WO2014080486A1 - 車両用交流電動発電機 - Google Patents

車両用交流電動発電機 Download PDF

Info

Publication number
WO2014080486A1
WO2014080486A1 PCT/JP2012/080266 JP2012080266W WO2014080486A1 WO 2014080486 A1 WO2014080486 A1 WO 2014080486A1 JP 2012080266 W JP2012080266 W JP 2012080266W WO 2014080486 A1 WO2014080486 A1 WO 2014080486A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
phase
sets
phase bridge
stator
Prior art date
Application number
PCT/JP2012/080266
Other languages
English (en)
French (fr)
Inventor
浅井 孝公
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014548384A priority Critical patent/JP5837229B2/ja
Priority to US14/418,281 priority patent/US9621100B2/en
Priority to EP12888735.3A priority patent/EP2924873B1/en
Priority to CN201280077213.3A priority patent/CN104813581B/zh
Priority to PCT/JP2012/080266 priority patent/WO2014080486A1/ja
Publication of WO2014080486A1 publication Critical patent/WO2014080486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component

Definitions

  • the present invention converts a DC power of a vehicle battery or the like into a three-phase AC power to drive a rotating electric machine, or converts a three-phase AC power generated by the rotating electric machine into a DC power to convert a DC power source such as a vehicle battery.
  • the present invention relates to a vehicular AC motor generator to be supplied to the vehicle.
  • Patent Document 1 An example of a conventional automobile engine starter / generator is disclosed in Patent Document 1.
  • a three-phase winding (stator) of the rotating electrical machine is connected in a triangle, and a three-phase bridge circuit composed of a power semiconductor switch (power MOSFET) is connected to the three-phase winding.
  • Each power semiconductor switch is ON / OFF controlled at a predetermined timing by a control circuit, and when operating as an electric motor such as when starting an automobile engine, the DC power of the battery is converted into AC power and the stator 3
  • a phase alternating current flows and operates as a generator
  • the three-phase alternating current induced in the stator by being rotationally driven by the engine is rectified, converted into a direct current, and supplied to the battery.
  • a field winding (rotor) and a drive circuit for controlling the amount of current are also provided, and the output torque as a motor and the amount of power generation as a generator adjust the current amount of the field winding.
  • This can be changed.
  • an overvoltage suppression means at the time of load dump such as battery terminal disconnection during power generation operation
  • the avalanche effect of each power semiconductor switch is used and the rated voltage is set according to the required value for overvoltage suppression. To set. This is because the use of a Zener diode between the DC terminals of the power converter increases the size and cost of the device.
  • the parallel number of power semiconductor switches in each arm of the three-phase bridge circuit is determined by the value of the current flowing therethrough and the allowable temperature rise due to power loss, etc.
  • a plurality of power semiconductor switches are often used in parallel connection (for example, 4 parallel).
  • the distribution ratio of the turn-off loss changes according to the characteristic difference.
  • all the switching losses are concentrated on one power semiconductor switch having the lowest avalanche breakdown voltage, which may lead to overheat destruction.
  • FIG. 5 is a block diagram showing a conventional vehicular AC motor generator using a rotating electrical machine and a power converter.
  • the DC power of the battery 17 is converted into three-phase AC power by the power converter 11 to drive the rotating electrical machine 19 to apply a rotational force to an engine (not shown), or the rotating electrical machine 19 driven by the rotation of the engine.
  • 3 shows a system in which three-phase AC power generated by is converted into DC power by a power converter 11 and supplied to a battery 17 and a vehicle load (not shown).
  • the positive terminal and the negative terminal of the battery 17 are connected to the high potential side DC terminal B and the low potential side DC terminal E of the power conversion unit 12, respectively, and the three-phase AC terminals U, V, and W of the power conversion unit 12 are connected to The U-phase, V-phase, and W-phase stator windings of the rotating electrical machine 19 are connected to each other.
  • the wiring inductance 18 represents the sum of the parasitic inductances of the high-potential side and low-potential side wirings connecting the battery 17 and the power conversion unit 12.
  • the power conversion unit 12 is configured as a so-called three-phase bridge type in which N-channel type power MOSFETs 16a to 16f are two series and three parallel as semiconductor switches.
  • the power converter 12 has two series ends and a middle point connected to the DC terminals B and E and the AC terminals U, V, and W of the power converter 11, respectively. As shown in FIG.
  • each of the power MOSFETs 16a to 16f has a plurality of (four in this example) power MOSFETs connected in parallel according to the value of the current flowing through the stator of the rotating electrical machine 19, and the first main terminal (Drain D), a second main terminal (source S), and a control terminal (gate G), and the voltage between the gate and the source is controlled by the control circuit 13 to be turned on / off.
  • the power MOSFETs 16a to 16f are resistive elements that can be energized bidirectionally between the drain and the source when turned on, and diode elements that can be energized only in the direction from the source to the drain when turned off.
  • a small-capacitance capacitor 15 is connected between the DC terminals B and E of the power converter 11. This plays a role in reducing high frequency noise caused by switching of the power MOSFETs 16a to 16f and suppressing radiation noise such as radio noise and conduction noise.
  • PWM pulse width modulation
  • a large-capacity smoothing capacitor is not necessarily required, and thus is not mounted for reducing product size and cost.
  • the control circuit 13 sets the operation mode based on various sensor information such as a command from a host ECU (not shown), a voltage between B and E DC terminals, a field winding current of a rotor (not shown) of the rotating electrical machine 19 and a rotational position. Accordingly, the power MOSFETs 16a to 16f of the power conversion unit 12 are turned on / off, and the current of a field winding of a rotor (not shown) of the rotating electrical machine 19 is controlled, so that an output torque as a motor or a generator can be obtained. The amount of power generation is controlled.
  • Vbe is a voltage between the DC terminals B and E of the power converter 11
  • Idc is a current flowing through the high potential side DC line of the power converter 12
  • Iu, Iv and Iw are AC terminals U, V and W of the power converter 11. (The direction from the power converter 11 to the rotating electrical machine 19 is positive).
  • Point A is the time when the power MOSFET 16a (UH) is turned on (0 degrees) and turned off (180 degrees) by one pulse energization control of 180 degrees.
  • the combination pattern of the power MOSFETs 16a to 16f that is turned on in synchronization with the rotation of the rotating electrical machine 19 is sequentially changed every 60 degrees in terms of the electrical angle phase.
  • An AC voltage is applied between each of the terminals, and three-phase AC currents Iu, Iv, and Iw flow through the stator winding. Focusing on the turn-off timing of each of the power MOSFETs 16a to 16f, one of the high-potential side and low-potential side power MOSFETs on which the two phases are turned on is always turned off, and the direct current flowing from the battery 17 About half of the Idc is blocked.
  • FIG. 8 shows a typical example of the drain-source voltage Vds and drain current Id of the power MOSFET that are turned off in the section in which the power MOSFETs 16a to 16f are turned off in FIG. 6, and the shunt currents Id1 to Id4 of the power MOSFET chips connected in parallel. Shows a typical waveform. The surge voltage generated at turn-off is suppressed by the avalanche breakdown of each power MOSFET 16a to 16f.
  • the current value Id to be cut off by each of the power MOSFETs 16a to 16f is determined by the internal resistance of the battery, the power supply wiring resistance, the on-resistance of the power MOSFET turned on at the immediately preceding timing, the resistance of the stator winding, etc. Almost half of the maximum value of Idc is blocked.
  • the drain current Id 300 A is cut off.
  • the surge voltage due to the wiring inductance 18 when the current is interrupted is suppressed by a voltage according to the avalanche breakdown characteristics of the power MOSFETs 16a to 16f.
  • Vav is 25V.
  • the battery voltage is Vb: 12 V
  • the power supply wiring inductance is Ls: 5 ⁇ H.
  • the turn-off loss Eoff in the power MOSFET when each of the power MOSFETs 16a to 16f is turned off is expressed by the following equation with respect to the turn-off waveform of FIG. 8 and is 432 mJ, and the current cutoff time, that is, the avalanche breakdown time is Toff : 115 ⁇ s.
  • Id1 to 4 have a relationship of four equal parts of Id. In order to turn off while maintaining, the turn-off loss per one power MOSFET is also equally divided into 108 mJ.
  • Id1 to Id4 have different current distributions according to the characteristic difference.
  • FIG. 8B It is possible that all of the current Id is concentrated on Id1 of one power MOSFET having the lowest avalanche breakdown voltage, and the turn-off loss of the power MOSFET is concentrated on 432 mJ and one power MOSFET.
  • the rated temperature of commercialized power MOSFETs is generally 175 ° C. Assuming that the chip temperature immediately before the turn-off is 100 ° C, when the turn-off loss is evenly distributed to the four chips connected in parallel, the peak temperature of the chip is 131 ° C, and there is sufficient margin within the rated temperature. However, when it concentrates on one chip, it becomes 224 ° C., which greatly exceeds the rated temperature. As a result, it is considered that the power MOSFET is overheated.
  • a means to increase the chip size of the power MOSFET and make the parallel connection into one chip is also conceivable, but considering the cost balance due to the chip defect rate in the semiconductor wafer manufacturing process, a general upper limit in the power MOSFET is considered.
  • the size is about 50 mm 2 .
  • This upper limit size corresponds to the area of approximately two chip sizes mounted on the TO263 package product, but when a current exceeding 500 A flows as shown in FIG. 6, it is necessary to connect a plurality of power MOSFETs in parallel. Therefore, there is a possibility of overheating destruction due to a transient temperature rise due to concentration of one chip of turn-off loss as described above.
  • the present invention has been made to solve the above-described problems. By reducing a transient chip temperature rise at the time of current interruption due to turn-off of a semiconductor switch, the present invention is inexpensive, small, and highly reliable. It is an object of the present invention to provide an AC motor generator for a vehicle including a conversion unit.
  • the AC motor generator for a vehicle is a three-phase bridge in which each arm is constituted by a rotating electrical machine having a stator and a rotor, and a semiconductor switch having a first main terminal, a second main terminal, and a control terminal.
  • a power converter having a circuit and a control circuit for controlling the operation of the semiconductor switch of the three-phase bridge circuit, and converting the DC power from a DC power source into AC power by the three-phase bridge circuit controlled by the control circuit Converting and supplying electric power to the rotating electric machine to operate the rotating electric machine as an electric motor, and converting AC power generated by the driven rotating electric machine into DC power by the three-phase bridge circuit controlled by the control circuit
  • the rotating electric machine is operated as a generator by supplying electric power to the DC power source and the rotating electric machine is operated as the electric motor, one cycle synchronized with the electrical angle cycle of the rotor is used.
  • the stator of the rotating electrical machine is composed of a plurality of sets of three-phase windings
  • the conversion unit includes a plurality of sets of three-phase bridge circuits corresponding to a plurality of sets of the three-phase windings, and each three-phase winding of the stator passes through a corresponding three-phase bridge circuit of the power conversion unit.
  • a plurality of sets of the three-phase bridge circuits are controlled by shifting the switching timing from each other, and the semiconductor switches constituting each arm of the plurality of sets of the three-phase bridge circuits are one-chip MOSFETs. It is composed.
  • the stator of the rotating electric machine is constituted by a plurality of sets of three-phase windings
  • the power conversion unit is a plurality of sets of three-phase bridges corresponding to the plurality of sets of the three-phase windings.
  • Each of the three-phase windings of the stator is connected to a DC power source via a corresponding three-phase bridge circuit of the power conversion unit, and a plurality of sets of the three-phase bridge circuits are shifted in switching timing.
  • the semiconductor switches constituting each arm in each of the plurality of sets of the three-phase bridge circuits are configured by one chip MOSFET, the transient chip temperature at the time of current interruption due to the semiconductor switch turn-off The increase in the amount can be reduced, and an AC motor generator for a vehicle including an inexpensive, small, and highly reliable power conversion unit can be obtained.
  • FIG. 1 It is a block diagram which shows the alternating current motor generator for vehicles in Embodiment 1 of this invention. It is a figure which shows each part operation waveform at the time of driving a rotary electric machine by 180 degree
  • FIG. Embodiments of the present invention will be described with reference to the drawings.
  • 1 is a block diagram showing an automotive AC motor generator according to Embodiment 1 of the present invention.
  • the DC power of the battery 7 is converted into two sets of three-phase AC power by the power conversion unit 2 (operating as an electric motor) to drive the rotating electrical machine 9 to give a torque to an engine (not shown),
  • the three-phase AC power generated by the rotating electrical machine 9 driven by the rotation of an engine (not shown) (operating as a generator) is converted into DC power by the power converter 2 and supplied to the battery 7 and a vehicle load (not shown).
  • the system to do is shown.
  • the rotating electrical machine 9 has a stator and a rotor.
  • the AC motor generator 1 has a rotating electrical machine 9, a power conversion unit 2, a control circuit 3, and a capacitor 5, and the AC motor generator 1 includes a high potential side DC terminal B and a low potential side DC terminal E.
  • the positive terminal and the negative terminal of the battery 7 are connected to each other.
  • two sets of three-phase windings of ⁇ connection are arranged as the stator windings of the rotating electrical machine 9, and the UVW side stator windings and the XYZ side stator windings are the stator windings.
  • the three-phase AC terminals U, V, and W of the (first) three-phase bridge circuit 21 of the power converter 2 are connected to the U-phase, V-phase, and W-phase stator windings (first set) of the rotating electrical machine 9.
  • a three-phase winding) is connected to the three-phase AC terminals X, Y, and Z of the (second) three-phase bridge circuit 22 of the power converter 2, and the X-phase, Y-phase, and Z-phase stator windings of the rotating electrical machine 9 Lines (second set of three-phase windings) are respectively connected.
  • the three-phase AC terminals U, V, W, X, Y, and Z of the power conversion unit 2 are internal terminals of the AC motor generator 1, and are used as a vehicle wiring for connection between the power conversion unit 2 and the rotating electrical machine 9. There is no power harness.
  • the wiring inductance 8 represents the sum of the parasitic inductances of the high-potential side and low-potential side wirings connecting the battery 7 and the power converter 2.
  • the power converter 2 uses N-channel type power MOSFETs (6a to 6f, 6g to 6l) as semiconductor switches for each arm, and is composed of two sets of two series and three parallel so-called three-phase bridge circuits. The two series ends and the middle point are connected to the DC terminals B, E and AC terminals U, V, W and X, Y, Z of the power converter 2, respectively. As shown in FIG.
  • the power MOSFETs 6a to 6l are constituted by one chip that is not connected in parallel with the chip size according to the current value flowing through the stator of the rotating electrical machine 9, and the first main terminal (Drain D), a second main terminal (source S), and a control terminal (gate G), and the gate-source voltage is controlled by the control circuit 3 to be turned on / off.
  • the source element is a resistive element that can be energized in both directions, and the diode element can be energized only in the direction from the source to the drain when it is off.
  • the general upper limit size in the power MOSFET is about 50 mm 2 .
  • a small-capacitance capacitor 5 is connected between the DC terminals B and E of the AC motor generator 1, which reduces high-frequency noise caused by switching of the power MOSFETs 6a to 6l and radiates radio noise and the like. It plays a role in suppressing noise and conduction noise.
  • PWM pulse width modulation
  • a large-capacity smoothing capacitor is not necessarily required, so that it is mounted to reduce the size and cost of the product. Not done.
  • the control circuit 3 responds to an operation mode based on various sensor information such as a command from a host ECU (not shown), a voltage between B and E terminals, a field winding current of a rotor of a rotating electrical machine 9 (not shown) and a rotational position.
  • the power MOSFETs 6a to 6l of the power converter 2 are turned on / off, and the current of the field windings of the rotor of the rotating electrical machine 9 (not shown) is controlled so that the output torque as a motor and the generator as a generator are controlled. The amount of power generation is controlled.
  • the stator winding on the XYZ side is arranged with a phase delay of about 30 degrees in electrical angle with respect to the stator winding on the UVW side, and accordingly, XH, XL, YH, YL, ZH, and ZL on / off switching timings also have a phase delay of about 30 degrees in electrical angle with respect to UH, UL, VH, VL, WH, and WL, respectively.
  • 6a and 6b are the upper and lower arms of the U phase
  • 6c and 6d are the upper and lower arms of the V phase
  • 6e and 6f are the upper and lower arms of the W phase
  • 6g and 6h are the X-phase upper and lower arms
  • 6i and 6j are the Y-phase upper and lower arms
  • 6k and 6l are the Z-phase upper and lower arms.
  • Vbe is a voltage between the DC terminals B and E of the power conversion unit 2
  • Idc is a DC current flowing through the high potential side DC line of the power conversion unit 2
  • Iu, Iv, Iw, Ix, Iy, and Iz are of the power conversion unit 2.
  • Point A is the time when the power MOSFET 6a (UH) is turned on (0 degrees) and turned off (180 degrees) by one pulse energization control of 180 degrees.
  • the combination of the power MOSFETs 6a to 6l that are turned on in synchronization with the rotation of the rotating electrical machine 9 is changed by rotating the UVW side and the XYZ side sequentially in electrical angle phases every 60 degrees.
  • An AC voltage is applied between the terminals of the stator winding of the electric machine 9, and three-phase AC currents Iu, Iv, Iw, Ix, Iy, and Iz flow through the stator winding.
  • Ix, Iy, and Iz have a relationship of about 30 degrees behind the electrical angle phase with respect to Iu, Iv, and Iw.
  • FIG. 4 shows typical waveforms of the drain-source voltage Vds and the drain current Id of the power MOSFET that are turned off in the section where each of the power MOSFETs 6a to 6l is turned off in FIG.
  • the surge voltage generated at turn-off is suppressed by the avalanche breakdown of each power MOSFET 6a to 6l.
  • the current value Id that is cut off by each of the power MOSFETs 6a to 6l is determined by the internal resistance of the battery, the power supply wiring resistance, the on-resistance of the power MOSFET that is turned on immediately before, the resistance of the stator winding, etc. Almost a quarter of the maximum value of the current Idc is cut off.
  • the drain current Id is 150 A.
  • the surge voltage due to the wiring inductance 8 when the current is interrupted is suppressed by a voltage according to the avalanche breakdown characteristics of the power MOSFETs 6a to 6l.
  • Vav is 25V.
  • the battery voltage is Vb: 12 V
  • the power supply wiring inductance is Ls: 5 ⁇ H.
  • the turn-off loss Eoff in the power MOSFET when each of the power MOSFETs 6a to 6f is turned off is expressed by the following expression with respect to the turn-off waveform of FIG.
  • the current cutoff time that is, the time when the avalanche breakdown occurs is Toff: 58 ⁇ s.
  • the assumption conditions in the said calculation are made the same as the conditions in problem description of a prior art for the comparison with a prior art.
  • the rated temperature of a commercial power MOSFET is generally 175 ° C.
  • the chip temperature immediately before turn-off is 100 ° C.
  • the peak temperature of the chip is 119 ° C.
  • the rated temperature Since it has a sufficient margin within, it will not cause overheating destruction.
  • the semiconductor switch of each arm in which the chip size of 25 mm 2 is arranged in parallel is cut off 300A.
  • 150 A is cut off by the semiconductor switch of each arm constituted by one chip having a chip size of 40 mm 2 , and in the first embodiment, the cut-off current per unit area of the chip, that is, the current density is higher.
  • the chip temperature rise value is ⁇ 19K
  • the turn-off loss of one chip in four parallels in the prior art is evenly distributed to four parallel chips as well as smaller than ⁇ 124K It is approximately 40% reduction in reverse against ⁇ 31K cases.
  • the stator of the rotating electrical machine 9 is composed of two sets of three-phase windings, and the power conversion unit 2 has two three-phase bridge circuits corresponding to the two sets of three-phase windings.
  • the current cut-off time during turn-off is obtained because the current value cut off by turning off each of the power MOSFETs 6a to 6l is halved from the current value cut off by turning off each of the power MOSFETs 16a to 16f in FIG. As a result, the transient thermal resistance of the chips of the power MOSFETs 6a to 6l is reduced.
  • the stator of the rotating electrical machine 9 is configured by a plurality of sets (for example, two sets) of three-phase windings, and the power conversion unit 2 has the same number corresponding to the plurality of sets of the three-phase windings.
  • a plurality of sets of three-phase bridge circuits, the plurality of sets of three-phase bridge circuits are controlled by shifting the switching timing from each other, and the semiconductor switches constituting each arm of each of the plurality of sets of three-phase bridge circuits are: By being composed of one-chip power MOSFETs that are not connected in parallel, overheating destruction of the power MOSFETs due to concentration of switching loss in each arm can be prevented.
  • the power MOSFET is further reduced by reducing the turn-off loss by reducing the cut-off current value due to the turn-off of each arm, and suppressing the transient chip temperature rise value and the average chip power loss in the turn-off section. Can be prevented from overheating, and the reliability of the product can be improved. Further, it is possible to reduce the size of the power MOSFET chip and the heat dissipation circuit with a margin up to the rated temperature, thereby reducing the size and cost of the product.
  • the stator windings are installed as two sets of three-phase windings in a positional relationship having a phase difference of approximately 30 degrees in electrical angle with each other.
  • the power semiconductor switches of the two sets of three-phase bridge circuits according to the electrical phase difference of the stator windings, it becomes possible to reduce current fluctuations in the power supply lines and stator windings.
  • effects such as a reduction in driving torque ripple as an electric motor, a reduction in generated current ripple as a generator, a reduction in electromagnetic noise emitted from a rotating electrical machine, and a reduction in radiation and conduction noise (EMI).
  • EMI radiation and conduction noise
  • the chip size of one power MOSFET constituting each arm of the two sets of three-phase bridge circuits is 1 to 2 times the current allowed by the power MOSFET chip having a chip size of 50 mm 2 (in the case where the allowable current is 400 A). 400A to 800A).
  • the power MOSFET of each arm has a chip size of 50 mm 2 or less.
  • the arm power MOSFET needs to be 2 chips or more with a chip size of 50 mm 2 or less, or in the case of 1 chip, the chip size needs to be 50 mm 2 or more.
  • stator windings are two sets of three-phase windings
  • six power harnesses for the UVWXYZ phase are required as vehicle wiring when the rotating electrical machine and the power conversion unit are separate structures.
  • the rotating electric machine, the power conversion unit, and the control circuit are integrated, thereby realizing reduction in vehicle weight and cost reduction by reducing the power harness.
  • the embodiment can be appropriately modified or omitted within the scope of the invention.
  • the stator of the rotating electrical machine 9 includes two sets of three-phase windings
  • the power conversion unit 2 includes two sets of three-phase bridge circuits corresponding to the two sets of three-phase windings.
  • the stator of the rotating electrical machine 9 is composed of three sets of three-phase windings
  • the power converter 2 is composed of three three-phase bridge circuits corresponding to the three sets of the three-phase windings.
  • the three three-phase bridge circuits may be configured to be controlled by sequentially shifting the electrical phase of the switching timing by approximately 20 degrees.
  • stator of the rotating electrical machine 9 is configured by a plurality of sets of three-phase windings
  • the power conversion unit 2 is configured by the same number of a plurality of sets of three-phase bridge circuits corresponding to the plurality of sets of the three-phase windings. It may be.
  • the stator winding of the rotating electrical machine 9 is not limited to the ⁇ connection, and may be a Y connection according to desired characteristics.
  • the energization angle of the one-pulse energization control is not necessarily limited to 180 degrees, and if an excessive torque is generated or an excessive current flows, the energization angle may be reduced to 120 degrees or the like. .
  • the AC motor generator 1 has the rotating electric machine 9 and the power conversion unit 2 as an integrated structure, they may be separate structures, and in that case, the effect of the above-described integrated structure cannot be obtained. However, it is not necessarily limited to a monolithic structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

信頼性の高い電力変換部を備える車両用交流電動発電機を得る。回転電機の固定子は複数組の3相巻線で構成され、電力変換部は複数組の前記3相巻線に対応する複数組の3相ブリッジ回路で構成され、前記固定子の各3相巻線はそれぞれ前記電力変換部の対応する3相ブリッジ回路を介して直流電源と接続され、複数組の前記3相ブリッジ回路はスイッチングタイミングを互いにずらして制御され、複数組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する半導体スイッチは1チップのMOSFETで構成される。

Description

車両用交流電動発電機
 この発明は、車両用バッテリなどの直流電力を3相交流電力に変換して回転電機を駆動したり、回転電機が発電した3相交流電力を直流電力に変換して車両用バッテリなどの直流電源に供給したりする車両用交流電動発電機に関するものである。
 従来の自動車用エンジン始動機兼発電機の一例が特許文献1に示されている。回転電機の3相巻線(固定子)が三角形に結線され、3相巻線にはパワー半導体スイッチ(パワーMOSFET)で構成された3相ブリッジ回路が接続されている。各パワー半導体スイッチは、制御回路によって所定のタイミングでオン・オフ制御され、自動車のエンジンを始動させる時など電動機として動作させる際には、バッテリの直流電力を交流電力に変換して固定子に3相交流電流を流し、発電機として動作する際には、エンジンによって回転駆動されることで固定子に誘起された3相交流電流を整流して直流電流に変換してバッテリに供給する。
 また、この例では界磁巻線(回転子)とその電流量を制御する駆動回路も備えられており、電動機としての出力トルクや発電機としての発電量は界磁巻線の電流量を調整することで可変することができる。また、特許文献1では発電動作中におけるバッテリ端子外れ等のロードダンプ(load dump)時の過電圧抑制手段として、各パワー半導体スイッチのアバランシェ効果を利用し、その定格電圧を過電圧抑制の要求値に応じて設定することが示されている。これは、電力変換部の直流端子間にツェナーダイオードを用いると装置のサイズとコストが増加するためである。
特表2005-506028号公報
 一方、このような電力変換部を用いて電動機として動作させた場合には、各パワー半導体スイッチがターンオフするタイミングにその主端子の両端には、配線の寄生インダクタンスによるサージ電圧が発生するが、そのサージエネルギーもパワー半導体スイッチのアバランシェ効果を用いてパワー半導体自身で吸収することになる。
 3相ブリッジ回路の各アームにおけるパワー半導体スイッチの並列個数は、そこに流れる電流値や電力損失による温度上昇の許容値などによって決定されるが、自動車のエンジン始動用として用いられる交流電動発電機では、最大で500Aを超える電流が流れるため、複数のパワー半導体スイッチを並列接続(例えば4並列)にして用いられることが多い。ここで、アバランシェ降伏特性が異なったものが並列接続された場合には、その特性差に応じてターンオフ損失の配分割合が変化する。極端な場合には最もアバランシェ降伏電圧が低い1つのパワー半導体スイッチに全てのスイッチング損失が集中して、過熱破壊に至る可能性がある。また、並列接続する各半導体スイッチにおける電力損失が不均等になることにより、電力損失が最大となる半導体スイッチに合わせて熱設計を行なう必要が生じるため、半導体スイッチの総面積が増大したり、電力変換装置の放熱回路が大型化したりすると共に、製品のコストアップに繋がる。
 前記の従来技術の問題点の詳細を図5~8を用いて以下に説明する。図5は回転電機と電力変換部を用いた従来の車両用交流電動発電機を示す構成図である。図5では、バッテリ17の直流電力を電力変換装置11によって3相の交流電力に変換して回転電機19を駆動して図示しないエンジンに回転力を与えたり、エンジンの回転によって駆動され回転電機19が発電した3相の交流電力を電力変換装置11によって直流電力に変換してバッテリ17および図示しない車両負荷に供給するシステムを示している。
 電力変換部12の高電位側直流端子Bと低電位側直流端子Eには、バッテリ17の正極端子と負極端子がそれぞれ接続され、電力変換部12の3相交流端子U、V、Wには回転電機19のU相、V相、W相の固定子巻線がそれぞれ接続される。なお、配線インダクタンス18は、バッテリ17と電力変換部12を接続する高電位側および低電位側の配線の寄生インダクタンスの総和を代表して表現している。
 電力変換部12は、半導体スイッチとしてNチャネル型のパワーMOSFET16a~16fが2直列3並列のいわゆる3相ブリッジ型に構成されている。電力変換部12は、2直列の両端および中点が電力変換装置11の直流端子B、Eおよび交流端子U、V、Wにそれぞれ接続されている。パワーMOSFET16a~16fは、それぞれ図7に示すように、回転電機19の固定子に流れる電流値に応じて複数(この例では4個)のパワーMOSFETが並列接続されており、第1の主端子(ドレインD)、第2の主端子(ソースS)、および制御端子(ゲートG)を持ち、ゲート・ソース間の電圧を制御回路13で制御することでオン・オフさせる。パワーMOSFET16a~16fは、オン時にはドレイン・ソース間が双方向に通電可能な抵抗素子となり、オフ時にはソースからドレインの方向のみ通電可能なダイオード素子となる。
 また、電力変換装置11の直流端子B,E間には小容量のコンデンサ15が接続されている。これはパワーMOSFET16a~16fのスイッチングなどに起因する高周波ノイズを低減し、ラジオノイズ等の放射ノイズや伝導ノイズを抑制するための役割を担っている。電力変換部12がパルス幅変調(PWM)制御での電力変換を行う場合には、直流端子B,E間の電圧を平滑するために大容量のコンデンサをコンデンサ15の位置に接続するのが一般的であるが、ここでは後述する1パルス通電方式にて電力変換を行うため、大容量の平滑コンデンサは必ずしも必要ではないため、製品の小型化と低コスト化のために搭載していない。
 制御回路13は、図示しない上位ECUからの指令、B,E直流端子間電圧、回転電機19の図示しない回転子の界磁巻線電流や回転位置など様々なセンサ情報を基に、動作モードに応じて電力変換部12のパワーMOSFET16a~16fのオン・オフ駆動を行うと共に、回転電機19の図示しない回転子の界磁巻線の電流制御を行うことで、電動機としての出力トルクや発電機としての発電量を制御している。
 次に、図5において、回転電機19を回転子の電気角周期に同期した通電角180度の1パルス通電制御を適用して駆動した、低速回転領域における各部動作波形について、図6を用いて説明する。UH,UL、VH、VL、WH、WLは、制御回路13によって制御される各パワーMOSFET16a~16fのオン・オフ論理を示したものであり、ハイがオン状態をローがオフ状態を示している。なお、同相のパワーMOSFET(16aと16b、16cと16d、16eと16f)のオン・オフ切り替わりタイミングでは同時オンによる同相アーム短絡を防止するための時間(デッドタイム)が確保されている。Vbeは電力変換装置11の直流端子B,E間の電圧、Idcは電力変換部12の高電位側直流ラインを流れる電流、Iu、Iv、Iwは電力変換装置11の交流端子U、V、Wを流れる電流(電力変換装置11から回転電機19への方向が正)を示している。A点はパワーMOSFET16a(UH)がオン(0度)から、180度の1パルス通電制御されオフ(180度)した時間である。
 このように180度通電制御では、回転電機19の回転に同期させてオンさせるパワーMOSFET16a~16fの組み合わせパターンを電気角位相で60度毎に順に変化させることで、回転電機19の固定子巻線の各端子間に交流電圧が印加され、固定子巻線に3相の交流電流Iu、Iv、Iwが流れる。パワーMOSFET16a~16fの各ターンオフのタイミングに着目すると、常に高電位側と低電位側のパワーMOSFETのうち2相がオンになっている側の片方がターンオフして、バッテリ17から流れてくる直流電流Idcの約半分が遮断される。それにより配線インダクタンス18には逆起電圧が発生するため、Vbeの波形には電気角位相で60度毎にサージ電圧が観測される。一方で、パワーMOSFET16a~16fがターンオンする際には、電流がソースからドレインの方向、すなわちパワーMOSFET16a~16fの寄生ダイオードに流れている位相でオンするため、Vbe波形に目立った変化は現れない。
 次に、パワーMOSFET16a~16fのそれぞれのターンオフ時(例えば図6のA点)に発生するパワーMOSFETチップにおける電力損失(ターンオフ損失)について図8を用いて説明する。図8は図6において各パワーMOSFET16a~16fがターンオフする区間のターンオフする当該パワーMOSFETのドレイン・ソース間電圧Vdsとドレイン電流Id、及び並列接続されたパワーMOSFETチップの各分流電流Id1~4の典型的な波形を示す。なお、ターンオフ時に発生するサージ電圧は各パワーMOSFET16a~16fのアバランシェ降伏にて抑制している。このとき各パワーMOSFET16a~16fが遮断する電流値Idはバッテリの内部抵抗や電源配線抵抗、直前のタイミングでオンしているパワーMOSFETのオン抵抗、固定子巻線の抵抗などによって決まるが、直流電流Idcの最大値のほぼ半分が遮断される。
 ここでは直流電流Idcの最大値が600Aの場合を想定して、ドレイン電流Id:300Aを遮断するとする。電流遮断時の配線インダクタンス18によるサージ電圧は、パワーMOSFET16a~16fのアバランシェ降伏特性に従った電圧で抑制され、ここではVav:25Vとする。また、バッテリ電圧をVb:12V、電源配線インダクタンスをLs:5μHと仮定する。各パワーMOSFET16a~16fがターンオフする際の当該パワーMOSFETにおけるターンオフ損失Eoffは、図8のターンオフ波形に対して下記の式で表され、432mJとなり、電流遮断時間すなわちアバランシェ降伏している時間は、Toff:115μsとなる。
   Eoff=Ls・Id2/2・Vav/(Vav―Vb)
   Toff=Id・Ls/(Vav―Vb)
 ここで、並列接続した図7の4つのパワーMOSFETのアバランシェ降伏特性が完全に揃っている場合には、図8の(a)図のように、Id1~4はIdの4等分の関係を保ちながらターンオフするため、1つのパワーMOSFETあたりのターンオフ損失も4等分されて108mJとなる。一方、アバランシェ降伏特性が異なったものが並列接続された場合には、その特性差に応じてId1~4は異なる電流配分となり、極端な場合には、図8の(b)図のように、最もアバランシェ降伏電圧が低い1つのパワーMOSFETのId1にIdの電流の全てが集中して、そのパワーMOSFETのターンオフ損失は432mJと1つのパワーMOSFETに集中することもあり得る。
 次に、前記ターンオフ損失による各パワーMOSFETチップの過渡的な温度上昇値について説明する。現在において、パワーMOSFETを用いて100A以上の電流が流れるアプリケーションでは、一般的にJEDEC(Joint Electron Device Engineering Council)規格のTO263パッケージ相当の製品をその電流値に応じて並列接続して使用されることが多いが、ここでもチップサイズ25mmのパワーMOSFETチップが搭載されたTO263パッケージ相当の製品を図7の4並列の各パワーMOSFETに適用したと仮定すると、損失パルス幅115μsに対するその過渡熱抵抗は約0.033K/Wである。これらの条件からId:300A遮断時のパワーMOSFETのチップ温度上昇値を簡易計算すると下記のようになる。
ターンオフ損失が並列接続された4チップに均等配分された場合:108mJ/115μs×0.033K/W=31K
ターンオフ損失が並列接続された4チップのうちの1チップに集中した場合:432mJ/115μs×0.033K/W=124K
 現在、製品化されているパワーMOSFETの定格温度は175℃が一般的である。ターンオフ直前のチップ温度が100℃であった場合を想定すると、ターンオフ損失が並列接続されている4チップに均等配分された場合は、チップのピーク温度は131℃であり定格温度以内に十分な余裕を持って収まっているが、1チップに集中した場合は、224℃となってしまい、定格温度を大幅に超過している。この結果、パワーMOSFETが過熱破壊に至ることが考えられる。
 このようなアバランシェ降伏を用いた電流遮断におけるチップ温度上昇は、並列数を増加させてもそれらのアバランシェ降伏特性のばらつきにより、1チップに集中してしまうと、緩和させることはできない。また、パワーMOSFETの製造工程におけるアバランシェ降伏特性のばらつきは必ず存在するものであるため、並列接続するパワー半導体スイッチの特性を揃えて損失を均等配分させることが不可欠となるが、そのためには製品に搭載するパワーMOSFET部品を特性選別して組み合わせる必要があり、製品の組み立て工程でのコストが掛かり現実的ではない。
 一方で、パワーMOSFETのチップサイズを大きくして並列接続分を1チップ化する手段も考えられるが、半導体ウエハ製造工程でのチップ不良率によるコストバランスを考慮すると、パワーMOSFETでの一般的な上限サイズは50mm程度とされている。この上限サイズはTO263パッケージ製品に搭載されているチップサイズのおおよそ2個分の面積に相当するが、図6のように500Aを超える電流が流れる場合にはやはり複数のパワーMOSFETを並列接続する必要が生じるので、上述したようなターンオフ損失の1チップ集中による過渡的な温度上昇で過熱破壊に至る可能性がある。また、過熱破壊に至らないまでも、並列接続する各パワーMOSFETチップにおける電力損失が不均等になることにより、電力損失が最大となるパワーMOSFETチップに合わせて熱設計を行なう必要が生じるため、パワーMOSFETチップの総面積が増大したり、電力変換装置の放熱回路が大型化したりすると共に、製品のコストアップに繋がる。
 この発明は、以上のような問題点を解決するためになされたもので、半導体スイッチのターンオフによる電流遮断時の過渡的なチップ温度上昇を小さくすることで、安価で小型かつ信頼性の高い電力変換部を備えた車両用交流電動発電機を提供することを目的とする。
 この発明の車両用交流電動発電機は、固定子と回転子を有する回転電機と、第1の主端子,第2の主端子及び制御端子を有する半導体スイッチで各アームが構成される3相ブリッジ回路を有する電力変換部と、前記3相ブリッジ回路の半導体スイッチの動作を制御する制御回路とを備え、直流電源からの直流電力を前記制御回路で制御される前記3相ブリッジ回路で交流電力に変換して前記回転電機に電力を供給して前記回転電機を電動機として動作させ、駆動される前記回転電機で発電した交流電力を前記制御回路で制御される前記3相ブリッジ回路で直流電力に変換して前記直流電源に電力を供給して前記回転電機を発電機として動作させ、前記回転電機を前記電動機として動作させるときは、前記回転子の電気角周期に同期した1パルス通電方式で制御を行い、前記半導体スイッチのターンオフ時に発生するサージ電圧はアバランシェ降伏により抑制する交流電動発電機において、前記回転電機の固定子は複数組の3相巻線で構成され、前記電力変換部は複数組の前記3相巻線に対応する複数組の3相ブリッジ回路で構成され、前記固定子の各3相巻線はそれぞれ前記電力変換部の対応する3相ブリッジ回路を介して前記直流電源と接続され、複数組の前記3相ブリッジ回路はスイッチングタイミングを互いにずらして制御され、複数組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する前記半導体スイッチは1チップのMOSFETで構成されるものである。
 この発明に係る車両用交流電動発電機は、回転電機の固定子は複数組の3相巻線で構成され、電力変換部は複数組の前記3相巻線に対応する複数組の3相ブリッジ回路で構成され、前記固定子の各3相巻線はそれぞれ前記電力変換部の対応する3相ブリッジ回路を介して直流電源と接続され、複数組の前記3相ブリッジ回路はスイッチングタイミングを互いにずらして制御され、複数組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する半導体スイッチは1チップのMOSFETで構成されるようにしたので、半導体スイッチのターンオフによる電流遮断時の過渡的なチップ温度上昇を小さくすることができ、安価で小型かつ信頼性の高い電力変換部を備えた車両用交流電動発電機を得ることができる。この発明の前記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
この発明の実施の形態1における車両用交流電動発電機を示す構成図である。 図1において180度通電制御にて回転電機を駆動した場合の各部動作波形を示す図である。 この発明に用いるパワー半導体スイッチの内部構成を示す図である。 図3の構成における電流遮断時の電圧・電流波形を示す図である。 回転電機と電力変換部を用いた従来の車両用交流電動発電機を示す構成図である。 図5において180度通電制御にて回転電機を駆動した場合の各部動作波形を示す図である。 従来のパワーMOSFETの内部構成を示す図である。 図7の構成における電流遮断時の電圧・電流波形を示す図である。
実施の形態1.
 この発明の実施の形態を図面に基づいて説明する。図1はこの発明の実施の形態1における車両用交流電動発電機を示す構成図である。図1では、バッテリ7の直流電力を電力変換部2によって2組の3相の交流電力に変換して(電動機として動作する)回転電機9を駆動して図示しないエンジンに回転力を与えたり、図示しないエンジンの回転によって駆動された(発電機として動作する)回転電機9が発電した3相の交流電力を電力変換部2によって直流電力に変換してバッテリ7および図示しない車両負荷に供給したりするシステムが示されている。回転電機9は固定子と回転子を有している。
 交流電動発電機1は回転電機9、電力変換部2、制御回路3およびコンデンサ5が一体構造となっており、交流電動発電機1の高電位側直流端子Bと低電位側直流端子Eには、バッテリ7の正極端子と負極端子がそれぞれ接続される。実施の形態1では、回転電機9の固定子巻線として、Δ結線の3相巻線が2組配置されており、UVW側の固定子巻線とXYZ側の固定子巻線は、固定子に互いに電気角で略30度の位相差をもつ位置関係で設置されている。電力変換部2の(第1の)3相ブリッジ回路21の3相交流端子U、V、Wには、回転電機9のU相、V相、W相の固定子巻線(第1組の3相巻線)が、電力変換部2の(第2の)3相ブリッジ回路22の3相交流端子X、Y、Zには回転電機9のX相、Y相、Z相の固定子巻線(第2組の3相巻線)が、それぞれ接続される。なお、電力変換部2の3相交流端子U、V,W、X、Y、Zは交流電動発電機1の内部端子であり、電力変換部2と回転電機9との接続に車両配線としてのパワーハーネスは存在しない。また、配線インダクタンス8はバッテリ7と電力変換部2を接続する高電位側および低電位側の配線の寄生インダクタンスの総和を代表して表現している。
 電力変換部2は、各アームの半導体スイッチとしてNチャネル型のパワーMOSFET(6a~6f,6g~6l)を用い、2直列3並列のいわゆる3相ブリッジ回路の2組で構成されている。2直列の両端および中点が電力変換部2の直流端子B、Eおよび交流端子U、V、WとX、Y、Zにそれぞれ接続されている。図3に示すように、パワーMOSFET6a~6l(各アームの半導体スイッチ)は回転電機9の固定子に流れる電流値に応じたチップサイズの並列接続で無い1チップで構成され、第1の主端子(ドレインD)、第2の主端子(ソースS)、および制御端子(ゲートG)を持ち、ゲート・ソース間の電圧を制御回路3で制御することでオン・オフさせるが、オン時にはドレイン・ソース間が双方向に通電可能な抵抗素子となり、オフ時にはソースからドレインへの方向のみ通電可能なダイオード素子となる。さらに、実施の形態1では、半導体ウエハ製造工程でのチップ不良率によるコストバランスを考慮すると、パワーMOSFETでの一般的な上限サイズは50mm程度とされている。
 また、交流電動発電機1の直流端子B,E間には小容量のコンデンサ5が接続されており、これはパワーMOSFET6a~6lのスイッチングなどに起因する高周波ノイズを低減し、ラジオノイズ等の放射ノイズや伝導ノイズを抑制するための役割を担っている。電力変換部2がパルス幅変調(PWM)制御での電力変換を行う場合には、直流端子B,E間の電圧を平滑するために大容量のコンデンサをコンデンサ5の位置に接続するのが一般的であるが、この発明の実施の形態では後述する1パルス通電方式にて電力変換を行うため、大容量の平滑コンデンサは必ずしも必要ではないため、製品の小型化と低コスト化のために搭載していない。
 制御回路3は、図示しない上位ECUからの指令、B,E端子間電圧、図示しない回転電機9の回転子の界磁巻線電流や回転位置など様々なセンサ情報を基に、動作モードに応じて電力変換部2のパワーMOSFET6a~6lのオン・オフ駆動を行うと共に、図示しない回転電機9の回転子の界磁巻線の電流制御を行うことで、電動機としての出力トルクや発電機としての発電量を制御している。
 次に、図1において、回転電機9を回転子の電気角周期に同期した通電角180度の1パルス通電制御(1パルス通電方式)を適用して駆動した低速回転領域における各部動作波形について図2を用いて説明する。UH,UL、VH、VL、WH、WL、XH,XL、YH、YL、ZH、ZLは制御回路3によって制御される各パワーMOSFET6a~6lのオン・オフ論理を示したものであり、ハイがオン状態をローがオフ状態を示している。前述の通りXYZ側の固定子巻線は、UVW側の固定子巻線に対して電気角で約30度の位相遅れの関係で配置されているので、それに伴って、XH,XL、YH、YL、ZH、ZLのオン・オフ切り替えのタイミングも、UH,UL、VH、VL、WH、WLに対してそれぞれ電気角で約30度の位相遅れの関係となっている。なお、同相のパワーMOSFET(6aと6b、6cと6d、6eと6f、6gと6h、6iと6j、6kと6l)のオン・オフ切り替わりタイミングでは同時オンによる同相アーム短絡を防止するための時間(デッドタイム)が確保されている。
 なお、6aと6bは、U相の上アームと下アームであり、6cと6dは、V相の上アームと下アームであり、6eと6fは、W相の上アームと下アームである。同様に、6gと6hは、X相の上アームと下アームであり、6iと6jは、Y相の上アームと下アームであり、6kと6lは、Z相の上アームと下アームである。Vbeは電力変換部2の直流端子B,E間の電圧、Idcは電力変換部2の高電位側直流ラインを流れる直流電流、Iu、Iv、Iw、Ix、Iy、Izは電力変換部2の交流端子U、V、W、X、Y、Zを流れる電流(電力変換部2→回転電機9への方向が正)を示している。A点はパワーMOSFET6a(UH)がオン(0度)から、180度の1パルス通電制御されオフ(180度)した時間である。
 このように180度通電制御では、回転電機9の回転に同期させてオンさせるパワーMOSFET6a~6lの組み合わせパターンをUVW側とXYZ側でそれぞれ電気角位相で60度毎に順に変化させることで、回転電機9の固定子巻線の各端子間に交流電圧が印加され、固定子巻線に3相の交流電流Iu、Iv、Iw、Ix、Iy、Izが流れる。また、Ix、Iy、IzはIu、Iv、Iwに対してそれぞれ電気角位相で約30度遅れの関係となっている。
 パワーMOSFET6a~6lの各ターンオフのタイミングに着目すると、UVW側とXYZ側のそれぞれで、常に高電位側と低電位側のパワーMOSFETのうち2相がオンになっている側の片方がターンオフして、バッテリ7から流れてくる直流電流Idcの約4分の1が遮断される。それにより配線インダクタンス8には逆起電圧が発生するため、Vbeの波形には電気角位相で30度毎にサージ電圧が観測される。一方で、パワーMOSFET6a~6lがターンオンする際には、電流がソースからドレインの方向、すなわちパワーMOSFET6a~6lの寄生ダイオードに流れている位相でオンするため、Vbe波形に目立った変化は現れない。
次に、パワーMOSFET6a~6lのそれぞれのターンオフ時(例えば図2のA点)に発生するパワーMOSFETチップにおける電力損失(ターンオフ損失)について図4を用いて説明する。図4は図2において各パワーMOSFET6a~6lがターンオフする区間におけるターンオフする当該パワーMOSFETのドレイン・ソース間電圧Vdsとドレイン電流Idの典型的な波形を示す。なお、ターンオフ時に発生するサージ電圧は各パワーMOSFET6a~6lのアバランシェ降伏にて抑制している。このとき各パワーMOSFET6a~6lが遮断する電流値Idは、バッテリの内部抵抗や電源配線抵抗、直前のタイミングでオンしているパワーMOSFETのオン抵抗、固定子巻線の抵抗などによって決まるが、直流電流Idcの最大値のほぼ4分の1が遮断される。
 ここでは、直流電流Idcの最大値が600Aの場合を想定して、ドレイン電流Id:150Aの遮断とする。電流遮断時の配線インダクタンス8によるサージ電圧は、パワーMOSFET6a~6lのアバランシェ降伏特性に従った電圧で抑制され、ここではVav:25Vとする。また、バッテリ電圧をVb:12V、電源配線インダクタンスをLs:5μHと仮定する。各パワーMOSFET6a~6fがターンオフする際の当該パワーMOSFETにおけるターンオフ損失Eoffは、図4のターンオフ波形に対して下記の式で表され、108mJとなり、電流遮断時間すなわちアバランシェ降伏している時間はToff:58μsとなる。なお、前記計算における仮定条件は、従来技術との比較のため従来技術の課題説明における条件と同じにしている。
   Eoff=Ls・Id2/2・Vav/(Vav―Vb)
   Toff=Id・Ls/(Vav―Vb)
次に、前記ターンオフ損失によるパワーMOSFET6a~6lの過渡的な温度上昇値について説明する。図3の1チップのパワーMOSFETのチップサイズを従来技術の課題説明の部分で適用したチップサイズ25mmの1.6倍に相当する40mmとして、TO263パッケージと同等の放熱構造を持ったパッケージに搭載したと仮定すると、損失パルス幅58μsに対するその過渡熱抵抗は0.01k/W程度となる。これらの条件からId:150A遮断時のパワーMOSFETのチップ温度上昇値を簡易計算すると下記のようになる。
108mJ/58μs×0.01K/W=19K
現在、製品化されているパワーMOSFETの定格温度は175℃が一般的であるが、ターンオフ直前のチップ温度が100℃であった場合を想定すると、チップのピーク温度は119℃であり、定格温度以内に十分な余裕を持って収まっているため過熱破壊に至ることはない。また、各アームの半導体スイッチがターンオフする区間における過渡的なチップ温度上昇値を従来技術と比較すると、従来技術ではチップサイズ25mmを4並列にした各アームの半導体スイッチで300Aを遮断するのに対して、実施の形態1ではチップサイズ40mmの1チップで構成した各アームの半導体スイッチで150Aを遮断しており、実施の形態1の方がチップ単位面積あたりの遮断電流、すなわち電流密度が25%増大している(製品における半導体スイッチのチップ総面積は20%減少している)にも係わらず、チップ温度上昇値はΔ19Kであり、従来技術で4並列のうちの1チップにターンオフ損失が集中した場合のΔ124Kよりも小さいのはもちろんのこと、4並列のチップにターンオフ損失が均等分配された場合のΔ31Kに対しても逆に約40%低減している。
 前記は、図1に示すように、回転電機9の固定子は2組の3相巻線で構成され、電力変換部2は2組の前記3相巻線に対応する2つの3相ブリッジ回路で構成されることによって、各パワーMOSFET6a~6lのターンオフによって遮断する電流値が、図5の各パワーMOSFET16a~16fのターンオフによって遮断する電流値に対して半減したことで、ターンオフ中の電流遮断時間が半減し、結果として各パワーMOSFET6a~6lのチップの過渡熱抵抗が小さくなった効果である。
また、製品全体のパワー半導体スイッチにて発生するターンオフ損失の合計を従来技術と比較すると、図1の各パワーMOSFET6a~6lのターンオフによって遮断する電流値が半減することにより、各ターンオフ損失は図5のパワーMOSFET16a~16fの各ターンオフ損失の4分の1に減少し、一方で電気角1周期での電流遮断回数が2倍になる結果、電力変換部2におけるターンオフ損失の合計は従来技術に対して半減する。
 このように、交流電動発電機において、回転電機9の固定子は複数組(例えば2組)の3相巻線で構成され、電力変換部2は複数組の前記3相巻線に対応する同数の複数組の3相ブリッジ回路で構成され、複数組の前記3相ブリッジ回路はスイッチングタイミングを互いにずらして制御され、複数組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する半導体スイッチは、並列接続でない、1チップのパワーMOSFETで構成されることで、各アーム内でのスイッチング損失の集中によるパワーMOSFETの過熱破壊を防止することができる。また、前記により各アームのターンオフによる遮断電流値を小さくしてターンオフ損失を低減し、ターンオフ区間での過渡的なチップ温度上昇値や平均的なチップ電力損失を抑制することで、より一層パワーMOSFETの過熱破壊を防止することができ、製品の信頼性を向上させることができる。さらに、定格温度までの余裕分でパワーMOSFETのチップを小型化することや放熱回路を小型化することが可能となり、製品の小型化やコストダウンを図ることができる。
 また、上述した効果の他にも、実施の形態1では固定子巻線を2組の3相巻線として互いに電気角で略30度の位相差をもつ位置関係で設置し、それらに対応した2組の3相ブリッジ回路のパワー半導体スイッチを固定子巻線の電気的位相差に応じて制御を行ったことにより、電源ラインや固定子巻線の電流変動を低減することが可能となり、その結果として電動機としての駆動トルクリプルの低減、発電機としての発電電流リプルの低減、回転電機から発せられる電磁音の低減、さらには放射・伝導ノイズ(EMI)の低減などの効果も期待できる。
 また、2組の3相ブリッジ回路の各アームを構成する1チップのパワーMOSFETのチップサイズを50mm以下とすることで、半導体ウエハ製造工程でのチップ不良率を抑えることができ、低コストで信頼性の高い製品を提供することができる。なお、実施の形態1は、回転電機を電動機として動作させるときの直流電流の最大値が、チップサイズ50mmのパワーMOSFETチップが許容する電流の1倍~2倍(許容電流が400Aの場合は400A~800A)となる製品に適用するとよい。その理由は、前記が1倍未満の場合は、車両用交流電動発電機を1組の3相固定子巻線と3相ブリッジ回路で構成しても各アームのパワーMOSFETをチップサイズ50mm以下の1チップで構成することが可能であり、前記が2倍以上の場合には、車両用交流電動発電機を2組の3相固定子巻線と3相ブリッジ回路で構成しても、各アームのパワーMOSFETをチップサイズ50mm以下の2チップ以上、または1チップの場合はチップサイズを50mm以上とする必要があるためである。
 また、固定子巻線を2組の3相巻線とすると、回転電機と電力変換部が別々の構造体である場合には、UVWXYZ相の6本のパワーハーネスが車両配線として必要になるが、実施の形態1では回転電機と電力変換部及び制御回路を一体構造にすることにより、パワーハーネスの削減による車両重量の低減と低コスト化を実現することができる。
 なお、この発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。例えば、実施の形態1では、回転電機9の固定子は2組の3相巻線で構成され、電力変換部2は2組の前記3相巻線に対応する2組の3相ブリッジ回路で構成されるものを示したが、回転電機9の固定子は3組の3相巻線で構成され、電力変換部2は3組の前記3相巻線に対応する3つの3相ブリッジ回路で構成され、3つの前記3相ブリッジ回路はスイッチングタイミングの電気的位相を順に略20度ずつずらして制御されるようにしてもよい。さらに、回転電機9の固定子は複数組の3相巻線で構成され、電力変換部2は複数組の前記3相巻線に対応する同数の複数組の3相ブリッジ回路で構成されるようにしてもよい。また、回転電機9の固定子巻線はΔ結線に限らず所望の特性に応じてY結線としてもよい。また、1パルス通電制御の通電角は必ずしも180度に限るものではなく、必要以上のトルクが発生する、または必要以上の電流が流れる場合には、通電角を120度などに絞っても構わない。また、交流電動発電機1は回転電機9と電力変換部2を一体構造としたが、それらを別々の構造体としても良く、その際には上述した一体構造にすることによる効果は得られないが、必ずしも一体構造に限られるものではない。

Claims (4)

  1.  固定子と回転子を有する回転電機と、
    第1の主端子,第2の主端子及び制御端子を有する半導体スイッチで各アームが構成される3相ブリッジ回路を有する電力変換部と、
    前記3相ブリッジ回路の半導体スイッチの動作を制御する制御回路とを備え、
    直流電源からの直流電力を前記制御回路で制御される前記3相ブリッジ回路で交流電力に変換して前記回転電機に電力を供給して前記回転電機を電動機として動作させ、
    駆動される前記回転電機で発電した交流電力を前記制御回路で制御される前記3相ブリッジ回路で直流電力に変換して前記直流電源に電力を供給して前記回転電機を発電機として動作させ、
    前記回転電機を前記電動機として動作させるときは、前記回転子の電気角周期に同期した1パルス通電方式で制御を行い、前記半導体スイッチのターンオフ時に発生するサージ電圧はアバランシェ降伏により抑制する交流電動発電機において、
    前記回転電機の固定子は複数組の3相巻線で構成され、前記電力変換部は複数組の前記3相巻線に対応する複数組の3相ブリッジ回路で構成され、
    前記固定子の各3相巻線はそれぞれ前記電力変換部の対応する3相ブリッジ回路を介して前記直流電源と接続され、
    複数組の前記3相ブリッジ回路はスイッチングタイミングを互いにずらして制御され、
    複数組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する前記半導体スイッチは1チップのMOSFETで構成されることを特徴とする車両用交流電動発電機。
  2.  前記回転電機の固定子は互いに電気角で略30度の位相差をもつ位置関係で設置された2組の3相巻線で構成され、前記電力変換部は2組の前記3相巻線に対応する2組の3相ブリッジ回路で構成され、
    2組の前記3相ブリッジ回路は前記2組の固定子巻線の電気的位相差に合わせてスイッチングタイミングを互いに略30度ずらして制御されることを特徴とする請求項1記載の車両用交流電動発電機。
  3.  2組の前記3相ブリッジ回路のそれぞれにおける各アームを構成する前記半導体スイッチはチップサイズ50mm以下の1チップのMOSFETで構成されることを特徴とする請求項2記載の車両用交流電動発電機。
  4.  前記回転電機,前記電力変換部及び前記制御回路を一体構造にした請求項1~請求項3のいずれか1項に記載の車両用交流電動発電機。
PCT/JP2012/080266 2012-11-22 2012-11-22 車両用交流電動発電機 WO2014080486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014548384A JP5837229B2 (ja) 2012-11-22 2012-11-22 車両用交流電動発電機
US14/418,281 US9621100B2 (en) 2012-11-22 2012-11-22 Vehicular AC electric generator
EP12888735.3A EP2924873B1 (en) 2012-11-22 2012-11-22 Alternating current electric power generator for vehicle
CN201280077213.3A CN104813581B (zh) 2012-11-22 2012-11-22 车辆用交流电动发电机
PCT/JP2012/080266 WO2014080486A1 (ja) 2012-11-22 2012-11-22 車両用交流電動発電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080266 WO2014080486A1 (ja) 2012-11-22 2012-11-22 車両用交流電動発電機

Publications (1)

Publication Number Publication Date
WO2014080486A1 true WO2014080486A1 (ja) 2014-05-30

Family

ID=50775691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080266 WO2014080486A1 (ja) 2012-11-22 2012-11-22 車両用交流電動発電機

Country Status (5)

Country Link
US (1) US9621100B2 (ja)
EP (1) EP2924873B1 (ja)
JP (1) JP5837229B2 (ja)
CN (1) CN104813581B (ja)
WO (1) WO2014080486A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015113798A1 (de) 2015-08-20 2017-02-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebssystem für ein Elektrofahrzeug, Elektrofahrzeug und Verfahren zum Antreiben eines solchen
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法
JP2019213246A (ja) * 2018-05-31 2019-12-12 三菱電機株式会社 回転電機の制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106218B4 (de) * 2013-05-09 2021-11-25 Denso Corporation Drehende elektrische Maschine für ein Fahrzeug
JP6056827B2 (ja) * 2014-09-30 2017-01-11 株式会社デンソー 回転電機制御装置
KR20160148216A (ko) * 2015-06-16 2016-12-26 현대자동차주식회사 얼터네이터의 리플 제어 장치 및 이를 이용한 리플 제어 방법
JP2017158318A (ja) * 2016-03-02 2017-09-07 日立オートモティブシステムズ株式会社 モータ駆動装置
DE102016221347A1 (de) 2016-10-28 2018-05-03 Robert Bosch Gmbh Elektrische Maschine mit Einzelphasenansteuerung
DE102016221349A1 (de) 2016-10-28 2018-05-03 Robert Bosch Gmbh Elektrische Maschine mit Teilmaschinen
CN106788002A (zh) * 2017-03-24 2017-05-31 上海理工大学 电动驱动装置以及电动设备
DE112018007438T5 (de) * 2018-04-06 2021-01-07 Mitsubishi Electric Corporation Wechselstrom-Rotationsmaschinenvorrichtung
JP7067339B2 (ja) * 2018-07-25 2022-05-16 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039932A (ja) * 2003-07-14 2005-02-10 Yaskawa Electric Corp 9相モータ駆動装置
JP2005506028A (ja) 2001-10-09 2005-02-24 ヴァレオ エキプマン エレクトリク モトゥール 自動車用の、整流ブリッジを有する交流発電機
JP2008228399A (ja) * 2007-03-09 2008-09-25 Nippon Soken Inc 車両用交流モータ装置
JP2012033714A (ja) * 2010-07-30 2012-02-16 Fuji Electric Co Ltd 半導体装置、半導体装置の製造方法及び半導体装置の実装方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657992B1 (en) * 1993-12-07 1998-04-15 Denso Corporation Alternating current generator for motor vehicles
JP3853263B2 (ja) * 2002-07-08 2006-12-06 Necエレクトロニクス株式会社 半導体装置
JP4185157B2 (ja) * 2005-07-25 2008-11-26 松下電器産業株式会社 半導体素子及び電気機器
JP4876661B2 (ja) * 2006-03-24 2012-02-15 株式会社デンソー 車両用発電電動装置
CN102077460A (zh) * 2008-06-27 2011-05-25 莫斯科技株式会社 Pm电动机驱动电源装置
JP5510729B2 (ja) * 2009-07-09 2014-06-04 株式会社デンソー 回転機用電力変換装置
JP5510802B2 (ja) * 2010-02-23 2014-06-04 株式会社デンソー 車両用発電機
JP5434696B2 (ja) * 2010-03-08 2014-03-05 株式会社デンソー 車両用発電機
CN202172366U (zh) * 2011-06-14 2012-03-21 常州工学院 一种三相交流驱动电源发生器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506028A (ja) 2001-10-09 2005-02-24 ヴァレオ エキプマン エレクトリク モトゥール 自動車用の、整流ブリッジを有する交流発電機
JP2005039932A (ja) * 2003-07-14 2005-02-10 Yaskawa Electric Corp 9相モータ駆動装置
JP2008228399A (ja) * 2007-03-09 2008-09-25 Nippon Soken Inc 車両用交流モータ装置
JP2012033714A (ja) * 2010-07-30 2012-02-16 Fuji Electric Co Ltd 半導体装置、半導体装置の製造方法及び半導体装置の実装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924873A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015113798A1 (de) 2015-08-20 2017-02-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebssystem für ein Elektrofahrzeug, Elektrofahrzeug und Verfahren zum Antreiben eines solchen
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法
JP2019213246A (ja) * 2018-05-31 2019-12-12 三菱電機株式会社 回転電機の制御装置

Also Published As

Publication number Publication date
JP5837229B2 (ja) 2015-12-24
US20150188479A1 (en) 2015-07-02
EP2924873A1 (en) 2015-09-30
CN104813581B (zh) 2017-08-22
JPWO2014080486A1 (ja) 2017-01-05
US9621100B2 (en) 2017-04-11
EP2924873B1 (en) 2022-02-23
CN104813581A (zh) 2015-07-29
EP2924873A4 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5837229B2 (ja) 車両用交流電動発電機
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
JP5697591B2 (ja) 電動機駆動装置、及び冷凍空調装置
US7088595B2 (en) Reversible buck-boost chopper circuit, and inverter circuit with the same
JP6091632B2 (ja) 電力変換装置
US20130038140A1 (en) Switching circuit
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
JP6402828B2 (ja) 充電共用インバータ
JP6218906B1 (ja) 電力変換装置
CN107148738A (zh) 电力变换装置
TWI680630B (zh) 用於逆變器的控制裝置
JPWO2019059292A1 (ja) 駆動電源装置
JP2008154431A (ja) モータ制御装置
JP5788540B2 (ja) 電動機駆動装置、及び冷凍空調装置
JP2016001991A (ja) 電動機駆動装置、及び冷凍空調装置
JP7002619B1 (ja) 電力変換装置
JP5441951B2 (ja) 回転電機
WO2024203552A1 (ja) インバータ装置、およびそれを備えたモータ駆動装置並びに冷凍装置
JP7191074B2 (ja) 交流回転機の制御装置
JP7109519B2 (ja) 交流回転機の制御装置
JP7421435B2 (ja) モータ制御装置およびモータ制御方法
WO2020217853A1 (ja) 電気機器
US10848049B2 (en) Main conversion circuit, power conversion device, and moving body
JP2010178601A (ja) 電力変換装置及び電力変換装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548384

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418281

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012888735

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE