WO2014082801A1 - Flüssige verbindungen und verfahren zu deren verwendung als wasserstoffspeicher - Google Patents

Flüssige verbindungen und verfahren zu deren verwendung als wasserstoffspeicher Download PDF

Info

Publication number
WO2014082801A1
WO2014082801A1 PCT/EP2013/072156 EP2013072156W WO2014082801A1 WO 2014082801 A1 WO2014082801 A1 WO 2014082801A1 EP 2013072156 W EP2013072156 W EP 2013072156W WO 2014082801 A1 WO2014082801 A1 WO 2014082801A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
mixture
reactor
energy
consumer
Prior art date
Application number
PCT/EP2013/072156
Other languages
English (en)
French (fr)
Inventor
Jennifer Dungs
Daniel Teichmann
Nicole Brückner
Andreas BÖSMANN
Peter Wasserscheid
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to KR1020187007666A priority Critical patent/KR101954305B1/ko
Priority to CN201380061439.9A priority patent/CN104812698B/zh
Priority to BR112015012183-7A priority patent/BR112015012183B1/pt
Priority to EP13780357.3A priority patent/EP2925669B1/de
Priority to AU2013351445A priority patent/AU2013351445B2/en
Priority to JP2015544397A priority patent/JP6280559B2/ja
Priority to ES13780357T priority patent/ES2696080T3/es
Priority to KR1020157017177A priority patent/KR101992255B1/ko
Priority to CA2892228A priority patent/CA2892228C/en
Publication of WO2014082801A1 publication Critical patent/WO2014082801A1/de
Priority to US14/722,443 priority patent/US10450194B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03309Tanks specially adapted for particular fuels
    • B60K2015/03315Tanks specially adapted for particular fuels for hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to liquid compounds according to the preamble of the first claim and a method for their use as hydrogen storage for the fuel supply of a consumer.
  • a particularly attractive way of tackling the challenges outlined above is to develop new "energy carrying materials” and to provide technologies for their efficient energetic loading and unloading.
  • energy carrying materials assumes that in a "high energy” location, used to a "high-energy” time energy is used, for example, to convert a low-energy liquid A into a high-energy liquid B. B can then be stored lossless over long periods and transported with high energy density. At the place and at the time of the energy demand, the high-energy liquid B is to be converted back into A with the release of useful energy.
  • A can be a liquid or a gaseous substance. If A as well as B is a liquid, the concept offers the possibility of returning A to the place of energy production and reloading it.
  • a preferred approach for the technical realization of an energy transport and energy storage system based on "energy carrying substances” is the loading of the low energy substance A with hydrogen to form the energy chenschers B, wherein the required hydrogen from an electrolysis of water by means of preferably regeneratively generated electrical energy is provided.
  • This energetic loading process is typically carried out in the prior art by a catalytic hydrogenation reaction under pressure.
  • the energetic discharge of substance B takes place by catalytic dehydrogenation at low pressures and high temperatures.
  • the hydrogen released in the process can be used energetically, for example in a fuel cell or in an internal combustion engine. If the hydrogen release takes place on board a vehicle, the hydrogen provided can be used directly for the operation of the vehicle.
  • Examples known in the art include energy storage in the form of CH 4 , NH 3 or methanol. In the hydrogen discharge of these compounds, the gaseous substances C0 2 - in the case of methane and methanol - or nitrogen - in the case of NH 3 .
  • the low-energy form A represents a liquid and consequently a liquid is obtained again during the energetic discharge, describes the DE 10 2008 034 221 A1.
  • the low-energy form A can be stored and transported in this case as a liquid to be recharged with hydrogen at a high-energy time and at a high-energy location.
  • Such systems are called "Liquid
  • LOHCs Organic Hydrogen Carriers
  • the LOHC systems known from the prior art are preferably substance pairs in which the low-energy substance A is a high-boiling, functionalized, aromatic compound which is hydrogenated in the energetic loading process.
  • a disclosed, particularly preferred example relates to the use of the substance pair N-ethylcarbazole / perhydro-N-ethylcarbazole, in which the energetic loading typically at about 140 ° C and elevated pressures and the energetic discharge at temperatures between 230 and 250 ° C can be performed ,
  • the high-energy substance Perhydro-N-ethylcarbazole has in said system a hydrogen capacity of about 5.8 mass% of hydrogen.
  • the energy stored in the releasable hydrogen of 100 kg of perhydro-N-ethylcarbazole sufficient to move a motor vehicle about 500 km, with the energetic use on board almost exclusively water vapor is formed as a combustion product.
  • the approach represents a technically interesting alternative to other energy storage concepts for mobile applications.
  • Catalytic hydrogen release reaction systems from liquid energy storage molecules are known in the art to consist of fixed bed reactors or slurry phase reactors.
  • reactors for releasing hydrogen from a hydrogen bearing liquid compound are under development, with a pressure and temperature resistant reactor vessel in which at least one function for providing the hydrogen is feasible, the reactor vessel containing at least one body having a metallic support structure on which a solid, highly porous coating is applied, which contains catalytically active substances for the release of hydrogen from liquid, hydrogen-bearing compounds.
  • the hydrogen-bearing, liquid compound may advantageously be a mixture of hydrogen-bearing, liquid compound in considerable proportion and other compounds.
  • Some LOHC systems known in the art have heteroatom carbon bonds. This feature activates the systems for catalytic hydrogen discharge.
  • the significantly higher nitrogen-carbon lability, compared to carbon-carbon or carbon-hydrogen bonding also limits the thermal stability of all nitrogen-carbon bonded LOHC systems to temperatures up to 280 ° C.
  • thermal stability allows for catalytic hydrogen release reaction temperatures above 280 ° C, which results in higher volumetric hydrogen release productivity as compared to lower temperatures.
  • the object of the present invention is to provide a liquid compound for use as a hydrogen storage, which in large quantities
  • a liquid at room temperature mixture of two or more compounds which are composed solely of the elements carbon and hydrogen and form in individual known compositions, a synthetic substance mixture which can be used as a heat transfer fluid, characterized in that the mixture at least one compound containing at least two non-condensed, non-pi-conjugated aromatic units and used in catalytic processes for binding or releasing hydrogen to or from the mixture.
  • An advantageous method for at least partially supplying a consumer with hydrogen, using a mixture according to the invention is characterized in that a reactor from a first storage tank for the hydrogen-bearing mixture is supplied via a feed line with this and at high temperature in the reactor low pressure dehydrated mixture is discharged via a drain line from the reactor into a second storage tank, wherein the reactor supplies a consumer via a connecting line with hydrogen.
  • a reactor from a first storage tank for the hydrogen-bearing mixture is supplied via a feed line with this and at high temperature in the reactor low pressure dehydrated mixture is discharged via a drain line from the reactor into a second storage tank, wherein the reactor supplies a consumer via a connecting line with hydrogen.
  • the consumer is an internal combustion engine or at least a fuel cell and in particular contributes to the energy supply of a motor vehicle.
  • the first and the second storage tank may be in communication with each other, even with the possibility that mix their contents.
  • a preferred method according to the invention is characterized in that the mixture in the reactor contacted with a metal-containing catalyst hydrogen bonding or liberating, wherein the metal-containing catalysts used for hydrogen loading and hydrogen discharge are the same or different solid contacts containing one or more of the metals palladium, nickel, platinum, iridium, ruthenium, cobalt, rhodium, copper, gold, rhenium or iron in finely divided form on a porous, non-polar carrier.
  • energy-carrying heat transfer oils has the advantage that it is technically close to our current energy supply by fossil fuels and therefore the existing infrastructure, such as ships, refineries, gas stations, can be used.
  • energy surpluses from regenerative production can be stored via energy-carrying heat transfer oils and linked to the energy requirements for mobility, heating and transport in today's infrastructure.
  • These energy storage devices have the following advantages: a virtually unlimited, lossless storage capacity, a high energy density and low costs. Furthermore, they are suitable as long-term storage and transport form of energy.
  • the mixture forming the hydrogen storage and transport system in the hydrogen poor form A should advantageously contain compounds having at least two non-condensed aromatic units in a mass fraction of between 5% and 100%, preferably between 60 and 100%, particularly preferably between 90 and 100%. Furthermore, it is advantageous if the mixture consists of more than 50%, preferably more than 90% of different compounds, all of which contain at least two non-condensed aromatic units.
  • a compound of the mixture forming the hydrogen storage and transport system in the low-hydrogen form of the mixture may be the substance dibenzyltoluene. It is even more advantageous if the mixture is more than 50%, preferably more than 90% of different
  • the hydrogen-poor form can be converted by a catalytic hydrogenation reaction with hydrogen uptake in a hydrogen-rich form in which the charged hydrogen may be chemically bonded in a mass fraction of at least 6%, the hydrogen pressure in the catalytic hydrogenation between 5 and 200 bar, preferably between 10 and 100 bar and most preferably between 30 and 80 bar and the reaction temperatures of the catalytic hydrogenation between 20 ° C and 230 ° C, preferably between 50 ° C and 200 ° C, but preferably between 100 and 180 ° C lie.
  • Marlotherm for example from the company SASOL
  • Marlotherm LH for example from the company SASOL
  • dibenzyltoluene Marlotherm SH, SASOL
  • the different isomers are formed by linking the benzyl groups bound to the central toluene nucleus to the toluene nucleus at different ring positions relative to the methyl group of the toluene. If the methyl group of the toluene nucleus is assigned ring position 1, Marlotherm LH (SASOL) is a mixture of benzyltoluenes whose
  • Benzyl group is attached to the positions 2,3 or 4 at the toluene nucleus.
  • Malotherm LH SASOL
  • FIG. 1 Malotherm LH (SASOL)
  • SASOL symbolized by the bond of the benzyl group to the center of the ring
  • Marlotherm SH SASOL
  • SASOL represents a mixture of dibenzyltoluenes.
  • the substance mixtures used as Marlotherm LH (SASOL) and Marlotherm SH (SASOL), as well as those used under other trade names and other trademark holders, for example Hüls can be characterized as containing compounds that have at least two non-condensed, not Having pi-conjugated aromatic units.
  • a general representation of a typical structural unit in such mixtures is shown in Figure 3.
  • one to five benzyl units are attached to a central aromatic nucleus.
  • Each of these benzyl units may themselves carry further benzyl units or other alkylaromatic substituents.
  • a typical structural unit of substances used as mixtures e.g.

Abstract

Nach der Erfindung ist eine bei Raumtemperatur flüssige Mischung aus zwei oder mehreren Verbindungen, die ausschließlich aus den Elementen Kohlenstoff und Wasserstoff aufgebaut sind und in einzelnen bekannten Zusammensetzungen ein synthetisches Substanzgemisch bilden, das als Wärmeträgerflüssigkeit einsetzbar ist, dadurch gekennzeichnet, dass die Mischung mindestens eine Verbindung mit mindestens zwei nicht-kondensierten, nicht pi-konjugierten aromatischen Einheiten enthält und in katalytischen Verfahren zur Bindung bzw. Freisetzung von Wasserstoff an die bzw. von der Mischung verwendet wird.

Description

Flüssige Verbindungen und Verfahren zu deren Verwendung als Wasserstoffspeicher
Die Erfindung betrifft flüssige Verbindungen nach dem Oberbegriff des ersten Anspruchs und ein Verfahren zu deren Verwendung als Wasserstoffspeicher zur Kraftstoffversorgung eines Verbrauchers.
Die heute diskutierten Szenarien zur Energiebereitstellung aus regenerativen Quellen im großen Maßstab, zum Beispiel Windparks in der Nordsee oder Desertec erfordern als wesentliche technische Voraussetzung geeignete Wege, um große Energiemengen möglichst verlustfrei speichern und transportieren zu können. Nur so lassen sich saisonale Schwankungen in der Erzeugung ausgleichen, nur so kann ein effizienter Transport der Nutzenergie über große Distanzen realisiert werden.
Ein besonders attraktiver Weg zur Bewältigung der oben beschriebenen Herausforderungen ist die Entwicklung neuer„Energietragender Stoffe" und die Bereitstellung von Technologien zu deren effizienten energetischen Beladung und Entladung. Die Verwendung„Energietragender Stoffe" geht davon aus, dass die an einem„energiereichen" Ort, zu einer„energiereichen" Zeit bereitgestellte Energie genutzt wird, um zum Beispiel eine energiearme Flüssigkeit A in eine energiereiche Flüssigkeit B zu wandeln. B kann dann verlustfrei über große Zeiträume gelagert und mit hoher Energiedichte transportiert werden. Am Ort und zur Zeit des Energiebedarfs soll die energiereiche Flüssigkeit B unter Freisetzung von Nutzenergie wieder in A zurück verwandelt werden. A kann eine Flüssigkeit oder eine gasförmige Substanz sein. Ist A ebenso wie B eine Flüssigkeit bietet das Konzept die Möglichkeit A wieder an den Ort der Energieerzeugung zurückzubringen und erneut zu beladen.
Ein bevorzugter Ansatz zur technischen Realisierung eines Energietransport- und Energiespeichersystems auf Basis„Energietragender Stoffe" ist die Beladung des energiearmen Stoffes A mit Wasserstoff unter Bildung des energierei- chen Stoffes B, wobei der dabei benötigte Wasserstoff aus einer Elektrolyse von Wasser mit Hilfe von bevorzugt regenerativ erzeugter elektrischer Energie bereit gestellt wird. Dieser energetische Beladungsvorgang erfolgt nach dem Stand der Technik typischerweise durch eine katalytische Hydrierreaktion unter Druck. Die energetische Entladung des Stoffes B erfolgt durch katalytische Dehydrierung bei niedrigen Drücken und hohen Temperaturen. Der dabei wieder freigesetzte Wasserstoff kann zum Beispiel in einer Brennstoffzelle oder in einem Verbrennungsmotor energetisch genutzt werden. Erfolgt die Wasserstofffreisetzung an Bord eines Fahrzeugs, kann der dabei bereit gestellte Wasserstoff direkt zum Betrieb des Fahrzeugs genutzt werden. Dem Stand der Technik bekannte Beispiele umfassen die Energiespeicherung in Form von CH4, NH3 oder Methanol. Bei der Wasserstoffentladung dieser Verbindungen entstehen die gasförmigen Stoffe C02 - im Falle von Methan und Methanol - bzw. Stickstoff - im Falle von NH3.
Ein alternatives, bekanntes Konzept, bei dem die energiearme Form A eine Flüssigkeit darstellt und folglich bei der energetischen Entladung erneut eine Flüssigkeit erhalten wird, beschreibt die DE 10 2008 034 221 A1. Die energiearme Form A kann in diesem Fall als Flüssigkeit gelagert und transportiert werden, um zu einer energiereichen Zeit und an einem energiereichen Ort erneut mit Wasserstoff beladen zu werden. Solche Systeme werden als„Liquid
Organic Hydrogen Carriers (LOHCs)" bezeichnet. Beispiele solcher LOHCs werden in der Patentanmeldung EP 1 475 349 A2 offenbart.
Bevorzugt handelt es sich bei den dem Stand der Technik bekannten LOHC- Systemen um Stoffpaare, bei denen der energiearme Stoff A eine hochsiedende, funktionalisierte, aromatische Verbindung darstellt, die im energetischen Beladungsvorgang hydriert wird. Ein offenbartes, besonders bevorzugtes Beispiel betrifft die Verwendung des Stoffpaares N-Ethylcarbazol/Perhydro-N- Ethylcarbazol, bei dem die energetische Beladung typischerweise bei rund 140 °C und erhöhten Drücken und die energetische Entladung bei Temperaturen zwischen 230 und 250°C durchgeführt werden kann. Der energiereiche Stoff Perhydro-N-Ethylcarbazol besitzt im genannten System eine Wasserstoff-Kapazität von rund 5,8 Massen-% Wasserstoff. So reicht die im freisetzbaren Wasserstoff gespeicherte Energie von 100 kg Perhydro-N-Ethylcarbazol aus, um ein Kraftfahrzeug etwa 500 km zu bewegen, wobei bei der energetischen Nutzung an Bord fast ausschließlich Wasserdampf als Verbrennungsprodukt gebildet wird. Damit stellt der Ansatz eine technisch interessante Alternative zu anderen Energiespeicherkonzepten für mobile Anwendungen dar.
Reaktionssysteme zur katalytischen Wasserstofffreisetzung aus flüssigen Energiespeichermolekülen bestehen nach dem Stand der Technik aus Festbettreaktoren oder Slurry-Phasenreaktoren. Außerdem sind Reaktoren zur Freisetzung von Wasserstoff aus einer Wasserstoff tragenden, flüssigen Verbindung in Entwicklung, mit einem druck- und temperaturfesten Reaktorgefäß, in dem wenigstens eine Funktion zur Bereitstellung des Wasserstoffs ausführbar ist, wobei das Reaktorgefäß wenigstens einen Körper enthält, der eine metallische Trägerstruktur besitzt auf die eine feste, hochporöse Beschichtung aufgebracht ist, die katalytisch wirkende Substanzen für die Freisetzung von Wasserstoff aus flüssigen, Wasserstoff tragenden Verbindungen enthält. Hier kann die Wasserstoff tragende, flüssige Verbindung vorteilhafterweise auch eine Mischung aus Wasserstoff tragender, flüssiger Verbindung in erheblichem Anteil und anderen Verbindungen sein.
Manche LOHC-Systeme, die dem Stand der Technik bekannt sind, weisen He- teroatom-Kohlenstoffbindungen auf. Dieses Strukturmerkmal aktiviert die Systeme für die katalytische Wasserstoffentladung. Allerdings führt die deutlich höhere Labilität der Stickstoff-Kohlenstoff- , im Vergleich zur Kohlenstoff-Kohlenstoff- oder Kohlenstoff-Wasserstoffbindung auch dazu, dass die thermische Stabilität aller LOHC-Systeme mit Stickstoff-Kohlenstoff-Bindung auf Temperaturen bis 280 °C begrenzt ist. Allerdings sind auch geringfügige thermische Zersetzungserscheinungen des LOHC-Systems für die technische Anwendung bereits relevant, da sich dadurch der Festpunkt des LOHC-Systems und die katalytische Belad- und Entladbarkeit in unvorteilhafter Weise ändert. Eine hohe thermische Stabilität erlaubt unter anderem Reaktionstemperaturen bei der ka- talytischen Wasserstofffreisetzung von über 280 °C, was verglichen mit niedrigeren Temperaturen eine höhere volumetrische Produktivität der Wasserstofffreisetzung zur Folge hat.
Aufgabe der vorliegenden Erfindung ist es, eine flüssige Verbindung zur Verwendung als Wasserstoffspeicher anzugeben, die in großen Mengen
bereitstellbar und deren Verwendung in technischen Einrichtungen einfach möglich ist, weil sie oben genannte Nachteile nicht aufweist, da sie ausschließlich aus Kohlenstoff und Wasserstoff aufgebaut ist und über 280 °C hinaus thermisch stabil ist. Außerdem soll ein Verfahren zur Versorgung eines Verbrauchers mit Wasserstoff unter Verwendung dieser flüssigen Verbindung bereit gestellt werden.
Die Aufgabe der Erfindung wird durch die Merkmale des ersten Anspruchs gelöst. Vorteilhafte Aus- und Weiterbildungen und das vorteilhafte Verfahren zur Versorgung eines Verbrauchers mit Wasserstoff sind Inhalt der abhängigen Ansprüche.
Nach der Erfindung ist eine bei Raumtemperatur flüssige Mischung aus zwei oder mehreren Verbindungen, die ausschließlich aus den Elementen Kohlenstoff und Wasserstoff aufgebaut sind und in einzelnen bekannten Zusammensetzungen ein synthetisches Substanzgemisch bilden, das als Wärmeträgerflüssigkeit einsetzbar ist, dadurch gekennzeichnet, dass die Mischung mindestens eine Verbindung mit mindestens zwei nicht-kondensierten, nicht pi-konju- gierten aromatischen Einheiten enthält und in katalytischen Verfahren zur Bindung bzw. Freisetzung von Wasserstoff an die bzw. von der Mischung verwendet wird.
Die in der Wasserstoff-armen Form als Wärmeträgeröl, zum Beispiel unter den Markennamen Marlotherm LH oder Marlotherm SH (beispielsweise Firma SASOL), in bestimmten Varianten bereits verwendete Mischung als flüssiges Wasserstoffspeicher- und -transportsystem zu verwenden, ist neu und erfinderisch, da die Möglichkeit einer Wasserstoffbeladung der Mischung bisher nirgendwo in Betracht gezogen wurde und mit der Wasserstoffbeladung eine neue Verwendung durch einen erfinderischen Vorgang möglich wird. Dies gilt auch für den Vorgang der Wasserstofffreisetzung aus der bisher unbekannten Verwendung der Wasserstoff-reichen Form als Wasserstoffträger. Denn gerade die Mischung weist zahlreiche wichtige, vorher ungeahnte Vorzüge gegenüber den bisher bekannten flüssigen Wasserstoffspeicher- und -transportsystemen auf, nämlich eine hohe Wasserstoffkapazität, niedrigen Dampfdruck, hohe chemische und thermische Stabilität bei kostengünstigem industriellem Zugang, bekannter und unproblematischer Toxizität und Okotoxizität, und Kompatibilität mit allen Dichtungs- und Tankmaterialien. Durch die Nutzung von Wärmeträgerölen als LOHC-System kann vorteilhafterweise das nachteilige Verhalten der bisher verwendeten LOHC-Systeme aufgrund deren begrenzter thermischer Stabilität vermieden werden.
Ein vorteilhaftes Verfahren zur mindestens anteiligen Versorgung eines Verbrauchers mit Wasserstoff, unter Verwendung einer erfindungsgemäßen Mischung, zeichnet sich dadurch aus, dass ein Reaktor aus einem ersten Speichertank für die Wasserstoff tragende Mischung über eine Zulaufleitung mit dieser versorgt wird und die im Reaktor bei hoher Temperatur und niedrigem Druck dehydrierte Mischung über eine Ablaufleitung von dem Reaktor in einen zweiten Speichertank abgeleitet wird, wobei der Reaktor einen Verbraucher über eine Verbindungsleitung mit Wasserstoff versorgt. Ein solches Verfahren ist besonders vorteilhaft anzuwenden, wenn der Verbraucher eine Brennkraftmaschine oder wenigstens eine Brennstoffzelle ist und insbesondere zur Energieversorgung eines Kraftfahrzeugs beiträgt. Dabei können der erste und der zweite Speichertank miteinander in Verbindung stehen, auch mit der Möglichkeit, dass sich deren Inhalte durchmischen.
Ein bevorzugtes Verfahren gemäß der Erfindung ist dadurch gekennzeichnet, dass die Mischung im Reaktor mit einem metallhaltigen Katalysator kontaktiert wird und dabei Wasserstoff bindet oder freisetzt, wobei die für die Wasserstoffbeladung und Wasserstoffentladung verwendeten metallhaltigen Katalysatoren gleiche oder unterschiedliche feste Kontakte sind, die eines oder mehrere der Metalle Palladium, Nickel, Platin, Iridium, Ruthenium, Cobalt, Rhodium, Kupfer, Gold, Rhenium oder Eisen in feinverteilter Form auf einem porösen, unpolaren Träger enthalten.
Allen vorgenannten Verfahren ist gemein, dass im Reaktor aus der Wasserstoff- beladenen Mischung mittels katalytischer Dehydrierung, bei hoher Temperatur und niedrigem Druck, Wasserstoff freigesetzt wird.
Das hier zur Anwendung kommende Konzept der energietragenden Wärmeträgeröle besitzt den Vorteil, dass es unserer bisherigen Energieversorgung durch fossile Energieträger technisch nahe steht und daher die vorhandene Infrastruktur, wie Schiffe, Raffinerien, Tankstellen, genutzt werden kann. Insbesondere können über energietragende Wärmeträgeröle Energieüberschüsse aus regenerativer Produktion gespeichert und mit dem Energiebedarf für Mobilität, Beheizung und Transport in der heutigen Infrastruktur verknüpft werden. Diese Energiespeicher haben noch folgende Vorteile: Eine nahezu unbegrenzte, verlustfreie Speicherfähigkeit, eine hohe Energiedichte und geringe Kosten. Des Weiteren sind sie geeignet als Langzeitspeicher und Transportform von Energie.
Versuche zur Nutzung von handelsüblichen Wärmeträgerölen wie Marlotherm LH oder Marlotherm SH (beispielsweise von der Firma SASOL) als Wasser- stoff-entladener Form eines LOHC-Systems, haben gezeigt, dass die das Was- serstoffspeicher- und -transportsystem bildende Mischung in der Wasserstoff- armen Form A günstigerweise Verbindungen mit mindestens zwei nicht-kondensierten aromatischen Einheiten in einem Massenanteil zwischen 5% und 100%, bevorzugt zwischen 60 und 100%, besonders bevorzugt zwischen 90 und 100% enthalten soll. Des Weiteren ist es vorteilhaft, wenn die Mischung zu über 50%, bevorzugt zu über 90% aus unterschiedlichen Verbindungen besteht, die alle mindestens zwei nicht-kondensierte aromatische Einheiten enthalten. Dabei kann günstigerweise eine Verbindung der das Wasserstoffspeicher- und -transportsystem bildenden Mischung in der Wasserstoff-armen Form der Mischung die Substanz Dibenzyltoluol sein. Noch vorteilhafter ist es, wenn die Mischung zu über 50%, bevorzugt zu über 90% aus unterschiedlichen
Dibenzyltoluolen besteht. So ist gewährleistet, dass sich die Wasserstoff-arme Form durch eine katalytische Hydrierreaktion unter Wasserstoffaufnahme in eine Wasserstoff-reiche Form überführen lässt, in der der geladene Wasserstoff in einem Massenanteil von mindestens 6% chemisch gebunden vorliegen kann, wobei der Wasserstoffdruck bei der katalytischen Hydrierung zwischen 5 und 200 bar, bevorzugt zwischen 10 und 100 bar und am Besten zwischen 30 und 80 bar liegt und die Reaktionstemperaturen der katalytischen Hydrierung zwischen 20°C und 230 °C, bevorzugt zwischen 50 °C und 200 °C, am Besten jedoch zwischen 100 und 180 °C liegen.
Im Folgenden sind anhand von drei Figuren allgemeine Stoffbeispiele für Wärmeträger, die als Wasserstoffträger vorteilhafterweise verwendet werden können, angeführt und beschrieben.
Marlotherm (zum Beispiel von der Firma SASOL) oder ähnliche technisch genutzte Wärmeträgeröle sind Gemische aus unterschiedlichen Isomeren von Benzyltoluol (Marlotherm LH, SASOL) und Dibenzyltoluol (Marlotherm SH, SASOL). Die unterschiedlichen Isomere bilden sich dadurch, dass die am zentralen Toluolkern gebundenen Benzylgruppen an unterschiedlichen Ringpositionen im Bezug auf die Methylgruppe des Toluols mit dem Toluolkern verknüpft sind. Weist man der Methylgruppe des Toluolkerns die Ringposition 1 zu, stellt Marlotherm LH (SASOL) eine Mischung von Benzyltoluolen dar, deren
Benzylgruppe an den Positionen 2,3 oder 4 am Toluolkern gebunden ist. So ist in Figur 1 anhand Malotherm LH (SASOL), symbolisiert mit der Bindung der Benzylgruppe in die Ringmitte dargestellt, dass es sich um Isomerengemisch handelt, bei dem die Benzylgruppe bezüglich der Methylgruppe des Toluolrests (Position 1) in den Stellungen 2, 3 oder 4 gebunden ist. Marlotherm SH (SASOL) stellt ein Gemisch von Dibenzyltoluolen dar. Weist man wieder der Methylgruppe des Toluolkerns die Ringposition 1 zu, sind die beiden Benzylgruppen in Marlotherm SH (SASOL) in den Positionen 2 und 3, 2 und 4, 2 und 5, 2 und 6, 3 und 4 oder 3 und 5 gebunden. In Figur 2 ist daher Malotherm SH (SASOL) dargestellt, wobei die Bindungen der Benzylgruppen in die Ringmitte symbolisieren, dass es sich um Isomerengemisch handelt, bei dem die Benzylgruppen bezüglich der Methylgruppe des Toluolrests (Position 1 ) in den Positionen 2 und 3, 2 und 4, 2 und 5, 2 und 6, 3 und 4 oder 3 und 5 gebunden sind.
Allgemeiner lassen sich die als Marlotherm LH (SASOL) und Marlotherm SH (SASOL), sowie die unter anderen Handelnsnamen und anderen Markeninhabern, zum Beispiel Hüls, als Wärmeträger genutzten Substanzgemische dadurch kennzeichnen, dass sie Verbindungen enthalten, die mindestens zwei nicht-kondensierte, nicht pi-konjugierte aromatische Einheiten aufweisen. Eine allgemeine Darstellung einer typischen Struktureinheit in solchen Gemischen zeigt Figur 3. Typischerweise sind eine bis fünf Benzyleinheiten an einem zentralen aromatischen Kern gebunden. Jede dieser Benzyleinheiten kann selbst wieder weitere Benzyleinheiten bzw. andere alkylaromatischen Substituenten tragen. Bei einer typischen Struktureinheit von Substanzen, die als Gemische z.B. unter den Handelsnamen Marlotherm LH (Hüls) oder Marlotherm SH (Hüls) als Wärmeträgeröle kommerziell genutzt werden symbolisiert die Bindung der Benzylgruppe und der anderen Substituenten in die Ringmitte, dass es sich um ein Isomerengemisch handelt, bei dem die Benzylgruppe bezüglich der anderen Substituenten in unterschiedlichen Positionen gebunden sein kann.

Claims

Patentansprüche
1 . Bei Raumtemperatur flüssige Mischung aus zwei oder mehreren Verbindungen, die ausschließlich aus den Elementen Kohlenstoff und Wasserstoff aufgebaut sind und in einzelnen bekannten Zusammensetzungen ein synthetisches Substanzgemisch bilden, das als Wärmeträgerflüssigkeit einsetzbar ist, dadurch gekennzeichnet, dass die Mischung mindestens eine Verbindung mit mindestens zwei nicht-kondensierten, nicht pi- konjugierten aromatischen Einheiten enthält und in katalytischen Verfahren zur Bindung bzw. Freisetzung von Wasserstoff an die bzw. von der Mischung verwendet wird.
2. Verfahren zur mindestens anteiligen Versorgung eines Verbrauchers mit Wasserstoff, unter Verwendung einer Mischung nach Anspruch 1 , dadurch gekennzeichnet, dass ein Reaktor aus einem ersten Speichertank für die Wasserstoff tragende Mischung über eine Zulaufleitung mit dieser versorgt wird und die im Reaktor bei hoher Temperatur und niedrigem Druck dehydrierte Mischung über eine Ablaufleitung von dem Reaktor in einen zweiten Speichertank abgeleitet wird, wobei der Reaktor den Verbraucher über eine Verbindungsleitung mit Wasserstoff versorgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Verbraucher eine Brennkraftmaschine oder wenigstens eine Brennstoffzelle ist.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Verbraucher zur Energieversorgung eines Kraftfahrzeugs beiträgt.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Mischung im Reaktor mit einem metallhaltigen Katalysator kontaktiert wird und dabei den Wasserstoff bindet oder freisetzt, wobei die für die Wasserstoffbeladung und Wasserstoffentladung verwendeten me- tallhaltigen Katalysatoren gleiche oder unterschiedliche feste Kontakte sind, die eines oder mehrere der Metalle Palladium, Nickel, Platin, Iridium, Ruthenium, Cobalt, Rhodium, Kupfer, Gold, Rhenium oder Eisen in feinverteilter Form auf einem porösen, unpolaren Träger enthalten.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass im Reaktor, aus der Wasserstoff beladenen Mischung, mittels ka- talytischer Dehydrierung bei hoher Temperatur und niedrigem Druck, Wasserstoff freigesetzt wird.
PCT/EP2013/072156 2012-11-28 2013-10-23 Flüssige verbindungen und verfahren zu deren verwendung als wasserstoffspeicher WO2014082801A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020187007666A KR101954305B1 (ko) 2012-11-28 2013-10-23 액체 화합물 및 이를 수소 저장소로 사용하는 방법
CN201380061439.9A CN104812698B (zh) 2012-11-28 2013-10-23 液态化合物和将其用作储氢物质的方法
BR112015012183-7A BR112015012183B1 (pt) 2012-11-28 2013-10-23 Utilização de uma mistura líquida à temperatura ambiente contendo dois ou mais compostos selecionados a partir de isômeros de benziltolueno ou dibenziltolueno, método para a provisão pelo menos parcial de um consumidor com hidrogênio, dispositivo e veículo automotor
EP13780357.3A EP2925669B1 (de) 2012-11-28 2013-10-23 Verwendung flüssiger verbindungen und verfahren zu deren verwendung als wasserstoffspeicher
AU2013351445A AU2013351445B2 (en) 2012-11-28 2013-10-23 Liquid compounds and method for the use thereof as hydrogen stores
JP2015544397A JP6280559B2 (ja) 2012-11-28 2013-10-23 液状化合物および水素貯蔵体としてのその使用方法
ES13780357T ES2696080T3 (es) 2012-11-28 2013-10-23 Compuestos líquidos y procedimiento de uso de los mismos como acumuladores de hidrógeno
KR1020157017177A KR101992255B1 (ko) 2012-11-28 2013-10-23 액체 화합물 및 이를 수소 저장소로 사용하는 방법
CA2892228A CA2892228C (en) 2012-11-28 2013-10-23 Liquid compounds and method for the use thereof as hydrogen stores
US14/722,443 US10450194B2 (en) 2012-11-28 2015-05-27 Liquid compounds and method for the use thereof as hydrogen stores

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012221809.2 2012-11-28
DE102012221809.2A DE102012221809A1 (de) 2012-11-28 2012-11-28 Flüssige Verbindungen und Verfahren zu deren Verwendung als Wasserstoffspeicher

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/722,443 Continuation US10450194B2 (en) 2012-11-28 2015-05-27 Liquid compounds and method for the use thereof as hydrogen stores

Publications (1)

Publication Number Publication Date
WO2014082801A1 true WO2014082801A1 (de) 2014-06-05

Family

ID=49484278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/072156 WO2014082801A1 (de) 2012-11-28 2013-10-23 Flüssige verbindungen und verfahren zu deren verwendung als wasserstoffspeicher

Country Status (11)

Country Link
US (1) US10450194B2 (de)
EP (1) EP2925669B1 (de)
JP (1) JP6280559B2 (de)
KR (2) KR101992255B1 (de)
CN (1) CN104812698B (de)
AU (1) AU2013351445B2 (de)
BR (1) BR112015012183B1 (de)
CA (1) CA2892228C (de)
DE (1) DE102012221809A1 (de)
ES (1) ES2696080T3 (de)
WO (1) WO2014082801A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3378848A1 (de) 2017-03-23 2018-09-26 Karlsruher Institut für Technologie Hydrierungsverfahren zur synthese von methan und methanol
WO2019211300A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds
EP3816204A1 (de) 2019-10-31 2021-05-05 Hysilabs, SAS Verfahren zur herstellung und regenerierung von wasserstoffträgerverbindungen
WO2021084046A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Process for producing and regenerating hydrogen carrier compounds
WO2021084044A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Hydrogen carrier compounds
WO2022008846A1 (fr) 2020-07-10 2022-01-13 Arkema France Purification de liquides aromatiques
EP4108630A1 (de) 2021-06-25 2022-12-28 Hysilabs, SAS Wasserstoffträgerverbindungen
US11826734B2 (en) 2021-03-26 2023-11-28 Korea Advanced Institute Of Science And Technology Catalyst structure for LOHC dehydrogenation reactor

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201332A1 (de) * 2014-01-24 2015-07-30 Hydrogenious Technologies Gmbh System und Verfahren zur stofflichen Nutzung von Wasserstoff
US9879828B2 (en) 2014-09-03 2018-01-30 Hydrogenious Technologies Gmbh Arrangement and method for operating hydrogen filling stations
DE102014226282A1 (de) 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reaktor zur Dehydrierung von flüssigen Wasserstoffträgermaterialien
DE102015223997A1 (de) * 2015-12-02 2017-06-08 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Speicherung von Wasserstoff
DE102016004684A1 (de) * 2016-04-19 2017-10-19 Linde Aktiengesellschaft Kraftstoff für Luft- und Raumfahrtfahrzeuge
CA3030048A1 (en) * 2016-08-17 2018-02-22 Guido P Pez System and method for electrochemical energy conversion and storage
KR101862012B1 (ko) 2016-09-09 2018-05-30 한국화학연구원 피리딘계 수소저장 물질을 활용한 수소 저장 및 방출 시스템
KR101845515B1 (ko) 2016-09-30 2018-04-04 한국과학기술연구원 액상 수소저장물질 및 이를 이용한 수소 저장 방법
CN109704274B (zh) * 2017-10-26 2021-08-03 中国石油化工股份有限公司 有机液体储氢的原料体系
KR101987553B1 (ko) * 2017-11-23 2019-06-10 서울여자대학교 산학협력단 액상의 수소 저장 물질
DE102018109254A1 (de) 2018-04-18 2019-10-24 Clariant lnternational Ltd Platin-Schalenkatalysator
CN109353987A (zh) * 2018-11-23 2019-02-19 汽解放汽车有限公司 一种液态储氢材料及其制备方法
KR102622005B1 (ko) * 2019-01-04 2024-01-10 한국화학연구원 피리딘 그룹을 포함하는 방향족 화합물을 제조하는 방법
DE102019211876B4 (de) * 2019-08-07 2022-09-29 Rolls-Royce Solutions GmbH Leistungsanordnung und Verfahren zu deren Betrieb
DE102019211877A1 (de) * 2019-08-07 2021-02-11 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine, eingerichtet zur Durchführung eines solchen Verfahrens
KR102310957B1 (ko) 2019-11-13 2021-10-12 한국과학기술원 액상화합물 기반 수소저장용 탈수소화 반응 촉매 및 그 제조방법
CN111392691B (zh) * 2020-02-17 2021-09-21 浙江大学 一种钯基催化剂催化全氢化有机液体储氢材料低温脱氢的方法
FR3107843A1 (fr) 2020-03-03 2021-09-10 Arkema France DÉSHYDROGÉNATION PARTIELLE de LIQUIDES ORGANIQUES
KR102332811B1 (ko) 2020-03-27 2021-12-01 한국과학기술원 연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템 및 그 운용방법
KR20210120550A (ko) 2020-03-27 2021-10-07 한국과학기술원 액상화합물 기반 수소저장 시스템 및 그 운용방법
KR102303911B1 (ko) 2020-04-03 2021-09-24 한국과학기술원 모듈타입 수소저장 시스템 및 그 운용방법
FR3112339B1 (fr) 2020-07-10 2022-07-22 Arkema France Procédé d’amélioration de la qualité des liquides organiques porteur d’hydrogène
WO2022030917A1 (ko) * 2020-08-03 2022-02-10 한국화학연구원 메틸벤질-나프탈렌계 수소 저장 물질 및 이를 이용한 수소저장 및 방출 방법
KR102480065B1 (ko) * 2020-08-03 2022-12-23 한국화학연구원 메틸벤질-나프탈렌계 수소 저장 물질 및 이를 이용한 수소저장 및 방출 방법
FR3115030B1 (fr) * 2020-10-08 2023-12-22 Arkema France Stockage d’hydrogène au moyen de dérivés de composés d’origine renouvelable
FR3115031B1 (fr) 2020-10-08 2023-12-22 Arkema France Stockage d’hydrogène au moyen de composés liquides organiques
FR3117114B1 (fr) 2020-12-09 2024-04-12 Arkema France Formulation liquide pour stockage d’hydrogène
FR3117113B1 (fr) 2020-12-09 2024-04-12 Arkema France Formulation liquide pour stockage d’hydrogène
KR20220134179A (ko) 2021-03-26 2022-10-05 한국과학기술원 Lohc 수소화 반응 시스템 및 그 운전방법
KR102563327B1 (ko) 2021-09-13 2023-08-03 한국화학연구원 벤질(메틸벤질)벤젠을 포함하는 수소 저장 물질 및 이를 이용한 수소 저장 및 방출 방법
WO2023055108A1 (ko) 2021-09-29 2023-04-06 한양대학교 산학협력단 수소화/탈수소화의 가역성이 개선된 백금 담지 촉매 및 이를 이용한 액체 유기 수소 운반체 기반의 수소 저장 및 방출 방법
US11891300B2 (en) 2021-11-01 2024-02-06 Chevron U.S.A. Inc. Clean liquid fuels hydrogen carrier processes
KR20230103045A (ko) * 2021-12-31 2023-07-07 경북대학교 산학협력단 나프탈렌계 유도체를 이용한 수소 저장 물질 및 이의 제조방법
KR20230135810A (ko) * 2022-03-17 2023-09-26 한양대학교 산학협력단 모노벤질톨루엔 이성질체 혼합물을 함유하는 액체 유기 수소 운반체용 조성물 및 이를 이용한 수소 저장 및 방출 방법
DE102022210825A1 (de) 2022-10-13 2024-04-18 Forschungszentrum Jülich GmbH Katalysatorsystem und Verfahren zum katalytischen Dehydrieren eines Wasserstoffträgermaterials, Reaktoranordnung mit einem derartigen Katalysatorsystem sowie Verfahren zum Herstellen eines derartigen Katalysatorsystems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523044A (en) * 1983-09-23 1985-06-11 Atochem Compositions of polyarylalkane oligomers and process for their manufacture
US5017733A (en) * 1986-09-04 1991-05-21 Nippon Petrochemicals Company, Limited Electrical insulating oil composition
DE102007039478A1 (de) * 2007-08-21 2009-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wasserstoffgenerator sowie Verfahren zur Erzeugung von Wasserstoff
DE102008034221A1 (de) * 2008-07-23 2010-01-28 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffversorgungseinrichtung für ein mit Wasserstoff betreibbares Kraftfahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1419604A1 (de) * 1961-06-12 1969-05-14 Bergwerksverband Gmbh Verwendung fluessiger hochsiedender aromatischer Kohlenwasserstoffe als Waermeuebertragungsmittel
DE3127970A1 (de) * 1980-07-18 1982-05-06 Mitsubishi Oil Co., Ltd., Tokyo Kraftuebertragungsmaterial und verfahren zum betrieb von traktions-getrieben
JPS6043391B2 (ja) * 1981-02-13 1985-09-27 新日鐵化学株式会社 動力伝達装置用潤滑油
US4371726A (en) * 1981-02-13 1983-02-01 Nippon Steel Chemical Co., Ltd. Composition suitable for mechanical power transmission and process for operating traction drives
DE3729526A1 (de) 1987-09-03 1989-03-16 Nasser Kamilia Vorrichtung zur dehydrierung von fluessigen hydriden
US7101530B2 (en) 2003-05-06 2006-09-05 Air Products And Chemicals, Inc. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
JP2005138024A (ja) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd 水素化芳香族化合物からの脱水素反応用触媒とその触媒を利用した水素製造方法
JP2006248814A (ja) 2005-03-09 2006-09-21 Hitachi Ltd 水素供給装置および水素供給方法
JP4907210B2 (ja) * 2006-03-30 2012-03-28 千代田化工建設株式会社 水素の貯蔵輸送システム
US8003073B2 (en) * 2007-04-16 2011-08-23 Air Products And Chemicals, Inc. Autothermal hydrogen storage and delivery systems
JP4483901B2 (ja) 2007-06-29 2010-06-16 株式会社日立製作所 エンジンシステム
JP4523978B2 (ja) * 2008-03-28 2010-08-11 株式会社日立製作所 エンジンシステム
CN101575257B (zh) 2009-06-16 2012-06-13 华东师范大学 一种以甲苯为储氢剂的催化加氢方法
CN102101645A (zh) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 一种硼氢化钠水解制氢系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523044A (en) * 1983-09-23 1985-06-11 Atochem Compositions of polyarylalkane oligomers and process for their manufacture
US5017733A (en) * 1986-09-04 1991-05-21 Nippon Petrochemicals Company, Limited Electrical insulating oil composition
DE102007039478A1 (de) * 2007-08-21 2009-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wasserstoffgenerator sowie Verfahren zur Erzeugung von Wasserstoff
DE102008034221A1 (de) * 2008-07-23 2010-01-28 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffversorgungseinrichtung für ein mit Wasserstoff betreibbares Kraftfahrzeug

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3378848A1 (de) 2017-03-23 2018-09-26 Karlsruher Institut für Technologie Hydrierungsverfahren zur synthese von methan und methanol
WO2019211300A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds
WO2019211301A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Process for producing and regenerating hydrogen carrier compounds
EP3816204A1 (de) 2019-10-31 2021-05-05 Hysilabs, SAS Verfahren zur herstellung und regenerierung von wasserstoffträgerverbindungen
WO2021084046A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Process for producing and regenerating hydrogen carrier compounds
WO2021084044A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Hydrogen carrier compounds
WO2022008846A1 (fr) 2020-07-10 2022-01-13 Arkema France Purification de liquides aromatiques
FR3112289A1 (fr) 2020-07-10 2022-01-14 Arkema France Purification de liquides aromatiques
US11826734B2 (en) 2021-03-26 2023-11-28 Korea Advanced Institute Of Science And Technology Catalyst structure for LOHC dehydrogenation reactor
EP4108630A1 (de) 2021-06-25 2022-12-28 Hysilabs, SAS Wasserstoffträgerverbindungen
WO2022269009A1 (en) 2021-06-25 2022-12-29 Hysilabs Sas Hydrogen carrier compounds

Also Published As

Publication number Publication date
AU2013351445B2 (en) 2017-04-06
US20150266731A1 (en) 2015-09-24
EP2925669A1 (de) 2015-10-07
AU2013351445A1 (en) 2015-07-16
CN104812698A (zh) 2015-07-29
JP6280559B2 (ja) 2018-02-14
EP2925669B1 (de) 2018-10-31
JP2016505484A (ja) 2016-02-25
US10450194B2 (en) 2019-10-22
KR20150097558A (ko) 2015-08-26
CA2892228C (en) 2020-09-08
DE102012221809A1 (de) 2014-05-28
KR101954305B1 (ko) 2019-03-05
BR112015012183A2 (de) 2017-08-22
BR112015012183A8 (pt) 2019-10-01
KR20180030735A (ko) 2018-03-23
CN104812698B (zh) 2017-12-15
KR101992255B1 (ko) 2019-06-24
BR112015012183B1 (pt) 2022-01-11
ES2696080T3 (es) 2019-01-14
CA2892228A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
EP2925669B1 (de) Verwendung flüssiger verbindungen und verfahren zu deren verwendung als wasserstoffspeicher
EP3221257B1 (de) Verfahren und anlage zum erzeugen und speichern von wasserstoff
DE102013223589A1 (de) Anlage und Verfahren zm Speichern von Energie
EP3097071B1 (de) Verfahren zur stofflichen nutzung von wasserstoff
DE102011121704A1 (de) Anordnung und Verfahren zur Energiespeicherung in Gebäuden
DE102013022021B4 (de) Verfahren zur Methanisierung von Kohlendioxid aus Gasgemischen nach Abtrennung durch selektive reversible Adsorption
DE102013223588A1 (de) Anlage und Verfahren zum Speichern von Energie
DE102012005023A1 (de) Anordnung und Verfahren zur autonomen Bereitstellung von Elektrizität über Wasserstoff
DE102017217748A1 (de) Anlage und Verfahren zur Bereitstellung und weiteren Nutzung von Wasserstoffgas
DE102011079858A1 (de) Reaktor zur Freisetzung von Wasserstoff aus flüssigen Verbindungen
DE102013223591A1 (de) Anlage und Verfahren zum Speichern von Energie
EP2862849B1 (de) Verfahren zur Umwandlung von CO2 zu Kohlenwasserstoffen
Berger et al. Systematics in the Power-to-X Approach—Identification, Characterization and Clustering of Power-to-X Technologies
WO2019243073A1 (de) Verfahren und vorrichtung zum dehydrieren eines wasserstoffträgermediums
DE102007038965A1 (de) Speicherung von Wasserstoff
DE102014210464A1 (de) Verwendung eines Substrates zur Wasserstoffspeicherung und Verfahren zur Wasserstoffspeicherung und - freisetzung
DE102021202170A1 (de) Verfahren und Anlage zum Bereitstellen von gereinigtem Wasserstoffgas
Müller Technologies for the storage of hydrogen. Part 2: Irreversible conversion and comparison of technologies
DE102015216037A1 (de) Verfahren zur Bereitstellung eines Synthesegases
DE102021118709A1 (de) Verfahren zur Entsalzung von Wasser
DE102021102123A1 (de) Verfahren zur Trocknung von Klärschlamm
DE102012211788A1 (de) Verfahren zur photokatalytischen Reduktion von Kohlendioxid unter Einwirkung von Sonnenlicht
DE102018126344A1 (de) Katalysator zur Verwendung bei der Umwandlung von CO2 zu CH4 und Verfahren zur Herstellung eines Katalysators zur Verwendung bei der Umwandlung von CO2 zu CH4
EP3081528A1 (de) Verfahren zur freisetzung von wasserstoff aus dem addukt von ammoniak und boran sowie verwendung von übergangsmetallfreien multidentaten katalysatoren zur freisetzung von wasserstoff aus dem addukt von ammoniak und boran
EP3378848A1 (de) Hydrierungsverfahren zur synthese von methan und methanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013780357

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2892228

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015544397

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017177

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013351445

Country of ref document: AU

Date of ref document: 20131023

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015012183

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015012183

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150526