zh) 2015-06-03
EP3076538A4 (en) 2017-07-12
EP3076538A1 (en) 2016-10-05
US20160301315A1 (en) 2016-10-13
WO2015078095A1 (zh) 2015-06-04

Similar Documents

Publication Publication Date Title
CN104682733B (zh) 返驰式交直流转换装置及其转换方法
CN103312178B (zh) 一种双向dc/dc变换器及应用其的电池检测设备
CN102611294B (zh) Cuk电路与Flyback电路集成的单级PFC电路
US20140071716A1 (en) High efficient single switch single stage power factor correction power supply
US9419525B2 (en) Isolated power conversion apparatus and method of converting power
US20160301299A1 (en) Isolated ac-dc conversion device and conversion method thereof
CN104682720A (zh) 交交流电源转换装置及其转换方法
US20150162842A1 (en) Single stage power factor correction converter
EP2930836A1 (en) Isolated power conversion device and power conversion method therefor
US8937463B2 (en) Common-core power factor correction resonant converter
US10014765B2 (en) Single stage power factor correction converter
CN203608101U (zh) 返驰式交直流转换装置
CN104980008A (zh) 一种改进的交直流通用开关电源电路结构
TWI506940B (zh) A fly - back AC / DC converter and its conversion method
CN203617910U (zh) 交交流电源转换装置
CN205622248U (zh) Usb充电电路及其插座
TWI514739B (zh) 單級高功因返馳式轉換器
TWI504127B (zh) Isolated AC / DC converter and its conversion method
CN203775062U (zh) 一种不控apfc单级ac-dc拓扑结构
CN104660069A (zh) 电源转换装置及其转换方法
TWI384735B (zh) 倍壓電路結構
CN208508582U (zh) 一种boost-llc直流充电器
CN202353465U (zh) 汇流型供电装置
CN105337487A (zh) 高效单级功率因数校正电源
CN103731052A (zh) 一种不控apfc单级ac-dc拓扑结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20181127