WO2014080450A1 - 焼結機の酸素-気体燃料供給装置 - Google Patents

焼結機の酸素-気体燃料供給装置 Download PDF

Info

Publication number
WO2014080450A1
WO2014080450A1 PCT/JP2012/080037 JP2012080037W WO2014080450A1 WO 2014080450 A1 WO2014080450 A1 WO 2014080450A1 JP 2012080037 W JP2012080037 W JP 2012080037W WO 2014080450 A1 WO2014080450 A1 WO 2014080450A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
hood
gas fuel
supply pipe
fuel supply
Prior art date
Application number
PCT/JP2012/080037
Other languages
English (en)
French (fr)
Inventor
友司 岩見
岩崎 克博
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2012395098A priority Critical patent/AU2012395098B2/en
Priority to KR1020157010483A priority patent/KR20150059784A/ko
Priority to EP12888770.0A priority patent/EP2924132B1/en
Priority to CN201280077185.5A priority patent/CN104797720B/zh
Priority to PCT/JP2012/080037 priority patent/WO2014080450A1/ja
Publication of WO2014080450A1 publication Critical patent/WO2014080450A1/ja
Priority to PH12015501006A priority patent/PH12015501006A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines

Definitions

  • the present invention relates to an oxygen-gas fuel supply apparatus in a downward suction type Dwightroid sintering machine that manufactures high-quality sintered ore for blast furnace raw material by enriching oxygen and supplying gaseous fuel.
  • Sinter ore which is the main raw material for the blast furnace ironmaking method, is generally manufactured through a process as shown in FIG.
  • the raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1.
  • the cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm.
  • This sintered material is then transferred from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7 to 400 to 800 mm on the endless moving type sintering machine pallet 8.
  • the charge layer 9 is charged with a thickness and is also referred to as a sintered bed.
  • the carbon material on the surface of the charging layer is ignited by an ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through a wind box 11 disposed immediately below the pallet 8.
  • the carbonaceous material in the charging layer is sequentially burned, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake.
  • the sintered cake thus obtained is then crushed and sized, and an agglomerate of about 5 mm or more is recovered as a product sintered ore and supplied to a blast furnace.
  • the carbonaceous material in the charging layer ignited by the ignition furnace 10 is continuously burned by the air sucked from the upper layer toward the lower layer in the charging layer, and has a width in the thickness direction.
  • a combustion / melting zone (hereinafter also simply referred to as “combustion zone”) is formed.
  • the melted portion of the combustion zone obstructs the flow of the air that is sucked in, so that the sintering time is extended and productivity is lowered.
  • the combustion zone gradually moves from the upper layer to the lower layer as the pallet 8 moves downstream, and after the combustion zone has passed, the sintered cake layer ( Hereinafter, simply referred to as “sintered layer”) is generated.
  • the moisture contained in the sintering material is evaporated by the combustion heat of the carbon material and concentrated in the lower sintering material that has not yet risen in temperature. To form a wet zone. If this moisture concentration exceeds a certain level, the voids between the sintered raw material particles that become the flow path of the suction gas are filled with moisture, which becomes a factor that increases the airflow resistance as in the melting zone.
  • FIG. 2 shows that in the charging layer when the combustion zone moving in the 600 mm thick charging layer is at a position of about 400 mm on the pallet in the charging layer (200 mm below the charging layer surface). This shows the distribution of pressure loss and temperature, and the pressure loss distribution at this time shows that about 60% is in the wet zone and about 40% is in the combustion zone.
  • the production amount (t / hr) of the sintering machine is generally determined by the production rate (t / hr ⁇ m 2 ) ⁇ sintering machine area (m 2 ). That is, the production amount of the sintering machine varies depending on the width and length of the sintering machine, the thickness of the raw material charging layer, the bulk density of the sintering raw material, the sintering (combustion) time, the yield, and the like. Therefore, to increase the production of sintered ore, the permeability (pressure loss) of the charge layer is improved to shorten the sintering time, or the yield is increased by increasing the cold strength of the sintered cake before crushing. It is considered effective to improve the above.
  • Fig. 3 shows the change in temperature and time at a certain point in the charging layer when the sintered ore productivity is high and low, that is, when the pallet moving speed of the sintering machine is fast and slow. It is.
  • the time for which the sintering raw material particles start to melt is maintained at a temperature of 1200 ° C. or higher is represented by T 1 when the productivity is low and T 2 when the productivity is high. Because at high productivity faster moving speed of the pallet, the high temperature zone holding time T 2, is shorter than the T 1 of the at low productivity. However, if the holding time at a high temperature of 1200 ° C. or more is shortened, the firing becomes insufficient, the cold strength of the sintered ore is lowered, and the yield is lowered.
  • FIG. 4 shows that the carbon material in the surface of the charging layer ignited in the ignition furnace is continuously burned by the sucked air to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer. It is the figure which showed typically the process in which is formed.
  • FIG. 5A shows the temperature distribution when the combustion zone is present in each of the upper layer portion, middle layer portion, and lower layer portion of the charging layer shown in the thick frame shown in FIG. It is shown schematically.
  • the strength of the sintered ore is influenced by the product of the temperature and time maintained at a temperature of 1200 ° C. or higher, and the greater the value, the higher the strength of the sintered ore.
  • the middle layer and lower layer in the charging layer are preheated by being transported by the air sucked by the combustion heat of the carbon material in the upper charging layer, so that it can be held at a high temperature for a long time.
  • the upper portion of the charge layer is not preheated, and therefore the combustion heat is insufficient, and the combustion melting reaction (sintering reaction) necessary for sintering tends to be insufficient.
  • the yield distribution of the sintered ore in the cross section in the width direction of the charging layer becomes lower in the upper layer portion of the charging layer as shown in FIG.
  • the pallet width ends also have a low yield due to heat dissipation from the pallet side walls and supercooling due to the large amount of air passing through, so that sufficient holding time in the high temperature range necessary for sintering cannot be secured. Become.
  • the amount of carbonaceous material (powder coke) added to the sintering raw material has been increased.
  • the temperature in the sintered layer can be increased and the time for maintaining the temperature at 1200 ° C. or more can be extended.
  • the maximum reached temperature exceeds 1400 ° C., and for the reasons explained below, the reducibility of the sintered ore and the cold strength are reduced.
  • Non-Patent Document 1 shows the tensile strength (cold strength) and reducibility of various minerals generated in the sintered ore during the sintering process, as shown in Table 1.
  • a melt starts to be generated at 1200 ° C.
  • calcium ferrite having the highest strength among the constituent minerals of sintered ore and relatively high reducibility is generated.
  • a sintering temperature 1200 ° C. or higher is required.
  • amorphous silicate calcium silicate
  • secondary hematite which is the starting point for reducing powderization of sintered ore, is obtained from Mag.
  • Mag As shown in the phase diagram of FIG. ss + Liq. Since it precipitates when it is heated up to the zone and cooled, it is possible to suppress the reduction powdering by producing sintered ore through the path (2) instead of the path (1) shown on the phase diagram. It is important to do.
  • Non-Patent Document 1 in order to ensure the quality of sintered ore, the control of the maximum temperature reached during combustion and the holding time in the high temperature range are very important management items. It is disclosed that the quality of the ore is almost determined. Therefore, in order to obtain a sintered ore that is excellent in reduced powder (RDI), high strength, and excellent reducibility, the calcium ferrite produced at a temperature of 1200 ° C. or higher is decomposed into calcium silicate and secondary hematite. Therefore, it is important that the temperature in the charging layer is 1200 ° C. (calcium ferrite) without exceeding the maximum reached temperature in the charging layer during sintering of over 1400 ° C., preferably over 1380 ° C. It is necessary to keep the temperature above (solidus temperature) for a long time.
  • the time maintained in the temperature range of 1200 ° C. to 1400 ° C. will be referred to as “high temperature range retention time”.
  • Patent Document 1 when producing sintered ore, in addition to coke added to the sintering raw material, an exothermic gas is added to the air sucked into the sintering raw material, A technique for improving the strength, production rate, and product yield of sintered ore has been proposed.
  • Patent Document 2 when the charging layer upper layer part is sufficiently fired, the mass flow rate of the oxygen-containing gas supplied to the charging layer is set within the range in which the charging layer upper layer part is fired.
  • the mass flow rate is 1.01 to 2.6 times greater, the differential pressure in the charging layer is increased, the transition speed of the combustion melting zone is extremely accelerated, the production rate is increased, and the product yield and quality are excellent.
  • a method for obtaining a new product has been proposed.
  • the technique of Patent Document 2 can increase the layer thickness of the charging layer and increase the pallet moving speed, and can improve the production rate of the sintering machine.
  • Patent Document 3 discloses that the oxygen concentration in the combustion air sucked into the charging layer is enriched to 35% or more while the upper layer portion of the charging layer on the pallet is sintered. Has proposed an oxygen-enriched operation method that improves productivity and product yield.
  • the technology of Patent Document 3 improves the combustibility of coke by increasing the oxygen concentration in the combustion air to 35% or more, and increases the maximum temperature, but the combustibility is improved. As a result, there is a problem that the high temperature region holding time of 1200 ° C. or higher necessary for sintering becomes insufficient.
  • the inventors reduced the amount of carbonaceous material added to the sintering raw material, and then variously diluted below the lower combustion limit concentration downstream of the ignition furnace of the sintering machine.
  • gaseous fuel By introducing gaseous fuel into the charging layer from above the pallet and combusting the gaseous fuel in the charging layer, both the maximum temperature reached in the charging layer and the holding time in the high temperature range are controlled within an appropriate range. Technologies are proposed in Patent Documents 4 to 6 and the like.
  • a combustion-supporting gas that burns carbonaceous material or gaseous fuel when determining the range of the maximum temperature that is preferable for sintering and the high-temperature range holding time.
  • air containing 21 vol% oxygen is used as it is. This is because the charging layer during actual sintering should have an atmosphere different from the atmosphere due to the combustion reaction of carbonaceous materials and gaseous fuel, and the composition and composition of the combustion-supporting gas. If this changes, the gas atmosphere in the charging layer also changes, and naturally, the maximum temperature reached during sintering and the high temperature region holding time should also change.
  • the inventors clarified the high temperature region holding time required for sintering, determined the appropriate region to which the gaseous fuel should be supplied, and supported the combustion-supporting gas for the highest temperature reached during sintering and the high temperature region holding time.
  • the gas fuel is supplied to the region where the high temperature region retention time is less than 150 seconds when sintering with the combustion heat of the carbonaceous material to extend the high temperature region retention time.
  • an oxygen supply pipe is arranged in a hood installed above the charging layer in the region where the gaseous fuel is supplied, and oxygen is enriched by ejecting oxygen into the atmosphere. ing.
  • oxygen is enriched by ejecting oxygen into the atmosphere.
  • the oxygen supply pipe is not particularly limited, for example, a pipe made of general structural rolled steel (SS steel) used as a general city gas pipe is used as the oxygen supply pipe.
  • SS steel general structural rolled steel
  • the pipe may be burned out instantly by high-purity oxygen flowing through the pipe, causing serious operational troubles.
  • An object of the present invention is to provide an oxygen-gas fuel supply device that is suitable for use in a sintering machine that performs a sintering operation in which gaseous fuel is supplied and at the same time enriches oxygen, and is free from the risk of burning by oxygen. It is in.
  • a plurality of baffle plates in the horizontal direction and a plurality of baffle plates in the horizontal direction are provided in the middle in the height direction in the hood provided in the apparatus for supplying gaseous fuel, and the baffle plate
  • a gaseous fuel supply pipe is provided below to supply gaseous fuel
  • an oxygen supply pipe is provided above the baffle plate so that oxygen is jetted into the air downward from the horizontal direction.
  • the part that may be burned out is composed of copper alloy pipe and / or Ni alloy pipe. As a result, the present invention has been completed.
  • the present invention is an air which is enriched by jetting oxygen into the atmosphere in the hood provided above the raw material charging layer downstream of the ignition furnace, and further supplying a gaseous fuel diluted below the lower combustion limit concentration. Is sucked with a wind box disposed under the pallet and introduced into the charging layer, and the gaseous fuel and the carbonaceous material are burned in the charging layer to produce sintered ore.
  • a mountain-shaped plate material is arranged in a plurality of rows with a gap in the horizontal direction and a plurality of rows in the vertical direction so that the gaps are staggered.
  • a gas fuel supply pipe for supplying gaseous fuel to the air is disposed below the baffle plate, and oxygen is disposed in the air above the baffle plate. It is characterized by having an oxygen supply pipe to be ejected to Oxygen of the sintering machine - a gaseous fuel supply system.
  • the oxygen supply pipe in the oxygen-gas fuel supply apparatus of the present invention is characterized in that the oxygen ejection direction is arranged downward from the horizontal direction.
  • the oxygen supply pipe in the oxygen-gas fuel supply apparatus of the present invention is arranged above the gap between the baffle plates so that the direction of oxygen ejection is directed toward the gap between the baffle plates and the baffle plates. It is characterized by.
  • the oxygen supply pipe is arranged above the top of the baffle plate so that the direction of oxygen ejection is directed toward the gap between the baffle plate and the baffle plate. To do.
  • the oxygen supply pipe is characterized in that at least a portion provided in the hood is made of copper alloy and / or Ni alloy.
  • At least the portion provided in the hood is made of a copper alloy containing 60 mass% or more of copper and / or contains 60 mass% or more of Ni. It is made of Ni alloy.
  • the oxygen supply pipe in the oxygen-gas fuel supply apparatus of the present invention is characterized in that a backfire preventer is installed outside the hood and in the vicinity of the hood.
  • the present invention when producing a sintered ore by supplying a gaseous fuel using a downward suction type Dwytroid sintering machine, oxygen is prevented from being annealed and oxygen is leaked to the outside. Therefore, it is possible to supply and enrich oxygen in the air in the hood of the gaseous fuel supply device, so that high-quality and high-quality sintered ore for blast furnace raw materials with excellent reducibility can be safely and stably It can be manufactured.
  • the manufacturing method of the sintered ore to which the technology of the present invention is applied uses a downward suction type sintering machine to charge a sintered raw material containing fine ore and carbonaceous material onto a circulating moving pallet. And igniting the carbon material on the surface of the charging layer in the ignition furnace, and in the hood provided above the charging layer downstream of the ignition furnace, air containing gaseous fuel diluted below the lower combustion limit concentration, Patent Documents 4 to 4 are disclosed in that a sintered ore is produced by sucking with a wind box disposed under a pallet and introducing it into the charging layer, and burning the gaseous fuel and the carbonaceous material in the charging layer. This is the same as the technique disclosed in FIG.
  • the gaseous fuel to be supplied into the charging layer is, for example, an ironworks subsidiary such as blast furnace gas (B gas), coke oven gas (C gas), mixed gas of blast furnace gas and coke oven gas (M gas), or the like.
  • combustible gases such as LNG (natural gas), city gas, methane gas, ethane gas, propane gas, and mixed gases thereof can be suitably used.
  • unconventional natural gas (shale gas) collected from a shale layer and different from conventional natural gas can be used in the same manner as LNG.
  • the gaseous fuel supplied into the charging layer is diluted below the lower combustion limit concentration of the gaseous fuel. If the concentration of the diluted gas fuel is higher than the lower combustion limit concentration, combustion may occur above the charging layer, and the effect of supplying the gaseous fuel may be lost or an explosion may occur.
  • the concentration of the diluted gaseous fuel is preferably 3/4 or less of the lower combustion limit concentration at normal temperature in the atmosphere, more preferably 1/5 or less of the lower combustion limit concentration, and further preferably 1/10 or less of the lower combustion limit concentration. is there.
  • the concentration of the diluted gas fuel is less than 1/100 of the lower combustion limit concentration, the calorific value due to combustion is insufficient and the effect of improving the strength and yield of the sintered ore cannot be obtained. 1%.
  • the concentration of diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%. The range of ⁇ 1.0 vol% is more preferred, and the range of 0.05 to 0.5 vol% is even more preferred.
  • the method for producing sintered ore to which the technology of the present invention is applied is characterized in that gaseous fuel is supplied and oxygen is enriched, as in Japanese Patent Application No. 2011-058651.
  • gaseous fuel is supplied and oxygen is enriched, as in Japanese Patent Application No. 2011-058651.
  • the reason for this is that, by enriching oxygen, the gas atmosphere during sintering moves in the direction of oxidation, resulting in an increase in the proportion of calcium ferrite produced in the sintered ore by sintering and the proportion of calcium silicate produced. Therefore, it is possible to obtain a sintered ore with high strength and excellent reducibility, and by simultaneously performing gaseous fuel and oxygen enrichment, the sintering reaction can be enhanced and the sintering time can be shortened.
  • the combustion position of the carbonaceous material in the gaseous fuel and the sintered raw material is shifted to a lower temperature side and the temperature distribution curve in the charging layer is wide, the high temperature range holding time can be extended. This is because it is possible to improve the quality of the sintered ore after raising the production rate.
  • the effect of the oxygen enrichment can be obtained even if the oxygen concentration contained in the air to be sucked in the charging layer exceeds the oxygen concentration (21 vol%) in the atmosphere, but it is 24.5 vol% or more. It is preferable to enrich it.
  • the oxygen amount to be enriched is preferably added so that the oxygen concentration in the air is in the range of more than 21 vol% and less than 35 vol%. More preferably, it is in the range of 24.5 to 30 vol%, and still more preferably in the range of 24.5 to 28 vol%.
  • a horizontal direction is provided in the middle in the height direction of the hood installed above the raw material charging layer for supplying the gaseous fuel.
  • a baffle plate arranged in a plurality of rows and in a plurality of rows in a vertical direction so that the gap portions are staggered, and a gas fuel supply pipe for supplying gaseous fuel into the air below the baffle plate Dispose of raw gaseous fuel into the air at a high speed where blow-off phenomenon occurs, and instantly make it a diluted gaseous fuel that is below the lower combustion limit concentration, or gas fuel that has been previously diluted below the lower combustion limit concentration in the air And supplying gaseous fuel into the air, an oxygen supply pipe is disposed above the baffle plate, and oxygen needs to be injected into the air to be enriched.
  • gaseous fuel such as LNG is generally lighter than air, so that the baffle plate is provided and the gap of the baffle plate is lowered from above to below. This is to prevent the gaseous fuel from leaking above the hood by restricting the air flowing in the direction and increasing the flow velocity.
  • the baffle plate is not particularly limited as long as it prevents the gaseous fuel supplied in the lower part from leaking upward and allows the oxygen-enriched air to flow smoothly downward.
  • a plurality of plate materials processed into a U-shape are arranged with a gap in the horizontal direction, and the gap portions are staggered in a vertical direction (tournament shape).
  • the width of the baffle plates is about 200 to 500 mm
  • the gap between the baffle plates is about 50 to 200 mm in the horizontal direction, and 50 in the vertical direction. It is desirable that the thickness is about 200 mm and the number of baffle plates is about 2-5.
  • position the said baffle plate so that the pressure loss of an opening part may be 10 mmAq or less from a viewpoint of preventing leakage of gaseous fuel to the hood upper part.
  • FIG. 10 shows an example in which the direction in which the gaseous fuel is ejected from the gaseous fuel pipe is horizontal, but the gaseous fuel is uniformly mixed with the air until the gaseous fuel is introduced into the charging layer, and the lower combustion limit concentration As long as it is diluted below, it may be horizontal or downward and there is no particular limitation.
  • oxygen spouted to the upper part of the baffle plate is that oxygen has a higher specific gravity than air, so the ratio of leaking out of the hood is low.
  • oxygen spouted from the supply pipe is uniformly diluted to the target concentration while passing through the gap between the baffle plates, and then mixed with the gaseous fuel. This is because direct contact can be prevented.
  • the oxygen supplied from the supply pipe does not necessarily have to be pure oxygen. However, the amount of oxygen supplied is much larger than that of gaseous fuel, so that the amount ejected from the pipe increases when the oxygen concentration decreases. Therefore, it is not preferable.
  • the direction in which oxygen is ejected from the oxygen supply pipe is preferably downward from the horizontal direction from the viewpoint of preventing leakage of oxygen outside the hood.
  • FIG. 11 shows the hood when oxygen is blown out from the oxygen supply pipe into the air above the baffle plate in the hood to increase the oxygen concentration from 21 vol% to 27 vol% when a cross wind of 10 m / sec is received.
  • the simulation results comparing the amount of the element leaking outside when oxygen is ejected in the horizontal direction and when it is ejected downward are shown. From this figure, it can be seen that when oxygen is ejected in the horizontal direction, oxygen tends to leak.
  • the oxygen supply pipe When the direction of oxygen ejected from the oxygen supply pipe is set downward, specifically, as shown in FIG. 12, the oxygen supply pipe is disposed above the gap between the baffle plate and the oxygen is supplied. You may make it eject toward the clearance gap between a baffle plate and a baffle plate.
  • This oxygen ejection method has an advantage that oxygen can be sucked smoothly and leakage upward can be suppressed because an oxygen jet is directly blown between the baffle plates.
  • an oxygen supply pipe may be provided above the top of the baffle plate, and oxygen may be ejected toward the gap (gap portion) between the baffle plate and the baffle plate.
  • This oxygen jetting method has an advantage that the number of gaseous fuel supply pipes can be reduced depending on conditions because oxygen can be supplied from one gaseous fuel supply pipe toward two gaps.
  • the oxygen-gas fuel supply apparatus shown in FIG. 10 has one or more stages with a gap in the middle in the height direction of the hood installed above the charging layer in the area where the gas fuel is supplied.
  • a baffle plate is provided, and a gaseous fuel supply pipe is provided below the baffle plate, and the raw gas fuel is blown off in a horizontal direction at a high speed, causing the phenomenon to instantaneously dilute below the lower combustion limit concentration.
  • an oxygen supply pipe is provided above the baffle plate to supply oxygen toward the baffle plate.
  • the oxygen supplied from the oxygen supply pipe is uniformly diluted to the target concentration to be enriched while passing through the gap between the baffle plates, and then merges with the gaseous fuel. Designed to prevent direct contact with gaseous fuel. Note that the oxygen supplied from the pipe may not be pure oxygen.
  • the baffle plate disposed above the gaseous fuel supply pipe is to prevent the LNG and other gaseous fuels from being lighter than the air, and thus preventing leakage and scattering above the hood. Since oxygen has a higher specific gravity than gaseous fuel, there is little risk of diffusion outside the hood unless strong winds blow.
  • the point of concern in the oxygen enricher is that the sintering machine always sinters the sintered raw material with the combustion heat of burning coke and gaseous fuel, so that there is always a fire type. It is. Therefore, for example, when the oxygen supply pipe is a general structural rolled steel (SS steel) or the like generally used for city gas pipes, even if oil-free treatment is performed, for this reason, when the oxygen outlet (nozzle or opening) of the oxygen supply pipe is ignited, there is a risk that the oxygen supply pipe to the valve stand will burn out in an instant due to the reaction heat of iron and oxygen.
  • SS steel general structural rolled steel
  • gaseous fuel ejected from the gaseous fuel supply pipe is ejected at a high speed at which a blow-off phenomenon occurs from the ejection port, ignition can be prevented. Moreover, even if it ignites, it will only burn there and the piping itself will not burn out.
  • oxygen is supplied in a large amount as compared with gaseous fuel, high-concentration oxygen is ejected from a large ejection port at a high speed of 10 m / second or more.
  • FIG. 14 it is considered that the oxygen burnout is more likely to occur as the oxygen concentration is higher and the flow velocity is higher.
  • a portion of the oxygen supply pipe that is disposed in a hood (header, branch pipe, nozzle, etc.) where at least a fire is present is made of copper.
  • the piping was made of alloy and / or Ni alloy. This is because the copper alloy or Ni alloy has a smaller ionization tendency than iron, so that it is difficult for rust as an ignition source to be generated in the pipe, and these alloys are dense and difficult to permeate oxygen on the surface. This is because, since an oxide film is formed, further progress of oxidation is suppressed, and burning is unlikely to occur.
  • the copper alloy preferably contains 60 mass% or more of Cu, for example, a Cu—Zn alloy (brass) containing 60 to 70% Cu, or a Cu—Ni alloy containing 70 to 90% Cu. (White copper, cupronickel), Cu—Sn alloy containing 65 to 98% Cu (bronze), Cu: 60 mass% —Ni: 20 mass% —Fe: 20 mass% Kuniphe, or Cu containing about 2 mass% Be in Cu Etc.
  • Ni alloy the thing containing 60 mass% or more of Ni is preferable, for example, Inconel, Monel, Nichrome etc. are mentioned. Among these, copper and pure Ni are more preferable because they are excellent in oxidation resistance.
  • Table 2 shows the oxidation resistance of various alloys in a high-temperature oxidizing atmosphere of 500 ° C. or higher.
  • FIG. 15 is a schematic diagram showing a gaseous fuel and oxygen supply piping system of the gaseous fuel supply apparatus of FIG. 10.
  • oxygen is supplied to the header by the oxygen supply main, Further, it is supplied to a plurality of branch pipes attached to the header and ejected from a plurality of nozzles attached to the branch pipe or a plurality of openings.
  • it is not necessary that all the oxygen supply pipes are made of copper alloy or Ni alloy, but at least pipes in the hood (branch pipes and nozzles, etc.) close to the fire type are made of copper alloy or Ni alloy. It is necessary to make it.
  • the header and the oxygen supply main are also made of copper alloy or Ni alloy.
  • a backfire preventer frame arrester
  • safety can be further improved.
  • a backfire valve a dry-type safety device, etc.
  • the space between the backfire prevention device and the header is made of copper alloy or Ni alloy.
  • a normal steel gas pipe can be used, but it is preferable to use a SUS-made oil-free treatment.
  • the sintering technique of the present invention is not only useful as a technique for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be used as an agglomeration technique for other ores.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

点火炉下流の原料装入層上方に設けられたフード内の大気中に酸素を噴出して富化し、さらに、燃焼下限濃度以下に希釈した気体燃料を供給してなる空気をパレット下に配設したウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する焼結機の酸素-気体燃料供給装置であって、上記フード内には、フードの高さ方向中間部に、山型状の板材を水平方向に間隙を有して複数列かつ垂直方向に上記間隙部が千鳥状なるよう複数段配列した邪魔板が配設されてなり、上記邪魔板の下方には、気体燃料を空気中に供給する気体燃料供給配管が配設され、上記邪魔板の上方には、少なくともフード内に配設されてなる部分が銅合金製および/またはNi合金製の酸素供給配管が配設されてなる酸素-気体燃料供給装置。

Description

焼結機の酸素-気体燃料供給装置
 本発明は、酸素を富化し、気体燃料を供給することで、高品質の高炉原料用焼結鉱を製造する下方吸引式のドワイトロイド焼結機における酸素-気体燃料供給装置に関するものである。
 高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような工程を経て製造される。焼結鉱の原料は、鉄鉱石粉や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などであり、これらの原料は、ホッパー1・・・の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2および3等によって適量の水が加えられ、混合、造粒されて、平均径が3~6mmの擬似粒子である焼結原料とされる。この焼結原料は、その後、焼結機上に配設されているサージホッパー4、5からドラムフィーダー6と切り出しシュート7を介して、無端移動式の焼結機パレット8上に400~800mmの厚さで装入され、焼結ベッドともいわれる装入層9を形成する。その後、装入層9の上方に設置された点火炉10で装入層表層の炭材に点火するとともに、パレット8の直下に配設されたウインドボックス11を介して装入層上方の空気を下方に吸引することにより、装入層内の炭材を順次燃焼させ、このときに発生する燃焼熱で前記焼結原料を溶融して焼結ケーキを得る。このようにして得た焼結ケーキは、その後、破砕、整粒され、約5mm以上の塊成物が、成品焼結鉱として回収され、高炉に供給される。
 上記製造プロセスにおいて、点火炉10によって点火された装入層内の炭材は、その後、装入層内を上層から下層に向かって吸引される空気によって燃焼を続け、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。この燃焼帯の溶融部分は、上記吸引される空気の流れを阻害するため、焼結時間が延長して生産性が低下する要因となる。また、この燃焼帯は、パレット8が下流側に移動するのに伴って次第に装入層の上層から下層に移行し、燃焼帯が通過した後には、焼結反応が完了した焼結ケーキ層(以降、単に「焼結層」ともいう。)が生成される。また、燃焼帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化して、まだ温度が上昇していない下層の焼結原料中に濃縮し、湿潤帯を形成する。この水分濃度がある程度以上になると、吸引ガスの流路となる焼結原料の粒子間の空隙が水分で埋まり、溶融帯と同様、通気抵抗を増大させる要因となる。
 図2は、厚さが600mmの装入層中を移動する燃焼帯が、装入層内のパレット上約400mmの位置(装入層表面から200mm下)にあるときの、装入層内の圧損と温度の分布を示したものであり、このときの圧損分布は、湿潤帯におけるものが約60%、燃焼帯におけるものが約40%であることを示している。
 ところで、焼結機の生産量(t/hr)は、一般に、生産率(t/hr・m)×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の機幅や機長、原料装入層の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、歩留りなどにより変化する。したがって、焼結鉱の生産量を増加するには、装入層の通気性(圧損)を改善して焼結時間を短縮する、あるいは、破砕前の焼結ケーキの冷間強度を高めて歩留りを向上することなどが有効であると考えられている。
 図3は、焼結鉱の生産性が高い時と低い時、即ち、焼結機のパレット移動速度が速い時と遅い時の装入層内のある点における温度と時間の推移を示したものである。焼結原料の粒子が溶融し始める1200℃以上の温度に保持される時間は、生産性が低い場合はT、生産性が高い場合はTで表されている。生産性が高い時はパレットの移動速度が速いため、高温域保持時間Tが、生産性が低い時のTと比べて短くなる。しかし、1200℃以上の高温での保持時間が短くなると焼成不足となり、焼結鉱の冷間強度が低下し、歩留りが低下してしまう。したがって、高強度の焼結鉱を、短時間でかつ高歩留りで、生産性よく製造するためには、何らかの手段を講じて、1200℃以上の高温で保持される時間を延長し、焼結鉱の冷間強度を高めてやる必要がある。
 図4は、点火炉で点火された装入層表層の炭材が、吸引される空気によって燃焼を続けて燃焼帯を形成し、これが装入層の上層から下層に順次移動し、焼結ケーキが形成されていく過程を模式的に示した図である。また、図5(a)は、上記燃焼帯が、図4に示した太枠内に示した装入層の上層部、中層部および下層部の各層内に存在しているときの温度分布を模式的に示したものである。焼結鉱の強度は、1200℃以上の温度に保持される温度と時間の積に影響され、その値が大きいほど焼結鉱の強度は高くなる。そのため、装入層内の中層部および下層部は、装入層上層部の炭材の燃焼熱が吸引される空気によって運ばれて予熱されるため、高温度に長時間にわたって保持されるのに対して、装入層上層部は、予熱されない分、燃焼熱が不足し、焼結に必要な燃焼溶融反応(焼結反応)が不十分となりやすい。その結果、装入層の幅方向断面内における焼結鉱の歩留り分布は、図5(b)に示したように、装入層上層部ほど歩留りが低くなる。また、パレット両幅端部も、パレット側壁からの放熱や、通過する空気量が多いことによる過冷却によって、焼結に必要な高温域での保持時間が十分に確保できず、やはり歩留りが低くなる。
 これらの問題に対して、従来は、焼結原料中に添加している炭材(粉コークス)量を増量することが行われてきた。しかし、コークスの添加量を増やすことによって、図6に示したように、焼結層内の温度を高め、1200℃以上に保持される時間を延長することができるものの、それと同時に、焼結時の最高到達温度が1400℃を超えるようになり、以下に説明する理由によって、焼結鉱の被還元性や冷間強度の低下を招くことになる。
 非特許文献1には、焼結過程で焼結鉱中に生成する各種鉱物の引張強度(冷間強度)と被還元性について、表1のように示されている。そして、焼結過程では、図7に示したように、1200℃で融液が生成し始め、焼結鉱の構成鉱物の中で最も高強度で、被還元性も比較的高いカルシウムフェライトが生成する。これが、焼結温度として1200℃以上を必要とする理由である。しかし、さらに昇温が進んで1400℃を超え、正確には1380℃を超えるようになると、カルシウムフェライトは、冷間強度と被還元性が最も低い非晶質珪酸塩(カルシウムシリケート)と、還元粉化しやすい骸晶状二次ヘマタイトとに分解し始める。また、焼結鉱の還元粉化の起点となる二次ヘマタイトは、鉱物合成試験の結果から、図8の状態図に示したように、Mag.ss+Liq.域まで昇温し、冷却したときに析出するので、状態図上に示した(1)の経路でなく、(2)の経路を介して焼結鉱を製造することが、還元粉化を抑制する上で重要であるとしている。
Figure JPOXMLDOC01-appb-T000001
 すなわち、非特許文献1には、焼結鉱の品質を確保する上で、燃焼時の最高到達温度や高温域保持時間などの制御が非常に重要な管理項目であり、これらの制御如何によって焼結鉱の品質がほぼ決定されることが開示されている。したがって、還元粉化性(RDI)に優れかつ高強度で被還元性に優れる焼結鉱を得るためには、1200℃以上の温度で生成したカルシウムフェライトを、カルシウムシリケートと二次ヘマタイトとに分解させないことが重要であり、そのためには、焼結時における装入層内の最高到達温度を1400℃超え、好ましくは1380℃超えとすることなく、装入層内の温度を1200℃(カルシウムフェライトの固相線温度)以上に長時間保持することが必要となる。以降、本発明では、上記1200℃以上1400℃以下の温度域に保持される時間を、「高温域保持時間」と称することとする。
 なお、前述した装入層上層部の歩留低下を改善し、生産性を向上しようとする技術については、従来から幾つか提案されている。例えば、特許文献1には、焼結鉱を製造するに際して、焼結原料中に添加したコークスに加えて、焼結原料に吸引される空気中に発熱性ガスを添加し、これを焼結帯で燃焼させることによって、焼結鉱の強度や生産率、成品歩留りの向上を図る技術が提案されている。しかし、この特許文献1の技術は、コークスと気体燃料を燃焼させることによって焼結時の最高到達温度を高め、焼結鉱の強度や生産率、歩留りの向上を図っているため、成品焼結鉱の被還元性(RI)の悪化をきたすという問題がある。
 また、特許文献2には、装入層上層部を十分に焼成した時点で、装入層に供給する酸素含有ガスの質量流量を、装入層上層部を焼成する範囲において供給する酸素含有ガスの質量流量の1.01~2.6倍とし、装入層内の差圧を増加させて、燃焼溶融帯の移行速度を極端に加速し、生産率を増大するとともに製品歩留りおよび品質の優れた製品を得る方法が提案されている。しかし、この特許文献2の技術は、装入層の層厚の増加やパレット移動速度の増加が可能となり、焼結機の生産率を向上させることができるが、それは、燃焼溶融帯の移動速度と最高到達温度を高めることにもなるため、やはり、成品焼結鉱の被還元性の悪化を来たすという問題がある。
 また、特許文献3には、パレット上の装入層の上層部が焼結する間に、装入層に吸引される燃焼用空気中の酸素濃度を35%以上に富化して焼結することにより、生産性および成品歩留りを向上させる酸素富化操業方法が提案されている。しかしながら、この特許文献3の技術は、燃焼空気中の酸素濃度を35%以上に富化することで、コークスの燃焼性を向上し、最高到達温度の上昇を図っているものの、燃焼性が向上する分、焼結に必要な1200℃以上の高温域保持時間が不足するようになるという問題がある。
 そこで、発明者らは、上記問題点を解決する技術として、焼結原料中への炭材添加量を削減した上で、焼結機の点火炉の下流において、燃焼下限濃度以下に希釈した各種気体燃料を、パレット上方から装入層内に導入し、その気体燃料を装入層内で燃焼させることによって、装入層内の最高到達温度および高温域保持時間の両方を適正範囲に制御する技術を特許文献4~6等に提案している。
 上記特許文献4~6の技術を適用し、焼結原料中への炭材添加量を削減した上で、燃焼下限濃度以下に希釈した気体燃料を装入層内に導入し、気体燃料を装入層内で燃焼させた場合には、図9に示したように、上記気体燃料は、炭材が燃焼した後の装入層内(焼結層内)で燃焼するので、燃焼・溶融帯の最高到達温度を1400℃超えとすることなく、燃焼・溶融帯の幅を厚さ方向に拡大させることができ、効果的に高温域保持時間の延長を図ることができる。
特公昭46-027126号公報 WO98/07891号公報 特開平02-073924号公報 特開2008-095170号公報 特開2010-047801号公報 特開2008-291354号公報
「鉱物工学」;今井秀喜、武内寿久禰,藤木良規編、(1976)、p.175、朝倉書店
 しかしながら、上記特許文献4~6の従来技術においては、高強度かつ被還元性に優れる、高品質の焼結鉱を得るためには、1200℃以上1400℃以下の高温域にどの程度の時間保持する必要があるのか、また、そのためには希釈した気体燃料をどの領域に供給すればよいのか、十分に明らかにされてはいなかった。
 また、上記特許文献4~6の技術で注意しなければならないことは、焼結にとって好ましい最高到達温度や高温域保持時間の範囲を決定するに際して、炭材や気体燃料を燃焼させる支燃性ガスとして酸素を21vol%含有する空気をそのまま用いていることである。というのは、実際の焼結中の装入層内は、炭材や気体燃料の燃焼反応によって、大気とは異なった雰囲気となっているはずであり、また、支燃性ガスの成分や組成が変われば、装入層内のガス雰囲気も変化し、焼結時の最高到達温度や高温域保持時間も、当然、変化するはずである。したがって、支燃性ガスの特性に応じて、焼結機の操業条件を変えてやる必要がある。しかしながら、従来技術では、支燃性ガスの特性、特に空気中に含まれる酸素量が、焼結性や焼結鉱の品質に及ぼす影響については、ほとんど検討がなされていない。
 そこで、発明者らは、焼結に必要な高温域保持時間を明らかにし、気体燃料を供給すべき適正領域を決定すると共に、焼結時の最高到達温度や高温域保持時間に対する支燃性ガスの影響を調査し、炭材の燃焼熱で焼結するときの高温域保持時間が150秒未満となる領域に気体燃料を供給して高温域保持時間を延長すると共に、上記気体燃料供給領域で空気中の酸素濃度を21vol%超35vol%未満に富化することで、高強度で被還元性に優れる焼結鉱を製造する方法を開発し、特願2011-058651として出願した。
 上記特願2011-058651に提案した技術では、気体燃料を供給する領域の装入層上方に設置したフード内に酸素供給配管を配設し、酸素を大気中に噴出させることで酸素を富化している。しかしながら、フード内おいて酸素をどのようにして供給すれば、外部への漏洩を防止して効率よくかつ安全に酸素を富化することができるかという点については、十分に明らかにされているとは言い難い。
 また、上記酸素供給配管については特段の制限はなされていないため、酸素供給配管として、例えば、一般の都市ガス配管として用いられている一般構造用圧延鋼材(SS鋼)からなる配管を用いた場合、何らかの原因で酸素供給配管の酸素噴出口(ノズルあるいは開口部)に着火したときには、その配管は、配管内を流れる高純度の酸素によって瞬く間に焼損し、重大な操業トラブルを引き起こすおそれがある。
 そこで、本発明の目的は、気体燃料を供給すると同時に酸素を富化する焼結操業を行う焼結機に用いて好適でかつ酸素による焼損のおそれのない酸素-気体燃料供給装置を提供することにある。
 発明者らは、上記課題の解決に向けて鋭意研究を重ねた。その結果、気体燃料を供給する装置に設けられたフード内の高さ方向中段に、間隙を設けて水平方向に複数列および垂直方向に複数段の邪魔板を配設し、かつ、上記邪魔板の下方に気体燃料供給配管を配設して気体燃料を供給すると共に、上記邪魔板の上方に酸素供給配管を配設し、水平方向より下向きにして酸素を空気中に噴出してやることが最も望ましいこと、また、焼結機に酸素を供給する酸素供給配管の酸素による焼損を防止するには、焼損のおそれのある部分を、銅合金製および/またはNi合金製の配管で構成してやることを知見し、本発明を完成させるに至った。
 すなわち、本発明は、点火炉下流の原料装入層上方に設けられたフード内の大気中に酸素を噴出して富化し、さらに、燃焼下限濃度以下に希釈した気体燃料を供給してなる空気をパレット下に配設したウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する焼結機の酸素-気体燃料供給装置において、上記フード内には、フードの高さ方向中間部に、山型状の板材を水平方向に間隙を有して複数列かつ垂直方向に上記間隙部が千鳥状なるよう複数段配列した邪魔板が配設されてなると共に、上記邪魔板の下方には、気体燃料を空気中に供給する気体燃料供給配管が配設され、かつ、上記邪魔板の上方には、酸素を空気中に噴出する酸素供給配管が配設されてなることを特徴とする焼結機の酸素-気体燃料供給装置である。
 本発明の酸素-気体燃料供給装置における上記酸素供給配管は、酸素の噴出方向を水平方向より下向きにして配設されてなることを特徴とする。
 また、本発明の酸素-気体燃料供給装置における上記酸素供給配管は、邪魔板と邪魔板の間隙の上方に、酸素の噴出方向を邪魔板と邪魔板の隙間に向けて配設されてなることを特徴とする。
 また、本発明の酸素-気体燃料供給装置における上記酸素供給配管は、邪魔板の頂部の上方に、酸素の噴出方向を邪魔板と邪魔板の隙間に向けて配設されてなることを特徴とする。
 また、本発明の酸素-気体燃料供給装置における上記酸素供給配管は、少なくともフード内に配設されてなる部分は、銅合金製および/またはNi合金製であることを特徴とする。
 また、本発明の酸素-気体燃料供給装置における上記酸素供給配管は、少なくともフード内に配設されてなる部分は、銅を60mass%以上含有する銅合金製および/またはNiを60mass%以上含有するNi合金製であることを特徴とする。
 また、本発明の酸素-気体燃料供給装置における上記酸素供給配管は、フード外かつフードの近傍に逆火防止器を設置してなることを特徴とする。
 本発明によれば、下方吸引式のドワイトロイド焼結機を用いて気体燃料を供給して焼結鉱を製造するに際して、酸素による酸素供給配管の焼鈍を防止した上で、酸素を外部に漏洩させることなく、気体燃料供給装置のフード内の空気中に酸素を供給し富化することができるので、高強度で被還元性に優れる高品質の高炉原料用焼結鉱を安全かつ安定して製造することが可能となる。
焼結プロセスを説明する概要図である。 焼結層内における温度分布と圧損分布を説明するグラフである。 高生産時と低生産時における装入層内の温度分布を説明する図である。 焼結進行に伴う装入層内の変化を説明する模式図である。 燃焼帯が装入層の上層部、中層部および下層部の各位置に存在しているときの温度分布と、装入層の幅方向断面内における焼結鉱の歩留り分布を説明する図である。 炭材量の変化(増量)による装入層内の温度変化を説明する図である。 焼結反応を説明する図である。 骸晶状二次ヘマタイトが生成する過程を説明する図である。 気体燃料供給による焼結層内の温度分布の変化を説明する図である。 気体燃料と酸素を供給する酸素-気体燃料供給装置の一例を説明する図である。 酸素の噴出方向が、酸素の漏洩に及ぼす影響を解析した図である。 酸素を供給する方法の具体例を説明する図である。 酸素を供給する方法の他の具体例を説明する図である。 酸素濃度と流速が酸素供給配管の焼損に及ぼす影響を定性的に説明する図である。 気体燃料と酸素を供給する酸素-気体燃料供給装置の配管系統を説明する図である。
 本発明の技術を適用する焼結鉱の製造方法は、下方吸引式の焼結機を用いて、循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、点火炉でその装入層表面の炭材に点火すると共に、点火炉下流の装入層上方に設けられたフード内の、燃焼下限濃度以下に希釈した気体燃料を含む空気を、パレット下に配設されたウインドボックスで吸引して装入層内に導入し、その装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する点において、特許文献4~6に開示された技術と同じである。
 したがって、気体燃料を供給する場合には、炭材の燃焼熱で焼結するときに1200℃以上に保持される高温域保持時間が不足する領域において供給すると共に、最高到達温度が1400℃を超えないよう、供給する気体燃料の量に応じて、焼結原料中に添加する炭材量を削減することが望ましい。
 ここで、装入層内に供給する気体燃料は、例えば、高炉ガス(Bガス)、コークス炉ガス(Cガス)、高炉ガスとコークス炉ガスとの混合ガス(Mガス)等の製鉄所副生ガスの他、LNG(天然ガス)、都市ガス、メタンガス、エタンガス、プロパンガス等の可燃性ガスおよびこれらの混合ガスも好適に用いることができる。さらに、頁岩(シェール)層から採取される、従来の天然ガスとは異なる非在来型の天然ガス(シェールガス)もLNGと同様に用いることができる。
 また、装入層内に供給する上記気体燃料は、その気体燃料の燃焼下限濃度以下に希釈したものであることが好ましい。希釈気体燃料の濃度が燃焼下限濃度より高いと、装入層上方で燃焼してしまい、気体燃料を供給する効果が失われてしまったり、爆発を起こしたりするおそれがある。また、希釈気体燃料が高濃度であると、低温度域で燃焼してしまうため、高温域保持時間の延長に有効に寄与し得ないおそれがあるからである。したがって、希釈した気体燃料の濃度は、好ましくは大気中の常温における燃焼下限濃度の3/4以下、より好ましくは燃焼下限濃度の1/5以下、さらに好ましくは燃焼下限濃度の1/10以下である。ただし、希釈気体燃料の濃度が、燃焼下限濃度の1/100未満では、燃焼による発熱量が不足し、焼結鉱の強度向上と歩留りの改善効果が得られないため、下限は燃焼下限濃度の1%とする。これを、天然ガス(LNG)についてみると、LNGの室温における燃焼下限濃度は4.8vol%であるから、希釈気体燃料の濃度は0.05~3.6vol%の範囲が好ましく、0.05~1.0vol%の範囲がより好ましく、0.05~0.5vol%の範囲がさらに好ましいことになる。
 また、本発明の技術を適用する焼結鉱の製造方法は、特願2011-058651と同様、気体燃料を供給すると共に酸素を富化するところに特徴がある。その理由は、酸素を富化することによって、焼結時のガス雰囲気が酸化方向に移行する結果、焼結によって焼結鉱中の生成するカルシウムフェライトの生成割合が増大し、カルシウムシリケートの生成割合が低減するので、高強度でかつ還元性に優れる焼結鉱を得ることができること、また、気体燃料と酸素富化を同時に行うことで、焼結反応を高めて焼結時間を短縮できるだけでなく、気体燃料と焼結原料中の炭材の燃焼位置をより低温度側に移行させて装入層内の温度分布曲線を裾野の広いものとし、高温域保持時間を延長することができるので、生産率を上昇させた上で、焼結鉱の品質改善を図ることができるからである。
 上記酸素富化による効果は、装入層内の吸引する空気中に含まれる酸素濃度を、大気中の酸素濃度(21vol%)超えとしてやれば少量でも得ることができるが、24.5vol%以上に富化してやるのが好ましい。一方、空気中の酸素濃度が35vol%以上となると、酸素富化に要するコストが、享受する利益を上回るようになる。よって、富化する酸素量は、空気中の酸素濃度が21vol%超35vol%未満の範囲となるよう添加するのが好ましい。より好ましくは24.5~30vol%、さらに好ましくは、24.5~28vol%の範囲である。
 上記のように酸素を富化する方法(装置)としては、図10に示したように、気体燃料を供給する原料装入層の上方に設置されたフードの高さ方向中間部に、水平方向に間隙を有して複数列かつ垂直方向に上記間隙部が千鳥状なるよう複数段配列した邪魔板を配設し、上記邪魔板の下方に気体燃料を空気中に供給する気体燃料供給配管を配設し、生の気体燃料を吹き消え現象が起こる高速で空気中に噴出させて瞬時に燃焼下限濃度以下の希釈気体燃料とする、あるいは、予め燃焼下限濃度以下に希釈した気体燃料を空気中に噴出させて空気中に気体燃料を供給するとともに、上記邪魔板の上方に酸素供給配管を配設し、酸素を空気中に噴出し、富化するものである必要がある。
 ここで、上記のように邪魔板の下部に気体燃料を供給する理由は、LNG等の気体燃料は一般に空気より軽いため、邪魔板を設けることによって、また、邪魔板の間隙を上方から下方に向って流れる空気を絞り、流速を高めることによって、気体燃料がフード上方へ漏洩するのを防止するためである。
 なお、上記邪魔板については、その下部において供給された気体燃料の上方への漏出を防止し、かつ、その上方において酸素を富化された空気をスムーズに下方に流すことができれば特に制限はないが、図10に示したように、への字状(山型状)に加工した板材を、水平方向に間隙を開けて複数配列すると共に、その間隙部が垂直方向に千鳥状(トーナメント状)あるいはラビリンス状になるように、複数段配列したものであるのが望ましい。なお、邪魔板の仕様については、例えば、機幅が6mの焼結機の場合、邪魔板の幅は200~500mm程度、邪魔板同士の間隙は水平方向に50~200mm程度、垂直方向に50~200mm程度とし、邪魔板の段数は、2~5段程度とするのが望ましい。また、上記邪魔板は、気体燃料のフード上部への漏出を防止する観点から、開口部の圧損が10mmAq以下となるよう配設することが好ましい。
 図10には、気体燃料を気体燃料配管から噴出させる向きを水平方向とした例を示したが、気体燃料が装入層に導入されるまでの間に空気と均一に混合し、燃焼下限濃度以下に希釈される限り、水平方向でも下向きでもよく、特に制限はない。
 一方、邪魔板の上部に酸素を噴出させる理由は、酸素は空気より比重が大きいため、フード外に漏洩する比率が低いこと、また、例え漏洩したとしても酸素は気体燃料のような危険性がないこと、および、供給配管から噴出された酸素は、邪魔板の間隙を通過する間に目標濃度まで均一に希釈された、その後、気体燃料と混合するため、高濃度の酸素と気体燃料とが直接接触するのを防止できるためである。
 なお、供給配管から供給する酸素は必ずしも純酸素でなくてもよいが、供給する酸素量は、気体燃料と比較して桁違いに多いため、酸素濃度が低下すると配管から噴出させる量が増加するので好ましくはない。
 ただし、酸素を酸素供給配管から噴出させる向きについては、フード外への酸素の漏洩を防止する観点から、水平方向よりも下向きとするのが好ましい。図11は、フード内の邪魔板上部の空気中に酸素供給配管から酸素を噴出して酸素濃度を21vol%から27vol%まで濃化させる場合において、風速10m/秒の横風を受けたときにフード外へ漏出する素素量を、酸素を水平方向に噴出させたときと、下方に向けて噴出させたときとで比較したシミュレーション結果を示したものである。この図から、水平方向に酸素を噴出させた場合、酸素が漏洩し易い傾向があることがわかる。
 また、酸素供給配管から噴出させる酸素の向きを下向きとする場合、具体的には、図12に示したように、酸素供給配管を邪魔板と邪魔板の間隙の上方に配設し、酸素を邪魔板と邪魔板の隙間に向けて噴出するようにしてもよい。この酸素噴出方法では、邪魔板と邪魔板の間に酸素の噴流を直接吹き込むので、酸素がスムーズに吸引され、上方への漏洩を抑制することができるというメリットがある。
 あるいは、図13に示したように、酸素供給配管を邪魔板の頂部の上方に配設し、酸素を邪魔板と邪魔板の隙間(間隙部)に向けて噴出するようにしてもよい。この酸素噴出方法では、1本の気体燃料供給配管から2つの間隙に向って酸素を供給できるため、条件によっては、気体燃料供給配管の本数を削減できるというメリットがある。
 次に、上記気体燃料供給装置における酸素供給配管の酸素による焼損防止にについて説明する。
 前述したように、図10に示した酸素-気体燃料供給装置は、気体燃料を供給する領域の装入層上方に設置されたフードの高さ方向中間部に、間隙を有して1段以上の邪魔板を配設し、その邪魔板の下方に気体燃料供給配管を配設して、生の気体燃料を吹き消え現象が起こる高速で水平方法に噴出して瞬時に燃焼下限濃度以下の希釈気体燃料とするとともに、上記邪魔板の上方に酸素供給配管を配設し、酸素を邪魔板の方向に向けて供給するものである。そしてこの装置では、酸素供給配管から供給される酸素は、邪魔板の間隙を通過する間に、富化する目標濃度まで均一に希釈された後、気体燃料と合流するため、高濃度の酸素と気体燃料とが直接接触するのを防止できるように設計されている。なお、上記配管から供給する酸素は純酸素でなくてもよい。
 ここで、気体燃料供給配管の上方に配設してある邪魔板は、LNG等の気体燃料は空気より軽いため、フード上方に漏洩散失するのを防止するためである。なお、酸素は、気体燃料より比重が大きいため、強風が吹かない限り、フード外へ拡散する虞は少ない。
 しかしながら、上記酸素富化装置において懸念される点は、焼結機はコークスと気体燃料を燃焼させた燃焼熱で焼結原料を焼結するものであるため、火種は常に存在しているということである。そのため、例えば、酸素供給配管が、一般に都市ガスの配管に用いられている一般構造用圧延鋼材(SS鋼)等であった場合には、例え、禁油処理が施されていたとしても、何らかの原因で酸素供給配管の酸素噴出口(ノズルあるいは開口部)に着火したときには、鉄と酸素との反応熱によって、瞬く間にバルブスタンドまでの酸素供給配管が焼損してしまうおそれがある。
 なお、気体燃料供給配管から噴出される気体燃料は、噴出口から吹き消え現象が起こる高速で噴出させるため、着火を防止することができる。また、着火したとしても、そこで燃焼するだけであり、配管自体が焼損してしまうことはない。また、酸素は、気体燃料と比較して供給量が多量であるため、高濃度の酸素を大きな噴出口から10m/秒以上の高速で噴出させている。しかし、酸素による焼損は、一般に、図14に示すように、酸素濃度が高いほど、また、流速が大きいほど起こり易いとされているので、配管の焼損対策が重要となる。
 そこで、本発明では、上記のような酸素供給配管の焼損を防止するため、酸素供給配管の少なくとも火種が存在するフード内(ヘッダ、分岐管およびノズル等)に配設されている部分を、銅合金製および/またはNi合金製の配管とすることとした。これは、銅合金あるいはNi合金は、鉄よりもイオン化傾向が小さいため、配管内に着火源となる錆が生成し難いこと、また、これらの合金は、表面に酸素を透過させ難い緻密な酸化膜を形成するため、それ以上の酸化の進行を抑制し焼損が起こり難いからである。
 上記の観点から、上記銅合金はCuを60mass%以上含有するものが好ましく、例えば、Cuを60~70%含有するCu-Zn合金(黄銅)、Cuを70~90%含有するCu-Ni合金(白銅、キュプロニッケル)、Cuを65~98%含むCu-Sn合金(青銅)、Cu:60mass%-Ni:20mass%-Fe:20mass%のクニフェやCuに2mass%程度のBeを含むBe銅などが挙げられる。また、Ni合金としては、Niを60mass%以上含有するものが好ましく、例えば、インコネル、モネル、ニクロム等が挙げられる。中でも、銅や純Niは、耐酸化性に優れているのでより好ましい。参考として、表2に、各種合金の500℃以上の高温酸化雰囲気における耐酸化性を示した。
Figure JPOXMLDOC01-appb-T000002
 図15は、図10の気体燃料供給装置の気体燃料と酸素の供給配管系統を示した模式図であり、例えば、酸素の場合について説明すると、酸素は、酸素供給本管によってヘッダまで供給され、さらに、ヘッダに取り付けられた複数の分岐管に供給されて、分岐管に複数取り付けられたノズルあるいは複数設けられた開口部から噴出されることを示している。本発明では、上記酸素供給配管のすべてを銅合金あるいはNi合金からなるものとする必要はないが、少なくとも火種に近いフード内の配管(分岐管およびノズル等)については、銅合金製あるいはNi合金製とする必要がある。安全性をより高めるためには、ヘッダや酸素供給本管についても、銅合金製あるいはNi合金製とするのが好ましい。
 さらに、図15に示したように、酸素供給本管のフード外でかつフード近傍の位置に、逆火防止器(フレームアレスタ)を設けることが好ましい。これにより、さらに安全性を高めることができる。この逆火防止器については、特に制限はないが、例えば、逆火弁や乾式安全器等を好適に用いることができる。また、可燃性ガスに用いられる逆火防止器を用いてもよい。この場合、逆火防止器からヘッダ間も銅合金製あるいはNi合金製とするのが好ましい。
 なお、逆火防止器より上流側の酸素供給配管については、通常の鋼製ガス配管を用いることができるが、SUS製でかつ禁油処理を施したものを用いるのが好ましい。
 本発明の焼結技術は、製鉄用、特に高炉用原料として使用される焼結鉱の製造技術として有用であるばかりでなく、その他鉱石の塊成化技術としても利用することができる。
 1:原料ホッパー
 2:ドラムミキサー
 3:ロータリーキルン
 4、5:サージホッパー
 6:ドラムフィーダー
 7:切り出しシュート
 8:パレット
 9:装入層
 10:点火炉
 11:ウインドボックス
 12:カットオフプレート

Claims (7)

  1. 点火炉下流の原料装入層上方に設けられたフード内の大気中に酸素を噴出して富化し、さらに、燃焼下限濃度以下に希釈した気体燃料を供給してなる空気をパレット下に配設したウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する焼結機の酸素-気体燃料供給装置において、
    上記フード内には、フードの高さ方向中間部に、山型状の板材を水平方向に間隙を有して複数列かつ垂直方向に上記間隙部が千鳥状なるよう複数段配列した邪魔板が配設されてなると共に、
    上記邪魔板の下方には、気体燃料を空気中に供給する気体燃料供給配管が配設され、かつ、上記邪魔板の上方には、酸素を空気中に噴出する酸素供給配管が配設されてなることを特徴とする焼結機の酸素-気体燃料供給装置。
  2. 上記酸素供給配管は、酸素の噴出方向を水平方向より下向きにして配設されてなることを特徴とする請求項1に記載の酸素-気体燃料供給装置。
  3. 上記酸素供給配管は、邪魔板と邪魔板の間隙の上方に、酸素の噴出方向を邪魔板と邪魔板の隙間に向けて配設されてなることを特徴とする請求項1または2に記載の酸素-気体燃料供給装置。
  4. 上記酸素供給配管は、邪魔板の頂部の上方に、酸素の噴出方向を邪魔板と邪魔板の隙間に向けて配設されてなることを特徴とする請求項1または2に記載の酸素-気体燃料供給装置。
  5. 上記酸素供給配管は、少なくともフード内に配設されてなる部分は、銅合金製および/またはNi合金製であることを特徴とする請求項1~4のいずれか1項に記載の酸素-気体燃料供給装置。
  6. 上記酸素供給配管は、少なくともフード内に配設されてなる部分は、銅を60mass%以上含有する銅合金製および/またはNiを60mass%以上含有するNi合金製であることを特徴とする請求項1~4のいずれか1項に記載の酸素-気体燃料供給装置。
  7. 上記酸素供給配管のフード外かつフードの近傍に逆火防止器を設置してなることを特徴とする請求項1~6のいずれか1項に記載の酸素-気体燃料供給装置。
PCT/JP2012/080037 2012-11-20 2012-11-20 焼結機の酸素-気体燃料供給装置 WO2014080450A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2012395098A AU2012395098B2 (en) 2012-11-20 2012-11-20 Oxygen-gas fuel supply apparatus for sintering machine
KR1020157010483A KR20150059784A (ko) 2012-11-20 2012-11-20 소결기의 산소-기체 연료 공급 장치
EP12888770.0A EP2924132B1 (en) 2012-11-20 2012-11-20 Oxygen-gaseous fuel supply apparatus for sintering machine
CN201280077185.5A CN104797720B (zh) 2012-11-20 2012-11-20 烧结机的氧‑气体燃料供给装置
PCT/JP2012/080037 WO2014080450A1 (ja) 2012-11-20 2012-11-20 焼結機の酸素-気体燃料供給装置
PH12015501006A PH12015501006A1 (en) 2012-11-20 2015-05-06 Oxygen-gas fuel supply apparatus for sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080037 WO2014080450A1 (ja) 2012-11-20 2012-11-20 焼結機の酸素-気体燃料供給装置

Publications (1)

Publication Number Publication Date
WO2014080450A1 true WO2014080450A1 (ja) 2014-05-30

Family

ID=50775657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080037 WO2014080450A1 (ja) 2012-11-20 2012-11-20 焼結機の酸素-気体燃料供給装置

Country Status (6)

Country Link
EP (1) EP2924132B1 (ja)
KR (1) KR20150059784A (ja)
CN (1) CN104797720B (ja)
AU (1) AU2012395098B2 (ja)
PH (1) PH12015501006A1 (ja)
WO (1) WO2014080450A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782144A (zh) * 2016-08-29 2018-03-09 中冶长天国际工程有限责任公司 一种喷吹辅助烧结法用喷吹装置
CN107796222A (zh) * 2016-08-29 2018-03-13 中冶长天国际工程有限责任公司 一种辅助烧结用多排同步旋转喷吹装置及其喷吹方法
JP7528913B2 (ja) 2021-12-14 2024-08-06 Jfeスチール株式会社 焼結鉱の製造方法および焼結機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085482A (zh) * 2016-11-23 2018-05-29 中冶长天国际工程有限责任公司 一种强化边部烧结的喷吹装置及其烧结工艺
CN108088398B (zh) * 2016-11-23 2020-03-17 中冶长天国际工程有限责任公司 一种喷吹辅助烧结法用燃烧测量装置及测量方法
CN115218670B (zh) * 2021-11-22 2024-06-07 中冶长天国际工程有限责任公司 一种燃气水蒸气间隔喷吹辅助烧结的方法
CN115218666B (zh) * 2021-11-22 2024-06-11 中冶长天国际工程有限责任公司 一种燃气氧气间隔喷吹辅助烧结的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273924A (ja) 1988-09-09 1990-03-13 Nippon Steel Corp 焼結機の酸素富化操業方法
JPH0627126B2 (ja) 1985-08-30 1994-04-13 和光純薬工業株式会社 新規重合方法
WO1998007891A1 (fr) 1996-08-16 1998-02-26 Nippon Steel Corporation Procede pour fabriquer des minerais frittes et machine a fritter les minerais
JP2005240840A (ja) * 2004-02-24 2005-09-08 Iwatani Industrial Gases Corp 乾式逆火防止器
JP2008095170A (ja) 2005-10-31 2008-04-24 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2008531852A (ja) * 2005-03-03 2008-08-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 気体酸素を輸送するのに用いられるパイプ部品またはデバイスを被覆する方法
JP2008291354A (ja) 2007-04-27 2008-12-04 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2010047801A (ja) 2008-08-21 2010-03-04 Jfe Steel Corp 焼結鉱の製造方法および焼結機
JP2010126775A (ja) * 2008-11-28 2010-06-10 Jfe Steel Corp 焼結鉱の製造方法
JP2011052860A (ja) * 2009-08-31 2011-03-17 Jfe Steel Corp 焼結機
JP2011058651A (ja) 2009-09-07 2011-03-24 Chofu Seisakusho Co Ltd 空気温調機
WO2011118822A1 (ja) * 2010-03-24 2011-09-29 Jfeスチール株式会社 焼結鉱の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911163B2 (ja) * 2008-12-01 2012-04-04 Jfeスチール株式会社 焼結鉱の製造方法
WO2010064731A1 (ja) * 2008-12-03 2010-06-10 Jfeスチール株式会社 焼結鉱の製造方法および焼結機
JP5458560B2 (ja) * 2008-12-03 2014-04-02 Jfeスチール株式会社 焼結機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627126B2 (ja) 1985-08-30 1994-04-13 和光純薬工業株式会社 新規重合方法
JPH0273924A (ja) 1988-09-09 1990-03-13 Nippon Steel Corp 焼結機の酸素富化操業方法
WO1998007891A1 (fr) 1996-08-16 1998-02-26 Nippon Steel Corporation Procede pour fabriquer des minerais frittes et machine a fritter les minerais
JP2005240840A (ja) * 2004-02-24 2005-09-08 Iwatani Industrial Gases Corp 乾式逆火防止器
JP2008531852A (ja) * 2005-03-03 2008-08-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 気体酸素を輸送するのに用いられるパイプ部品またはデバイスを被覆する方法
JP2008095170A (ja) 2005-10-31 2008-04-24 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2008291354A (ja) 2007-04-27 2008-12-04 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2010047801A (ja) 2008-08-21 2010-03-04 Jfe Steel Corp 焼結鉱の製造方法および焼結機
JP2010126775A (ja) * 2008-11-28 2010-06-10 Jfe Steel Corp 焼結鉱の製造方法
JP2011052860A (ja) * 2009-08-31 2011-03-17 Jfe Steel Corp 焼結機
JP2011058651A (ja) 2009-09-07 2011-03-24 Chofu Seisakusho Co Ltd 空気温調機
WO2011118822A1 (ja) * 2010-03-24 2011-09-29 Jfeスチール株式会社 焼結鉱の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mineral engineering", 1976, ASAKURA PUBLISHING CO., LTD, pages: 175

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782144A (zh) * 2016-08-29 2018-03-09 中冶长天国际工程有限责任公司 一种喷吹辅助烧结法用喷吹装置
CN107796222A (zh) * 2016-08-29 2018-03-13 中冶长天国际工程有限责任公司 一种辅助烧结用多排同步旋转喷吹装置及其喷吹方法
CN107782144B (zh) * 2016-08-29 2019-08-13 中冶长天国际工程有限责任公司 一种内腔式喷吹装置和烧结装置
CN107796222B (zh) * 2016-08-29 2019-09-13 中冶长天国际工程有限责任公司 一种辅助烧结用多排同步旋转喷吹装置及其喷吹方法
JP7528913B2 (ja) 2021-12-14 2024-08-06 Jfeスチール株式会社 焼結鉱の製造方法および焼結機

Also Published As

Publication number Publication date
EP2924132A1 (en) 2015-09-30
AU2012395098A1 (en) 2015-05-14
EP2924132A4 (en) 2016-04-13
EP2924132B1 (en) 2020-05-06
AU2012395098B2 (en) 2016-05-19
PH12015501006A1 (en) 2015-07-27
KR20150059784A (ko) 2015-06-02
CN104797720A (zh) 2015-07-22
CN104797720B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2014080450A1 (ja) 焼結機の酸素-気体燃料供給装置
JP5585503B2 (ja) 焼結鉱の製造方法
JP5458560B2 (ja) 焼結機
JP2008291356A (ja) 焼結鉱の製造方法および焼結機
JP5930213B2 (ja) 焼結機の酸素−気体燃料供給装置
JP2011169570A (ja) 焼結機
JP5439981B2 (ja) 焼結鉱の製造方法
JP5561443B2 (ja) 焼結鉱の製造方法
JP5825478B2 (ja) 焼結機
TWI541356B (zh) Sintering machine of oxygen and gas fuel supply device
JP5803454B2 (ja) 焼結機の酸素−気体燃料供給装置
JP5831694B2 (ja) 焼結機
JP5888482B2 (ja) 焼結鉱の製造方法
JP2010107154A (ja) 焼結機
JP6037145B2 (ja) 焼結鉱の製造方法
JP5439982B2 (ja) 焼結鉱の製造方法
JP2010106341A (ja) 焼結鉱の製造方法
JP2010106342A (ja) 焼結鉱の製造方法
JP5453788B2 (ja) 焼結鉱の製造方法
JP2008291359A (ja) 焼結鉱の製造方法および焼結機
JP6160839B2 (ja) 焼結機の保温炉への酸素富化方法とその保温炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010483

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012888770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12015501006

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2012395098

Country of ref document: AU

Date of ref document: 20121120

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE