GB2522820A - Alternating-direct current conversion device and power factor correction method therefor - Google Patents

Alternating-direct current conversion device and power factor correction method therefor Download PDF

Info

Publication number
GB2522820A
GB2522820A GB1509592.0A GB201509592A GB2522820A GB 2522820 A GB2522820 A GB 2522820A GB 201509592 A GB201509592 A GB 201509592A GB 2522820 A GB2522820 A GB 2522820A
Authority
GB
United Kingdom
Prior art keywords
diode
inductor
capacitor
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1509592.0A
Other versions
GB2522820B (en
GB201509592D0 (en
Inventor
Chingtsai Pan
Poyan Chen
Tasheng Hung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEP Tech Co Ltd
Original Assignee
HEP Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEP Tech Co Ltd filed Critical HEP Tech Co Ltd
Publication of GB201509592D0 publication Critical patent/GB201509592D0/en
Publication of GB2522820A publication Critical patent/GB2522820A/en
Application granted granted Critical
Publication of GB2522820B publication Critical patent/GB2522820B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

An alternating-direct current conversion device and a power factor correction method therefor. The alternating-direct current conversion device contains a rectification circuit (10) and an active power factor correction circuit (20). The rectification circuit is electrically connected to a power supply (100) and used to convert an alternating current into a direct current, and has a positive electrode output end (12) and a negative electrode output end (14) for outputting the direct current. One side of the active power factor correction circuit is electrically connected to the rectification circuit, and the other side thereof is electrically connected to a load (200), which is used to suppress the voltage ripple output to the load.

Description

AC/DC CONVERTER AND METHOD OF CORRECTING POWER FACTOR
BACKGROUND OF THE INVENTION
1. Technical Field
[0001] The present invention relates generally to a converter, and more particularly to an AC/DC converter arid method of correcting power factor,
2. Description of Related Art
[0002] Typically, an AC/DC converter is used to convert an alternate current (AC) into a direct current (DC). FIG. 1 shows a conventional AC/DC converter, which includes a rectifier circuit 300 and an output capacitor C. The rectifier circuit 300 converts all alternate current (AC) of an AC power supply into a direct circuit (DC), and the output capacitor C bridges over the outputs of the rectifier circuit tO and are connected to a loading 400 in parallel. While the AC/DC converter is working, the phases of the input voltage and the input current of the AC are different, which leads to low power factor and poor total harmonic distortion, In addition, the output capacitor C is charged only when the direct current has higher voltage than the output capacitor C, hence the charging time of the output capacitor C is shortened. As a result, the conduction time of diodes in the rectifier circuit 300 is also shortened, which increases the peak value of the conduction current, distorts the waveform of the input current, and lowers the power factor. Low power factor not only wastes energy, but also poses unnecessary burdens for the power supply systems of the power company, Therefore, the AC/DC converter with power factor correction circuit is emerged.
[0003] Typically, a conventional power factor correction circuit for AC/DC converters has two types, which are active type and passive type, Active power factor correction circuits control the input current with active switch components, and this type of power factor correction circuits has several advantages, such as the power factor could excess 0,99, and the total harmonic distortion could be less than tO%. And moreover, active power factor correction circuit is compatible with wider range of input voltage, generates stable output voltage, and it's unaffected by the variation of output power.
However, active power factor correction circuit has several main drawbacks too, such as higher cost due to additional active switch components required, high electromagnetic noises, and low durability. The industry is eager to overcome these drawbacks. Besides, in order to reduce the ripple of the output voltage of the loading 400, the aforementioned output capacitor C has to adopt a high capacity electrolytic capacitor, but the electrolytic capacitor is easy to leak out the contained &ectr5lyte due to being heated for a long period of time, which shortens life of circuit.
BRIEF SUMMARY OF TUE INVENTION
[0004] In view of the above, the primary objective of the present invention is to provide an AC/DC converter and a method of correcting power factor, which effectively increases the power factor, aiid suppresses voltage ripples provided to a loading.
[0005] The present invention provides an AC/DC converter for converting an alternate current (AC) of a power supply into a direct current (DC), and the DC is transmitted to a loading, which includes a rectifier circuit and an active power factor correction circuit, wherein the rectifier circuit is electrically connected to the power supply to convert the AC into the DC, which has a positive output and a negative output for outputting the DC; the active power factor correction circuit electrically connects the rectifier circuit to the loading, which is used to suppress voltage ripples provided to the loading, and includes a first diode, a second diode, a third diode, a first inductor, a second inductor, a first capacitor, a switch, a fourth diode, a third inductor, a second capacitor, and a third capacitor, wherein the first diode has an anode and a cathode, wherein the cathode of the first diode is connected to the positive output of the rectifier circuit; the second diode has an anode and a cathode, wherein the anode of the second diode is connected to the negative output of the rectifier circuit; the third diode has an anode and a cathode, wherein the anode of the third diode is connected to the anode of the first diode; the first inductor has two ends, one of which is connected to both the cathode of the first diode and the positive output of the rectifier circuit; the second inductor has an end connected to the cathode of the second diode and an opposite end connected to the anode of the first diode and the anode of the third diode; the first capacitor has an end connected to the first inductor and an opposite end connected to the second inductor, the anode of the second diode and the anode of the third diode; the switch has an end connected to both the first inductor and the first capacitor and an opposite end connected to both the negative output of the rectifier circuit and the anode of the second diode; the fourth diode has an anode and a cathode, wherein the anode of the fourth diode is connected to both the cathode of the second diode and the second inductor, and the cathode thereof is connected to the cathode of the third diode; the third inductor has an end connected to both the cathode of the third diode and the cathode of the fourth diode; the second capacitor has an end connected to both the cathode of the third diode and the cathode of the fourth diode and an opposite end connected to the third inductor; the third capacitor has an end connected to both the third inductor and the second capacitor and an opposite end connected to the cathode of the second diode, the second inductor and the anode of the fourth diode, wherein the third capacitor is connected to the loading in parallel.
[0006] According to the aforementioned concepts, the present invention further provides a method of correcting power factor with an active power factor correction circuit, wherein the active power factor correction circuit includes a first diode, a second diode, a third diode, a first inductor, a second inductor, a first capacitor, a switch, a fourth diode, a third inductor, a second capacitor, and a third capacitor, wherein the first diode has an anode and a cathode, wherein the cathode of the first diode is connected to the positive output of the rectifier circuit; the second diode has an anode and a cathode, wherein the anode of the second diode is connected to the negative output of the rectifier circuit; the third diode has an anode and a cathode, wherein the anode of the third diode is connected to the anode of the first diode; the first inductor has two ends, one of which is connected to both the cathode of the first diode and the positive output of the rectifier circuit; the second inductor has an end connected to the cathode of the second diode and an opposite end connected to the anode of the first diode and the anode of the third diode; the first capacitor has an end connected to the first inductor and an opposite end connected to the second inductor, the anode of the second diode and the anode of the third diode; the switch has an end connected to both the first inductor and the first capacitor and an opposite end connected to both the negative output of the rectifier circuit and the anode of the second diode; the fourth diode has an anode and a cathode, wherein the anode of the fourth diode is connected to both the cathode of the second diode and the second inductor, and the cathode thereof is connected to the cathode of the third diode; the third inductor has an end connected to both the cathode of the third diode and the cathode of the fourth diode; the second capacitor has an end connected to both the cathode of the third diode and the cathode of the fourth diode and an opposite end connected to the third inductor; the third capacitor has an end connected to both the third inductor and the second capacitor and an opposite end connected to the cathode of the second diode, the second inductor and the anode of the fourth diode, wherein the third capacitor is connected to the loading in parallel; the method includes the steps of [0007] A. Conduct the switch to let the DC power supply charge the first inductor with a DC, the first capacitor charge the second inductor to make the second inductor have a stored energy, and the third inductor, the second inductor and the third inductor provide energy to the loading; [0008] B. Cut off the switch and conduct the first diode to let the first inductor provide energy to the first capacitor, and keep transmitting the stored energy of the second inductor to the third capacitor; [0009] C. Conduct the fourth diode to let the second capacitor and the third inductor provide energy to the third capacitor to provide energy into the loading; [0010] D. Keep providing energy from the second capacitor and the third inductor to the third capacitor to provide energy into the loading as the first diode is cut off after the first inductor finishing providing energy to the first capacitor.
[0011] With such design, it may effectively increase the power factor of the AC/DC converter, and suppress voltage ripples provided to the loading.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0012] The present invention will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which [0013] FIG. I is a circuit diagram of the conventional AC/DC converter; [0014] FIG. 2 is a circuit diagram of a preferred embodiment of the present invention; [0015] FIG. 3 to FIG. 6 are the circuit diagrams of the preferred embodiment of the present invention, showing how the AC/DC converter works in different steps; [0016] FIG. 7 is an oscillogram of the output voltage and the output current.
DETAILED DESCRIPTION OF THE INVENTION
[0017] As shown in FIG. 2, an AC/DC converter of the preferred embodiment of the present invention is used to convert an alternate current (AC) provided by a power supply 100 into a direct current (DC), and send the DC to a loading 200. The AC/DC converter includes a rectifier circuit 10 and an active power factor correction circuit 20.
[0018] The rectifier circuit lOis electrically connected to the power supply 100, to convert the AC of the power supply 100 into the DC, wherein the rectifier circuit 10 has a positive output 12 and a negative output 14 for sending out the DC, [0019] The active power factor correction circuit 20 electrically connects the rectifier circuit 10 to the loading 200 to improve the power factor and suppress voltage ripples provided to the loading 200. The active power factor correction circuit 20 include five diodes (a first diode Dl, a second diode D2, to a fifth diode D5), three inductors (a first inductor Li, a second inductor L2, and a third inductor L3), three capacitors (a first capacitor CI, a second capacitor C2, and a third capacitor C3), and a switch SW. A cathode of the first DI is connected to the positive output 12 of the rectifier circuit 10, An anode of the second diode D2 is connected to the negative output 14 of the rectifier circuit 10. An anode of the third diode D3 is connected to an anode of the first diode Dl. An end of the first inductor LI is connected to the cathode of the first diode W and the positive output 12 of the rectifier circuit 10. An end of second inductor L2 is connected to a cathode of the second diode D2, and the other end thereof is connected to the anode of the first diode Dl and the anode of the third diode D3. The first capacitor Cl is a non-polarity capacitor, and an end thereof is connected to the first inductor LI, and the other end thereof is connected to the second inductor L2, the anode of the first diode Dl, and the anode of the third diode D3, An end of the switch SW is connected to the first inductor LI and the first capacitor [2, and another end thereof is connected to the negative output N of the rectifier circuit 10 and the anode of the second diode D2. An anode of the fourth diode D4 is connected to the cathode of the second diode D2 and the second inductor [2, and a cathode thereof is connected to the cathode of the third diode D3. An anode of the fifth diode D5 is connected to the cathode of the third diode D3 and a cathode of the fourth diode D4. An end of the third inductor L3 is electrically connected to the cathode of the fourth diode D4. The second capacitor C2 is a non-polarity capacitor, and an end thereof is connected to the cathode of the third diode D3 and the cathode of the fourth diode D4, and the other end thereof is connected to the third inductor LI The third capacitor C3 is a non-polarity capacitor, and is connected to the loading 200 in parallel.
An end of the third capacitor C3 is connected to the third inductor L3 and the second capacitor C2, and the other end thereof is connected to the cathode of the second diode D2, the second inductor L2, and the anode of the fourth diode D4.
[0020] TaNe 1 shows the specs of the capacitors C1-C3, the inductors L1-L3, an input voltage Vu provide by the power supply 100, an output voltage V0t flows through the loading 200, a switching frequency of the switch SW, and a resistance of the loading 200:
[0021] Table I
First inductor Li 60 JiIT1 Second inductor L2 220 1u H Third inductor L3 68/i H First capacitor Ci 00/1 F Second capacitor C2 22nF Third capacitor C3 I/iF Input voltage V 1 1OV Output voltage Vot I 2V Switching frequency 100KHz Resistance of the loading 200 SQ [0022] With the aforementioned design and specifications, the active power factor correction circuit 20 may use a method to correct power factor after receiving the DC sent from the rectifier circuit 10, which effectively increases the power factor and suppress voltage ripples provided to the loading 200, wherein the method includes the following steps: [0023] A. Conduct the switch SW to let the rectifier circuit O charge the first inductor Li with the DC, the first capacitor Cl charge the second inductor L2 to make the second inductor L2 have a stored energy, and the third inductor L3, the second inductor L2 and the third inductor L3 provide energy to the loading 200, as shown in FIG. 3.
[0024] B. Cut off the switch SW and conduct the first diode Dl to let the first inductor Li provide energy to the first capacitor Ct, and keep transmitting the stored energy of the second inductor [2 to the third capacitor C3 through a resonant circuit formed by the second capacitor C2 and the third inductor L3, as shown in FIG. 4, As a result, the third capacitor C3 provides energy into the loading 200, and a voltage drop of the second capacitor C2 gets reversed.
[0025] C. Please refer to FIG. 5, when a voltage drop of the third inductor L3 is higher than a voltage drop of the third capacitor C3, the fourth diode D4 is conducted to let voltage drops of the second capacitor C2, the third inductor L3, and the third capacitor C3 equal, and let the second capacitor C2 and the third inductor L3 provide energy to the third capacitor C3 to provide energy into the loading 200. In addition, the first inductor UI keeps providing energy to the first capacitor Ci.
[0026] D. Keep providing energy from the second capacitor C2 and the third inductor [3 to the third capacitor C3 to provide energy into the loading 200 as the first diode Dl cuts off after the first inductor Li finishing providing energy to the first capacitor 0, as shown in FIG. 6.
[0027] Every time the method executes from the step A to the step D, it is defined as one cycle. Therefore, while the AC/DC converter is working, the step A to the step D are proceeded repeatedly until the AC/DC converter stops working.
S
[0028] Please refer to FIG. 7, the high-frequency ripple is merely about 0.9V when the output voltage is l2V in the present preferred embodiment. In other words, with the aforementioned design of structures and methods, the power factor of the conventional circuit could be increased, and furthermore, the output voltage ripple caused by every increased input energy (which is, when the switch SW is conducted) could be suppressed, due to the third inductor L3 has a circuit capable of storing energy and filtering at the same time. Besides, by switching the active switch SW, and with the resonant between the third inductor L3 and the second capacitor C2, the stored energy in voltage of the second capacitor C2 could be converted into inductive current, and the polarity of the voltage drop of the second capacitor C2 could be reversed, which changes the whole circuit structure of the fourth diode D2 after it being conducted, In this way, the output voltage ripple caused by stopping providing energy (which is, when the switch SW cuts oft) could be suppressed.
[0029] Furthermore, the fifth diode D5 could effectively prevent the circuit around the loading 200 from having a back flow, which stables the whole circuit to increase the power factor of the AC/DC converter and suppress the ripples. Of course, the ripples could be suppressed in practice even without the fifth diode D5.
[0030] It must be pointed out that the embodiments described above are only some preferred embodiments of the present invention. All equivalent structures and methods which employ the concepts disclosed in this specification and the appended claims should fall within the scope of the present invention.

Claims (10)

  1. WHAT IS CLAIMED IS: 1. An AC/DC converter for converting an alternate current (AC) of a power supply into a direct current (DC), and the DC is transmitted to a loading, comprising: a rectifier circuit, which is electrically connected to the power supply to convert the AC into the DC, having a positive output and a negative output for outputting the DC; and an active power factor correction circuit electrically connecting the rectifier circuit to the loading to suppress voltage ripples provided to the loading, the active power factor correction circuit comprising: a first diode having an anode and a cathode, wherein the cathode of the first diode is connected to the positive output of the rectifier circuit; a second diode having an anode and a cathode, wherein the anode of the second diode is connected to the negative output of the rectifier circuit; a third diode having an anode and a cathode, wherein the anode of the third diode is connected to the anode of the first diode; a first inductor having two ends, one of which is connected to both the cathode of the first diode and the positive output of the rectifier circuit; a second inductor having an end connected to the cathode of the second diode and an opposite end connected to the anode of the first diode and the anode of the third diode; a first capacitor having an end connected to the first inductor and an opposite end connected to the second inductor, the anode of the second diode and the anode of the third diode; a switch having an end connected to both the first inductor and the first capacitor and an opposite end connected to both the negative output of the rectifier circuit and the anode of the second diode; a fourth diode having an anode and a cathode, wherein the anode of the fourth diode is connected to both the cathode of the second diode and the second inductor, and the cathode thereof is connected to the cathode of the third diode; a third inductor having an end connected to both the cathode of the third diode and the cathode of the fourth diode; a second capacitor having an end connected to both the cathode of the third diode and the cathode of the fourth diode and an opposite end connected to the third inductor; and a third capacitor having an end connected to both the third inductor and the second capacitor and an opposite end connected to the cathode of the second diode, the second inductor and the anode of the fourth diode, wherein the third capacitor is connected to the loading in parallel.
  2. 2. The AC/DC converter of claim 1, wherein the active power factor correction circuit frirther comprises a fifth diode; the third inductor is electrically connected to both the cathode of the third diode and the cathode of the fourth diode through the fifth diode; the fifth diode has an anode connected to both the cathode of the third diode and the cathode of the fourth diode and a cathode connected to the third inductor.
  3. 3. The AC/DC converter of claim 1, wherein the first capacitor is a non-polarity capacitor.
  4. 4. The AC/DC converter of claim I, wherein the second capacitor is a non-polarity capacitor.
  5. 5. The AC/DC converter of claim I, wherein the second capacitor is a capacitor other than an electrolytic capacitor.
  6. 6. A method of correcting power factor with an active power factor correction circuit, wherein the active power factor correction circuit comprises a first diode, a second diode, a third diode, a first inductor, a second inductor, a first capacitor, a switch, a fourth diode, a third inductor, a second capacitor, and a third capacitor, wherein the first diode has an anode and a cathode, wherein the cathode of the first diode is connected to the positive output of the rectifier circuit; the second diode has an anode and a cathode, wherein the anode of the second diode is connected to the negative output of the rectifier circuit; the third diode has an anode and a cathode, wherein the anode of the third diode is connected to the anode of the first diode; the first inductor has two ends, one of which is connected to both the cathode of the first diode and the positive output of the rectifier circuit; the second inductor has an end connected to the cathode of the second diode and an opposite end connected to the anode of the first diode and the anode of the third diode; the first capacitor has an end connected to the first inductor and an opposite end connected to the second inductor, the anode of the second diode and the anode of the third diode; the switch has an end connected to both the first inductor and the first capacitor and an opposite end connected to both the negative output of the rectifier circuit and the anode of the second diode; the fourth diode has an anode and a cathode, wherein the anode of the fourth diode is connected to both the cathode of the second diode and the second inductor, and the cathode thereof is connected to the cathode of the third diode; the third inductor has an end connected to both the cathode of the third diode and the cathode of the fourth diode; the second capacitor has an end connected to both the cathode of the third diode and the cathode of the fourth diode and an opposite end connected to the third inductor; the third capacitor has an end connected to both the third inductor and the second capacitor and an opposite end connected to the cathode of the second diode, the second inductor and the anode of the fourth diode, wherein the third capacitor is connected to the loading in parallel; the method comprising the steps of: A. conducting the switch to let the DC power supply charge the first inductor with a DC, the first capacitor charge the second inductor to make the second inductor have a stored energy, and the third inductor, the second inductor and the third inductor provide energy to the loading; B. cutting off the switch and conducting the first diode to let the first inductor provide energy to the first capacitor, and keeping transmitting the stored energy of the second inductor to the third capacitor; C. conducting the fourth diode to let the second capacitor and the third inductor provide energy to the third capacitor to provide energy into the loading; D. keeping providing energy from the second capacitor and the third inductor to the third capacitor to provide energy into the loading as the first diode is cut off after the first inductor finishing providing energy to the first capacitor.
  7. 7. The method of claim 6, further comprising the step of repeating the step A to the step D after the step D.
  8. 8. The method of claim 6, wherein the second inductor transmits the stored energy to the third capacity through a resonant circuit, which is formed by the second capacitor and the third inductor.
  9. 9. The method of claim 6, wherein the fourth diode conducts when a voltage drop of the third inductor is higher than a voltage drop of the third capacitor.
  10. 10. The method of claim 6, wherein the first inductor keeps providing energy to the first capacitor in the step C.
GB1509592.0A 2012-12-06 2013-11-19 AC/DC converter and method of correcting power factor Expired - Fee Related GB2522820B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210518122.0A CN103856081B (en) 2012-12-06 2012-12-06 DC-AC conversion device and power factor correction function method thereof
PCT/CN2013/001413 WO2014086096A1 (en) 2012-12-06 2013-11-19 Alternating-direct current conversion device and power factor correction method therefor

Publications (3)

Publication Number Publication Date
GB201509592D0 GB201509592D0 (en) 2015-07-15
GB2522820A true GB2522820A (en) 2015-08-05
GB2522820B GB2522820B (en) 2020-05-13

Family

ID=50863373

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1509592.0A Expired - Fee Related GB2522820B (en) 2012-12-06 2013-11-19 AC/DC converter and method of correcting power factor

Country Status (4)

Country Link
JP (1) JP6089115B2 (en)
CN (1) CN103856081B (en)
GB (1) GB2522820B (en)
WO (1) WO2014086096A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660069A (en) * 2013-11-18 2015-05-27 东林科技股份有限公司 Power conversion device and conversion method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (en) * 2000-10-17 2002-05-15 欧姆龙株式会社 Buffer circuit, and power conversion device using same
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (en) * 2004-12-31 2006-07-12 海尔集团公司 Variable-frequency air-condition power supply power factor correcting device
CN101106327A (en) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 Multi-functional integrated DC converter
TW201101658A (en) * 2009-06-19 2011-01-01 Univ Nat Taipei Technology Boost converting device, boot converter, and the control module thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103660A (en) * 1986-10-20 1988-05-09 Fuji Elelctrochem Co Ltd Output circuit of switching power source
JPH08149812A (en) * 1994-11-14 1996-06-07 Daikin Ind Ltd Rectification device
ES2117945B1 (en) * 1996-06-20 1999-04-01 Alcatel Standard Electrica ALTERNATE / CONTINUOUS ENERGY CONVERTER DEVICE.
JP2004023825A (en) * 2002-06-13 2004-01-22 Tdk Corp Power conversion circuit
JP3861220B2 (en) * 2004-06-24 2006-12-20 ミネベア株式会社 DC-DC converter
CN101814843A (en) * 2009-02-20 2010-08-25 国琏电子(上海)有限公司 Power supply system
CN104638947A (en) * 2013-11-14 2015-05-20 东林科技股份有限公司 Isolation type alternating current and direct current conversion device and conversion method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349297A (en) * 2000-10-17 2002-05-15 欧姆龙株式会社 Buffer circuit, and power conversion device using same
US20040079953A1 (en) * 2002-08-17 2004-04-29 Alexander Mednik AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
CN1801588A (en) * 2004-12-31 2006-07-12 海尔集团公司 Variable-frequency air-condition power supply power factor correcting device
CN101106327A (en) * 2007-06-01 2008-01-16 艾默龙电子科技(嘉兴)有限公司 Multi-functional integrated DC converter
TW201101658A (en) * 2009-06-19 2011-01-01 Univ Nat Taipei Technology Boost converting device, boot converter, and the control module thereof

Also Published As

Publication number Publication date
CN103856081B (en) 2016-08-10
JP2015536638A (en) 2015-12-21
WO2014086096A1 (en) 2014-06-12
GB2522820B (en) 2020-05-13
JP6089115B2 (en) 2017-03-01
CN103856081A (en) 2014-06-11
GB201509592D0 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US8503199B1 (en) AC/DC power converter with active rectification and input current shaping
US9899910B2 (en) Bridgeless PFC power converter with reduced EMI noise
JP2012044824A (en) Power conversion device
EP2937979A1 (en) Single-pole switch power source
US8441237B2 (en) Power factor correction (PFC) circuit and method therefor
JP6519574B2 (en) Wireless power receiving device, wireless power transmission device using the same, and rectifier
CN107294414B (en) Power conversion device
JP2014079168A (en) Power supply unit
KR20130073072A (en) Battery charging device for electric vehicle
KR20130133412A (en) Power factor correction circuit
JP2015173524A (en) Charger
US9203297B2 (en) AC/DC converter and method of correcting power factor
JP2016539621A (en) Flyback AC / DC converter and conversion method thereof
EP3565096A1 (en) Snubber circuit and power conversion system using same
KR102485477B1 (en) Low Voltage DC-DC Converter
US8854844B2 (en) AC/DC converter with passive power factor correction circuit and method of correcting power factor
US20130257393A1 (en) Switching power supply apparatus
GB2522820A (en) Alternating-direct current conversion device and power factor correction method therefor
US9071163B2 (en) Hybrid DC-to-AC conversion system and method of operating the same
CN101499732A (en) Single stage semi-bridge AC-DC converter
US20140002035A1 (en) Common-core power factor correction resonant converter
RU2571952C1 (en) Corrector of power ratio
EP2930831A1 (en) Passive power factor correction and alternating-direct current conversion device and power factor correction circuit operation method
CN207801754U (en) A kind of circuit of power factor correction for Switching Power Supply
CN201345618Y (en) Single-stage semibridge AD-DC converter

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20201119