WO2014073597A1 - 導電体及びその製造方法 - Google Patents

導電体及びその製造方法 Download PDF

Info

Publication number
WO2014073597A1
WO2014073597A1 PCT/JP2013/080089 JP2013080089W WO2014073597A1 WO 2014073597 A1 WO2014073597 A1 WO 2014073597A1 JP 2013080089 W JP2013080089 W JP 2013080089W WO 2014073597 A1 WO2014073597 A1 WO 2014073597A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
buffer
metal film
Prior art date
Application number
PCT/JP2013/080089
Other languages
English (en)
French (fr)
Inventor
惟 阿部
田口 好弘
尾藤 三津雄
喜幸 浅部
恭志 北村
知行 山井
浩司 小熊
大場 知文
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to KR1020157011928A priority Critical patent/KR101714286B1/ko
Priority to CN201380058038.8A priority patent/CN104919540B/zh
Priority to JP2014545745A priority patent/JP5993028B2/ja
Publication of WO2014073597A1 publication Critical patent/WO2014073597A1/ja
Priority to US14/685,964 priority patent/US10026523B2/en
Priority to US15/792,452 priority patent/US10886037B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0352Differences between the conductors of different layers of a multilayer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to adhesion between a transparent conductive film containing silver nanowires and a metal film.
  • Patent Document 1 discloses a conductor in which a silver nanowire transparent conductive film is formed on a substrate.
  • silver nanowires are dispersed in a transparent conductive film (Patent Documents 1 [0053], [0054], [0103], [0104], etc.).
  • the silver nanowire is hold
  • the present invention is for solving the above-mentioned conventional problems, and in particular, an object of the present invention is to provide a conductor capable of improving the adhesion between a transparent conductive film and a metal film, and a method for producing the conductor.
  • the conductor in the present invention is A substrate; A transparent conductive film containing silver nanowires formed on the substrate; A metal film formed so that at least a part thereof overlaps the transparent conductive film; Have A buffer that has adhesion to each of the transparent conductive film and the metal film at a portion where the transparent conductive film and the metal film overlap, and does not hinder conduction between the transparent conductive film and the metal film. It is characterized by having a film.
  • the manufacturing method of the conductor in the present invention is as follows: On the transparent conductive film containing silver nanowires formed on the substrate, the transparent conductive film and the metal film to be formed in the next step have adhesion with each other and between the transparent conductive film and the metal film Forming a buffer film that does not hinder the conduction of Forming at least part of the metal film on the buffer film; It is characterized by having.
  • Adhesion can be improved while maintaining good electrical conductivity between the transparent conductive film and the metal film.
  • the buffer film is preferably formed of a transparent metal oxide.
  • the transparent metal oxide is preferably ITO.
  • the transparent conductive film it is preferable to form the transparent conductive film on the upper surface after reverse sputtering the upper surface of the transparent conductive layer. That is, it is preferable that the upper surface of the transparent conductive film is a reverse sputtering surface and the buffer film is formed on the reverse sputtering surface. Thereby, the adhesiveness between a transparent conductive film and a metal film can be improved more effectively.
  • membrane is an organic substance provided with the functional group couple
  • the organic substance is preferably a triazine compound having an alkoxy group and a thiol group, or an alkoxy group and an azide group.
  • the triazine compound preferably has a structure represented by Chemical Formula 5 or Chemical Formula 6.
  • the adhesiveness between a transparent conductive film and a metal film can be improved effectively.
  • the buffer film that has adhesiveness with each of the transparent conductive film and the metal film and does not prevent conduction between the transparent conductive film and the metal film is interposed.
  • adhesion can be improved while maintaining good electrical conductivity between the transparent conductive film and the metal film.
  • FIGS. 1A and 1B are longitudinal sectional views of a conductor in the present embodiment
  • FIG. 1C is a schematic view showing a part of the conductor in an enlarged manner.
  • FIG. 2 is a process diagram (longitudinal sectional view) showing a method of manufacturing a conductor in the present embodiment.
  • FIG. 3 is a process diagram (longitudinal sectional view) performed next to FIG. 2.
  • FIG. 4 is a process diagram (longitudinal sectional view) performed next to FIG. 3.
  • FIG. 5 is a process diagram (longitudinal sectional view) performed after FIG.
  • FIG. 6 is a process diagram (longitudinal sectional view) performed subsequent to FIG.
  • FIG. 1A is a longitudinal sectional view of a conductor in the present embodiment.
  • 1A includes a transparent substrate 2, a transparent conductive film 3 formed on the upper surface 2a of the transparent substrate 2, a buffer film 4 formed on the transparent conductive film 3, and a buffer. And a metal film 5 formed on the film 4.
  • the conductor 1 may be a film having flexibility, a plate shape or a panel shape having high rigidity.
  • transparent and “translucent” refer to a state where the visible light transmittance is 50% or more (preferably 80% or more).
  • the transparent conductive film 3 is patterned on the transparent substrate 2 in the shape of a transparent electrode.
  • the transparent electrode film 3 may be patterned as shown in FIG. 1A and partially formed on the transparent substrate 2, or may be formed on the entire upper surface 2 a of the transparent substrate 2. . Further, at the position of the longitudinal section shown in FIG. 1 (a), each transparent conductive film 3 appears in a separated state, but is electrically connected integrally or via another conductive film at a position not shown. It can be in the form.
  • the use of the conductor 1 shown in FIG. 1 (a) is not limited.
  • the conductor 1 is used as a part of the input display device.
  • a liquid crystal display or the like is disposed below the conductor 1, and the central portion where the metal film 5 is not disposed in the transparent conductive film 3 illustrated in FIG. Therefore, the transparent conductive film 3 in the central portion is a transparent electrode for causing a change in capacitance with an operating body such as a finger.
  • the portion where the metal film 5 is superimposed on the transparent conductive film 3 on both sides in FIG. 1A is a non-display region, for example, a wiring portion electrically connected to the transparent electrode in the center portion. It is composed.
  • the display panel may be arranged on the surface of the conductor 1 shown in FIG. 1A via a transparent adhesive layer (not shown). Moreover, the lower surface side of the transparent base material 2 shown to Fig.1 (a) can also be made into an input operation surface.
  • the transparent substrate 2 shown in FIG. 1 (a) is formed of a film-like transparent substrate such as polyethylene terephthalate (PET), a glass substrate, or the like.
  • PET polyethylene terephthalate
  • the material of the transparent substrate 2 is not particularly limited.
  • the transparent base material 2 was used in Fig.1 (a), a non-transparent, for example, translucent base material can also be used.
  • the transparent conductive film 3 shown in FIG. 1 (a) is a transparent conductive film containing silver nanowires.
  • the silver nanowire 6 is a linear structure made of silver or a silver alloy.
  • the silver nanowires 6 are dispersed in the transparent resin layer 7, and each of the silver nanowires 6 is in contact with a part of the silver nanowires 6 to conduct in-plane conductivity. Keeps sex.
  • the silver nanowires 6 are dispersed in the transparent resin layer 7. Dispersibility of the silver nanowire 6 is ensured by the resin layer 7.
  • the material of the resin layer 7 is not particularly limited, for example, the resin layer 7 is a polyester resin, an acrylic resin, a polyurethane resin, or the like.
  • a metal film 5 is formed on a transparent conductive film 3 located on both sides of the transparent base material 2 through a buffer film 4 in the transparent conductive film 3.
  • the buffer film 4 is an intermediate film that has adhesiveness with each of the transparent conductive film 3 and the metal film 5 and does not prevent conduction between the transparent conductive film 3 and the metal film 5.
  • the metal film 5 is a Cu film, for example.
  • the buffer film 4 can particularly improve the adhesion between the metal film 5 and the transparent conductive film 3 containing silver nanowires.
  • the material of the metal film 5 is not particularly limited, and Al, Ag, Au, Ni, etc. can be selected in addition to Cu.
  • the buffer film 4 is provided only between the transparent conductive film 3 and the metal film 5, but the buffer film 4 is transparent so that the metal film 5 does not overlap as shown in FIG. It may be left on the upper surface of the conductive film 3.
  • the portion of the buffer film 4 that does not overlap with the metal film 5 can be removed through an etching process, or the metal film 5 may overlap depending on the etching conditions such as the etching solution used.
  • the part of the buffer film 4 that is not left can be left on the upper surface of the transparent conductive film 3. At this time, since the buffer film 4 is a very thin transparent film, good translucency can be secured even if the buffer film 4 is left on the transparent conductive film 3.
  • the buffer film 4 is preferably a transparent metal oxide.
  • an inorganic transparent conductive material such as ITO (Indium Tin Oxide), ZnO, or SnO 2 can be used, and among these, it is particularly preferable to select ITO. Thereby, the adhesiveness between the transparent conductive film 3 and the metal film 5 can be improved effectively.
  • a buffer film 4 made of a transparent metal oxide (especially ITO) is formed on the upper surface 3a which is the reverse sputtering surface.
  • Reverse sputtering refers to a method of modifying the surface by generating plasma near the surface of the transparent conductive film 3 in an inert gas atmosphere or the like. Reverse sputtering is performed by reversing the voltage between the target and the substrate applied by normal sputtering.
  • the upper surface 3a of the transparent conductive film 3 is modified by reverse sputtering, and the adhesion between the transparent conductive film 3 and the metal film 5 through the buffer film 4 can be improved more effectively.
  • the reverse sputtering the exposed amount (exposed area) of the silver nanowire 6 that is a metal is increased on the upper surface 3a of the transparent conductive film 3, or the upper surface 3a of the transparent conductive film 3 is considered to be appropriately roughened.
  • the thickness of the buffer film 4 made of the transparent metal oxide (especially ITO) is preferably about 2 nm to 100 nm.
  • the thickness of the buffer film 4 is preferably about 20 to 100 nm. .
  • the metal film 5 is formed after reverse sputtering is performed on the upper surface 4a of the buffer film 4 (see FIG. 1C).
  • the adhesiveness between the transparent conductive film 3 containing silver nanowire and the metal film 5 can be improved more effectively.
  • good conductivity between the transparent conductive film 3 and the metal film 5 through the buffer film 4 can be maintained.
  • the buffer film 4 may be an organic substance having a functional group bonded to each of the transparent conductive film 3 and the metal film 5.
  • the film thickness of the buffer film 4 by the process described later is very thin, and the transparent conductive film 3 and the metal film 5 through the buffer film 4 are electrically connected.
  • the buffer film 4 is intermittently formed on the upper surface 3 a of the transparent conductive film 3, and the transparent conductive film 3 and the metal film 5 through the buffer film 4 are electrically connected.
  • the above organic substance is preferably a triazine compound having an alkoxy group and a thiol group, or an alkoxy group and an azide group.
  • the triazine compound preferably has a structure represented by the following chemical formula 7 or chemical formula 8.
  • the heat treatment is preferably performed at around 100 ° C. for several minutes to several tens of minutes. This heat treatment may be performed during the formation process of the buffer film 4 using the triazine compound represented by the chemical formulas 7 and 8, or after the formation process of the buffer film 4 (the metal film 5). The film may be applied before, during or after the film formation.
  • FIGS. 2 to 6 are process diagrams (longitudinal sectional views) showing a method for manufacturing the conductor 1 in the present embodiment.
  • the buffer film 4 is formed on the upper surface 3a of the transparent conductive film 3 containing silver nanowires formed on the transparent substrate 2 such as PET.
  • the buffer film 4 has adhesion to both the transparent conductive film 3 and the metal film 5 formed in the next step, and has a function that does not hinder conduction between the transparent conductive film 3 and the metal film 5.
  • the transparent conductive film 3 is formed on substantially the entire upper surface 2 a of the transparent substrate 2.
  • the transparent conductive film 3 can also be partially formed on the upper surface 2a of the transparent substrate 2 from the beginning.
  • a conductive base material in which a transparent conductive film 3 containing silver nanowires is formed in advance on the transparent base material 2 may be prepared, or a coating solution containing silver nanowires is applied on the transparent base material 2 and predetermined
  • the transparent conductive film 3 can also be formed on the transparent substrate 2 by performing the heat treatment.
  • the buffer film 4 shown in FIG. 2 is preferably formed of a transparent metal oxide. More preferably, the transparent metal oxide is made of ITO. Furthermore, after reversely sputtering the upper surface 3a of the transparent conductive film 3, the buffer film 4 made of a transparent metal oxide (especially ITO) is preferably formed on the upper surface 3a by an existing method such as sputtering. As conditions for the reverse sputtering, the pressure is controlled to about 50 to 500 mmtorr and the power is about 0.01 to 10 mW / cm 2 in an inert atmosphere such as Ar or in a vacuum atmosphere.
  • the buffer film 4 can be formed of an organic material having a functional group that binds to the transparent conductive film 3 and the metal film 5 formed in the process of FIG.
  • the organic substance is preferably formed of a triazine compound having an alkoxy group and a thiol group, or an alkoxy group and an azide group, and specifically, a triazine compound represented by the above chemical formula 7 or chemical formula 8.
  • the formation of the buffer film 4 with an organic substance is performed through an immersion process, a cleaning process, a drying process, and the like of a solution containing the organic substance.
  • the buffer film 4 is formed on the entire upper surface 3a of the transparent conductive film 3.
  • the buffer film 4 may be formed only in a predetermined region of the upper surface 3a of the transparent conductive film 3 in the process of FIG.
  • the metal film 5 is formed on the buffer film 4 by an existing method such as sputtering.
  • the metal film 5 is formed on the entire upper surface 4a of the buffer film 4, but it can also be formed only in a predetermined region.
  • the metal film 4 is preferably formed of a Cu film.
  • a resist layer 8 is applied to the upper surface 5 a of the metal film 5.
  • the resist layer 8 is subjected to pre-bake processing and exposure development processing to leave the resist layer 8 having the pattern shown in FIG.
  • the metal film 5 not covered with the resist layer 8 is removed by etching.
  • the buffer film 4 exposed by removing the metal film 5 may be removed by the etching solution at this time.
  • the surface of the transparent conductive film 3 is exposed as shown in FIG. In the step of FIG. 4, the exposed buffer film 4 may not be removed by etching.
  • the resist layer 8 is removed, and then the resist layer 9 is applied to the entire surface.
  • the resist layer 9 is subjected to pre-bake processing and exposure development processing to leave the resist layer 9 having the pattern shown in FIG.
  • the metal film 5 not covered with the resist layer 9 is removed by etching.
  • the buffer film 4 exposed by removing the metal film 5 can also be removed by the etching process.
  • the conductor 1 shown in FIG. 6 is completed by removing the resist layer 9.
  • the metal film 5 is formed on the transparent conductive film 3 via the buffer film 4. This makes it possible to effectively improve the adhesion between the transparent conductive film 3 containing silver nanowires and the metal film 5.
  • the entire metal film 5 is overlapped with the transparent conductive film 3, and the buffer film 4 is interposed in the portion where the transparent conductive film 3 and the metal film 5 overlap.
  • the buffer film 4 is interposed in the overlapped part.
  • each of the conductors used a common conductive base material in which a transparent conductive film containing silver nanowires was formed on a transparent base material, and a Cu film having a thickness of 150 nm was formed as a metal film.
  • Comparative Example 2 As shown in Table 1, in Comparative Example 2, the surface of the transparent conductive film was subjected to surface treatment with UV-ozone, and then a metal film (Cu film) was formed. In Comparative Example 3, the surface of the transparent conductive film was subjected to excimer UV treatment, and then a metal film (Cu film) was formed. In Examples 1 and 2, the upper surface of the transparent conductive film is not reverse-sputtered.
  • Example 1 As shown in Table 1, in Example 1, after a buffer film made of ITO having a thickness of 20 nm was formed on the upper surface of a transparent conductive film containing silver nanowires, a metal film (Cu film) was formed on the buffer film. A film was formed. In Example 2, a buffer film made of ITO was formed to a thickness of 100 nm on the upper surface of the transparent conductive film containing silver nanowires, and then a metal film (Cu film) was formed on the buffer film.
  • a buffer film made of ITO was formed to a thickness of 100 nm on the upper surface of the transparent conductive film containing silver nanowires, and then a metal film (Cu film) was formed on the buffer film.
  • Example 3 the upper surface of the transparent conductive film containing silver nanowires was reverse-sputtered, and then a buffer film made of ITO was formed on the upper surface to a thickness of 2 nm, and then the buffer A metal film (Cu film) was formed on the film.
  • Example 4 the upper surface of the transparent conductive film containing silver nanowires was reverse sputtered, and then a buffer film made of ITO was formed on the upper surface with a thickness of 20 nm, and then a metal film (Cu Film).
  • Example 5 the upper surface of the transparent conductive film containing silver nanowires was reverse sputtered, and then a buffer film made of ITO was formed to a thickness of 100 nm on the upper surface, and then a metal film (Cu Film).
  • Example 6 the upper surface of the transparent conductive film containing silver nanowires was reverse-sputtered, and then a buffer film made of ITO was formed on the upper surface with a thickness of 20 nm. After leaving it in the air atmosphere to some extent, it was again put into a sputtering apparatus and evacuated, then the upper surface of the buffer film was reverse sputtered, and a metal film (Cu film) was formed on the buffer film.
  • Example 7 a buffer film made of the triazine compound represented by Chemical Formula 7 (hereinafter referred to as TES) is formed on the upper surface of the transparent conductive film containing silver nanowires, and then a metal film ( Cu film) was formed.
  • the buffer film in Example 7 was formed through each step of immersion in KOH aqueous solution (3%) — H 2 O rinse—TES / immersion in ethanol solution—H 2 O rinse—hot plate (80 ° C.) (TES treatment) ). Further, after forming the metal film, heat treatment was performed at 100 ° C. for 10 minutes.
  • Example 8 a buffer film made of the triazine compound represented by Formula 8 (hereinafter referred to as P-TES) is formed on the upper surface of the transparent conductive film containing silver nanowires, and then a metal film is formed on the buffer film. A film (Cu film) was formed.
  • the buffer film in Example 8 was formed through P-TES / IPA (0.1%) through the steps of dipping, dryer drying, UV irradiation, and ethanol rinsing (P-TES treatment). Further, after forming the metal film, heat treatment was performed at 100 ° C. for 10 minutes.
  • ⁇ shown in Table 1 is the result when there is no peeling at all, ⁇ is the result when peeling is seen only in a part, and x is the result when peeling is seen entirely.
  • Example 3 to 6 were able to obtain better adhesion than Examples 1 and 2. Therefore, it is understood that the adhesion between the transparent conductive film and the metal film can be more effectively improved by reverse sputtering the surface of the transparent conductive film and forming a buffer film made of ITO. It was. Furthermore, as in Example 6, it was found that even after the buffer film was formed and left in the atmosphere, the adhesion could be effectively improved by reverse sputtering the upper surface of the buffer layer. .
  • Example 7 subjected to TES treatment and Example 8 subjected to P-TES treatment both were subjected to heat treatment, and it was found that good adhesion was obtained.
  • Example 9 with TES treatment the elements and composition on the surface of the transparent conductive film were measured by XPS (X-ray photoelectron spectroscopy). The ratio was determined. The experimental results are shown in Table 2.
  • Example 9 and Example 10 a small amount of Ag was detected in Comparative Example 1 where no pretreatment was performed.
  • the buffer film made of an organic substance (triazine compound) was formed on the upper surface of the transparent conductive film by performing the TES process of Example 9 and the P-TES process of Example 10. These buffer films are considered to be very thin or formed intermittently.
  • Example 9 the haze value, Tt value (transmittance), and sheet resistance were measured. The results are shown in Table 3 below.
  • the sheet resistance was obtained by applying a silver paste to 5 mm at both ends of a 25 ⁇ 50 mm sheet, firing at 120 ° C. for 30 minutes, and then determining the bulk resistance.
  • the haze value, the Tt value, and the sheet resistance were almost the same for each sample.
  • the transparent conductive film was maintained while maintaining various properties of translucency and conductivity. It was found that the adhesion between the metal film and the metal film can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【目的】 特に、透明導電膜と金属膜間の密着性を向上させることが可能な導電体及びその製造方法を提供することを目的とする。 【解決手段】 導電体1は、透明基材2上に形成された銀ナノワイヤを含む透明導電膜3と、少なくとも一部が前記透明導電膜上に重なるように形成された金属膜5と、を有し、透明導電膜3と金属膜5とが重なった部分に、透明導電膜3及び金属膜5のそれぞれに対し密着性を有して透明導電膜3と金属膜5との間の導通を妨げないバッファ膜4を有することを特徴とする。バッファ膜4は、例えばITO膜であり、このとき、透明導電膜3の上面3aが逆スパッタ面であることが好ましい。

Description

導電体及びその製造方法
 本発明は、銀ナノワイヤを含む透明導電膜と金属膜との間の密着性に関する。
 特許文献1には、基板上に銀ナノワイヤの透明導電膜が形成された導電体が開示されている。
 ところで銀ナノワイヤは透明導電膜内にて分散されている(特許文献1[0053]、[0054]、[0103]、[0104]等)。このように分散性を確保するために銀ナノワイヤは透明樹脂内にて保持されており、透明導電膜の表面は実質的に有機膜となっている。
 そのため、透明導電膜の上に金属膜を成膜したとき、透明導電膜と金属膜間の密着性が不足し金属膜が剥離しやすい問題が生じた。
特開2010-507199号公報
 本発明は上記従来の課題を解決するためのものであり、特に、透明導電膜と金属膜間の密着性を向上させることが可能な導電体及びその製造方法を提供することを目的とする。
 本発明における導電体は、
 基材と、
 前記基材上に形成された銀ナノワイヤを含む透明導電膜と、
 少なくとも一部が前記透明導電膜上に重なるように形成された金属膜と、
 を有し、
 前記透明導電膜と前記金属膜とが重なった部分に、前記透明導電膜及び前記金属膜のそれぞれに対し密着性を有して前記透明導電膜と前記金属膜との間の導通を妨げないバッファ膜を有することを特徴とするものである。
 また本発明における導電体の製造方法は、
 基材上に形成された銀ナノワイヤを含む透明導電膜上に、前記透明導電膜と次工程に形成される金属膜のそれぞれと密着性を有して前記透明導電膜と前記金属膜との間の導通を妨げないバッファ膜を形成する工程と、
 前記バッファ膜上に前記金属膜の少なくとも一部を形成する工程と、
 を有することを特徴とするものである。
 本発明によれば、透明導電膜と金属膜間に、透明導電膜と金属膜とのそれぞれと密着性を有し透明導電膜と金属膜との導通を妨げないバッファ膜を介在させることで、透明導電膜と金属膜間の良好な導通性を維持しつつ密着性を向上させることができる。
 また本発明では、前記バッファ膜は、透明金属酸化物で形成されることが好ましい。前記透明金属酸化物は、ITOであることが好ましい。これにより、効果的に透明導電膜と金属膜間の密着性を向上させることができる。
 また本発明では、前記透明導電層の上面を逆スパッタした後、前記上面に前記透明導電膜を形成することが好ましい。すなわち、前記透明導電膜の上面は逆スパッタ面であり、前記バッファ膜は前記逆スパッタ面上に形成されることが好ましい。これにより、より効果的に透明導電膜と金属膜間の密着性を向上させることができる。
 あるいは本発明では、前記バッファ膜は、前記透明導電膜及び前記金属膜の夫々に結合する官能基を備えた有機物であることが好ましい。このとき、前記有機物は、アルコキシ基及びチオール基、あるいはアルコキシ基及びアジ基を有するトリアジン化合物であることが好ましい。
 また前記トリアジン化合物は、化5あるいは化6に示される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 これにより、効果的に透明導電膜と金属膜間の密着性を向上させることができる。
また本発明では、前記バッファ膜に対して熱処理工程を施すことが好ましい。これにより、より効果的に透明導電膜と金属膜間の密着性を向上させることができる。
 本発明によれば、透明導電膜と金属膜間に、透明導電膜及び金属膜のそれぞれとの密着性を有し透明導電膜と金属膜との間の導通を妨げないバッファ膜を介在させることで、透明導電膜と金属膜間の良好な導通性を維持しつつ密着性を向上させることができる。
図1(a)(b)は、本実施形態における導電体の縦断面図であり、図1(c)は、導電体の一部分を拡大して示した模式図である。 図2は、本実施形態における導電体の製造方法を示す一工程図(縦断面図)である。 図3は、図2の次に行われる一工程図(縦断面図)である。 図4は、図3の次に行われる一工程図(縦断面図)である。 図5は、図4の次に行われる一工程図(縦断面図)である。 図6は、図5の次に行われる一工程図(縦断面図)である。
 図1(a)は、本実施形態における導電体の縦断面図である。
 図1(a)に示す導電体1は、透明基材2と、透明基材2の上面2aに形成された透明導電膜3と、透明導電膜3上に形成されたバッファ膜4と、バッファ膜4上に形成された金属膜5とを有して構成される。
 導電体1は、可撓性を備えるフィルム状であってもよいし、剛性の高い板状、パネル状であってもよい。
 なおこの明細書において、「透明」「透光性」とは可視光線透過率が50%以上(好ましくは80%以上)の状態を指す。
 図1(a)では、透明導電膜3は、透明基材2上にて透明電極形状にパターン形成されている。透明電極膜3は、図1(a)のようにパターン化されて透明基材2上に部分的に形成されていてもよいし、透明基材2の上面2a全体に形成されていてもよい。また図1(a)に示す縦断面の位置では、各透明導電膜3が分離した状態で現れているが、図示しない位置で一体的にあるいは別の導電膜を介して電気的に接続された形態とすることができる。
 図1(a)に示す導電体1の用途は限定されない。例えば導電体1は入力表示装置の一部として使用される。例えば導電体1の下方には、液晶ディスプレイなどが配置され、図1(a)に示す透明導電膜3のうち、金属膜5が配置されていない中央部分が入力表示部分である。よって中央部分にある透明導電膜3が例えば指等の操作体との間で静電容量変化を生じさせるための透明電極である。また図1(a)の両側部分にある、透明導電膜3上に金属膜5が重ねられた部分は、非表示領域であり、例えば中央部分の透明電極と電気的に接続された配線部を構成している。
 図1(a)に示す導電体1の表面に図示しない透明粘着層を介して表示パネルが配置される形態にすることもできる。また図1(a)に示す透明基材2の下面側を入力操作面とすることもできる。
 図1(a)に示す透明基材2は、ポリエチレンテレフタレート(PET)等のフィルム状の透明基材やガラス基材等で形成される。透明基材2の材質は特に限定されない。また図1(a)では透明基材2を使用したが、透明でない、例えば半透明の基材を用いることもできる。
 図1(a)に示す透明導電膜3は、銀ナノワイヤを含む透明導電膜である。図1(c)に示すように、銀ナノワイヤ6は、銀あるいは銀合金からなる線状構造体である。図1(c)に示すように、銀ナノワイヤ6は、透明な樹脂層7中で、分散されて存在し、銀ナノワイヤ6のそれぞれが、その一部で接触することにより、面内での導電性を保っている。
 図1(c)に示すように銀ナノワイヤ6は透明な樹脂層7中にて分散されている。樹脂層7により銀ナノワイヤ6の分散性が確保されている。樹脂層7の材質を特に限定するものでないが、例えば樹脂層7は、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂等である。
 図1(a)に示すように、透明導電膜3のうち、透明基材2の両側部分に位置する透明導電膜3上にはバッファ膜4を介して金属膜5が形成されている。バッファ膜4は、透明導電膜3と金属膜5とのそれぞれと密着性を有し、透明導電膜3と金属膜5との導通を妨げない中間膜である。
 金属膜5は、例えばCu膜である。バッファ膜4は、特にこの金属膜5と銀ナノワイヤを含む透明導電膜3との間の密着性を向上させることができる。なお金属膜5の材質を特に限定するものでなく、Cuのほかに、Al,Ag,Au,Niなどを選択することもできる。
 図1(a)では、バッファ膜4を透明導電膜3と金属膜5との間にのみ設けているが、バッファ膜4は、図1(b)のように、金属膜5が重ならない透明導電膜3の上面に残されていてもよい。後述する製造方法によれば、金属膜5と重ならないバッファ膜4の部分を、エッチング工程を経て除去することが可能であり、あるいは使用するエッチング液等のエッチング条件によっては、金属膜5が重なっていない部分のバッファ膜4を透明導電膜3の上面に残すこともできる。このとき、バッファ膜4は非常に薄い透明な膜であるため、バッファ膜4が透明導電膜3上に残されていても良好な透光性を確保できる。
 バッファ膜4は、透明金属酸化物であることが好ましい。透明金属酸化物には、ITO(Indium TinOxide)、ZnO、SnO等の無機透明導電材料を用いることができ、この中でも特にITOを選択することが好ましい。これにより、効果的に透明導電膜3と金属膜5間の密着性を向上させることができる。
 また透明導電膜3の上面3a(図1(c)参照)に逆スパッタを施した後、逆スパッタ面である上面3aに透明金属酸化物(特にITO)からなるバッファ膜4を成膜することが好適である。逆スパッタとは不活性ガス雰囲気下などで、透明導電膜3の表面近傍にプラズマを生じさせて表面を改質する方法を指す。逆スパッタは、通常のスパッタリングにて印加されるターゲットと基板間の電圧を逆にして行う。
 逆スパッタにより透明導電膜3の上面3aは改質され、バッファ膜4を介した透明導電膜3と金属膜5間の密着性をより効果的に向上させることができる。逆スパッタにより、透明導電膜3の上面3aでは、金属である銀ナノワイヤ6の露出量(露出面積)が大きくなり、または、透明導電膜3の上面3aが適度に荒らされるものと考えられる。
 上記した透明金属酸化物(特にITO)からなるバッファ膜4の厚みは、2nm~100nm程度であることが好ましい。なお、透明導電膜3の上面3aを逆スパッタせずに透明金属酸化物(特にITO)からなるバッファ膜4を成膜した場合、バッファ膜4の厚みは、20~100nm程度とすることが好ましい。これにより、透明導電膜3と金属膜5間の密着性を効果的に向上させることができる。
 また、バッファ膜4の上面4a(図1(c)参照)に対して逆スパッタを施した後、金属膜5を成膜することが好ましい。これにより、より効果的に、銀ナノワイヤを含む透明導電膜3と金属膜5との間の密着性を向上させることができる。またバッファ膜4を介した透明導電膜3と金属膜5間の良好な導通性を維持できる。
 あるいはバッファ膜4は、透明導電膜3及び金属膜5の夫々に結合する官能基を備えた有機物であってもよい。後述の処理によるバッファ膜4の膜厚は非常に薄く、バッファ膜4を介した透明導電膜3と金属膜5間は電気的に接続された状態とされる。あるいは、バッファ膜4は、透明導電膜3の上面3aに間欠的に形成されており、バッファ膜4を介した透明導電膜3と金属膜5間は電気的に接続された状態とされる。
 上記した有機物は、アルコキシ基及びチオール基、あるいはアルコキシ基及びアジ基を有するトリアジン化合物であることが好ましい。具体的には、トリアジン化合物は、以下の化7あるいは化8に示される構造であることが好適である。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 これにより、効果的に透明導電膜と金属膜間の密着性を向上させることができる。
 また、有機物に対して熱処理が施されていることが密着性をより効果的に向上させるうえで好ましい。熱処理は、100℃前後で数分~数十分行うことが好適である。この熱処理は、上記の化学式7や化学式8に示すトリアジン化合物を用いたバッファ膜4の形成工程中に施されるものであってもよいし、あるいは、バッファ膜4の形成工程後(金属膜5の成膜前、成膜中、成膜後のいずれであってもよい)に施されるものであってもよい。
 図2ないし図6は、本実施形態における導電体1の製造方法を示す工程図(縦断面図)である。
 図2に示す工程では、PET等の透明基材2上に形成された銀ナノワイヤを含む透明導電膜3の上面3aにバッファ膜4を形成する。バッファ膜4は、透明導電膜3及び次工程で形成される金属膜5の双方に密着性を有し、透明導電膜3と金属膜5との導通を妨げない機能を備えたものである。
 図2に示すように、透明導電膜3は、透明基材2の上面2aの略全体に形成されている。ただし、透明導電膜3を透明基材2の上面2aに最初から部分的に形成することもできる。
 透明基材2上に銀ナノワイヤを含む透明導電膜3が予め形成された導電性基材を用意してもよいし、あるいは、銀ナノワイヤを含む塗布液を透明基材2上に塗布し、所定の熱処理を施して、透明導電膜3を透明基材2上に形成することもできる。
 図2に示すバッファ膜4を透明金属酸化物で形成することが好ましい。また透明金属酸化物をITOで形成することがより好ましい。さらに、透明導電膜3の上面3aを逆スパッタした後、前記上面3aに透明金属酸化物(特にITO)からなるバッファ膜4をスパッタ法等の既存の方法で成膜することが好ましい。逆スパッタの条件としては、Arなどの不活性雰囲気下あるいは真空雰囲気にて、圧力を、50~500mmtorr程度、パワーを0.01~10mW/cm程度に制御する。
 あるいは、バッファ膜4を、透明導電膜3及び図3の工程で形成される金属膜5の夫々に結合する官能基を備えた有機物で形成することもできる。このとき、前記有機物を、アルコキシ基及びチオール基、あるいはアルコキシ基及びアジ基を有するトリアジン化合物で形成し、具体的には、上記の化学式7あるいは化学式8に示すトリアジン化合物で形成することが好ましい。また、有機物に対して熱処理を施すことが好ましい。この熱処理は、有機物の形成工程中、あるいは有機物の形成工程後、例えば、図3の工程での金属膜5の形成後、施してもよい。
 有機物によるバッファ膜4の形成は、有機物を含む溶液の浸漬工程、洗浄工程、及び乾燥工程等を経て行われる。
 図2では、バッファ膜4を透明導電膜3の上面3a全体に形成しているが、図2の工程でバッファ膜4を透明導電膜3の上面3aの所定領域だけに形成することもできる。
 図3に示す工程では、バッファ膜4上に金属膜5をスパッタ法等の既存の方法により成膜する。図3では、金属膜5をバッファ膜4の上面4a全体に形成しているが、所定領域だけに形成することも可能である。
 金属膜4をCu膜で形成することが好ましい。
 続いて金属膜5の上面5aにレジスト層8を塗布する。レジスト層8に対しプリベーク処理や露光現像処理を施して、図3に示すパターンのレジスト層8を残す。
 続いて図4に示す工程では、レジスト層8に覆われていない金属膜5をエッチングにて除去する。このときのエッチング液により、金属膜5が除去されたことで露出したバッファ膜4が除去されてもよい。これにより図4に示すように透明導電膜3の表面が露出した状態になる。なお図4の工程で、露出したバッファ膜4がエッチングにより除去されなくてもよい。
 次に図5の工程では、レジスト層8を除去し、続いて、全面にレジスト層9を塗布する。レジスト層9に対しプリベーク処理や露光現像処理を施して、図5に示すパターンのレジスト層9を残す。
 続いて図6では、レジスト層9に覆われていない金属膜5をエッチングにより除去する。このとき、金属膜5を除去したことで露出したバッファ膜4もエッチング工程にて除去することができる。
 さらにレジスト層9を除去することで図6に示す導電体1が完成する。
 上記した製造方法では、透明導電膜3上にバッファ膜4を介して金属膜5を形成している。これにより銀ナノワイヤを含む透明導電膜3と金属膜5との間の密着性を効果的に向上させることが可能になる。
 図1では金属膜5全体が透明導電膜3と重なり、透明導電膜3と金属膜5とが重なった部分に、バッファ膜4が介在する構成となっている。ただし、金属膜5の一部が透明導電膜3上にて重なり、その重なった部分にバッファ膜4が介在する構成とすることも可能である。
 実験では、比較例1~比較例4及び実施例1~実施例8の各導電体を形成した。
 いずれの導電体も、透明基材上に銀ナノワイヤを含む透明導電膜が形成された共通の導電基材を使用し、さらに金属膜として膜厚が150nmのCu膜を成膜した。
Figure JPOXMLDOC01-appb-T000009
 表1に示すように、比較例1では、金属膜(Cu膜)を成膜する前に、透明導電膜上に前処理を施さなかった。
 また表1に示すように、比較例2では、透明導電膜の表面にUV-オゾンにより表面処理を行った後、金属膜(Cu膜)を成膜した。また比較例3では、透明導電膜の表面にエキシマUV処理を行った後、金属膜(Cu膜)を成膜した。
 なお、実施例1、2については、透明導電膜の上面を逆スパッタしていない。
 表1に示すように、実施例1では、銀ナノワイヤを含む透明導電膜の上面にITOからなるバッファ膜を20nmの膜厚で成膜した後、前記バッファ膜上に金属膜(Cu膜)を成膜した。また実施例2では、銀ナノワイヤを含む透明導電膜の上面にITOからなるバッファ膜を100nmの膜厚で成膜した後、前記バッファ膜上に金属膜(Cu膜)を成膜した。
 また表1に示すように、実施例3では、銀ナノワイヤを含む透明導電膜の上面を逆スパッタした後、前記上面にITOからなるバッファ膜を2nmの膜厚で成膜し、続いて前記バッファ膜上に金属膜(Cu膜)を成膜した。また実施例4では、銀ナノワイヤを含む透明導電膜の上面を逆スパッタした後、前記上面にITOからなるバッファ膜を20nmの膜厚で成膜し、続いて前記バッファ膜上に金属膜(Cu膜)を成膜した。また実施例5では、銀ナノワイヤを含む透明導電膜の上面を逆スパッタした後、前記上面にITOからなるバッファ膜を100nmの膜厚で成膜し、続いて前記バッファ膜上に金属膜(Cu膜)を成膜した。また実施例6では、銀ナノワイヤを含む透明導電膜の上面を逆スパッタした後、前記上面にITOからなるバッファ膜を20nmの膜厚で成膜し、次に一度スパッタ装置から取り出して、1日程度大気雰囲気に放置した後、再度、スパッタ装置に投入して、真空引きした後、前記バッファ膜の上面を逆スパッタし、さらに前記バッファ膜上に金属膜(Cu膜)を成膜した。
 上記した逆スパッタの条件を、いずれも、不活性雰囲気下(Ar下)にて、圧力を、200mmtorr程度、パワーを5mW/cm程度、とした。
 また実施例7では、銀ナノワイヤを含む透明導電膜の上面に上記した化学式7に示すトリアジン化合物(以下、TESと称する)からなるバッファ膜を形成し、続いて、前記バッファ膜上に金属膜(Cu膜)を成膜した。実施例7におけるバッファ膜を、KOH水溶液(3%)に浸漬-HOリンス-TES/エタノール液に浸漬-HOリンス-ホットプレート(80℃)の各工程を経て形成した(TES処理)。さらに、金属膜を形成した後、100℃で10分間の熱処理を施した。
 また実施例8では、銀ナノワイヤを含む透明導電膜の上面に上記した化学式8に示すトリアジン化合物(以下、P-TESと称する)からなるバッファ膜を形成し、続いて、前記バッファ膜上に金属膜(Cu膜)を成膜した。実施例8におけるバッファ膜を、P-TES/IPA(0.1%)に浸漬-ドライヤー乾燥-UV照射-エタノールリンスの各工程を経て形成した(P-TES処理)。さらに、金属膜を形成した後、100℃で10分間の熱処理を施した。
 そして比較例1-4及び実施例1-8の各試料に対してクロスカットテスト(JIS K5600-5-6)を行った。クロスカットテストでは、各試料の中心(center)及び端(Edge)の夫々で行った。
 表1に示す◎は、全く剥離が無い場合、○は、ほんの一部に剥離が見られる場合、×は、全面的に剥離が見られる場合の結果である。
 表1に示すように、実施例は比較例に比べてクロスカットテストの結果が良好であり、銀ナノワイヤを含む透明導電膜と金属膜(Cu膜)との間の密着性が良好であることがわかった。
 また表1に示すように、実施例3~実施例6のほうが、実施例1及び実施例2に比べて、良好な密着性が得られることがわかった。したがって、透明導電膜の表面を逆スパッタした後、ITOからなるバッファ膜を成膜することで、より効果的に、透明導電膜と金属膜との間の密着性を向上させることができるとわかった。さらに、実施例6のように、バッファ膜を成膜後、一度大気雰囲気に放置しても、バッファ層の上面を逆スパッタすることで、効果的に密着性を向上させることができるとわかった。
 TES処理を施した実施例7及びP-TES処理を施した実施例8では、いずれも熱処理を施しており、これにより、良好な密着性が得られることがわかった。
 次に、前処理をしていない比較例1、TES処理を施した実施例9及びP-TES処理を施した実施例10において、XPS(X線光電子分光)により透明導電膜表面の元素及び組成比を求めた。その実験結果が表2に示されている。
Figure JPOXMLDOC01-appb-T000010
 表2に示すように、実施例9及び実施例10からは、処理液中に含まれるSiが検出された。
 また、実施例9及び実施例10でも、前処理を施していない比較例1で検出されたAgが少量検出された。
 以上から、実施例9のTES処理や実施例10のP-TES処理を施すことで、有機物(トリアジン化合物)からなるバッファ膜が透明導電膜の上面に形成されていることがわかった。またこれらバッファ膜は、非常に薄くあるいは間欠的に形成されているものと考えられる。
 また、比較例1、実施例9及び実施例10について、ヘイズ値、Tt値(透過率(Transmittance))、及びシート抵抗を測定した。その結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000011
 なおシート抵抗は、25×50mmのシートの両端5mmに銀ペーストを塗布し、120℃、30分の焼成後、バルク抵抗を求めた。
 表3に示すように、ヘイズ値、Tt値、及びシート抵抗は、各試料ともほぼ同じであった、このように実施例では透光性、導電性の諸特性を維持しつつ、透明導電膜と金属膜との間の密着性を向上させることができるとわかった。
1 導電体
2 透明基材
3 透明導電膜
4 バッファ膜
5 金属膜
6 銀ナノワイヤ
7 樹脂層
8、9 レジスト層

Claims (17)

  1.  基材と、
     前記基材上に形成された銀ナノワイヤを含む透明導電膜と、
     少なくとも一部が前記透明導電膜上に重なるように形成された金属膜と、
     を有し、
     前記透明導電膜と前記金属膜とが重なった部分に、前記透明導電膜及び前記金属膜のそれぞれに対し密着性を有して前記透明導電膜と前記金属膜との間の導通を妨げないバッファ膜を有することを特徴とする導電体。
  2.  前記バッファ膜は、透明金属酸化物で形成される請求項1記載の導電体。
  3.  前記透明金属酸化物は、ITOである請求項2記載の導電体。
  4.  前記透明導電膜の上面は逆スパッタ面であり、前記バッファ膜は前記逆スパッタ面上に形成される請求項2又は3に記載の導電体。
  5.  前記バッファ膜は、前記透明導電膜及び前記金属膜の夫々に結合する官能基を備えた有機物である請求項1記載の導電体。
  6.  前記有機物は、アルコキシ基及びチオール基、あるいはアルコキシ基及びアジ基を有するトリアジン化合物である請求項5記載の導電体。
  7.  前記トリアジン化合物は、化1あるいは化2に示される構造である請求項6記載の導電体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  8.  前記有機物に対して熱処理が施されている請求項5ないし7のいずれか1項に記載の導電体。
  9.  前記金属膜は、Cuで形成される請求項1ないし8のいずれか1項に記載の導電体。
  10.  基材上に形成された銀ナノワイヤを含む透明導電膜上に、前記透明導電膜と次工程に形成される金属膜のそれぞれと密着性を有して前記透明導電膜と前記金属膜との間の導通を妨げないバッファ膜を形成する工程と、
     前記バッファ膜上に前記金属膜の少なくとも一部を形成する工程と、
     を有することを特徴とする導電体の製造方法。
  11.  前記バッファ膜を、透明金属酸化物で形成する請求項10記載の導電体の製造方法。
  12.  前記透明金属酸化物を、ITOで形成する請求項11記載の導電体の製造方法。
  13.  前記透明導電層の上面を逆スパッタした後、前記上面に前記透明導電膜を形成する請求項10ないし12のいずれか1項に記載の導電体の製造方法。
  14.  前記バッファ膜を、前記透明導電膜及び前記金属膜の夫々に結合する官能基を備えた有機物で形成する請求項10記載の導電体の製造方法。
  15.  前記有機物を、アルコキシ基及びチオール基、あるいはアルコキシ基及びアジ基を有するトリアジン化合物で形成する請求項14記載の導電体の製造方法。
  16.  前記トリアジン化合物を、化3あるいは化4に示される構造で形成する請求項15記載の導電体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  17.  前記バッファ膜に対し熱処理工程を施す請求項14ないし16のいずれか1項に記載の導電体の製造方法。
PCT/JP2013/080089 2012-11-08 2013-11-07 導電体及びその製造方法 WO2014073597A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157011928A KR101714286B1 (ko) 2012-11-08 2013-11-07 도전체 및 그 제조 방법
CN201380058038.8A CN104919540B (zh) 2012-11-08 2013-11-07 导电体及其制造方法
JP2014545745A JP5993028B2 (ja) 2012-11-08 2013-11-07 導電体及びその製造方法
US14/685,964 US10026523B2 (en) 2012-11-08 2015-04-14 Conductor and method of manufacturing the same
US15/792,452 US10886037B2 (en) 2012-11-08 2017-10-24 Conductor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012245978 2012-11-08
JP2012-245978 2012-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/685,964 Continuation US10026523B2 (en) 2012-11-08 2015-04-14 Conductor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014073597A1 true WO2014073597A1 (ja) 2014-05-15

Family

ID=50684697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080089 WO2014073597A1 (ja) 2012-11-08 2013-11-07 導電体及びその製造方法

Country Status (5)

Country Link
US (2) US10026523B2 (ja)
JP (1) JP5993028B2 (ja)
KR (1) KR101714286B1 (ja)
CN (1) CN104919540B (ja)
WO (1) WO2014073597A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196180A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性積層体及びタッチパネル
JP2019050106A (ja) * 2017-09-08 2019-03-28 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
TWI684519B (zh) * 2018-08-20 2020-02-11 郭明智 複合導電材料
JP2021037668A (ja) * 2019-09-02 2021-03-11 日東電工株式会社 透明導電性フィルム、透明導電性フィルムの製造方法および中間体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201600591VA (en) * 2013-07-31 2016-02-26 3M Innovative Properties Co Bonding electronic components to patterned nanowire transparent conductors
US20180015477A1 (en) * 2016-07-15 2018-01-18 Calvin Moore Plastic shredder
CN107123745B (zh) * 2017-04-27 2018-12-14 上海天马有机发光显示技术有限公司 像素阵列及其制作方法、显示面板和显示装置
CN107221497B (zh) * 2017-07-28 2020-07-21 京东方科技集团股份有限公司 导线的制造方法和显示面板
JP2020167047A (ja) * 2019-03-29 2020-10-08 日東電工株式会社 ヒータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170431A (ja) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
WO2009078263A1 (ja) * 2007-12-14 2009-06-25 Konica Minolta Holdings, Inc. 透明導電性フィルム及びその製造方法
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2011248629A (ja) * 2010-05-27 2011-12-08 Meihan Shinku Kogyo Kk 透明導電性基材
JP2012009240A (ja) * 2010-06-24 2012-01-12 Konica Minolta Holdings Inc 透明電極とその製造方法、及び透明電極を用いた有機電子素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG150514A1 (en) * 2005-08-12 2009-03-30 Cambrios Technologies Corp Nanowires-based transparent conductors
EP3595016A1 (en) * 2006-10-12 2020-01-15 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and method of making them
JP4314623B2 (ja) * 2006-12-07 2009-08-19 日東電工株式会社 透明導電性積層体及びタッチパネル
US8018563B2 (en) * 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2007323089A (ja) 2007-08-10 2007-12-13 Ricoh Co Ltd 定着装置及び画像形成装置
US8212792B2 (en) * 2007-08-14 2012-07-03 Tyco Electronics Corporation Touchscreen using oriented microscopic linear conductive elements
JP2009238416A (ja) * 2008-03-26 2009-10-15 Toppan Printing Co Ltd 透明導電膜付き基板及びその製造方法
JP2009252437A (ja) * 2008-04-03 2009-10-29 Konica Minolta Holdings Inc 透明導電性フィルム
KR101201897B1 (ko) * 2008-12-12 2012-11-16 한국전자통신연구원 산화물 반도체 나노섬유를 이용한 초고감도 가스센서 및 그제조방법
CN101697288A (zh) * 2009-10-13 2010-04-21 福建师范大学 一种金属银/金属氧化物的透明导电薄膜及其制备方法
CN102087885A (zh) * 2009-12-08 2011-06-08 中国科学院福建物质结构研究所 平坦化的银纳米线透明导电薄膜及其制备方法
CN102201274A (zh) * 2010-03-26 2011-09-28 三菱综合材料株式会社 导电膜形成用组成物、太阳能电池用复合膜及其形成方法
JP2012000924A (ja) 2010-06-20 2012-01-05 Katsumasa Kuroki 行事黒板の過日被覆透明カラーフィルム巻取具
JP5914036B2 (ja) 2011-04-20 2016-05-11 日東電工株式会社 導電性積層フィルムの製造方法
JP2013008546A (ja) * 2011-06-24 2013-01-10 Panasonic Corp 導電膜パターンの製造方法、および有機el表示パネルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170431A (ja) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
WO2009078263A1 (ja) * 2007-12-14 2009-06-25 Konica Minolta Holdings, Inc. 透明導電性フィルム及びその製造方法
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2011248629A (ja) * 2010-05-27 2011-12-08 Meihan Shinku Kogyo Kk 透明導電性基材
JP2012009240A (ja) * 2010-06-24 2012-01-12 Konica Minolta Holdings Inc 透明電極とその製造方法、及び透明電極を用いた有機電子素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196180A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性積層体及びタッチパネル
JP2019050106A (ja) * 2017-09-08 2019-03-28 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
US11710797B2 (en) 2017-09-08 2023-07-25 Kabushiki Kaisha Toshiba Transparent electrode, device employing the same, and manufacturing method of the device
TWI684519B (zh) * 2018-08-20 2020-02-11 郭明智 複合導電材料
JP2021037668A (ja) * 2019-09-02 2021-03-11 日東電工株式会社 透明導電性フィルム、透明導電性フィルムの製造方法および中間体
JP7442283B2 (ja) 2019-09-02 2024-03-04 日東電工株式会社 透明導電性フィルム、透明導電性フィルムの製造方法および中間体

Also Published As

Publication number Publication date
CN104919540B (zh) 2017-05-10
KR101714286B1 (ko) 2017-03-08
US10886037B2 (en) 2021-01-05
JPWO2014073597A1 (ja) 2016-09-08
JP5993028B2 (ja) 2016-09-14
US10026523B2 (en) 2018-07-17
US20180047478A1 (en) 2018-02-15
US20150221413A1 (en) 2015-08-06
CN104919540A (zh) 2015-09-16
KR20150068446A (ko) 2015-06-19

Similar Documents

Publication Publication Date Title
JP5993028B2 (ja) 導電体及びその製造方法
JP6870959B2 (ja) 透明電極およびこれを含む素子
KR102283361B1 (ko) 융합 네트워크를 갖는 투명 전도성 필름의 형성을 위한 금속 나노와이어 잉크
TWI669280B (zh) 透明複合基板與其製備方法及觸控面板
KR102650752B1 (ko) 금속층 적층 투명 도전성 필름 및 그것을 사용한 터치 센서
US9137892B2 (en) Laminated structure, method of manufacturing laminated structure, and electronic apparatus
JP6131165B2 (ja) タッチパネル用積層体
TW201637848A (zh) 透光性膜
TW201615593A (zh) 觸控面板及其立體蓋板結構
JP6453850B2 (ja) タッチパネル、その作成方法、及びタッチパネル用のag−pd−nd合金
US9356252B2 (en) Electronic device and manufacturing method therefor
TWI423268B (zh) 含奈米銀線之軟性透明導電膜及其製造方法
KR20140075502A (ko) 적층 구조의 복합 전극 제조방법
CN107134321A (zh) 一种基于石墨烯的复合柔性透明导电薄膜及其制备方法
KR101383488B1 (ko) 고품위 유연 투명 전극 제작 방법 및 이를 이용하여 제작된 고품위 유연 투명 전극
KR101696300B1 (ko) 전극 및 그의 제조방법
KR20230072563A (ko) 균열 길이 제어 가능한 금속 고분자 하이브리드 나노 구조 투명유연전극 및 그 제조 방법
KR20190076494A (ko) 은 함유 박막 식각액 조성물 및 이를 이용한 표시장치용 어레이기판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545745

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853179

Country of ref document: EP

Kind code of ref document: A1