WO2014073535A1 - Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method - Google Patents

Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method Download PDF

Info

Publication number
WO2014073535A1
WO2014073535A1 PCT/JP2013/079911 JP2013079911W WO2014073535A1 WO 2014073535 A1 WO2014073535 A1 WO 2014073535A1 JP 2013079911 W JP2013079911 W JP 2013079911W WO 2014073535 A1 WO2014073535 A1 WO 2014073535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
illumination
mask
projection
beam splitter
Prior art date
Application number
PCT/JP2013/079911
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 正紀
哲男 鈴木
剛忠 鎌田
正範 荒井
紘典 北
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2014545710A priority Critical patent/JP6540027B2/en
Priority to KR1020187017562A priority patent/KR101984451B1/en
Priority to KR1020197011130A priority patent/KR102045713B1/en
Priority to KR1020157011676A priority patent/KR101979979B1/en
Priority to KR1020187001013A priority patent/KR101900225B1/en
Priority to CN201380067898.8A priority patent/CN104885012B/en
Publication of WO2014073535A1 publication Critical patent/WO2014073535A1/en
Priority to HK16100427.5A priority patent/HK1212476A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/703Non-planar pattern areas or non-planar masks, e.g. curved masks or substrates

Definitions

  • the present invention relates to a polarizing beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method.
  • Patent Document 1 an exposure apparatus that irradiates a reflective cylindrical reticle (mask) with exposure light and projects the exposure light reflected from the mask onto a photosensitive substrate (wafer) is known (for example, Patent Document 1).
  • the exposure apparatus of Patent Document 1 has a projection optical system that projects exposure light reflected from a mask onto a wafer, and the projection optical system performs exposure in an imaging optical path in accordance with the polarization state of incident exposure light.
  • a polarization beam splitter that transmits and reflects light is included.
  • the illumination light beam from the illumination optical system is irradiated obliquely onto the cylindrical mask from a direction different from the projection optical system, and the exposure light (projection light beam) reflected by the mask is the projection optical system. It is comprised so that it may inject into.
  • the illumination optical system and the projection optical system are arranged as in Patent Document 1, there is a problem that the use efficiency of the illumination light beam is low, and the image quality of the mask pattern projected onto the photosensitive substrate (wafer) is not preferable.
  • light splitting elements such as half mirrors and beam splitters are arranged in the imaging optical path of the projection optical system, and the illumination light flux is irradiated onto the mask via the light splitting element, and the projection light flux reflected by the mask is also light.
  • the light is guided to the photosensitive substrate through the dividing element.
  • an efficient exposure with a low light loss of the illumination light beam and the projected light beam is achieved by using a polarization beam splitter as the light splitting element. Can do.
  • the polarization beam splitter is shared between the illumination optical system and the projection optical system.
  • the optical system and the projection optical system physically interfere with each other.
  • the polarizing film of the polarizing beam splitter reflects a part of the incident incident light beam as a reflected light beam and transmits a part of the incident light beam as a transmitted light beam.
  • the reflected light flux or the transmitted light flux is separated, resulting in energy loss.
  • the incident light beam incident on the polarizing film is a laser beam having a uniform wavelength and phase.
  • the laser beam has a high energy density.
  • the incident light beam is laser light
  • the reflectance of the reflected light beam and the transmittance of the transmitted light beam in the polarizing film are low, the energy of the laser light is absorbed by the polarizing film, and the load applied to the polarizing film increases. End up.
  • the resistance of the polarizing film of the polarizing beam splitter is likely to be lowered, and thus it may be difficult to appropriately separate the incident light beam. is there.
  • An aspect of the present invention has been made in view of the above-described problems, and the purpose of the present invention is to physics the illumination optical system and the projection optical system even when the illumination light beam and the projection light beam are separated by the polarization beam splitter. It is an object of the present invention to provide a polarizing beam splitter, a substrate processing apparatus (exposure apparatus), a device manufacturing system, and a device manufacturing method capable of suppressing general interference and easily arranging an illumination optical system and projection optical system.
  • the purpose of the present invention is to reduce a load applied to the polarizing film even when the incident light beam has a high energy density, and a part of the incident light beam. It is intended to provide a polarizing beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method, in which a reflected light beam is reflected and a part of an incident light beam is transmitted to be a transmitted light beam.
  • the mask holding member that holds the reflective mask and the incident illumination light beam are reflected toward the mask, while the illumination light beam is reflected by the mask.
  • An illumination optical system that guides the illumination light beam to the mask includes the illumination optical module and the beam splitter, and a projection optical system that guides the projection light beam to the substrate includes the projection optical module and the beam splitter.
  • the illumination optical module and the beam splitter between the mask and the projection optical module. Provided by which a substrate processing apparatus (exposure apparatus) is provided.
  • a device manufacturing system comprising a substrate processing apparatus according to the first aspect of the present invention and a substrate supply apparatus that supplies the substrate to the substrate processing apparatus.
  • the substrate processing apparatus is used to project and expose the substrate, and to process the projected and exposed substrate, thereby Forming a pattern on the substrate.
  • the mask holding member that holds the reflective mask and the incident illumination light beam are transmitted toward the mask, while the illumination light beam is reflected by the mask.
  • An illumination optical system that guides the illumination light beam to the mask includes the illumination optical module and the beam splitter, and a projection optical system that guides the projection light beam to the substrate includes the projection optical module and the beam splitter.
  • the illumination optical module and the beam splitter between the mask and the projection optical module. Provided by which a substrate processing apparatus (exposure apparatus) is provided.
  • the first prism, the second prism having a surface opposed to one surface of the first prism, and the incident light flux from the first prism toward the second prism, Depending on the polarization state, between the opposing surfaces of the first prism and the second prism to separate into a reflected light beam reflected to the first prism side or a transmitted light beam transmitted to the second prism side.
  • a polarizing beam splitter comprising: a polarizing film provided in a first film body including silicon dioxide as a main component and a second film body including hafnium oxide as a main component stacked in a film thickness direction.
  • a substrate processing apparatus that irradiates a mask with an illumination light beam, and projects and exposes an image of a pattern formed on the mask onto a photosensitive substrate that is a projection target,
  • a mask holding member that holds the reflective mask, an illumination optical module that guides the illumination light beam to the mask, and a projection optical module that projects the projection light beam reflected from the mask onto the projection target (substrate)
  • a polarizing beam splitter according to the first aspect of the present invention, disposed between the illumination optical module and the mask and between the mask and the projection optical module, and a wave plate.
  • the illumination light beam has an incident angle of the polarizing beam splitter with respect to the polarizing film in a predetermined angle range including a Brewster angle of 52.4 ° to 57.3 °;
  • the wave plate polarizes the illumination light beam from the polarization beam splitter so that the light beam splitter reflects the illumination light beam toward the mask and transmits the projection light beam toward the projection optical module.
  • a substrate processing apparatus for further polarizing the projection light beam from the mask.
  • a device manufacturing system comprising: a substrate processing apparatus according to the sixth aspect of the present invention; and a substrate supply apparatus that supplies the projection target to the substrate processing apparatus.
  • projection exposure is performed on the projection object using the substrate processing apparatus according to the sixth aspect of the present invention, and the projection-exposed object is processed.
  • the projection-exposed object is processed.
  • the illumination light beam and the projection light beam are separated by the beam splitter used in the illumination optical system and the projection optical system, physical interference between the illumination optical system and the projection optical system. It is possible to provide a polarization beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method capable of suppressing the above-described problem and easily arranging the illumination optical system and the projection optical system.
  • a polarizing beam splitter that reflects a part of an incident light beam as a reflected light beam and transmits a part of the incident light beam as a transmitted light beam while reducing a load applied to the polarizing film
  • FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment.
  • FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment.
  • FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG.
  • FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG.
  • FIG. 5A is a diagram illustrating an illumination light beam and a projection light beam in a mask.
  • FIG. 5B is a diagram illustrating the fourth relay lens viewed from the polarization beam splitter.
  • FIG. 6 is a diagram showing an illumination light beam and a projection light beam in the polarization beam splitter.
  • FIG. 7 is a diagram illustrating an arrangement region in which the illumination optical system can be arranged.
  • FIG. 8 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration around a polarizing film of a polarizing beam splitter of a comparative example with respect to the first embodiment.
  • FIG. 10 is a graph showing transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG.
  • FIG. 11 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
  • FIG. 12 is a flowchart illustrating the device manufacturing method according to the first embodiment.
  • FIG. 13 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment.
  • FIG. 14 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment.
  • FIG. 15 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the fourth embodiment.
  • FIG. 16 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the fifth embodiment.
  • FIG. 17 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the sixth embodiment.
  • FIG. 18 is a graph showing the transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG. FIG.
  • FIG. 19 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the seventh embodiment.
  • FIG. 20 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
  • FIG. 21 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the eighth embodiment.
  • FIG. 22 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
  • the polarizing beam splitter of the first embodiment is provided in an exposure apparatus as a substrate processing apparatus that performs an exposure process on a photosensitive substrate that is a projection target.
  • the exposure apparatus is incorporated in a device manufacturing system that manufactures devices by performing various processes on the exposed substrate. First, a device manufacturing system will be described.
  • FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment.
  • a device manufacturing system 1 shown in FIG. 1 is a line (flexible display manufacturing line) for manufacturing a flexible display as a device. Examples of the flexible display include an organic EL display.
  • the device manufacturing system 1 is configured such that the substrate P is sent out from a supply roll FR1 obtained by winding the flexible substrate P in a roll shape, and various processes are continuously performed on the sent out substrate P.
  • a so-called roll-to-roll method is adopted in which the substrate P after processing is wound as a flexible device on a collecting roll FR2.
  • a substrate P that is a film-like sheet is sent out from the supply roll FR1, and the substrates P sent out from the supply roll FR1 are sequentially supplied to n processing apparatuses U1, U2. , U3, U4, U5,..., Un, and the winding roll FR2 is shown as an example.
  • substrate P used as the process target of the device manufacturing system 1 is demonstrated.
  • a foil (foil) made of a resin or a metal such as stainless steel or an alloy is used.
  • the resin film material include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Includes one or more.
  • the thermal expansion coefficient may be set smaller than a threshold corresponding to the process temperature or the like, for example, by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like.
  • the substrate P may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
  • the substrate P configured in this way becomes a supply roll FR1 by being wound in a roll shape, and this supply roll FR1 is mounted on the device manufacturing system 1.
  • the device manufacturing system 1 on which the supply roll FR1 is mounted repeatedly executes various processes for manufacturing devices on the substrate P sent out from the supply roll FR1. For this reason, the processed substrate P is in a state where a plurality of devices are connected. That is, the substrate P sent out from the supply roll FR1 is a multi-sided substrate.
  • the substrate P may be activated by modifying the surface in advance by a predetermined pretreatment, or may have a fine partition structure (uneven structure) for precise patterning formed on the surface.
  • the treated substrate P is recovered as a recovery roll FR2 by being wound into a roll.
  • the collection roll FR2 is attached to a dicing device (not shown).
  • the dicing apparatus to which the collection roll FR2 is mounted divides the processed substrate P for each device (dicing) to form a plurality of devices.
  • the dimension in the width direction (short direction) is about 10 cm to 2 m
  • the dimension in the length direction (long direction) is 10 m or more.
  • substrate P is not limited to an above-described dimension.
  • the X direction is a direction in which the supply roll FR1 and the recovery roll FR2 are connected in a horizontal plane.
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane.
  • the Y direction is the axial direction of the supply roll FR1 and the recovery roll FR2.
  • the Z direction is a direction (vertical direction) orthogonal to the X direction and the Y direction.
  • the device manufacturing system 1 includes a substrate supply device 2 that supplies a substrate P, processing devices U1 to Un that perform various processes on the substrate P supplied by the substrate supply device 2, and processing is performed by the processing devices U1 to Un.
  • the substrate recovery apparatus 4 that recovers the processed substrate P and the host controller 5 that controls each device of the device manufacturing system 1 are provided.
  • the substrate supply device 2 is rotatably mounted with a supply roll FR1.
  • the substrate supply apparatus 2 includes a driving roller R1 that sends out the substrate P from the mounted supply roll FR1, and an edge position controller EPC1 that adjusts the position of the substrate P in the width direction (Y direction).
  • the driving roller R1 rotates while pinching both front and back surfaces of the substrate P, and feeds the substrate P to the processing apparatuses U1 to Un by feeding the substrate P in the transport direction from the supply roll FR1 to the collection roll FR2.
  • the edge position controller EPC1 moves the substrate P in the width direction so that the position at the end (edge) in the width direction of the substrate P is within a range of about ⁇ 10 ⁇ m to several tens ⁇ m with respect to the target position. To correct the position of the substrate P in the width direction.
  • the substrate collection device 4 is rotatably mounted with a collection roll FR2.
  • the substrate recovery apparatus 4 includes a drive roller R2 that draws the processed substrate P toward the recovery roll FR2, and an edge position controller EPC2 that adjusts the position of the substrate P in the width direction (Y direction).
  • the substrate collection device 4 rotates while sandwiching the front and back surfaces of the substrate P by the driving roller R2, pulls the substrate P in the transport direction, and rotates the collection roll FR2, thereby winding the substrate P.
  • the edge position controller EPC2 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the end portion (edge) in the width direction of the substrate P does not vary in the width direction. .
  • the processing device U1 is a coating device that applies a photosensitive functional liquid to the surface of the substrate P supplied from the substrate supply device 2.
  • a photosensitive functional liquid for example, a photoresist, a photosensitive silane coupling material, a UV curable resin liquid, or the like is used.
  • the processing apparatus U1 is provided with a coating mechanism Gp1 and a drying mechanism Gp2 in order from the upstream side in the transport direction of the substrate P.
  • the coating mechanism Gp1 includes a pressure drum DR1 around which the substrate P is wound, and a coating roller DR2 facing the pressure drum DR1.
  • the coating mechanism Gp1 sandwiches the substrate P between the pressure drum roller DR1 and the coating roller DR2 in a state where the supplied substrate P is wound around the pressure drum roller DR1. Then, the application mechanism Gp1 applies the photosensitive functional liquid by the application roller DR2 while rotating the impression cylinder DR1 and the application roller DR2 to move the substrate P in the transport direction.
  • the drying mechanism Gp2 blows drying air such as hot air or dry air, removes the solute (solvent or water) contained in the photosensitive functional liquid, and dries the substrate P coated with the photosensitive functional liquid. A photosensitive functional layer is formed on the substrate P.
  • the processing device U2 is a heating device that heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.) in order to stabilize the photosensitive functional layer formed on the surface of the substrate P. It is.
  • the processing apparatus U2 is provided with a heating chamber HA1 and a cooling chamber HA2 in order from the upstream side in the transport direction of the substrate P.
  • the heating chamber HA1 is provided with a plurality of rollers and a plurality of air turn bars therein, and the plurality of rollers and the plurality of air turn bars constitute a transport path for the substrate P.
  • the plurality of rollers are provided in rolling contact with the back surface of the substrate P, and the plurality of air turn bars are provided in a non-contact state on the surface side of the substrate P.
  • the plurality of rollers and the plurality of air turn bars are arranged to form a meandering transport path so as to lengthen the transport path of the substrate P.
  • the substrate P passing through the heating chamber HA1 is heated to a predetermined temperature while being transported along a meandering transport path.
  • the cooling chamber HA2 cools the substrate P to the environmental temperature so that the temperature of the substrate P heated in the heating chamber HA1 matches the environmental temperature of the subsequent process (processing apparatus U3).
  • the cooling chamber HA2 is provided with a plurality of rollers, and the plurality of rollers are arranged in a meandering manner in order to lengthen the conveyance path of the substrate P, similarly to the heating chamber HA1.
  • the substrate P passing through the cooling chamber HA2 is cooled while being transferred along a meandering transfer path.
  • a driving roller R3 is provided on the downstream side in the transport direction of the cooling chamber HA2, and the driving roller R3 rotates while sandwiching the substrate P that has passed through the cooling chamber HA2, thereby moving the substrate P toward the processing apparatus U3. Supply.
  • the processing apparatus (substrate processing apparatus) U3 projects and exposes a pattern such as a circuit for display or wiring on the substrate (photosensitive substrate) P having a photosensitive functional layer formed on the surface supplied from the processing apparatus U2. This is a scanning exposure apparatus. Although the details will be described later, the processing device U3 illuminates the reflective cylindrical mask M with the illumination light beam, and the projection light beam obtained by the illumination light beam being reflected by the mask M can rotate the substrate support drum 25. Projection exposure is performed on the substrate P supported on the outer peripheral surface of the substrate.
  • the processing apparatus U3 includes a driving roller R4 that sends the substrate P supplied from the processing apparatus U2 to the downstream side in the transport direction, and an edge position controller EPC3 that adjusts the position of the substrate P in the width direction (Y direction).
  • the drive roller R4 rotates while pinching both front and back surfaces of the substrate P, and feeds the substrate P toward the exposure position by sending the substrate P downstream in the transport direction.
  • the edge position controller EPC3 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the width direction of the substrate P at the exposure position becomes the target position.
  • the processing apparatus U3 has two sets of drive rollers R5 and R6 that send the substrate P to the downstream side in the transport direction in a state in which the substrate P after the exposure is slackened.
  • the two sets of drive rollers R5 and R6 are arranged at a predetermined interval in the transport direction of the substrate P.
  • the driving roller R5 rotates while sandwiching the upstream side of the substrate P to be transported, and the driving roller R6 rotates while sandwiching the downstream side of the substrate P to be transported, thereby directing the substrate P toward the processing apparatus U4. Supply.
  • the substrate P is slack, it is possible to absorb fluctuations in the conveyance speed that occur downstream in the conveyance direction with respect to the driving roller R6, and to eliminate the influence of the exposure process on the substrate P due to fluctuations in the conveyance speed. can do.
  • an alignment microscope that detects an alignment mark or the like formed in advance on the substrate P in order to relatively align (align) a partial image of the mask pattern of the mask M with the substrate P. AM1 and AM2 are provided.
  • the processing apparatus U4 is a wet processing apparatus that performs wet development processing, electroless plating processing, and the like on the exposed substrate P transferred from the processing apparatus U3.
  • the processing apparatus U4 has three processing tanks BT1, BT2, and BT3 that are hierarchized in the vertical direction (Z direction) and a plurality of rollers that transport the substrate P therein.
  • the plurality of rollers are arranged so as to serve as a conveyance path through which the substrate P sequentially passes through the three processing tanks BT1, BT2, and BT3.
  • a driving roller R7 is provided on the downstream side in the transport direction of the processing tank BT3.
  • the driving roller R7 rotates while sandwiching the substrate P that has passed through the processing tank BT3, so that the substrate P is directed toward the processing apparatus U5. Supply.
  • the processing apparatus U5 is a drying apparatus which dries the board
  • the processing apparatus U5 adjusts the moisture content adhering to the substrate P wet-processed in the processing apparatus U4 to a predetermined moisture content.
  • the substrate P dried by the processing apparatus U5 is transferred to the processing apparatus Un through several processing apparatuses. Then, after being processed by the processing device Un, the substrate P is wound up on the recovery roll FR2 of the substrate recovery device 4.
  • the host control device 5 performs overall control of the substrate supply device 2, the substrate recovery device 4, and the plurality of processing devices U1 to Un.
  • the host control device 5 controls the substrate supply device 2 and the substrate recovery device 4 to transport the substrate P from the substrate supply device 2 toward the substrate recovery device 4.
  • the host controller 5 controls the plurality of processing apparatuses U1 to Un to execute various processes on the substrate P while synchronizing with the transport of the substrate P.
  • FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment.
  • FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG.
  • FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG.
  • FIG. 5A is a diagram illustrating an illumination light beam and a projection light beam in a mask.
  • FIG. 5B is a diagram illustrating the fourth relay lens viewed from the polarization beam splitter.
  • FIG. 6 is a diagram showing an illumination light beam and a projection light beam in the polarization beam splitter.
  • FIG. 7 is a diagram illustrating an arrangement region in which the illumination optical system can be arranged.
  • the exposure apparatus U3 shown in FIG. 2 is a so-called scanning exposure apparatus, and transfers an image of a mask pattern formed on the outer peripheral surface of the cylindrical mask M while transporting the substrate P in the transport direction (scanning direction). Projection exposure is performed on the surface.
  • 2 and 4 to 7 are orthogonal coordinate systems in which the X direction, the Y direction, and the Z direction are orthogonal to each other, and the same orthogonal coordinate system as that in FIG. 1 is used.
  • the mask M is a reflective cylindrical mask using, for example, a metal cylinder.
  • the mask M is formed in a cylindrical body having an outer peripheral surface (circumferential surface) having a curvature radius Rm with the first axis AX1 extending in the Y direction as the center, and has a constant thickness in the radial direction.
  • the circumferential surface of the mask M is a mask surface P1 on which a predetermined mask pattern is formed.
  • the mask surface P1 includes a high reflection part that reflects the light beam in a predetermined direction with high efficiency, and a reflection suppression part (or light absorption part) that does not reflect the light beam in the predetermined direction or reflects it with low efficiency, and the mask pattern is It is formed by a high reflection portion and a reflection suppression portion. Since such a mask M is a metal cylinder, it can be produced at low cost.
  • the mask M may be formed with the whole or a part of the panel pattern corresponding to one display device, or may be a multi-surface pattern in which panel patterns corresponding to a plurality of display devices are formed. May be. Further, a plurality of panel patterns may be repeatedly formed in the circumferential direction around the first axis AX1, or a plurality of small panel patterns may be repeatedly formed in a direction parallel to the first axis AX1. May be. Further, the mask M may be formed with a panel pattern for the first display device and a panel pattern for the second display device having a size different from that of the first display device.
  • the mask M should just have the circumferential surface used as the curvature radius Rm centering on 1st axis
  • the mask M may be an arc-shaped plate having a circumferential surface.
  • the mask M may be a thin plate, or the thin mask M may be curved and attached to a columnar base material or a cylindrical frame so as to have a circumferential surface.
  • the exposure apparatus U3 shown in FIG. 2 In addition to the drive rollers R4 to R6, the edge position controller EPC3, and the alignment microscopes AM1 and AM2, the exposure apparatus U3 includes a mask holding mechanism 11, a substrate support mechanism 12, an illumination optical system IL, and a projection optical system PL. And a lower control device 16.
  • the exposure apparatus U3 guides the illumination light beam EL1 emitted from the light source device 13 by the illumination optical system IL and the projection optical system PL, thereby supporting the mask pattern image of the mask M held by the mask holding mechanism 11 on the substrate. Projection is performed on the substrate P supported by the mechanism 12.
  • the lower-level control device 16 controls each part of the exposure apparatus U3 and causes each part to execute processing.
  • the lower level control device 16 may be a part or all of the higher level control device 5 of the device manufacturing system 1. Further, the lower level control device 16 may be a device controlled by the higher level control device 5 and different from the higher level control device 5.
  • the lower control device 16 includes, for example, a computer.
  • the mask holding mechanism 11 includes a mask holding drum (mask holding member) 21 that holds the mask M, and a first drive unit 22 that rotates the mask holding drum 21.
  • the mask holding drum 21 holds the mask M so that the first axis AX1 of the mask M is the center of rotation.
  • the first drive unit 22 is connected to the lower control device 16 and rotates the mask holding drum 21 around the first axis AX1.
  • the mask holding mechanism 11 holds the cylindrical mask M with the mask holding drum 21, but is not limited to this configuration.
  • the mask holding mechanism 11 may wind and hold a thin plate-like mask M following the outer peripheral surface of the mask holding drum 21.
  • the mask holding mechanism 11 may hold the mask M, which is an arcuate plate material, on the outer peripheral surface of the mask holding drum 21.
  • the substrate support mechanism 12 includes a cylindrical substrate support drum (substrate support member) 25 that supports the substrate P, a second drive unit 26 that rotates the substrate support drum 25, a pair of air turn bars ATB1 and ATB2, and a pair. Guide rollers 27 and 28.
  • the substrate support drum 25 is formed in a cylindrical shape having an outer peripheral surface (circumferential surface) having a radius of curvature Rfa around the second axis AX2 extending in the Y direction.
  • the first axis AX1 and the second axis AX2 are parallel to each other, and a plane passing through the first axis AX1 and the second axis AX2 is a center plane CL.
  • a part of the circumferential surface of the substrate support drum 25 is a support surface P2 that supports the substrate P. That is, the substrate support drum 25 supports the substrate P by winding the substrate P around the support surface P2.
  • the second drive unit 26 is connected to the lower control device 16 and rotates the substrate support drum 25 about the second axis AX2.
  • the pair of air turn bars ATB1 and ATB2 are respectively provided on the upstream side and the downstream side in the transport direction of the substrate P with the substrate support drum 25 interposed therebetween.
  • the pair of air turn bars ATB1 and ATB2 are provided on the surface side of the substrate P, and are disposed below the support surface P2 of the substrate support drum 25 in the vertical direction (Z direction).
  • the pair of guide rollers 27 and 28 are respectively provided on the upstream side and the downstream side in the transport direction of the substrate P with the pair of air turn bars ATB1 and ATB2 interposed therebetween.
  • the pair of guide rollers 27, 28 guides the substrate P, one of which is conveyed from the driving roller R4, to the air turn bar ATB1, and the other guide roller 28, which is conveyed from the air turn bar ATB2. P is guided to the driving roller R5.
  • the substrate support mechanism 12 guides the substrate P conveyed from the driving roller R4 to the air turn bar ATB1 by the guide roller 27, and introduces the substrate P that has passed through the air turn bar ATB1 into the substrate support drum 25.
  • the substrate support mechanism 12 rotates the substrate support drum 25 by the second drive unit 26, thereby supporting the substrate P introduced into the substrate support drum 25 on the support surface P2 of the substrate support drum 25, while the air turn bar ATB2.
  • Transport toward The substrate support mechanism 12 guides the substrate P conveyed to the air turn bar ATB2 to the guide roller 28 by the air turn bar ATB2, and guides the substrate P that has passed through the guide roller 28 to the drive roller R5.
  • the low-order control device 16 connected to the first drive unit 22 and the second drive unit 26 synchronously rotates the mask holding drum 21 and the substrate support drum 25 at a predetermined rotation speed ratio, thereby
  • the image of the mask pattern formed on the mask surface P1 is continuously and repeatedly projected and exposed on the surface of the substrate P (surface curved along the circumferential surface) wound around the support surface P2 of the substrate support drum 25.
  • the light source device 13 emits an illumination light beam EL1 that is illuminated by the mask M.
  • the light source device 13 includes a light source 31 and a light guide member 32.
  • the light source 31 is a light source that emits light of a predetermined wavelength that gives a chemical action to the photosensitive layer formed on the surface of the substrate P.
  • a lamp light source such as a mercury lamp, a laser diode, a light emitting diode (LED), or the like is used.
  • Illumination light emitted from the light source 31 includes, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from a lamp light source, far-ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), and ArF excimer laser light. (Wavelength 193 nm).
  • DUV light far-ultraviolet light
  • KrF excimer laser light wavelength 248 nm
  • ArF excimer laser light ArF excimer laser light.
  • the light source 31 emits an illumination light beam EL1 including a wavelength equal to or shorter than i-line (365 nm wavelength).
  • a YAG third harmonic laser that emits laser light with a wavelength of 355 nm, a YAG fourth harmonic laser that emits laser light with a wavelength of 266 nm, or A KrF excimer laser or the like that emits laser light having a wavelength of 248 nm can be used.
  • the illumination light beam EL1 emitted from the light source device 13 is incident on a polarization beam splitter PBS described later.
  • the illumination light beam EL1 is preferably a light beam that reflects almost all of the incident illumination light beam EL1 on the polarization beam splitter PBS in order to suppress energy loss due to separation of the illumination light beam EL1 by the polarization beam splitter PBS.
  • the polarization beam splitter PBS reflects a light beam that becomes S-polarized linearly polarized light and transmits a light beam that becomes P-polarized linearly polarized light.
  • the light source device 13 emits the illumination light beam EL1 in which the illumination light beam EL1 incident on the polarization beam splitter PBS becomes a linearly polarized light (S-polarized light). Therefore, the light source device 13 emits polarized laser light having the same wavelength and phase to the polarization beam splitter PBS.
  • the light guide member 32 guides the illumination light beam EL1 emitted from the light source 31 to the illumination optical system IL.
  • the light guide member 32 includes an optical fiber or a relay module using a mirror.
  • the light guide member 32 separates the illumination light beam EL1 from the light source 31 into a plurality of light beams and guides the plurality of illumination light beams EL1 to the plurality of illumination optical systems IL.
  • the light guide member 32 uses a polarization maintaining fiber (polarization plane preserving fiber) as the optical fiber, and polarization of the polarized laser light by the polarization maintaining fiber. The light may be guided while maintaining the state.
  • the exposure apparatus U3 of the first embodiment is an exposure apparatus assuming a so-called multi-lens system.
  • 3 shows a plan view (left view of FIG. 3) of the illumination area IR on the cylindrical mask M held on the mask holding drum 21 as viewed from the ⁇ Z side, and the substrate supported by the substrate support drum 25.
  • a plan view (right view of FIG. 3) of the projection area PA on P viewed from the + Z side is shown. 3 indicates the moving direction (rotating direction) of the mask holding drum 21 and the substrate support drum 25.
  • the multi-lens type exposure apparatus U3 illuminates a plurality of (for example, six in the first embodiment) illumination areas IR1 to IR6 on the mask M with the illumination light beam EL1, respectively, and each illumination light beam EL1 corresponds to each illumination area IR1 to IR6.
  • a plurality of projection light beams EL2 obtained by being reflected by the projection are projected and exposed to a plurality of projection areas PA1 to PA6 (for example, six in the first embodiment) on the substrate P.
  • the plurality of illumination areas IR1 to IR6 are arranged in two rows in the rotation direction across the center plane CL, and the odd-numbered first illumination areas IR1 on the mask M on the upstream side in the rotation direction,
  • the third illumination region IR3 and the fifth illumination region IR5 are arranged, and the even-numbered second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged on the mask M on the downstream side in the rotation direction.
  • Each illumination region IR1 to IR6 is an elongated trapezoidal (rectangular) region having parallel short sides and long sides extending in the axial direction (Y direction) of the mask M.
  • each of the trapezoidal illumination areas IR1 to IR6 is an area where the short side is located on the center plane CL side and the long side is located outside.
  • the first illumination region IR1, the third illumination region IR3, and the fifth illumination region IR5 are arranged at predetermined intervals in the axial direction.
  • the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged at a predetermined interval in the axial direction.
  • the second illumination region IR2 is disposed between the first illumination region IR1 and the third illumination region IR3 in the axial direction.
  • the third illumination region IR3 is disposed between the second illumination region IR2 and the fourth illumination region IR4 in the axial direction.
  • the fourth illumination region IR4 is disposed between the third illumination region IR3 and the fifth illumination region IR5 in the axial direction.
  • the fifth illumination region IR5 is disposed between the fourth illumination region IR4 and the sixth illumination region IR6 in the axial direction.
  • the illumination areas IR1 to IR6 are arranged such that the triangular portions of the oblique sides of the adjacent trapezoidal illumination areas IR overlap (overlapping) when viewed from the circumferential direction of the mask M.
  • the illumination areas IR1 to IR6 are trapezoidal areas, but may be rectangular areas.
  • the mask M has a pattern formation area A3 where a mask pattern is formed and a pattern non-formation area A4 where a mask pattern is not formed.
  • the pattern non-formation region A4 is a region that hardly absorbs the illumination light beam EL1, and is arranged so as to surround the pattern formation region A3 in a frame shape.
  • the first to sixth illumination regions IR1 to IR6 are arranged so as to cover the entire width in the Y direction of the pattern formation region A3.
  • a plurality of (for example, six in the first embodiment) illumination optical systems IL are provided according to the plurality of illumination regions IR1 to IR6.
  • the illumination light beam EL1 from the light source device 13 is incident on each of the plurality of illumination optical systems IL1 to IL6.
  • Each illumination optical system IL1 to IL6 guides each illumination light beam EL1 incident from the light source device 13 to each illumination region IR1 to IR6. That is, the first illumination optical system IL1 guides the illumination light beam EL1 to the first illumination region IR1, and similarly, the second to sixth illumination optical systems IL2 to IL6 transmit the illumination light beam EL1 to the second to sixth illumination regions IR2. Lead to IR6.
  • the plurality of illumination optical systems IL1 to IL6 are arranged in two rows in the circumferential direction of the mask M across the center plane CL.
  • the plurality of illumination optical systems IL1 to IL6 are arranged on the side where the first, third, and fifth illumination regions IR1, IR3, and IR5 are arranged (left side in FIG. 2) with the center plane CL interposed therebetween.
  • IL1, third illumination optical system IL3, and fifth illumination optical system IL5 are arranged.
  • the first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5 are arranged at a predetermined interval in the Y direction.
  • the plurality of illumination optical systems IL1 to IL6 has the second illumination on the side where the second, fourth, and sixth illumination regions IR2, IR4, and IR6 are disposed (right side in FIG. 2) with the center plane CL interposed therebetween.
  • An optical system IL2, a fourth illumination optical system IL4, and a sixth illumination optical system IL6 are arranged.
  • the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are arranged at a predetermined interval in the Y direction.
  • the second illumination optical system IL2 is disposed between the first illumination optical system IL1 and the third illumination optical system IL3 in the axial direction.
  • the third illumination optical system IL3 is disposed between the second illumination optical system IL2 and the fourth illumination optical system IL4 in the axial direction.
  • the fourth illumination optical system IL4 is disposed between the third illumination optical system IL3 and the fifth illumination optical system IL5 in the axial direction.
  • the fifth illumination optical system IL5 is disposed between the fourth illumination optical system IL4 and the sixth illumination optical system IL6 in the axial direction.
  • the first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5, and the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are from the Y direction. As a result, they are arranged symmetrically about the center plane CL.
  • illumination optical system IL the first illumination optical system IL1 (hereinafter simply referred to as illumination optical system IL) will be described as an example.
  • the illumination optical system IL applies the Koehler illumination method so that the illumination light beam EL1 irradiating the illumination region IR (first illumination region IR1) has a uniform illuminance distribution.
  • the illumination optical system IL is an epi-illumination system using a polarization beam splitter PBS.
  • the illumination optical system IL includes an illumination optical module ILM, a polarization beam splitter PBS, and a quarter wavelength plate 41 in order from the incident side of the illumination light beam EL1 from the light source device 13.
  • the illumination optical module ILM includes a collimator lens 51, a fly-eye lens 52, a plurality of condenser lenses 53, a cylindrical lens 54, and an illumination field stop 55 in order from the incident side of the illumination light beam EL1.
  • the plurality of relay lenses 56 are provided on the first optical axis BX1.
  • the collimator lens 51 is provided on the emission side of the light guide member 32 of the light source device 13.
  • the optical axis of the collimator lens 51 is disposed on the first optical axis BX1.
  • the collimator lens 51 irradiates the entire incident side surface of the fly-eye lens 52.
  • the fly-eye lens 52 is provided on the emission side of the collimator lens 51.
  • the center of the exit side surface of the fly-eye lens 52 is disposed on the first optical axis BX1.
  • the fly-eye lens 52 divides the illumination light beam EL1 from the collimator lens 51 into light beams that diverge from each of a large number of point light source images.
  • the exit-side surface of the fly-eye lens 52 on which the point light source image is generated is formed by various lenses from the fly-eye lens 52 through the illumination field stop 55 to the first concave mirror 72 of the projection optical system PL described later.
  • the reflecting surface of the first concave mirror 72 is arranged so as to be optically conjugate with the pupil plane on which it is located.
  • the condenser lens 53 is provided on the emission side of the fly-eye lens 52.
  • the optical axis of the condenser lens 53 is disposed on the first optical axis BX1.
  • the condenser lens 53 superimposes each of the illumination light beams EL1 divided by the fly-eye lens 52 on the illumination field stop 55 via the cylindrical lens 54. Accordingly, the illumination light beam EL1 has a uniform illuminance distribution on the illumination field stop 55.
  • the cylindrical lens 54 is a plano-convex cylindrical lens in which the incident side is flat and the emission side is convex.
  • the cylindrical lens 54 is provided on the exit side of the condenser lens 53.
  • the optical axis of the cylindrical lens 54 is disposed on the first optical axis BX1.
  • the cylindrical lens 54 converges the principal ray of the illumination light beam EL1 in a direction orthogonal to the first optical axis BX1 in the XZ plane in FIG.
  • the cylindrical lens 54 is provided adjacent to the incident side of the illumination field stop 55.
  • the opening of the illumination field stop 55 is formed in a rectangular shape such as a trapezoid or a rectangle having the same shape as the illumination region IR, and the center of the opening of the illumination field stop 55 is on the first optical axis BX1. Be placed.
  • the illumination field stop 55 is arranged on a surface optically conjugate with the illumination region IR on the mask M by various lenses from the illumination field stop 55 to the mask M.
  • the relay lens 56 is provided on the emission side of the illumination field stop 55.
  • the optical axis of the relay lens 56 is disposed on the first optical axis BX1.
  • the relay lens 56 causes the illumination light beam EL1 from the illumination field stop 55 to enter the polarization beam splitter PBS.
  • the illumination light beam EL1 When the illumination light beam EL1 enters the illumination optical module ILM, the illumination light beam EL1 becomes a light beam that irradiates the entire incident-side surface of the fly-eye lens 52 by the collimator lens 51.
  • the illumination light beam EL1 incident on the fly-eye lens 52 becomes the illumination light beam EL1 divided into a number of point light source images, and enters the cylindrical lens 54 via the condenser lens 53.
  • the illumination light beam EL1 incident on the cylindrical lens 54 is converged in the direction orthogonal to the first optical axis BX1 in the XZ plane.
  • the illumination light beam EL ⁇ b> 1 that has passed through the cylindrical lens 54 enters the illumination field stop 55.
  • the illumination light beam EL1 incident on the illumination field stop 55 passes through an opening (a trapezoid or a rectangular shape such as a rectangle) of the illumination field stop 55, and enters the polarization beam splitter PBS via the relay lens 56.
  • the polarization beam splitter PBS is disposed between the illumination optical module ILM and the center plane CL.
  • the polarization beam splitter PBS reflects the illumination light beam EL1 from the illumination optical module ILM and transmits the projection light beam EL2 reflected by the mask M. That is, by making the illumination light beam EL1 from the illumination optical module ILM into S-polarized linearly polarized light, the projected light beam EL2 incident on the polarization beam splitter PBS is converted into P-polarized linearly polarized light by the action of the quarter wavelength plate 41. Is transmitted through the polarization beam splitter PBS.
  • the polarization beam splitter PBS is provided between the first prism 91, the second prism 92, and the first prism 91 and the second prism 92, as shown in FIG. And a polarizing film (wavefront dividing surface) 93 provided on the surface.
  • the first prism 91 and the second prism 92 are made of quartz glass and are triangular prisms in the XZ plane.
  • the polarizing beam splitter PBS has a quadrangular shape in the XZ plane by joining the triangular first prism 91 and the second prism 92 with the polarizing film 93 interposed therebetween.
  • the first prism 91 is a prism on the side on which the illumination light beam EL1 and the projection light beam EL2 are incident.
  • the second prism 92 is a prism on the side from which the projection light beam EL ⁇ b> 2 that passes through the polarizing film 93 is emitted.
  • the illumination light beam EL ⁇ b> 1 traveling from the first prism 91 to the second prism 92 is incident on the polarizing film 93.
  • the polarizing film 93 reflects the S-polarized (linearly polarized) illumination light beam EL1 and transmits the P-polarized (linearly polarized) light beam EL2.
  • the polarizing beam splitter PBS preferably reflects most of the illumination light beam EL1 reaching the polarizing film (wavefront dividing surface) 93 and transmits most of the projection light beam EL2.
  • the polarization splitting characteristic at the wavefront splitting plane of the polarization beam splitter PBS is expressed by the extinction ratio, but the extinction ratio also changes depending on the incident angle of the light beam toward the wavefront splitting plane.
  • the design is made in consideration of the NA (numerical aperture) of the illumination light beam EL1 and the projection light beam EL2 so that the influence on the imaging performance is not a problem.
  • the quarter wavelength plate 41 is disposed between the polarization beam splitter PBS and the mask M.
  • the quarter wavelength plate 41 converts the illumination light beam EL1 reflected by the polarization beam splitter PBS from linearly polarized light (S polarized light) to circularly polarized light.
  • the light (circularly polarized light) reflected by the mask M by the irradiation of the circularly polarized illumination light beam EL1 is converted by the quarter wavelength plate 41 into the P-polarized light beam (linearly polarized light beam) EL2.
  • FIG. 5A exaggerates the behavior of the illumination light beam EL1 applied to the illumination region IR on the mask M and the projection light beam EL2 reflected by the illumination region IR in the XZ plane (plane perpendicular to the first axis AX1).
  • FIG. 5A the illumination optical system IL described above irradiates the illumination area IR of the mask M so that the principal ray of the projection light beam EL2 reflected by the illumination area IR of the mask M is telecentric (parallel system).
  • the chief ray of the illumination light beam EL1 is intentionally made non-telecentric in the XZ plane (plane perpendicular to the first axis AX1) and telecentric in the YZ plane (parallel to the center plane CL).
  • Such a characteristic of the illumination light beam EL1 is given by the cylindrical lens 54 shown in FIG. Specifically, an intersection point Q2 between a line that passes through the central point Q1 in the circumferential direction of the illumination region IR on the mask surface P1 and goes to the first axis AX1 and a circle that is 1 ⁇ 2 of the radius Rm of the mask surface P1.
  • each principal ray of the illumination light beam EL1 passing through the illumination region IR is directed to the intersection point Q2 on the XZ plane.
  • each principal ray of the projection light beam EL2 reflected in the illumination region IR is in a state (telecentric) parallel to a straight line passing through the first axis AX1, the point Q1, and the intersection point Q2 in the XZ plane.
  • the plurality of projection areas PA1 to PA6 on the substrate P are arranged in correspondence with the plurality of illumination areas IR1 to IR6 on the mask M. That is, the plurality of projection areas PA1 to PA6 on the substrate P are arranged in two rows in the transport direction across the center plane CL, and the odd-numbered first projection areas PA1 and the first projection areas PA1 on the substrate P on the upstream side in the transport direction are arranged.
  • the third projection area PA3 and the fifth projection area PA5 are arranged, and the even-numbered second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged on the substrate P on the downstream side in the transport direction.
  • Each of the projection areas PA1 to PA6 is an elongated trapezoidal (rectangular) area having a short side and a long side extending in the width direction (Y direction) of the substrate P.
  • each of the trapezoidal projection areas PA1 to PA6 is an area where the short side is located on the center plane CL side and the long side is located outside.
  • the first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged at predetermined intervals in the width direction.
  • the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged at a predetermined interval in the width direction.
  • the second projection area PA2 is arranged between the first projection area PA1 and the third projection area PA3 in the axial direction.
  • the third projection area PA3 is arranged between the second projection area PA2 and the fourth projection area PA4 in the axial direction.
  • the fourth projection area PA4 is disposed between the third projection area PA3 and the fifth projection area PA5.
  • the fifth projection area PA5 is disposed between the fourth projection area PA4 and the sixth projection area PA6.
  • the projection areas PA1 to PA6 are overlapped so that the triangular portions of the oblique sides of the adjacent trapezoidal projection areas PA overlap each other when viewed from the transport direction of the substrate P. ) Is arranged.
  • the projection area PA has such a shape that the exposure amount in the area where the adjacent projection areas PA overlap is substantially the same as the exposure amount in the non-overlapping area.
  • the first to sixth projection areas PA1 to PA6 are arranged so as to cover the entire width in the Y direction of the exposure area A7 exposed on the substrate P.
  • the circumference from the center point of the illumination region IR1 (and IR3, IR5) on the mask M to the center point of the illumination region IR2 (and IR4, IR6) is set to be substantially equal.
  • a plurality of projection optical systems PL (for example, six in the first embodiment) are provided according to the plurality of projection areas PA1 to PA6.
  • a plurality of projection light beams EL2 reflected from the plurality of illumination regions IR1 to IR6 are incident on the plurality of projection optical systems PL1 to PL6, respectively.
  • Each projection optical system PL1 to PL6 guides each projection light beam EL2 reflected by the mask M to each projection area PA1 to PA6. That is, the first projection optical system PL1 guides the projection light beam EL2 from the first illumination area IR1 to the first projection area PA1, and similarly, the second to sixth projection optical systems PL2 to PL6 are second to sixth.
  • Each projection light beam EL2 from the illumination regions IR2 to IR6 is guided to the second to sixth projection regions PA2 to PA6.
  • the plurality of projection optical systems PL1 to PL6 are arranged in two rows in the circumferential direction of the mask M across the center plane CL.
  • the plurality of projection optical systems PL1 to PL6 has a first projection optical system on the side (left side in FIG. 2) on which the first, third, and fifth projection areas PA1, PA3, and PA5 are arranged with the center plane CL interposed therebetween.
  • PL1, a third projection optical system PL3, and a fifth projection optical system PL5 are arranged.
  • the first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5 are arranged at a predetermined interval in the Y direction. Further, the plurality of projection optical systems PL1 to PL6 has the second projection on the side (the right side in FIG. 2) on which the second, fourth, and sixth projection areas PA2, PA4, and PA6 are arranged with the center plane CL interposed therebetween.
  • An optical system PL2, a fourth projection optical system PL4, and a sixth projection optical system PL6 are arranged.
  • the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are arranged at a predetermined interval in the Y direction.
  • the second projection optical system PL2 is disposed between the first projection optical system PL1 and the third projection optical system PL3 in the axial direction.
  • the third projection optical system PL3 is disposed between the second projection optical system PL2 and the fourth projection optical system PL4 in the axial direction.
  • the fourth projection optical system PL4 is disposed between the third projection optical system PL3 and the fifth projection optical system PL5.
  • the fifth projection optical system PL5 is disposed between the fourth projection optical system PL4 and the sixth projection optical system PL6.
  • the first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5, and the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are from the Y direction. As a result, they are arranged symmetrically about the center plane CL.
  • the projection optical systems PL1 to PL6 will be described with reference to FIG. Since the projection optical systems PL1 to PL6 have the same configuration, the first projection optical system PL1 (hereinafter simply referred to as the projection optical system PL) will be described as an example.
  • the projection optical system PL projects an image of the mask pattern in the illumination area IR (first illumination area IR1) on the mask M onto the projection area PA on the substrate P.
  • the projection optical system PL includes the quarter-wave plate 41, the polarization beam splitter PBS, and the projection optical module PLM in order from the incident side of the projection light beam EL2 from the mask M.
  • the quarter-wave plate 41 and the polarization beam splitter PBS are also used as the illumination optical system IL.
  • the illumination optical system IL and the projection optical system PL share the quarter wavelength plate 41 and the polarization beam splitter PBS.
  • the projection light beam EL2 reflected by the illumination region IR becomes a telecentric light beam (in which the principal rays are parallel to each other) and enters the projection optical system PL.
  • the projection light beam EL2 that is circularly polarized light reflected by the illumination region IR is converted from circularly polarized light to linearly polarized light (P-polarized light) by the quarter wavelength plate 41, and then enters the polarization beam splitter PBS.
  • the projection light beam EL2 incident on the polarization beam splitter PBS passes through the polarization beam splitter PBS and then enters the projection optical module PLM.
  • the projection optical module PLM is provided corresponding to the illumination optical module ILM. That is, the projection optical module PLM of the first projection optical system PL1 converts the mask pattern image of the first illumination area IR1 illuminated by the illumination optical module ILM of the first illumination optical system IL1 into the first projection area on the substrate P. Project to PA1. Similarly, the projection optical modules PLM of the second to sixth projection optical systems PL2 to PL6 have second to sixth illumination regions IR2 to IR2 illuminated by the illumination optical modules ILM of the second to sixth illumination optical systems IL2 to IL6. The image of the IR6 mask pattern is projected onto the second to sixth projection areas PA2 to PA6 on the substrate P.
  • the projection optical module PLM includes a first optical system 61 that forms an image of the mask pattern in the illumination region IR on the intermediate image plane P7, and at least an intermediate image formed by the first optical system 61.
  • a second optical system 62 for re-imaging a part of the image on the projection area PA of the substrate P, and a projection field stop 63 disposed on the intermediate image plane P7 on which the intermediate image is formed are provided.
  • the projection optical module PLM includes a focus correction optical member 64, an image shift optical member 65, a magnification correction optical member 66, a rotation correction mechanism 67, and a polarization adjustment mechanism (polarization adjustment means) 68.
  • the first optical system 61 and the second optical system 62 are, for example, telecentric catadioptric optical systems obtained by modifying a Dyson system.
  • the first optical system 61 has its optical axis (hereinafter referred to as the second optical axis BX2) substantially orthogonal to the center plane CL.
  • the first optical system 61 includes a first deflecting member 70, a first lens group 71, and a first concave mirror 72.
  • the first deflecting member 70 is a triangular prism having a first reflecting surface P3 and a second reflecting surface P4.
  • the first reflecting surface P3 is a surface that reflects the projection light beam EL2 from the polarization beam splitter PBS and causes the reflected projection light beam EL2 to enter the first concave mirror 72 through the first lens group 71.
  • the second reflecting surface P4 is a surface on which the projection light beam EL2 reflected by the first concave mirror 72 enters through the first lens group 71 and reflects the incident projection light beam EL2 toward the projection field stop 63.
  • the first lens group 71 includes various lenses, and the optical axes of the various lenses are disposed on the second optical axis BX2.
  • the first concave mirror 72 is disposed on the pupil plane of the first optical system 61 and is set in an optically conjugate relationship with a number of point light source images generated by the fly-eye lens 52.
  • the projection light beam EL2 from the polarization beam splitter PBS is reflected by the first reflecting surface P3 of the first deflecting member 70, and enters the first concave mirror 72 through the upper half field region of the first lens group 71.
  • the projection light beam EL2 incident on the first concave mirror 72 is reflected by the first concave mirror 72, passes through the lower half field of view of the first lens group 71, and enters the second reflective surface P4 of the first deflecting member 70.
  • the projection light beam EL2 incident on the second reflection surface P4 is reflected by the second reflection surface P4, passes through the focus correction optical member 64 and the image shift optical member 65, and enters the projection field stop 63.
  • the projection field stop 63 has an opening that defines the shape of the projection area PA. That is, the shape of the opening of the projection field stop 63 defines the shape of the projection area PA.
  • the second optical system 62 has the same configuration as that of the first optical system 61, and is provided symmetrically with the first optical system 61 with the intermediate image plane P7 interposed therebetween.
  • the second optical system 62 has an optical axis (hereinafter referred to as a third optical axis BX3) that is substantially perpendicular to the center plane CL and parallel to the second optical axis BX2.
  • the second optical system 62 includes a second deflecting member 80, a second lens group 81, and a second concave mirror 82.
  • the second deflecting member 80 has a third reflecting surface P5 and a fourth reflecting surface P6.
  • the third reflecting surface P5 is a surface that reflects the projection light beam EL2 from the projection field stop 63 and causes the reflected projection light beam EL2 to enter the second concave mirror 82 through the second lens group 81.
  • the fourth reflecting surface P6 is a surface on which the projection light beam EL2 reflected by the second concave mirror 82 enters through the second lens group 81 and reflects the incident projection light beam EL2 toward the projection area PA.
  • the second lens group 81 includes various lenses, and the optical axes of the various lenses are disposed on the third optical axis BX3.
  • the second concave mirror 82 is disposed on the pupil plane of the second optical system 62 and is set in an optically conjugate relationship with a number of point light source images formed on the first concave mirror 72.
  • the projection light beam EL2 from the projection field stop 63 is reflected by the third reflecting surface P5 of the second deflecting member 80, and enters the second concave mirror 82 through the upper half field region of the second lens group 81.
  • the projection light beam EL ⁇ b> 2 that has entered the second concave mirror 82 is reflected by the second concave mirror 82, passes through the lower half field of view of the second lens group 81, and enters the fourth reflecting surface P ⁇ b> 6 of the second deflecting member 80.
  • the projection light beam EL2 incident on the fourth reflection surface P6 is reflected by the fourth reflection surface P6, passes through the magnification correction optical member 66, and is projected onto the projection area PA. Thereby, the image of the mask pattern in the illumination area IR is projected to the projection area PA at the same magnification ( ⁇ 1).
  • the focus correction optical member 64 is disposed between the first deflection member 70 and the projection field stop 63.
  • the focus correction optical member 64 adjusts the focus state of the mask pattern image projected onto the substrate P.
  • the focus correction optical member 64 is formed by superposing two wedge-shaped prisms in opposite directions (in the opposite direction in the X direction in FIG. 4) so as to form a transparent parallel plate as a whole. By sliding the pair of prisms in the direction of the slope without changing the distance between the faces facing each other, the thickness of the parallel plate is made variable. As a result, the effective optical path length of the first optical system 61 is finely adjusted, and the focus state of the mask pattern image formed on the intermediate image plane P7 and the projection area PA is finely adjusted.
  • the image shifting optical member 65 is disposed between the first deflecting member 70 and the projection field stop 63.
  • the image shift optical member 65 adjusts the image of the mask pattern projected onto the substrate P so as to be movable in the image plane.
  • the image shifting optical member 65 is composed of a transparent parallel flat glass that can be tilted in the XZ plane of FIG. 4 and a transparent parallel flat glass that can be tilted in the YZ plane of FIG. By adjusting the respective tilt amounts of the two parallel flat glass plates, the image of the mask pattern formed on the intermediate image plane P7 and the projection area PA can be slightly shifted in the X direction and the Y direction.
  • the magnification correcting optical member 66 is disposed between the second deflection member 80 and the substrate P.
  • a concave lens, a convex lens, and a concave lens are arranged coaxially at predetermined intervals, the front and rear concave lenses are fixed, and the convex lens between them is moved in the optical axis (principal ray) direction. It is configured.
  • the mask pattern image formed in the projection area PA is isotropically enlarged or reduced by a small amount while maintaining a telecentric imaging state.
  • the optical axes of the three lens groups constituting the magnification correcting optical member 66 are inclined in the XZ plane so as to be parallel to the principal ray of the projection light beam EL2.
  • the rotation correction mechanism 67 is a mechanism that slightly rotates the first deflection member 70 around an axis parallel to the Z axis by an actuator (not shown), for example.
  • the rotation correction mechanism 67 can rotate the first deflecting member 70 to slightly rotate the image of the mask pattern formed on the intermediate image plane P7 within the intermediate image plane P7.
  • the polarization adjustment mechanism 68 adjusts the polarization direction by rotating the quarter-wave plate 41 around an axis orthogonal to the plate surface by an actuator (not shown), for example.
  • the polarization adjusting mechanism 68 can adjust the illuminance of the projection light beam EL2 projected on the projection area PA by rotating the quarter wavelength plate 41.
  • the projection light beam EL2 from the mask M is emitted from the illumination region IR in the normal direction of the mask surface P1, and passes through the quarter-wave plate 41 and the polarization beam splitter PBS.
  • the light enters the first optical system 61.
  • the projection light beam EL2 incident on the first optical system 61 is reflected by the first reflecting surface (plane mirror) P3 of the first deflecting member 70 of the first optical system 61, passes through the first lens group 71, and is reflected by the first concave mirror 72. Reflected.
  • the projection light beam EL2 reflected by the first concave mirror 72 passes through the first lens group 71 again and is reflected by the second reflecting surface (planar mirror) P4 of the first deflecting member 70, and the focus correction optical member 64 and the image shifter.
  • the light passes through the optical member 65 and enters the projection field stop 63.
  • the projection light beam EL2 that has passed through the projection field stop 63 is reflected by the third reflecting surface (planar mirror) P5 of the second deflecting member 80 of the second optical system 62, and then reflected by the second concave mirror 82 through the second lens group 81. Is done.
  • the projection light beam EL2 reflected by the second concave mirror 82 passes through the second lens group 81 again, is reflected by the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80, and enters the magnification correcting optical member 66. .
  • the projection light beam EL2 emitted from the magnification correcting optical member 66 is incident on the projection area PA on the substrate P, and an image of the mask pattern appearing in the illumination area IR is projected to the projection area PA at the same magnification ( ⁇ 1). .
  • the second reflecting surface (plane mirror) P4 of the first deflecting member 70 and the third reflecting surface (plane mirror) P5 of the second deflecting member 80 are relative to the center plane CL (or the optical axes BX2, BX3).
  • the first reflecting surface (plane mirror) P3 of the first deflecting member 70 and the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80 are center plane CL (or light). An angle other than 45 ° is set with respect to the axes BX2, BX3).
  • the angle ⁇ ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the first reflecting surface P3 of the first deflecting member 70 is the straight line and center passing through the point Q1, the intersection point Q2, and the first axis AX1 in FIG.
  • the angle between the surface CL and the surface CL is ⁇ °
  • the angle ⁇ ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the fourth reflecting surface P6 of the second deflecting member 80 is within the projection area PA in the circumferential direction of the outer peripheral surface of the substrate support drum 25.
  • the angle in the ZX plane between the principal ray of the projection light beam EL2 passing through the center point and the center plane CL is ⁇ °
  • the illumination optical system IL shown in FIG. 4 has the illumination optical module ILM
  • the projection optical system PL has the projection optical module PLM
  • the illumination optical system IL and the projection optical system PL are polarized beams.
  • the splitter PBS and the quarter wave plate 41 are shared.
  • the illumination optical module ILM and the polarization beam splitter PBS are provided between the mask M and the projection optical module PLM in the direction (Z direction) in which the center plane CL extends.
  • the polarization beam splitter PBS is provided between the mask M and the first deflection member 70 of the projection optical module PLM in the Z direction, and between the center plane CL and the illumination optical module ILM in the X direction.
  • the illumination optical module ILM is provided between the mask M and the first lens group 71 of the projection optical module PLM in the Z direction, and is opposite to the center plane CL side with the polarization beam splitter PBS in the X direction. Is provided.
  • the arrangement area E in which the illumination optical module ILM can be arranged is an area partitioned by the first line L1, the second line L2, and the third line L3.
  • the second line L2 is the principal ray of the projection light beam EL2 reflected by the mask M (for example, passing through the point Q1 in FIG. 5A).
  • the first line L1 is a tangent (tangent surface) of the mask surface P1 at an intersection (for example, a point Q1 in FIG. 5A) where the principal ray of the projection light beam EL2 reflected by the mask M and the mask surface P1 intersect.
  • the third line L3 is a line set in parallel with the second optical axis BX2 of the first optical system 61 so as not to spatially interfere with the projection optical module PLM.
  • the illumination optical module ILM is arranged in an arrangement area E surrounded by the first line L1, the second line L2, and the third line L3.
  • the first line L1 can be inclined so that the distance between the third line L3 and the first line L1 in the Z direction increases as the distance from the center plane CL increases. Therefore, installation of the illumination optical module ILM is facilitated.
  • the arrangement of the illumination optical module ILM is also defined by the incident angle ⁇ of the chief ray of the illumination light beam EL1 incident on the polarization film 93 of the polarization beam splitter PBS from the illumination optical module ILM.
  • an angle formed by the principal ray (for example, passing through the point Q1 in FIG. 5A) of the projection light beam EL2 reflected by the illumination region IR and the center plane CL is defined as ⁇ .
  • the incident angle ⁇ (described as ⁇ 1 in the following) of the illumination light beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is 45 ° ⁇ 0.8 ⁇ ⁇ It arrange
  • positions so that it may become in the range of ⁇ (45 degrees + (theta) / 2) * 1.2. That is, the angle range of the incident angle ⁇ is such that the illumination light beam EL1 is incident at an incident angle ⁇ suitable for the polarizing film 93 of the polarizing beam splitter PBS, but does not physically interfere with the mask M and the projection optical module PLM.
  • the illumination optical module ILM can be disposed.
  • the angle range of the incident angle ⁇ is determined in consideration of an angular distribution determined by the numerical aperture (NA) of the illumination light beam EL1, but 45 ° ⁇ ⁇ ⁇ (45 ° + ⁇ / 2) is more preferable. Further, the optimum incident angle ⁇ is such that the illumination light beam is applied to the polarizing film 93 of the polarization beam splitter PBS in a state where the first optical axis BX1 of the illumination optical module ILM is parallel to the second optical axis BX2 of the projection optical module PLM. It is an incident angle when EL1 is incident.
  • the polarizing beam splitter PBS is composed of two triangular prisms (for example, made of quartz) 91 and 92 joined with a polarizing film 93 interposed therebetween.
  • the incident surface of the prism (first prism) 91 that receives the illumination light beam EL1 from the illumination optical module ILM is set perpendicular to the optical axis BX1 of the illumination optical module ILM, and is a surface that emits the illumination light beam EL1 toward the mask M.
  • Is set perpendicular to the principal ray of the projection light beam EL2 for example, a line connecting the point Q1 in FIG. 5A and the rotation center axis (first axis) AX1).
  • the exit surface of the prism (second prism) 92 that transmits the projection light beam EL2 from the mask M to the projection optical module PLM through the prism 91 and the polarizing film 93 is also the principal ray (for example, FIG. 5A is set perpendicular to a line connecting the point Q1 in 5A and the rotation center axis AX1. Therefore, the polarization beam splitter PBS is an optical parallel plate having a certain thickness with respect to the projection light beam EL2 having a telecentric principal ray.
  • the illumination optical module ILM is likely to physically interfere with the projection optical module PLM on the polarization beam splitter PBS side, and therefore, one of various lenses (first lenses) included in the illumination optical module ILM.
  • the part is notched.
  • 1st Embodiment demonstrates the case where a part of various lenses of the illumination optical module ILM are notched, it is not restricted to this structure. That is, since the projection optical module PLM also easily physically interferes with the illumination optical module ILM on the polarization beam splitter PBS side, some of the various lenses (second lenses) included in the projection optical module PLM are cut out. Also good. Accordingly, some of the various lenses included in both the illumination optical module ILM and the projection optical module PLM may be cut out.
  • the illumination optical module ILM requires lower optical accuracy than the projection optical module PLM, and therefore it is simple and preferable to cut out some of the various lenses of the illumination optical module ILM.
  • the illumination optical module ILM has a part of a plurality of relay lenses 56 provided on the polarization beam splitter PBS side.
  • the plurality of relay lenses 56 are, in order from the incident side of the illumination light beam EL1, a first relay lens 56a, a second relay lens 56b, a third relay lens 56c, and a fourth relay lens 56d.
  • the fourth relay lens 56d is provided adjacent to the polarization beam splitter PBS.
  • the third relay lens 56c is provided adjacent to the fourth relay lens 56d.
  • the second relay lens 56b is provided at a predetermined interval from the third relay lens 56c, and the second relay lens 56b and the first relay lens are provided between the second relay lens 56b and the third relay lens 56c. It is longer than 56a.
  • the first relay lens 56a is provided adjacent to the second relay lens 56b.
  • the first relay lens 56a and the second relay lens 56b on the side far from the polarization beam splitter PBS are formed in a circle around the optical axis.
  • the third relay lens 56c and the fourth relay lens 56d on the side close to the polarization beam splitter PBS have a shape in which a part of a circle is cut out.
  • a non-incident region S1 is formed.
  • the third relay lens 56c and the fourth relay lens 56d are formed in a shape in which a part of a circular shape is cut out by forming a part of the non-incident region S1.
  • the third relay lens 56c and the fourth relay lens 56d have a shape in which both sides in the orthogonal direction orthogonal to the first optical axis BX1 are cut by surfaces perpendicular to the orthogonal direction in the XZ plane. Therefore, when viewed from above the first optical axis BX1, the third relay lens 56c and the fourth relay lens 56d have a shape including a substantially elliptical shape, a substantially oval shape, a substantially oval shape, and the like.
  • FIG. 5B is a view of the fourth relay lens 56d from the polarization beam splitter PBS side.
  • a non-incident region S1 where the illumination light beam EL1 does not pass vertically in the Z direction is sandwiched between the incident region S2 through which the illumination light beam EL1 passes.
  • the fourth relay lens 56d is manufactured by cutting a portion corresponding to the non-incident region S1 after being manufactured as a circular lens having a predetermined diameter.
  • the diameter of the circular lens depends on the size of the illumination area IR on the mask M, the working distance, the numerical aperture (NA) of the illumination light beam EL1, and the degree of non-telecentricity of the chief ray of the illumination light beam EL1 described in FIG. 5A. Can be decided.
  • FIG. 5B attention is paid to the four corners of the illumination region IR set on the mask M (here, a rectangle having a long side in the Y direction around the point Q1 through which the optical axis BX1 passes). Assuming that one of the four corners is FFa, the point FFa in the illumination region IR is irradiated with a substantially circular partial illumination light beam EL1a out of the illumination light beam EL1 passing through the fourth relay lens 56d.
  • the size of the circular distribution of the partial illumination light beam EL1a on the fourth relay lens 56d is determined by the working distance (focal length) and the numerical aperture (NA) of the illumination light beam EL1.
  • each principal ray of the illumination light beam EL1 on the mask M is in a non-telecentric state in the XZ plane, and thus the principal illumination light beam EL1a passing through the point FFa on the mask M
  • the light beam is shifted by a certain amount in the Z direction on the fourth relay lens 56d.
  • an incident region on the fourth relay lens 56d is obtained by superimposing all the distributions on the fourth relay lens 56d of the partial illumination light beam that irradiates each of the four corners (and on the outer edge) of the illumination region IR.
  • the distribution (spreading) of the illumination light beam EL1 on the fourth relay lens 56d is obtained in consideration of the non-telecentric state in the XZ plane of the illumination light beam EL1, and the incident region S2 (distribution region of the illumination light beam EL1). What is necessary is just to determine the shape and dimension of the 4th relay lens 56d so that it may become the magnitude
  • the other lens 56c in FIG. 4 or the lenses 56a and 56b are also sized so as to cover the distribution area of the substantial illumination light beam EL1 in consideration of the distribution area.
  • the outer shape and dimensions of the lens can be determined.
  • a high-precision lens having power is made by polishing the surface of a circular glass material such as optical glass or quartz. From the beginning, for example, an incident region S2 determined as shown in FIG. 5B. An approximately oval, approximately oval, approximately oval, or approximately rectangular glass material having a size corresponding to 1 may be prepared, and the surface thereof may be polished to form a desired lens surface. In that case, a step of cutting a portion corresponding to the non-incident region S1 becomes unnecessary.
  • FIG. 8 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration around a polarizing film of a polarizing beam splitter of a comparative example with respect to the first embodiment.
  • FIG. 10 is a graph showing transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG.
  • FIG. 11 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
  • the polarizing beam splitter PBS includes a first prism 91, a second prism 92, and a polarizing film 93 provided between the first prism 91 and the second prism 92.
  • the first prism 91 and the second prism 92 are made of quartz glass and are triangular prisms having different triangular shapes in the XZ plane.
  • the polarizing beam splitter PBS has a quadrangular shape in the XZ plane by joining the triangular first prism 91 and the second prism 92 with the polarizing film 93 interposed therebetween.
  • the first prism 91 is a prism on the side on which the illumination light beam EL1 and the projection light beam EL2 are incident.
  • the first prism 91 has a first surface D1 on which the illumination light beam EL1 from the illumination optical module ILM is incident, and a second surface D2 on which the projection light beam EL2 from the mask M is incident.
  • the first surface D1 is a surface perpendicular to the chief ray of the illumination light beam EL1.
  • the second surface D2 is a surface perpendicular to the principal ray of the projection light beam EL2.
  • the second prism 92 is a prism on the side from which the projection light beam EL2 transmitted through the polarizing film 93 is emitted.
  • the second prism 92 has a third surface D3 that faces the first surface D1 of the first prism 91, and a fourth surface D4 that faces the second surface D2 of the first prism 91.
  • the fourth surface D4 is a surface on which the projection light beam EL2 incident on the first prism 91 is transmitted through the polarizing film 93 and is emitted, and is a surface perpendicular to the principal light beam of the projection light beam EL2 to be emitted.
  • the first surface D1 is non-parallel to the opposing third surface D3, while the second surface D2 is parallel to the opposing fourth surface D4.
  • the illumination light beam EL ⁇ b> 1 traveling from the first prism 91 to the second prism 92 is incident on the polarizing film 93.
  • the polarizing film 93 reflects the S-polarized (linearly polarized) illumination light beam EL1 and transmits the P-polarized (linearly polarized) light beam EL2.
  • the polarizing film 93 is formed by laminating a film body whose main component is silicon dioxide (SiO 2 ) and a film body whose main component is hafnium oxide (HfO 2 ) in the film thickness direction.
  • Hafnium oxide is a material that absorbs as little light as quartz, and hardly changes due to the absorption of light.
  • the polarizing film 93 is a film having a predetermined Brewster angle ⁇ B.
  • the Brewster angle ⁇ B is an angle at which the reflectance of P-polarized light becomes zero.
  • nh 2.07 (HfO 2 )
  • nL 1.47 (SiO 2 )
  • ns 1.47 (quartz glass)
  • the Brewster angle ⁇ B of the polarizing film 93 is , Approximately 54.6 °.
  • the refractive indexes nh, nL, and ns of the respective materials are not uniquely limited to the above numerical values.
  • the refractive index generally varies with the wavelength used from ultraviolet to visible light, and has a certain range.
  • the refractive index may change by slightly adding various materials.
  • the refractive index nh of hafnium oxide is distributed in the range of 2.00 to 2.15
  • the refractive index nL of silicon dioxide is distributed in the range of 1.45 to 1.48.
  • the refractive index ns of the prism (quartz glass) also changes.
  • the Brewster angle ⁇ B of the polarizing film 93 derived from the above formula is 52.4 ° to 57.3 °. Will have a range.
  • the angle ⁇ 2 formed between the polarizing film 93 and the first surface D1 is the incident angle ⁇ 1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93. It turns out that it becomes the same angle. That is, the first prism 91 is formed such that the angle ⁇ 2 formed by the first surface D1 and the polarizing film 93 is the same as the incident angle ⁇ 1 of the principal ray of the illumination light beam EL1.
  • the polarization beam splitter PBS is configured such that the illumination light beam EL1 is reflected by the polarization film 93 and the reflected light from the mask M (projection light beam EL2) is transmitted through the polarization film 93.
  • the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 may be reversed. That is, the illumination light beam EL1 may be transmitted through the polarizing film 93, and the reflected light from the mask M (projection light beam EL2) may be reflected by the polarizing film 93.
  • the illumination light beam EL1 may be transmitted through the polarizing film 93
  • the reflected light from the mask M projection light beam EL2
  • the direction connecting the first prism 91 and the second prism 92 is the film thickness direction.
  • the polarizing film 93 includes a first film body H1 of silicon dioxide and a second film body H2 of hafnium oxide, and the first film body H1 and the second film body H2 are stacked in the film thickness direction.
  • the polarizing film 93 is a periodic layer in which a plurality of layer bodies H composed of the first film body H1 and the second film body H2 are periodically stacked in the film thickness direction.
  • the polarizing film 93 has the layered body H of 18 cycles or more and 30 cycles or less. Formed in the periodic layer.
  • the layer body H is provided on the both sides in the film thickness direction with the first film body H1 having a thickness of ⁇ / 4 wavelength with respect to the wavelength ⁇ of the illumination light beam EL1 and the first film body H1, and the illumination light beam EL1.
  • a pair of second film bodies H2 having a thickness of ⁇ / 8 wavelength with respect to the wavelength ⁇ .
  • a plurality of layer bodies H configured as described above are laminated in the film thickness direction so that each second film body H2 of the layer body H is integrated with each second film body H2 of the adjacent layer body H.
  • the second film body H2 having a film thickness of ⁇ / 4 wavelength is formed. Therefore, in the polarizing film 93, the film bodies on both sides in the film thickness direction become a pair of second film bodies H2 having a film thickness of ⁇ / 8 wavelength, and a pair of second films having a film thickness of ⁇ / 8 wavelength. Between the bodies H2, first film bodies H1 having a thickness of ⁇ / 4 wavelength and second film bodies H2 having a thickness of ⁇ / 4 wavelength are alternately provided.
  • the polarizing film 93 is fixed between the first prism 91 and the second prism 92 by an adhesive or an optical contact.
  • the polarizing beam splitter PBS is formed by forming the polarizing film 93 on the first prism 91 and then bonding the second prism 92 on the polarizing film 93 via an adhesive.
  • the incident angle ⁇ 1 of the chief ray of the illumination light beam EL1 incident on the polarization film 93 of the polarization beam splitter PBS is set to a Brewster angle ⁇ B of 54.6 °
  • the polarization film 93 is a 21 period layer
  • the illumination light beam EL1 uses a YAG laser of the third (triple) harmonic.
  • the horizontal axis represents the incident angle ⁇ 1
  • the vertical axis represents the transmittance / reflectance.
  • Rs is an S-polarized reflected light beam incident on the polarizing film 93
  • Rp is a P-polarized reflected light beam incident on the polarizing film 93
  • Ts is incident on the polarizing film 93.
  • An S-polarized transmitted light beam, and Tp is a P-polarized transmitted light beam incident on the polarizing film 93.
  • the polarizing film 93 of the polarizing beam splitter PBS is configured to reflect the reflected light beam (illumination light beam) of S-polarized light and transmit the transmitted light beam (projected light beam) of P-polarized light.
  • a polarizing film 93 having high reflectance and excellent film characteristics with high transmittance of the transmitted light beam Tp is obtained.
  • a polarizing film having excellent film characteristics in which the reflectance of the reflected light beam Rp is low and the transmittance of the transmitted light beam Ts is low.
  • the range of transmittance / reflectance of the polarizing film 93 that can be used optimally is the transmittance with respect to the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp at the Brewster angle ⁇ B of 54.6 °.
  • -Reflectance is in a range that allows a decrease of -5%. That is, since the transmittance / reflectance at the Brewster angle ⁇ B is 100%, the range in which the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more can be optimally used. This is the range of transmittance and reflectance. In the case shown in FIG. 10, in the range where the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more, the range of the incident angle ⁇ 1 is 46.8 ° or more and 61.4 ° or less.
  • the incident angle ⁇ 1 of the chief ray of the illumination beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is set to a Brewster angle ⁇ B of 54.6 °, other than the chief ray of the illumination beam EL1 Since the incident angle range of the light beam can be 46.8 ° or more and 61.4 ° or less, the incident angle range of the illumination light beam EL1 incident on the polarizing film 93 can be set to a range of 14.6 °. I understand.
  • the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is 46.8 ° or more and 61.4 ° or less, and illumination is performed.
  • the illumination light beam EL1 can be emitted so that the principal ray of the light beam EL1 has a Brewster angle ⁇ B of 54.6 °.
  • a polarizing beam splitter PBS as a comparative example has substantially the same configuration as that of the first embodiment, and is provided between the first prism 91, the second prism 92, and the first prism 91 and the second prism 92.
  • the polarizing film 100 Since the first prism 91 and the second prism 92 are the same as those in the first embodiment, description thereof is omitted.
  • the polarizing film 100 of the polarizing beam splitter PBS as a comparative example is a film in which the principal ray of the illumination light beam EL1 incident on the polarizing film 100 has an incident angle ⁇ 1 of 45 °.
  • the polarizing film 100 includes the same layered body H as in the first embodiment for 31 periods or more in the film thickness direction. It is a periodic layer with 40 cycles or less.
  • the incident angle ⁇ 1 of the chief ray of the illumination light beam EL1 incident on the polarization film 100 of the polarization beam splitter PBS is 45 °
  • the polarization film 100 is a 33-period layer
  • the illumination light beam EL1 is the first light beam EL1.
  • a YAG laser of 3 (three times) harmonics is used.
  • the horizontal axis represents the incident angle
  • the vertical axis represents the transmittance / reflectance
  • Rs represents the S-polarized reflected light beam incident on the polarizing film 100
  • Rp represents the polarizing film 100 as in FIG. 10.
  • Ts is an S-polarized transmitted beam incident on the polarizing film 100
  • Tp is a P-polarized transmitted beam incident on the polarizing film 100.
  • the range of transmittance and reflectance of the polarizing film 100 that can be optimally used is a range in which the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more.
  • the range of the incident angle ⁇ 1 is 41.9 ° or more and 48.7 ° or less.
  • the incident angle ⁇ 1 of the chief ray of the illumination beam EL1 incident on the polarizing film 100 of the polarization beam splitter PBS is 45 °
  • the incident angle ⁇ 1 of the beam other than the chief ray of the illumination beam EL1 Since the angle range can be 41.9 ° or more and 48.7 ° or less, it can be seen that the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 incident on the polarizing film 100 can be set to a range of 6.8 °. Therefore, the polarization beam splitter PBS shown in FIG. 8 can make the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 about twice as large as that of the polarization beam splitter PBS shown in FIG.
  • FIG. 12 is a flowchart illustrating the device manufacturing method according to the first embodiment.
  • step S201 the function / performance design of a display panel using, for example, a self-luminous element such as an organic EL is performed, and necessary circuit patterns and wiring patterns are designed using CAD or the like.
  • step S202 a mask M for a necessary layer is manufactured based on the pattern for each layer designed by CAD or the like.
  • step S203 a supply roll FR1 around which a flexible substrate P (resin film, metal foil film, plastic, etc.) serving as a display panel base material is wound is prepared (step S203).
  • the roll-shaped substrate P prepared in step S203 has a surface modified as necessary, a pre-formed base layer (for example, micro unevenness by an imprint method), and light sensitivity.
  • the functional film or transparent film (insulating material) previously laminated may be used.
  • step S204 a backplane layer composed of electrodes, wiring, insulating film, TFT (thin film semiconductor), etc. constituting the display panel device is formed on the substrate P, and an organic EL or the like is laminated on the backplane.
  • a light emitting layer (display pixel portion) is formed by the self light emitting element (step S204).
  • This step S204 includes a conventional photolithography process in which the photoresist layer is exposed using the exposure apparatus U3 described in the previous embodiments, but a photosensitive silane coupling material is applied instead of the photoresist.
  • Patterning the exposed substrate P to form a pattern based on hydrophilicity and water repellency on the surface, and wet processing for patterning the photosensitive catalyst layer and patterning the metal film (wiring, electrode, etc.) by electroless plating The process includes a process or a printing process in which a pattern is drawn with a conductive ink containing silver nanoparticles, or the like.
  • the substrate P is diced for each display panel device continuously manufactured on the long substrate P by a roll method, and a protective film (environmental barrier layer) or a color filter is formed on the surface of each display panel device.
  • a device is assembled by pasting sheets or the like (step S205).
  • an inspection process is performed to determine whether the display panel device functions normally or satisfies desired performance and characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.
  • the polarization beam splitter PBS is used in the illumination optical system IL that is epi-illumination using the polarization beam splitter PBS.
  • the illumination optical module is shared by the illumination optical system IL and the projection optical system PL, and the outer shape of the lens element in the illumination optical module ILM at least near the polarization beam splitter PBS is set to a shape corresponding to the distribution of the illumination light beam EL1.
  • An ILM and a polarizing beam splitter PBS can be provided between the mask M and the projection optical module PLM.
  • the physical interference between the illumination optical system IL and the projection optical system PL is alleviated, and the illumination optical module ILM and the polarization beam splitter PBS
  • the degree of freedom of arrangement and the degree of freedom of arrangement of the projection optical module PLM and the polarization beam splitter PBS can be increased, and the illumination optical system IL and the projection optical system PL can be easily arranged.
  • the fourth relay lens 56d and the third relay lens 56c adjacent to the polarization beam splitter PBS substantially include a portion (incident region S2) through which the illumination light beam EL1 passes, and substantially the illumination light beam. Since the lens outer shape does not have a portion where EL1 does not pass (non-incident region S1), the illumination condition (telecentricity, illuminance) of the illumination region IR is hardly lost while the compact illumination optical module ILM is obtained. The degree of freedom of arrangement of the illumination optical module ILM and the projection optical module PLM can be increased while maintaining uniformity and the like with high accuracy.
  • a part of the lens included in the illumination optical module ILM is lost to reduce the outer shape, but a part of the lens included in the projection optical module PLM may be lost to reduce the outer shape. Good. Also in this case, as in the illumination optical module ILM, the outer shape is reduced by deleting a part of the lens near the polarizing beam splitter PBS, for example, a part of the first lens group 71 on the first deflection member 70 side. be able to.
  • the polarizing film 93 of the polarizing beam splitter PBS can be formed by laminating the first film body H1 of silicon dioxide and the second film body H2 of hafnium oxide in the film thickness direction. Therefore, the polarizing film 93 has a high reflectance of the S-polarized reflected light beam (illumination light beam) incident on the polarizing film 93 and the transmittance of the P-polarized transmitted light beam (projected light beam) incident on the polarizing film 93. can do.
  • the polarizing beam splitter PBS can suppress the load applied to the polarizing film 93 even when the illumination light beam EL1 having a high energy density having a wavelength equal to or shorter than the i-line is incident on the polarizing film 93.
  • the light beam and the transmitted light beam can be suitably separated.
  • the polarizing film 93 can be formed into a film in which the incident angle ⁇ 1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93 is a Brewster angle ⁇ B of 54.6 °.
  • the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 incident on the polarizing film 93 is 46 It can be set to 8 ° or more and 61.4 ° or less.
  • the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 incident on the polarizing film 93 can be widened.
  • the numerical aperture NA of the lens provided adjacent to the polarization beam splitter PBS can be increased by the amount that the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 can be widened.
  • the resolution of the exposure apparatus U3 can be increased, and a fine mask pattern can be exposed to the substrate P.
  • the Brewster angle ⁇ B of the polarizing film 93 in the first embodiment can be in the range of 52.4 ° to 57.3 ° due to variations in the refractive index of the material (film body) constituting the polarizing film 93.
  • the angle range of the incident angle ⁇ 1 of the illumination light beam EL1 incident on the polarizing film 93 may be set in consideration of the range.
  • the first surface D1 and the third surface D3 of the polarization beam splitter PBS can be made non-parallel, and the second surface D2 and the fourth surface D4 can be made parallel.
  • the angle ⁇ 2 formed by the first surface D1 and the polarizing film 93 can be made the same as the incident angle ⁇ 1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93.
  • the first surface D1 can be a vertical surface with respect to the principal ray of the illumination light beam EL1 incident on the first surface D1, and the principal ray of the projection light beam EL2 incident on the second surface D2
  • the second surface D2 can be a vertical surface.
  • the polarization beam splitter PBS can suppress the reflection of the illumination light beam EL1 on the first surface D1, and can suppress the reflection of the projection light beam EL2 on the second surface D2.
  • the polarizing film 93 serving as a periodic layer can be formed by periodically laminating a plurality of predetermined layer bodies H in the film thickness direction.
  • the polarizing film 93 (FIG. 8) in which the incident angle ⁇ 1 of the chief ray of the illumination light beam EL1 becomes the Brewster angle ⁇ B of 54.6 ° has the incident angle ⁇ 1 of the chief light beam of the illumination light beam EL1.
  • the polarizing film 100 (FIG. 9) of the polarizing beam splitter PBS that is 45 °, the number of periodic layers can be reduced. Therefore, the polarizing film 93 shown in FIG. 8 can have a simple structure because the number of periodic layers is smaller than that of the polarizing film 100 shown in FIG. 9, and the manufacturing cost of the polarizing beam splitter PBS can be reduced.
  • the polarizing film 93 can be suitably fixed between the first prism 91 and the second prism 92 by an adhesive or an optical contact.
  • the polarization beam splitter PBS and the quarter-wave plate 41 may be integrally fixed with an adhesive or an optical contact. In this case, the occurrence of relative positional deviation between the polarizing beam splitter PBS and the quarter wavelength plate 41 can be suppressed.
  • a wavelength of i-line or less can be used as the illumination light beam EL1, and for example, a harmonic laser or an excimer laser can be used. Therefore, the illumination light beam EL1 suitable for exposure processing is used. Is possible.
  • the illuminance of the projection area PA can be adjusted by adjusting the polarization direction of the quarter-wave plate 41 by the polarization adjustment mechanism 68, the illuminance of the plurality of projection areas PA1 to PA6 is adjusted. Can be made uniform.
  • FIG. 13 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment.
  • the exposure apparatus U3 of the first embodiment is configured to hold the cylindrical reflective mask M on the rotatable mask holding drum 21, the exposure apparatus U3 of the second embodiment has a flat plate-like reflection.
  • the mold mask MA is held by a movable mask holding mechanism 11.
  • the mask holding mechanism 11 scans and moves the mask stage 110 that holds the planar mask MA and the mask stage 110 along the X direction within a plane orthogonal to the center plane CL.
  • a moving device (not shown).
  • the mask surface P1 of the mask MA in FIG. 13 is a plane substantially parallel to the XY plane
  • the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane.
  • the principal rays of the illumination light beam EL1 from the illumination optical systems IL1 to IL6 that illuminate the illumination regions IR1 to IR6 on the mask MA are also arranged so as to be perpendicular to the XY plane.
  • the first line L1 and the second line L2 that partition the arrangement area E also change according to the chief ray of the projection light beam EL2. That is, the second line L2 is a direction perpendicular to the XY plane from the intersection point where the mask MA and the principal ray of the projection beam EL2 intersect, and the first line L1 is from the intersection point where the mask MA and the principal ray of the projection beam EL2 intersect.
  • the direction is parallel to the XY plane.
  • the first reflection surface P3 of the first deflecting member 70 included in the first optical system 61 of the projection optical module PLM is polarized.
  • the projection light beam EL2 from the beam splitter PBS is reflected, and the reflected projection light beam EL2 is incident on the first concave mirror 72 through the first lens group 71.
  • the first reflecting surface P3 of the first deflecting member 70 is set to substantially 45 ° with respect to the second optical axis BX2 (XY surface).
  • the illumination region IR2 (and IR4, IR6) from the center point of the illumination region IR1 (and IR3, IR5) on the mask MA when viewed in the XZ plane.
  • the length is set substantially equal.
  • the lower order control device 16 controls the moving device (scanning exposure linear motor, fine movement actuator, etc.) of the mask holding mechanism 11 and is synchronized with the rotation of the substrate support drum 25.
  • the mask stage 110 is driven.
  • an operation (rewinding) of returning the mask MA to the initial position in the ⁇ X direction is required. Therefore, when the substrate support drum 25 is continuously rotated at a constant speed and the substrate P is continuously fed at a constant speed, pattern exposure is not performed on the substrate P during the rewinding operation of the mask MA, and the transport direction of the substrate P is not related.
  • the panel pattern is formed in a jump (separated) manner.
  • the speed of the substrate P peripheral speed here
  • the speed of the mask MA during scanning exposure are assumed to be 50 mm / s to 100 mm / s in practice
  • the mask stage is used when the mask MA is rewound. If 110 is driven at a maximum speed of, for example, 500 mm / s, the margin in the transport direction between panel patterns formed on the substrate P can be reduced.
  • FIG. 14 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment.
  • the exposure apparatus U3 in FIG. 14 projects the reflected light (projected light beam EL2) from the reflective cylindrical mask M onto the flexible substrate P that is transported in a planar manner, as in the previous embodiments.
  • the scanning exposure apparatus synchronizes the peripheral speed by the rotation of the cylindrical mask M and the transport speed of the substrate P.
  • the exposure apparatus U3 of the third embodiment is an example of an exposure apparatus when the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 in the polarization beam splitter PBS are reversed.
  • the relay lenses 56 arranged along the optical axis BX1 of the illumination optical module ILM at least the relay lens 56 closest to the polarization beam splitter PBS does not pass the illumination light beam EL1 (non-incident region S1). By eliminating the shape, spatial interference with the projection optical module PLM is avoided.
  • the extension line of the optical axis BX1 of the illumination optical module ILM intersects the first axis AX1 (line serving as the rotation center).
  • the polarization beam splitter PBS is disposed such that the second surface D2 and the fourth surface D4 parallel to each other are perpendicular to the optical axis BX1 (first optical axis) of the illumination optical module ILM, and the first surface D1 is projected.
  • the optical module PLM is arranged so as to be perpendicular to the optical axis BX4 (fourth optical axis) of the optical module PLM.
  • the intersection angle between the optical axis BX1 and the optical axis BX4 in the XZ plane is the same as that of the polarizing film 93 in FIG. 6, but here the projection light beam EL2 is changed to the Brewster angle ⁇ B (52.4 ° ⁇ It is set to an angle other than 90 ° so as to reflect at 57.3 °.
  • the polarizing film 93 (wavefront splitting surface) of the polarizing beam splitter PBS in the present embodiment can be formed by stacking a plurality of silicon dioxide first film bodies and hafnium oxide second film bodies in the film thickness direction. Therefore, the polarizing film 93 can increase the reflectance of S-polarized light incident on the polarizing film 93 and the transmittance of P-polarized light incident on the polarizing film 93. As a result, the polarizing beam splitter PBS can suppress the load applied to the polarizing film 93 even when the illumination light beam EL1 having a high energy density having a wavelength equal to or shorter than the i-line is incident on the polarizing film 93. The light beam and the transmitted light beam can be suitably separated.
  • the polarizing film 93 having a laminated structure of the first film body H1 of silicon dioxide and the second film body H2 of hafnium oxide is also applied to the polarizing beam splitter PBS used in the first embodiment or the second embodiment. The same applies.
  • the P-polarized illumination light beam EL1 is incident from the fourth surface D4 of the polarization beam splitter PBS. Therefore, the illumination light beam EL1 passes through the polarizing film 93 and exits from the second surface D2, passes through the quarter-wave plate 41, is converted into circularly polarized light, and the illumination region IR on the mask surface P1 of the mask M. Is irradiated. As the mask M rotates, the projection light beam EL2 (circularly polarized light) generated (reflected) from the mask pattern appearing in the illumination region IR is converted to S-polarized light by the quarter-wave plate 41, and the first light beam of the polarizing beam splitter PBS. Incident on two surfaces D2. The projection light beam EL2 that has become S-polarized light is reflected by the polarizing film 93 and is emitted from the first surface D1 of the polarization beam splitter PBS toward the projection optical module PLM.
  • the principal ray Ls passing through the center (point Q1) of the illumination region IR on the mask M in the projection light beam EL2 is decentered from the optical axis BX4 of the projection optical module PLM, and the projection optical module PLM The light enters the first lens system G1.
  • the polarizing beam splitter PBS is brought close to the cylindrical mask M by eliminating the portion of the lens system G1 through which the projection light beam EL2 does not substantially pass.
  • a part of the projection optical module PLM (lens system G1) can be prevented from spatially interfering with a part of the cylindrical mask M and the illumination optical module ILM (lens 56).
  • the projection optical module PLM will be described as an all-refractive projection optical system in which the lens system G1 and the lens system G2 are arranged along the optical axis BX4.
  • the projection optical module PLM is not limited to such a system.
  • it may be a catadioptric projection optical system combining a flat mirror and a lens.
  • the lens system G1 may be an all-refractive system
  • the lens system G2 may be a catadioptric system.
  • the magnification may be any of enlargement or reduction other than equal magnification ( ⁇ 1).
  • the substrate support member PH that supports the substrate P has a flat surface, and an air bearing layer (gas bearing) of about several ⁇ m is formed between the surface and the back surface of the substrate P.
  • an air bearing layer gas bearing
  • a constant tension is applied to the substrate P by using a nip type driving roller and the substrate P is flattened while the substrate P is in the longitudinal direction (X direction).
  • a transport mechanism is provided for feeding to
  • the substrate P may be wound around a part of a cylindrical body such as the substrate support drum 25 as shown in FIG.
  • an exposure unit composed of the illumination optical module ILM, the polarization beam splitter PBS, the quarter wavelength plate 41, and the projection optical module PLM is connected to the rotation center axis (first axis) AX1 of the mask M.
  • the exposure units may be arranged symmetrically with a center plane CL including the first axis AX1 that is the rotation center line of the mask M and parallel to the ZY plane.
  • the polarization beam splitter PBS provided with the polarizing film (multilayer film) 93 having a laminated structure of the hafnium oxide film body and the silicon dioxide film body is used, so that the illumination light beam EL1 has an ultraviolet wavelength region. Even when a high-intensity laser beam is used, high-resolution pattern exposure can be stably continued.
  • the polarizing beam splitter PBS provided with such a polarizing film 93 can be similarly used in the first and second embodiments.
  • FIG. 15 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the fourth embodiment.
  • the exposure apparatus U3 of the first embodiment is configured to hold the cylindrical reflective mask M on the rotatable mask holding drum 21, the exposure apparatus U3 of the fourth embodiment has a flat plate-like reflection.
  • the mold mask MA is held by a movable mask holding mechanism 11.
  • the mask holding mechanism 11 scans and moves the mask stage 110 that holds the planar mask MA and the mask stage 110 along the X direction in a plane orthogonal to the center plane CL.
  • a moving device (not shown).
  • the mask surface P1 of the mask MA in FIG. 15 is substantially a plane parallel to the XY plane, the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane.
  • the principal rays of the illumination light beam EL1 from the illumination optical systems IL1 to IL6 that illuminate the illumination regions IR1 to IR6 on the mask MA are also arranged so as to be perpendicular to the XY plane.
  • the polarization beam splitter PBS is configured such that the incident angle ⁇ 1 of the principal beam of the illumination light beam EL1 incident on the polarizing film 93 is the Brewster angle ⁇ B (52 .4 ° to 57.3 °), and the principal ray of the illumination light beam EL1 reflected by the polarizing film 93 is arranged so as to be perpendicular to the XY plane.
  • the arrangement of the illumination optical module ILM is also changed as appropriate.
  • the first reflection surface P3 of the first deflecting member 70 included in the first optical system 61 of the projection optical module PLM is polarized.
  • the projection light beam EL2 from the beam splitter PBS is reflected, and the reflected projection light beam EL2 is incident on the first concave mirror 72 through the first lens group 71.
  • the first reflecting surface P3 of the first deflecting member 70 is set to substantially 45 ° with respect to the second optical axis BX2 (XY surface).
  • the illumination region IR2 (and IR4, IR6) from the center point of the illumination region IR1 (and IR3, IR5) on the mask MA when viewed in the XZ plane.
  • To the center point of the projection area PA1 (and PA3, PA5) on the substrate P following the support surface P2 to the center point of the projection area PA2 (and PA4, PA6) are set substantially equal.
  • the lower order control device 16 controls the moving device (scanning exposure linear motor, fine movement actuator, etc.) of the mask holding mechanism 11 in synchronization with the rotation of the substrate support drum 25.
  • the mask stage 110 is driven.
  • an operation (rewinding) of returning the mask MA to the initial position in the ⁇ X direction is required. Therefore, when the substrate support drum 25 is continuously rotated at a constant speed and the substrate P is continuously fed at a constant speed, pattern exposure is not performed on the substrate P during the rewinding operation of the mask MA, and the transport direction of the substrate P is not related.
  • the panel pattern is formed in a jump (separated) manner.
  • the speed of the substrate P peripheral speed here
  • the speed of the mask MA during scanning exposure are assumed to be 50 mm / s to 100 mm / s in practice
  • the mask stage is used when the mask MA is rewound. If 110 is driven at a maximum speed of, for example, 500 mm / s, the margin in the transport direction between panel patterns formed on the substrate P can be reduced.
  • FIG. 16 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the fifth embodiment.
  • the exposure apparatus U3 of the fifth embodiment is an example of an exposure apparatus when the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 in the polarization beam splitter PBS are reversed.
  • FIG. 16 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the fifth embodiment.
  • the exposure apparatus U3 of the fifth embodiment is an example of an exposure apparatus when the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 in the polarization beam splitter PBS are reversed.
  • the relay lens 56 closest to the polarization beam splitter PBS cuts out a portion through which the illumination light beam EL1 does not pass. Spatial interference with the projection optical module PLM is avoided.
  • the extension line of the optical axis BX1 of the illumination optical module ILM intersects the first axis AX1 (line serving as the rotation center).
  • the polarization beam splitter PBS is disposed such that the second surface D2 and the fourth surface D4 parallel to each other are perpendicular to the optical axis BX1 (first optical axis) of the illumination optical module ILM, and the first surface D1 is projected.
  • the optical module PLM is arranged so as to be perpendicular to the optical axis BX4 (fourth optical axis) of the optical module PLM.
  • the intersection angle between the optical axis BX1 and the optical axis BX4 in the XZ plane is the same as the condition of FIG. 6 of the polarizing film 93.
  • the projection light beam EL2 is changed into the Brewster angle ⁇ B (52.4 ° to 57). .3 °) is set to an angle other than 90 °.
  • the P-polarized illumination light beam EL1 is incident from the fourth surface D4 of the polarization beam splitter PBS. Therefore, the illumination light beam EL1 passes through the polarizing film 93 and exits from the second surface D2, passes through the quarter-wave plate 41, is converted into circularly polarized light, and the illumination region IR on the mask surface P1 of the mask M. Is irradiated. As the mask M rotates, the projection light beam EL2 (circularly polarized light) generated (reflected) from the mask pattern appearing in the illumination region IR is converted to S-polarized light by the quarter-wave plate 41, and the first light beam of the polarizing beam splitter PBS. Incident on two surfaces D2. The projection light beam EL2 that has become S-polarized light is reflected by the polarizing film 93 and is emitted from the first surface D1 of the polarization beam splitter PBS toward the projection optical module PLM.
  • the principal ray Ls passing through the center of the illumination area IR on the mask M in the projection light beam EL2 is decentered from the optical axis BX4 of the projection optical module PLM, and is the first lens system of the projection optical module PLM. Incident on G1.
  • the spread (numerical aperture NA) of the projection light beam EL2 is small, it is possible to avoid spatial interference with the lens 56 of the illumination optical module ILM by cutting out a portion of the lens system G1 through which the projection light beam EL2 does not pass. it can.
  • the projection optical module PLM will be described as an all-refractive projection optical system in which the lens system G1 and the lens system G2 are arranged along the optical axis BX4.
  • the projection optical module PLM is not limited to such a system.
  • it may be a catadioptric projection optical system combining a flat mirror and a lens.
  • the lens system G1 may be an all-refractive system
  • the lens system G2 may be a catadioptric system.
  • the magnification may be any of enlargement or reduction other than equal magnification ( ⁇ 1).
  • the substrate support member PH that supports the substrate P has a flat surface, and an air bearing layer (gas bearing) of about several ⁇ m is formed between the surface and the back surface of the substrate P.
  • a transport mechanism that feeds the substrate P in the longitudinal direction (X direction) while applying a certain tension to the substrate P to make it flat.
  • the substrate P may be wound around a part of a cylindrical body such as the substrate support drum 25 as shown in FIG.
  • an exposure unit composed of the illumination optical module ILM, the polarization beam splitter PBS, the quarter wavelength plate 41, and the projection optical module PLM is connected to the rotation center axis (first axis) AX1 of the mask M.
  • the exposure units may be arranged symmetrically with a center plane CL including the first axis AX1 that is the rotation center line of the mask M and parallel to the ZY plane.
  • a polarization beam splitter PBS provided with a polarizing film (multilayer film) 93 having a laminated structure of a hafnium oxide film body and a silicon dioxide film body is used.
  • a polarizing film (multilayer film) 93 having a laminated structure of a hafnium oxide film body and a silicon dioxide film body is used.
  • the exposure apparatus U3 described in each of the above embodiments uses a mask M in which a predetermined mask pattern is fixed in a planar shape or a cylindrical shape.
  • a mask M in which a predetermined mask pattern is fixed in a planar shape or a cylindrical shape.
  • an apparatus that projects and exposes a variable mask pattern for example, Patent No. It can be similarly used as a beam splitter of the maskless exposure apparatus disclosed in Japanese Patent No. 423036.
  • the maskless exposure apparatus includes a programmable mirror array that receives exposure illumination light reflected by a beam splitter, and a beam (reflected light beam) patterned by the mirror array.
  • the microlens array may be included) and projected onto the substrate.
  • the polarizing beam splitter PBS as shown in FIG. 8 is used as the beam splitter of such a maskless exposure apparatus, even if high-intensity laser light in the ultraviolet wavelength region is used as illumination light, high resolution is achieved. Pattern exposure can be continued stably.
  • the polarizing beam splitter PBS used in each of the previous embodiments has, as the polarizing film 93, a film body whose main component is silicon dioxide (SiO 2 ) and a film body whose main component is hafnium oxide (HfO 2 ) in the film thickness direction.
  • SiO 2 silicon dioxide
  • HfO 2 hafnium oxide
  • other materials may be used.
  • magnesium fluoride (MgF 2 ) which is a material having a low refractive index with respect to ultraviolet rays in the vicinity of a wavelength of 355 nm and high resistance to ultraviolet laser light, is also used. it can.
  • zirconium oxide (ZrO 2 ) which is a material having a high refractive index with respect to ultraviolet rays near a wavelength of 355 nm and high resistance to ultraviolet laser light, can be used. Therefore, simulation results of the characteristics of the polarizing film 93 obtained by changing the combination of these materials will be described with reference to FIGS. 17 to 22 below.
  • FIG. 17 schematically illustrates the configuration of the polarizing film 93 when a film body of hafnium oxide (HfO 2 ) is used as a high refractive index material and a magnesium fluoride (MgF 2 ) film body is used as a low refractive index material. It is a cross section shown in.
  • hafnium oxide HfO 2
  • MgF 2 magnesium fluoride
  • the Brewster angle ⁇ B arcsin ([(nh 2 ⁇ nL 2 ) / ⁇ ns 2 (nh 2 + nL 2 ) ⁇ ] 0.5 ), Therefore, it becomes about 52.1 °.
  • a polarizing film 93 in which a layer of hafnium oxide having a thickness of 22.8 nm is laminated on top and bottom of a film body of magnesium fluoride having a thickness of 78.6 nm is used as a periodic layer. Provided between the joint surfaces of the prism 91 and the second prism 92. In the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 17, the optical characteristics as shown in FIG. 18 were obtained as a result of simulation.
  • the incident angle ⁇ 1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 43.5 ° or more, and the reflectance Rs for S-polarized light Is 95% or more (transmittance Ts is 5% or less), and the incident angle ⁇ 1 is 59.5 ° or less. Also in this example, good polarization splitting characteristics can be obtained in a range of about 15 ° from ⁇ 8.6 ° to + 7.4 ° with respect to the Brewster angle ⁇ B (52.1 °).
  • FIG. 19 schematically shows the configuration of the polarizing film 93 when a zirconium oxide (ZrO 2 ) film is used as the high refractive index material and a silicon dioxide (SiO 2 ) film is used as the low refractive index material.
  • ZrO 2 zirconium oxide
  • SiO 2 silicon dioxide
  • a polarizing film 93 in which 21 cycles of zirconium oxide film bodies having a thickness of 20.2 nm are laminated on top and bottom of a silicon dioxide film body having a thickness of 88.2 nm is used as the first prism. It is provided between the joint surfaces of 91 and the second prism 92.
  • the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 19, the optical characteristics as shown in FIG. 20 were obtained as a result of the simulation.
  • the incident angle ⁇ 1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 47.7 °
  • the reflectance Rs for S-polarized light is The incident angle ⁇ 1 that is 95% or more (transmittance Ts is 5% or less) is 64.1 °.
  • good polarization separation characteristics can be obtained in a range of about 16.4 ° from ⁇ 7.5 ° to + 8.9 ° with respect to the Brewster angle ⁇ B (55.2 °).
  • FIG. 21 shows the configuration of the polarizing film 93 when a film body of zirconium oxide (ZrO 2 ) is used as a high refractive index material and a magnesium fluoride (MgF 2 ) film body is used as a low refractive index material. It is a cross section shown typically.
  • the refractive index nh of zirconium oxide is 2.12
  • the refractive index nL of magnesium fluoride is 1.40
  • the refractive index ns of the prism (quartz glass) is 1.47
  • the Brewster angle ⁇ B is It will be about 52.6 °.
  • a polarizing film 93 in which 21 cycles of zirconium oxide film bodies having a thickness of 22.1 nm are laminated on top and bottom of a magnesium fluoride film body having a thickness of 77.3 nm is formed as a first layer. Provided between the joint surfaces of the prism 91 and the second prism 92. In the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 21, the optical characteristics as shown in FIG. 22 were obtained as a result of the simulation.
  • the incident angle ⁇ 1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 43.1 °
  • the reflectance Rs for S-polarized light is R3.1.
  • the incident angle ⁇ 1 that is 95% or more (transmittance Ts is 5% or less) is 60.7 °.
  • good polarization separation characteristics can be obtained in a range of about 17.6 ° from ⁇ 9.5 ° to + 8.1 ° with respect to the Brewster angle ⁇ B (52.6 °).
  • the projection light beam EL2 reflected by the mask M is projected onto the substrate P with a spread angle ⁇ na limited by the numerical aperture (NA) of the projection optical system PL of equal magnification.
  • NA the numerical aperture
  • the numerical aperture of the illumination light beam EL1 is also set to be equal to or less than the numerical aperture NA on the mask M side of the projection optical system PL when the mask M is a flat mask surface P1 as shown in FIG.
  • the process factor k is 0.5, and 3 ⁇ m is obtained as the resolving power RS
  • the mask side of the projection optical system PL of the same magnification from RS k ⁇ ( ⁇ / NA)
  • the numerical aperture NA is about 0.06 ( ⁇ na ⁇ 3.4 °).
  • the numerical aperture of the illumination light beam EL1 from the illumination optical system IL is generally slightly smaller than the numerical aperture NA on the mask M side of the projection optical system PL, but is assumed to be equal here.
  • the principal ray of the illumination light beam EL1 is related to the circumferential direction of the cylindrical mask M. Is spreading at a wider angle.
  • the exposure width in the circumferential direction of the illumination region IR on the mask shown in FIG. 3 is De
  • the most peripheral of the exposure width De with respect to the principal ray of the illumination light beam EL1 passing through the point Q1 in FIG. 5A.
  • the chief ray of the illumination light beam EL1 passing through the end of the direction is generally inclined by an angle ⁇ as follows. sin ⁇ (De / 2) / (Rm / 2)
  • the angle ⁇ is about 3.8 °.
  • an angle ⁇ na (about 3.4 °) corresponding to the numerical aperture of the illumination light beam EL1 is added to the chief ray of the illumination light beam EL1 passing through the edge in the most circumferential direction of the exposure width De.
  • the divergence angle of the illumination light beam EL1 takes a range of ⁇ ( ⁇ + ⁇ na) with respect to the principal ray of the illumination light beam EL1 passing through the point Q1. That is, in the above numerical example, ⁇ 7.2 °, and the illumination light beam EL1 is distributed over an angular range of 14.4 ° with respect to the circumferential direction of the cylindrical mask surface.
  • the illumination light beam EL1 is set so as to enter the cylindrical mask surface P1 with a relatively large angle range. Even in such an angle range, the illumination light beam EL1 is shown in FIGS. With the polarization beam splitter PBS of the embodiment and the polarization beam splitter PBS of the example shown in FIGS. 17 to 22, the illumination light beam EL1 and the projection light beam EL2 can be polarized and separated satisfactorily.
  • the numerical aperture NAm on the mask surface P1 side of the projection optical system PL is smaller than the numerical aperture NAp on the substrate P side. Increases by the magnification Mp.
  • the numerical aperture NA on the mask side in the projection optical system with the magnification Mp of 2 is about 0.12. Accordingly, the spread angle ⁇ na of the projection light beam EL2 is also increased to ⁇ 6.8 ° (14.6 ° in width).
  • the incident angle range in which polarization polarization can be satisfactorily separated by the polarization beam splitter PBS is about 14.6 ° in the case of FIG. 10, about 16 ° in the case of FIG. 18, about 16.4 ° in the case of FIG. In the case of 22, the angle is about 17.6 °, and in any case, since the spread angle ⁇ na is covered, enlarged projection exposure can be performed with good image quality.
  • the polarization separation characteristic is good so that the maximum angular range in the circumferential direction of the illumination light beam EL1 irradiated to the illumination region IR on the mask surface P1 is covered.
  • a polarizing beam splitter PBS having an incident angle range including a small Brewster angle ⁇ B is selected. Also, the Brewster angle ⁇ B of the polarization beam splitter PBS illustrated in FIGS. 17 to 22 is 50 ° or more, and as shown in FIGS.
  • each traveling direction in the XZ plane of the illumination light beam EL1 directed to the cylindrical mask M and the projection light beam EL2 reflected by the mask surface is defined as the central plane CL. It is possible to incline it, and it is possible to ensure good imaging performance.
  • the hafnium oxide film body or the zirconium oxide film body constituting the polarizing film 93 exhibits a high refractive index nh with respect to light in the ultraviolet region (wavelength 400 nm or less).
  • the ratio nh / ns between the refractive index nh and the refractive index ns of the base material (prisms 91 and 92) may be 1.3 or more.
  • a high refractive index material a titanium dioxide (TiO 2 ) film body, five A film of tantalum oxide (Ta 2 O 5 ) can also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Polarising Elements (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

The present invention is provided with: a mask holding drum (21) that holds a reflective mask (M); a beam splitter (PBS), which reflects an inputted lighting luminous flux (EL1) toward the mask (M), and which passes through a projection luminous flux (EL2) obtained by having the lighting luminous flux (EL1) reflected by means of the mask (M); a lighting optical module (ILM) that inputs the lighting luminous flux (EL1) to the beam splitter (PBS); and a projection optical module (PLM) that performs projection exposure with respect to a substrate (P) using the projection luminous flux (EL2) that has passed through the beam splitter (PBS). The lighting optical module (ILM) and the beam splitter (PBS) are provided between the mask (M) and the projection optical module (PLM). Furthermore, the beam splitter (PBS) is provided with a first prism, a second prism, and a polarization film, and the polarization film (93) has a silicon dioxide first film body, and a hafnium oxide second film body laminated therein in the film thickness direction.

Description

偏光ビームスプリッタ、基板処理装置、デバイス製造システム及びデバイス製造方法Polarizing beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method
 本発明は、偏光ビームスプリッタ、基板処理装置、デバイス製造システム及びデバイス製造方法に関するものである。 The present invention relates to a polarizing beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method.
 従来、基板処理装置として、反射型の円筒状のレチクル(マスク)に露光光を照射し、マスクから反射した露光光を感光基板(ウェハ)上に投影する露光装置が知られている(例えば、特許文献1参照)。特許文献1の露光装置は、マスクから反射した露光光をウェハに投影する投影光学系を有し、投影光学系は、入射してくる露光光の偏光状態に応じて、結像光路中で露光光を透過させたり反射させたりする偏光ビームスプリッタを含んで構成されている。 Conventionally, as a substrate processing apparatus, an exposure apparatus that irradiates a reflective cylindrical reticle (mask) with exposure light and projects the exposure light reflected from the mask onto a photosensitive substrate (wafer) is known (for example, Patent Document 1). The exposure apparatus of Patent Document 1 has a projection optical system that projects exposure light reflected from a mask onto a wafer, and the projection optical system performs exposure in an imaging optical path in accordance with the polarization state of incident exposure light. A polarization beam splitter that transmits and reflects light is included.
特開2007-227438号公報JP 2007-227438 A
 特許文献1の露光装置において、照明光学系からの照明光束は投影光学系とは別の方向から円筒状のマスク上に斜めに照射され、マスクで反射した露光光(投影光束)が投影光学系に入射するように構成されている。照明光学系と投影光学系を特許文献1のような配置にすると、照明光束の利用効率が低く、また感光基板(ウェハ)上に投影されるマスクパターンの像質も余り好ましくないといった問題がある。効率的で像質を良好に保つ照明形態として、同軸落射照明方式がある。これは、ハーフミラーやビームスプリッタ等の光分割素子を投影光学系による結像光路中に配置し、その光分割素子を介して照明光束をマスクに照射すると共に、マスクで反射した投影光束も光分割素子を介して感光基板に導く方式である。 In the exposure apparatus of Patent Document 1, the illumination light beam from the illumination optical system is irradiated obliquely onto the cylindrical mask from a direction different from the projection optical system, and the exposure light (projection light beam) reflected by the mask is the projection optical system. It is comprised so that it may inject into. When the illumination optical system and the projection optical system are arranged as in Patent Document 1, there is a problem that the use efficiency of the illumination light beam is low, and the image quality of the mask pattern projected onto the photosensitive substrate (wafer) is not preferable. . There is a coaxial epi-illumination system as an illumination form that is efficient and maintains good image quality. This is because light splitting elements such as half mirrors and beam splitters are arranged in the imaging optical path of the projection optical system, and the illumination light flux is irradiated onto the mask via the light splitting element, and the projection light flux reflected by the mask is also light. In this method, the light is guided to the photosensitive substrate through the dividing element.
 落射照明方式により、マスクに向かう照明光束とマスクからの投影光束とを分離する場合、光分割素子として偏光ビームスプリッタを用いることで、照明光束と投影光束の光量損失を低く抑えた効率的な露光ができる。 When separating the illumination light beam directed to the mask and the projected light beam from the mask by the epi-illumination method, an efficient exposure with a low light loss of the illumination light beam and the projected light beam is achieved by using a polarization beam splitter as the light splitting element. Can do.
 しかしながら、偏光ビームスプリッタにより、例えば照明光束を反射(又は透過)し、投影光束を透過(又は反射)する場合、照明光学系及び投影光学系において偏光ビームスプリッタが共有されることになるため、照明光学系と投影光学系とが物理的に干渉する可能性がある。 However, for example, when the illumination beam is reflected (or transmitted) and the projection beam is transmitted (or reflected) by the polarization beam splitter, the polarization beam splitter is shared between the illumination optical system and the projection optical system. There is a possibility that the optical system and the projection optical system physically interfere with each other.
 また、特許文献1の露光装置において偏光ビームスプリッタを使用する場合、偏光ビームスプリッタの偏光膜は、入射する入射光束の一部を反射して反射光束とし、一部を透過して透過光束とする。このとき、反射光束または透過光束は、分離されることでエネルギーロスが生じる。このため、分離による反射光束または透過光束のエネルギーロスを抑制すべく、偏光膜に入射する入射光束は、波長及び位相が揃ったレーザ光にすることが好ましい。 When the polarizing beam splitter is used in the exposure apparatus of Patent Document 1, the polarizing film of the polarizing beam splitter reflects a part of the incident incident light beam as a reflected light beam and transmits a part of the incident light beam as a transmitted light beam. . At this time, the reflected light flux or the transmitted light flux is separated, resulting in energy loss. For this reason, in order to suppress the energy loss of the reflected light beam or transmitted light beam due to the separation, it is preferable that the incident light beam incident on the polarizing film is a laser beam having a uniform wavelength and phase.
 しかしながら、レーザ光はエネルギー密度が高い。このため、入射光束をレーザ光とする場合、偏光膜における反射光束の反射率及び透過光束の透過率が低いと、偏光膜でレーザ光のエネルギーが吸収され、偏光膜に与えられる負荷が大きくなってしまう。これにより、レーザ光などのエネルギー密度が高い光を入射光束として用いる場合、偏光ビームスプリッタの偏光膜の耐性が低下し易くなることから、入射光束を好適に分離することが困難になる可能性がある。 However, the laser beam has a high energy density. For this reason, when the incident light beam is laser light, if the reflectance of the reflected light beam and the transmittance of the transmitted light beam in the polarizing film are low, the energy of the laser light is absorbed by the polarizing film, and the load applied to the polarizing film increases. End up. As a result, when light having a high energy density such as laser light is used as the incident light beam, the resistance of the polarizing film of the polarizing beam splitter is likely to be lowered, and thus it may be difficult to appropriately separate the incident light beam. is there.
 本発明の態様は、上記課題に鑑みてなされたものであって、その目的は、偏光ビームスプリッタにより照明光束と投影光束とを分離する場合であっても、照明光学系及び投影光学系の物理的な干渉を抑制し、照明光学系及び投影光学系を容易に配置することができる偏光ビームスプリッタ、基板処理装置(露光装置)、デバイス製造システム及びデバイス製造方法を提供することにある。 An aspect of the present invention has been made in view of the above-described problems, and the purpose of the present invention is to physics the illumination optical system and the projection optical system even when the illumination light beam and the projection light beam are separated by the polarization beam splitter. It is an object of the present invention to provide a polarizing beam splitter, a substrate processing apparatus (exposure apparatus), a device manufacturing system, and a device manufacturing method capable of suppressing general interference and easily arranging an illumination optical system and projection optical system.
 また、本発明の態様は、上記課題に鑑みてなされたものであって、その目的は、エネルギー密度が高い入射光束であっても、偏光膜に加わる負荷を低減しつつ、入射光束の一部を反射させて反射光束とし、入射光束の一部を透過させて透過光束とする偏光ビームスプリッタ、基板処理装置、デバイス製造システム及びデバイス製造方法を提供することにある。 An aspect of the present invention has been made in view of the above-described problems. The purpose of the present invention is to reduce a load applied to the polarizing film even when the incident light beam has a high energy density, and a part of the incident light beam. It is intended to provide a polarizing beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method, in which a reflected light beam is reflected and a part of an incident light beam is transmitted to be a transmitted light beam.
 本発明の第1の態様に従えば、反射型のマスクを保持するマスク保持部材と、入射する照明光束を前記マスクへ向けて反射する一方で、前記照明光束が前記マスクにより反射されることで得られる投影光束を透過するビームスプリッタと、前記照明光束を前記ビームスプリッタへ入射させる照明光学モジュールと、前記ビームスプリッタを透過した前記投影光束を光感応性の基板に投影する投影光学モジュールと、を備え、前記照明光束を前記マスクへ導く照明光学系は、前記照明光学モジュールと前記ビームスプリッタとを含み、前記投影光束を前記基板へ導く投影光学系は、前記投影光学モジュールと前記ビームスプリッタとを含み、前記照明光学モジュール及び前記ビームスプリッタは、前記マスクと前記投影光学モジュールとの間に設けられている基板処理装置(露光装置)が提供される。 According to the first aspect of the present invention, the mask holding member that holds the reflective mask and the incident illumination light beam are reflected toward the mask, while the illumination light beam is reflected by the mask. A beam splitter that transmits the obtained projection light beam, an illumination optical module that causes the illumination light beam to enter the beam splitter, and a projection optical module that projects the projection light beam transmitted through the beam splitter onto a light-sensitive substrate. An illumination optical system that guides the illumination light beam to the mask includes the illumination optical module and the beam splitter, and a projection optical system that guides the projection light beam to the substrate includes the projection optical module and the beam splitter. The illumination optical module and the beam splitter between the mask and the projection optical module. Provided by which a substrate processing apparatus (exposure apparatus) is provided.
 本発明の第2の態様に従えば、本発明の第1の態様に係る基板処理装置と、前記基板処理装置に前記基板を供給する基板供給装置と、を備えるデバイス製造システムが提供される。 According to a second aspect of the present invention, there is provided a device manufacturing system comprising a substrate processing apparatus according to the first aspect of the present invention and a substrate supply apparatus that supplies the substrate to the substrate processing apparatus.
 本発明の第3の態様に従えば、本発明の第1の態様に係る基板処理装置を用いて前記基板を投影露光することと、投影露光された前記基板を処理することにより、前記マスクのパターンを前記基板上に形成することと、を含むデバイス製造方法が提供される。 According to a third aspect of the present invention, the substrate processing apparatus according to the first aspect of the present invention is used to project and expose the substrate, and to process the projected and exposed substrate, thereby Forming a pattern on the substrate.
 本発明の第4の態様に従えば、反射型のマスクを保持するマスク保持部材と、入射する照明光束を前記マスクへ向けて透過する一方で、前記照明光束が前記マスクにより反射されることで得られる投影光束を反射するビームスプリッタと、前記照明光束を前記ビームスプリッタへ入射させる照明光学モジュールと、前記ビームスプリッタで反射した前記投影光束を光感応性の基板に投影する投影光学モジュールと、を備え、前記照明光束を前記マスクへ導く照明光学系は、前記照明光学モジュールと前記ビームスプリッタとを含み、前記投影光束を前記基板へ導く投影光学系は、前記投影光学モジュールと前記ビームスプリッタとを含み、前記照明光学モジュール及び前記ビームスプリッタは、前記マスクと前記投影光学モジュールとの間に設けられている基板処理装置(露光装置)が提供される。 According to the fourth aspect of the present invention, the mask holding member that holds the reflective mask and the incident illumination light beam are transmitted toward the mask, while the illumination light beam is reflected by the mask. A beam splitter that reflects the resulting projected light beam, an illumination optical module that causes the illumination light beam to enter the beam splitter, and a projection optical module that projects the projected light beam reflected by the beam splitter onto a light-sensitive substrate. An illumination optical system that guides the illumination light beam to the mask includes the illumination optical module and the beam splitter, and a projection optical system that guides the projection light beam to the substrate includes the projection optical module and the beam splitter. The illumination optical module and the beam splitter between the mask and the projection optical module. Provided by which a substrate processing apparatus (exposure apparatus) is provided.
 本発明の第5の態様に従えば、第1プリズムと、前記第1プリズムの1つの面と対向した面を有する第2プリズムと、前記第1プリズムから前記第2プリズムに向かう入射光束を、偏光状態に応じて、前記第1プリズム側に反射する反射光束、又は前記第2プリズム側に透過する透過光束に分離する為に、前記第1プリズムと前記第2プリズムとの対向する面の間に設けられ、二酸化ケイ素を主成分とする第1膜体と酸化ハフニウムを主成分とする第2膜体とを膜厚方向に積層した偏光膜と、を備える偏光ビームスプリッタが提供される。 According to the fifth aspect of the present invention, the first prism, the second prism having a surface opposed to one surface of the first prism, and the incident light flux from the first prism toward the second prism, Depending on the polarization state, between the opposing surfaces of the first prism and the second prism to separate into a reflected light beam reflected to the first prism side or a transmitted light beam transmitted to the second prism side. There is provided a polarizing beam splitter comprising: a polarizing film provided in a first film body including silicon dioxide as a main component and a second film body including hafnium oxide as a main component stacked in a film thickness direction.
 本発明の第6の態様に従えば、照明光束をマスクに照射し、前記マスクに形成されたパターンの像を被投影体である光感応性の基板に投影露光する基板処理装置であって、反射型の前記マスクを保持するマスク保持部材と、前記照明光束を前記マスクへ導く照明光学モジュールと、前記マスクから反射された前記投影光束を前記被投影体(基板)に投影する投影光学モジュールと、前記照明光学モジュールと前記マスクとの間であって、且つ前記マスクと前記投影光学モジュールとの間に配置される、本発明の第1の態様に係る偏光ビームスプリッタと、波長板と、を有し、前記照明光束は、前記偏光ビームスプリッタの前記偏光膜に対する入射角が、52.4°~57.3°のブリュースター角を含む所定の角度範囲となっており、前記偏光ビームスプリッタが、前記照明光束を前記マスクに向けて反射させると共に、前記投影光束を前記投影光学モジュールに向けて透過させるように、前記波長板は、前記偏光ビームスプリッタからの前記照明光束を偏光すると共に、前記マスクからの前記投影光束をさらに偏光する基板処理装置が提供される。 According to a sixth aspect of the present invention, there is provided a substrate processing apparatus that irradiates a mask with an illumination light beam, and projects and exposes an image of a pattern formed on the mask onto a photosensitive substrate that is a projection target, A mask holding member that holds the reflective mask, an illumination optical module that guides the illumination light beam to the mask, and a projection optical module that projects the projection light beam reflected from the mask onto the projection target (substrate) A polarizing beam splitter according to the first aspect of the present invention, disposed between the illumination optical module and the mask and between the mask and the projection optical module, and a wave plate. The illumination light beam has an incident angle of the polarizing beam splitter with respect to the polarizing film in a predetermined angle range including a Brewster angle of 52.4 ° to 57.3 °; The wave plate polarizes the illumination light beam from the polarization beam splitter so that the light beam splitter reflects the illumination light beam toward the mask and transmits the projection light beam toward the projection optical module. In addition, there is provided a substrate processing apparatus for further polarizing the projection light beam from the mask.
 本発明の第7の態様に従えば、本発明の第6の態様に係る基板処理装置と、前記基板処理装置に前記被投影体を供給する基板供給装置と、を備えるデバイス製造システムが提供される。 According to a seventh aspect of the present invention, there is provided a device manufacturing system comprising: a substrate processing apparatus according to the sixth aspect of the present invention; and a substrate supply apparatus that supplies the projection target to the substrate processing apparatus. The
 本発明の第8の態様に従えば、本発明の第6の態様に係る基板処理装置を用いて前記被投影体に投影露光をすることと、投影露光された前記被投影体を処理することにより、前記マスクのパターンを形成することと、を含むデバイス製造方法が提供される。 According to the eighth aspect of the present invention, projection exposure is performed on the projection object using the substrate processing apparatus according to the sixth aspect of the present invention, and the projection-exposed object is processed. To provide a device manufacturing method including forming a pattern of the mask.
 本発明の態様によれば、照明光学系と投影光学系とで供用されるビームスプリッタによって照明光束と投影光束とを分離する場合であっても、照明光学系及び投影光学系の物理的な干渉を抑制し、照明光学系及び投影光学系を容易に配置することが可能な偏光ビームスプリッタ、基板処理装置、デバイス製造システム及びデバイス製造方法を提供することができる。 According to the aspect of the present invention, even when the illumination light beam and the projection light beam are separated by the beam splitter used in the illumination optical system and the projection optical system, physical interference between the illumination optical system and the projection optical system. It is possible to provide a polarization beam splitter, a substrate processing apparatus, a device manufacturing system, and a device manufacturing method capable of suppressing the above-described problem and easily arranging the illumination optical system and the projection optical system.
 また、本発明の態様によれば、偏光膜に加わる負荷を低減しつつ、入射光束の一部を反射させて反射光束とし、入射光束の一部を透過させて透過光束とする偏光ビームスプリッタ、基板処理装置、デバイス製造システム及びデバイス製造方法を提供することができる。 Further, according to the aspect of the present invention, a polarizing beam splitter that reflects a part of an incident light beam as a reflected light beam and transmits a part of the incident light beam as a transmitted light beam while reducing a load applied to the polarizing film, A substrate processing apparatus, a device manufacturing system, and a device manufacturing method can be provided.
図1は、第1実施形態のデバイス製造システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment. 図2は、第1実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment. 図3は、図2に示す露光装置の照明領域及び投影領域の配置を示す図である。FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG. 図4は、図2に示す露光装置の照明光学系及び投影光学系の構成を示す図である。FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG. 図5Aは、マスクにおける照明光束及び投影光束を示す図である。FIG. 5A is a diagram illustrating an illumination light beam and a projection light beam in a mask. 図5Bは、偏光ビームスプリッタから見た第4リレーレンズを示す図である。FIG. 5B is a diagram illustrating the fourth relay lens viewed from the polarization beam splitter. 図6は、偏光ビームスプリッタにおける照明光束及び投影光束を示す図である。FIG. 6 is a diagram showing an illumination light beam and a projection light beam in the polarization beam splitter. 図7は、照明光学系の配置が可能な配置領域を示す図である。FIG. 7 is a diagram illustrating an arrangement region in which the illumination optical system can be arranged. 図8は、第1実施形態の偏光ビームスプリッタの偏光膜周りの構成を示す図である。FIG. 8 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the first embodiment. 図9は、第1実施形態に対する比較例の偏光ビームスプリッタの偏光膜周りの構成を示す図である。FIG. 9 is a diagram illustrating a configuration around a polarizing film of a polarizing beam splitter of a comparative example with respect to the first embodiment. 図10は、図8に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。FIG. 10 is a graph showing transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG. 図11は、図9に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。FIG. 11 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG. 図12は、第1実施形態のデバイス製造方法を示すフローチャートである。FIG. 12 is a flowchart illustrating the device manufacturing method according to the first embodiment. 図13は、第2実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 13 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment. 図14は、第3実施形態の露光装置(基板処理装置)の構成を示す図である。FIG. 14 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment. 図15は、第4実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 15 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the fourth embodiment. 図16は、第5実施形態の露光装置(基板処理装置)の構成を示す図である。FIG. 16 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the fifth embodiment. 図17は、第6実施形態の偏光ビームスプリッタの偏光膜周りの構成を示す図である。FIG. 17 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the sixth embodiment. 図18は、図17に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。FIG. 18 is a graph showing the transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG. 図19は、第7実施形態の偏光ビームスプリッタの偏光膜周りの構成を示す図である。FIG. 19 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the seventh embodiment. 図20は、図19に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。FIG. 20 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG. 図21は、第8実施形態の偏光ビームスプリッタの偏光膜周りの構成を示す図である。FIG. 21 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the eighth embodiment. 図22は、図21に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。FIG. 22 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
[第1実施形態]
 第1実施形態の偏光ビームスプリッタは、被投影体である光感応性の基板に露光処理を施す基板処理装置としての露光装置に設けられている。また、露光装置は、露光後の基板に各種処理を施してデバイスを製造するデバイス製造システムに組み込まれている。先ず、デバイス製造システムについて説明する。
[First Embodiment]
The polarizing beam splitter of the first embodiment is provided in an exposure apparatus as a substrate processing apparatus that performs an exposure process on a photosensitive substrate that is a projection target. The exposure apparatus is incorporated in a device manufacturing system that manufactures devices by performing various processes on the exposed substrate. First, a device manufacturing system will be described.
<デバイス製造システム>
 図1は、第1実施形態のデバイス製造システムの構成を示す図である。図1に示すデバイス製造システム1は、デバイスとしてのフレキシブル・ディスプレーを製造するライン(フレキシブル・ディスプレー製造ライン)である。フレキシブル・ディスプレーとしては、例えば有機ELディスプレー等がある。このデバイス製造システム1は、可撓性の基板Pをロール状に巻回した供給用ロールFR1から、該基板Pが送り出され、送り出された基板Pに対して各種処理を連続的に施した後、処理後の基板Pを可撓性のデバイスとして回収用ロールFR2に巻き取る、いわゆるロール・ツー・ロール(Roll to Roll)方式となっている。第1実施形態のデバイス製造システム1では、フィルム状のシートである基板Pが供給用ロールFR1から送り出され、供給用ロールFR1から送り出された基板Pが、順次、n台の処理装置U1,U2,U3,U4,U5,…Unを経て、回収用ロールFR2に巻き取られるまでの例を示している。先ず、デバイス製造システム1の処理対象となる基板Pについて説明する。
<Device manufacturing system>
FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment. A device manufacturing system 1 shown in FIG. 1 is a line (flexible display manufacturing line) for manufacturing a flexible display as a device. Examples of the flexible display include an organic EL display. The device manufacturing system 1 is configured such that the substrate P is sent out from a supply roll FR1 obtained by winding the flexible substrate P in a roll shape, and various processes are continuously performed on the sent out substrate P. In addition, a so-called roll-to-roll method is adopted in which the substrate P after processing is wound as a flexible device on a collecting roll FR2. In the device manufacturing system 1 according to the first embodiment, a substrate P that is a film-like sheet is sent out from the supply roll FR1, and the substrates P sent out from the supply roll FR1 are sequentially supplied to n processing apparatuses U1, U2. , U3, U4, U5,..., Un, and the winding roll FR2 is shown as an example. First, the board | substrate P used as the process target of the device manufacturing system 1 is demonstrated.
 基板Pは、例えば、樹脂フィルム、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂のうち1または2以上を含んでいる。 For the substrate P, for example, a foil (foil) made of a resin or a metal such as stainless steel or an alloy is used. Examples of the resin film material include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Includes one or more.
 基板Pは、例えば、基板Pに施される各種処理において受ける熱による変形量が実質的に無視できるように、熱膨張係数が顕著に大きくないものを選定することが望ましい。熱膨張係数は、例えば、無機フィラーを樹脂フィルムに混合することによって、プロセス温度等に応じた閾値よりも小さく設定されていてもよい。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素等でもよい。また、基板Pは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。 As the substrate P, for example, it is desirable to select a substrate whose thermal expansion coefficient is not remarkably large so that the amount of deformation caused by heat in various processes applied to the substrate P can be substantially ignored. The thermal expansion coefficient may be set smaller than a threshold corresponding to the process temperature or the like, for example, by mixing an inorganic filler with a resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like. The substrate P may be a single layer of ultrathin glass having a thickness of about 100 μm manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
 このように構成された基板Pは、ロール状に巻回されることで供給用ロールFR1となり、この供給用ロールFR1が、デバイス製造システム1に装着される。供給用ロールFR1が装着されたデバイス製造システム1は、デバイスを製造するための各種の処理を、供給用ロールFR1から送り出される基板Pに対して繰り返し実行する。このため、処理後の基板Pは、複数のデバイスが連なった状態となる。つまり、供給用ロールFR1から送り出される基板Pは、多面取り用の基板となっている。なお、基板Pは、予め所定の前処理によって、その表面を改質して活性化したもの、或いは、表面に精密パターニングの為の微細な隔壁構造(凹凸構造)を形成したものでも良い。 The substrate P configured in this way becomes a supply roll FR1 by being wound in a roll shape, and this supply roll FR1 is mounted on the device manufacturing system 1. The device manufacturing system 1 on which the supply roll FR1 is mounted repeatedly executes various processes for manufacturing devices on the substrate P sent out from the supply roll FR1. For this reason, the processed substrate P is in a state where a plurality of devices are connected. That is, the substrate P sent out from the supply roll FR1 is a multi-sided substrate. The substrate P may be activated by modifying the surface in advance by a predetermined pretreatment, or may have a fine partition structure (uneven structure) for precise patterning formed on the surface.
 処理後の基板Pは、ロール状に巻回されることで回収用ロールFR2として回収される。回収用ロールFR2は、図示しないダイシング装置に装着される。回収用ロールFR2が装着されたダイシング装置は、処理後の基板Pを、デバイスごとに分割(ダイシング)することで、複数個のデバイスにする。基板Pの寸法は、例えば、幅方向(短尺となる方向)の寸法が10cm~2m程度であり、長さ方向(長尺となる方向)の寸法が10m以上である。なお、基板Pの寸法は、上記した寸法に限定されない。 The treated substrate P is recovered as a recovery roll FR2 by being wound into a roll. The collection roll FR2 is attached to a dicing device (not shown). The dicing apparatus to which the collection roll FR2 is mounted divides the processed substrate P for each device (dicing) to form a plurality of devices. Regarding the dimensions of the substrate P, for example, the dimension in the width direction (short direction) is about 10 cm to 2 m, and the dimension in the length direction (long direction) is 10 m or more. In addition, the dimension of the board | substrate P is not limited to an above-described dimension.
 図1を参照し、引き続きデバイス製造システムについて説明する。図1では、X方向、Y方向及びZ方向が直交する直交座標系となっている。X方向は、水平面内において供給用ロールFR1及び回収用ロールFR2を結ぶ方向である。Y方向は、水平面内においてX方向に直交する方向である。Y方向は、供給用ロールFR1及び回収用ロールFR2の軸方向となっている。Z方向は、X方向とY方向とに直交する方向(鉛直方向)である。 Referring to FIG. 1, the device manufacturing system will be described. In FIG. 1, an orthogonal coordinate system in which the X direction, the Y direction, and the Z direction are orthogonal to each other is shown. The X direction is a direction in which the supply roll FR1 and the recovery roll FR2 are connected in a horizontal plane. The Y direction is a direction orthogonal to the X direction in the horizontal plane. The Y direction is the axial direction of the supply roll FR1 and the recovery roll FR2. The Z direction is a direction (vertical direction) orthogonal to the X direction and the Y direction.
 デバイス製造システム1は、基板Pを供給する基板供給装置2と、基板供給装置2によって供給された基板Pに対して各種処理を施す処理装置U1~Unと、処理装置U1~Unによって処理が施された基板Pを回収する基板回収装置4と、デバイス製造システム1の各装置を制御する上位制御装置5とを備える。 The device manufacturing system 1 includes a substrate supply device 2 that supplies a substrate P, processing devices U1 to Un that perform various processes on the substrate P supplied by the substrate supply device 2, and processing is performed by the processing devices U1 to Un. The substrate recovery apparatus 4 that recovers the processed substrate P and the host controller 5 that controls each device of the device manufacturing system 1 are provided.
 基板供給装置2には、供給用ロールFR1が回転可能に装着される。基板供給装置2は、装着された供給用ロールFR1から基板Pを送り出す駆動ローラR1と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC1とを有する。駆動ローラR1は、基板Pの表裏両面を挟持しながら回転し、基板Pを供給用ロールFR1から回収用ロールFR2へ向かう搬送方向に送り出すことで、基板Pを処理装置U1~Unに供給する。このとき、エッジポジションコントローラEPC1は、基板Pの幅方向の端部(エッジ)における位置が、目標位置に対して±十数μm~数十μm程度の範囲に収まるように、基板Pを幅方向に移動させて、基板Pの幅方向における位置を修正する。 The substrate supply device 2 is rotatably mounted with a supply roll FR1. The substrate supply apparatus 2 includes a driving roller R1 that sends out the substrate P from the mounted supply roll FR1, and an edge position controller EPC1 that adjusts the position of the substrate P in the width direction (Y direction). The driving roller R1 rotates while pinching both front and back surfaces of the substrate P, and feeds the substrate P to the processing apparatuses U1 to Un by feeding the substrate P in the transport direction from the supply roll FR1 to the collection roll FR2. At this time, the edge position controller EPC1 moves the substrate P in the width direction so that the position at the end (edge) in the width direction of the substrate P is within a range of about ± 10 μm to several tens μm with respect to the target position. To correct the position of the substrate P in the width direction.
 基板回収装置4には、回収用ロールFR2が回転可能に装着される。基板回収装置4は、処理後の基板Pを回収用ロールFR2側に引き寄せる駆動ローラR2と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC2とを有する。基板回収装置4は、駆動ローラR2により基板Pの表裏両面を挟持しながら回転し、基板Pを搬送方向に引き寄せると共に、回収用ロールFR2を回転させることで、基板Pを巻き上げる。このとき、エッジポジションコントローラEPC2は、エッジポジションコントローラEPC1と同様に構成され、基板Pの幅方向の端部(エッジ)が幅方向においてばらつかないように、基板Pの幅方向における位置を修正する。 The substrate collection device 4 is rotatably mounted with a collection roll FR2. The substrate recovery apparatus 4 includes a drive roller R2 that draws the processed substrate P toward the recovery roll FR2, and an edge position controller EPC2 that adjusts the position of the substrate P in the width direction (Y direction). The substrate collection device 4 rotates while sandwiching the front and back surfaces of the substrate P by the driving roller R2, pulls the substrate P in the transport direction, and rotates the collection roll FR2, thereby winding the substrate P. At this time, the edge position controller EPC2 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the end portion (edge) in the width direction of the substrate P does not vary in the width direction. .
 処理装置U1は、基板供給装置2から供給された基板Pの表面に感光性機能液を塗布する塗布装置である。感光性機能液としては、例えば、フォトレジスト、感光性シランカップリング材、UV硬化樹脂液等が用いられる。処理装置U1は、基板Pの搬送方向の上流側から順に、塗布機構Gp1と乾燥機構Gp2とが設けられている。塗布機構Gp1は、基板Pが巻き付けられる圧胴ローラDR1と、圧胴ローラDR1に対向する塗布ローラDR2とを有する。塗布機構Gp1は、供給された基板Pを圧胴ローラDR1に巻き付けた状態で、圧胴ローラDR1及び塗布ローラDR2により基板Pを挟持する。そして、塗布機構Gp1は、圧胴ローラDR1及び塗布ローラDR2を回転させることで、基板Pを搬送方向に移動させながら、塗布ローラDR2により感光性機能液を塗布する。乾燥機構Gp2は、熱風またはドライエアー等の乾燥用エアーを吹き付け、感光性機能液に含まれる溶質(溶剤または水)を除去し、感光性機能液が塗布された基板Pを乾燥させることで、基板P上に感光性機能層を形成する。 The processing device U1 is a coating device that applies a photosensitive functional liquid to the surface of the substrate P supplied from the substrate supply device 2. As the photosensitive functional liquid, for example, a photoresist, a photosensitive silane coupling material, a UV curable resin liquid, or the like is used. The processing apparatus U1 is provided with a coating mechanism Gp1 and a drying mechanism Gp2 in order from the upstream side in the transport direction of the substrate P. The coating mechanism Gp1 includes a pressure drum DR1 around which the substrate P is wound, and a coating roller DR2 facing the pressure drum DR1. The coating mechanism Gp1 sandwiches the substrate P between the pressure drum roller DR1 and the coating roller DR2 in a state where the supplied substrate P is wound around the pressure drum roller DR1. Then, the application mechanism Gp1 applies the photosensitive functional liquid by the application roller DR2 while rotating the impression cylinder DR1 and the application roller DR2 to move the substrate P in the transport direction. The drying mechanism Gp2 blows drying air such as hot air or dry air, removes the solute (solvent or water) contained in the photosensitive functional liquid, and dries the substrate P coated with the photosensitive functional liquid. A photosensitive functional layer is formed on the substrate P.
 処理装置U2は、基板Pの表面に形成された感光性機能層を安定にすべく、処理装置U1から搬送された基板Pを所定温度(例えば、数10~120℃程度)まで加熱する加熱装置である。処理装置U2は、基板Pの搬送方向の上流側から順に、加熱チャンバHA1と冷却チャンバHA2とが設けられている。加熱チャンバHA1は、その内部に複数のローラ及び複数のエア・ターンバーが設けられており、複数のローラ及び複数のエア・ターンバーは、基板Pの搬送経路を構成している。複数のローラは、基板Pの裏面に転接して設けられ、複数のエア・ターンバーは、基板Pの表面側に非接触状態で設けられる。複数のローラ及び複数のエア・ターンバーは、基板Pの搬送経路を長くすべく、蛇行状の搬送経路となる配置になっている。加熱チャンバHA1内を通る基板Pは、蛇行状の搬送経路に沿って搬送されながら所定温度まで加熱される。冷却チャンバHA2は、加熱チャンバHA1で加熱された基板Pの温度が、後工程(処理装置U3)の環境温度と揃うようにすべく、基板Pを環境温度まで冷却する。冷却チャンバHA2は、その内部に複数のローラが設けられ、複数のローラは、加熱チャンバHA1と同様に、基板Pの搬送経路を長くすべく、蛇行状の搬送経路となる配置になっている。冷却チャンバHA2内を通る基板Pは、蛇行状の搬送経路に沿って搬送されながら冷却される。冷却チャンバHA2の搬送方向における下流側には、駆動ローラR3が設けられ、駆動ローラR3は、冷却チャンバHA2を通過した基板Pを挟持しながら回転することで、基板Pを処理装置U3へ向けて供給する。 The processing device U2 is a heating device that heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.) in order to stabilize the photosensitive functional layer formed on the surface of the substrate P. It is. The processing apparatus U2 is provided with a heating chamber HA1 and a cooling chamber HA2 in order from the upstream side in the transport direction of the substrate P. The heating chamber HA1 is provided with a plurality of rollers and a plurality of air turn bars therein, and the plurality of rollers and the plurality of air turn bars constitute a transport path for the substrate P. The plurality of rollers are provided in rolling contact with the back surface of the substrate P, and the plurality of air turn bars are provided in a non-contact state on the surface side of the substrate P. The plurality of rollers and the plurality of air turn bars are arranged to form a meandering transport path so as to lengthen the transport path of the substrate P. The substrate P passing through the heating chamber HA1 is heated to a predetermined temperature while being transported along a meandering transport path. The cooling chamber HA2 cools the substrate P to the environmental temperature so that the temperature of the substrate P heated in the heating chamber HA1 matches the environmental temperature of the subsequent process (processing apparatus U3). The cooling chamber HA2 is provided with a plurality of rollers, and the plurality of rollers are arranged in a meandering manner in order to lengthen the conveyance path of the substrate P, similarly to the heating chamber HA1. The substrate P passing through the cooling chamber HA2 is cooled while being transferred along a meandering transfer path. A driving roller R3 is provided on the downstream side in the transport direction of the cooling chamber HA2, and the driving roller R3 rotates while sandwiching the substrate P that has passed through the cooling chamber HA2, thereby moving the substrate P toward the processing apparatus U3. Supply.
 処理装置(基板処理装置)U3は、処理装置U2から供給された、表面に感光性機能層が形成された基板(感光基板)Pに対して、ディスプレー用の回路または配線等のパターンを投影露光する走査型の露光装置である。詳細は後述するが、処理装置U3は、反射型の円筒状のマスクMに照明光束を照明し、照明光束がマスクMにより反射されることで得られる投影光束を、回転可能な基板支持ドラム25の外周面に支持される基板Pに投影露光する。処理装置U3は、処理装置U2から供給された基板Pを搬送方向の下流側に送る駆動ローラR4と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC3とを有する。駆動ローラR4は、基板Pの表裏両面を挟持しながら回転し、基板Pを搬送方向の下流側に送り出すことで、基板Pを露光位置へ向けて供給する。エッジポジションコントローラEPC3は、エッジポジションコントローラEPC1と同様に構成され、露光位置における基板Pの幅方向が目標位置となるように、基板Pの幅方向における位置を修正する。 The processing apparatus (substrate processing apparatus) U3 projects and exposes a pattern such as a circuit for display or wiring on the substrate (photosensitive substrate) P having a photosensitive functional layer formed on the surface supplied from the processing apparatus U2. This is a scanning exposure apparatus. Although the details will be described later, the processing device U3 illuminates the reflective cylindrical mask M with the illumination light beam, and the projection light beam obtained by the illumination light beam being reflected by the mask M can rotate the substrate support drum 25. Projection exposure is performed on the substrate P supported on the outer peripheral surface of the substrate. The processing apparatus U3 includes a driving roller R4 that sends the substrate P supplied from the processing apparatus U2 to the downstream side in the transport direction, and an edge position controller EPC3 that adjusts the position of the substrate P in the width direction (Y direction). The drive roller R4 rotates while pinching both front and back surfaces of the substrate P, and feeds the substrate P toward the exposure position by sending the substrate P downstream in the transport direction. The edge position controller EPC3 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the width direction of the substrate P at the exposure position becomes the target position.
 また、処理装置U3は、露光後の基板Pにたるみを与えた状態で、基板Pを搬送方向の下流側へ送る2組の駆動ローラR5、R6を有する。2組の駆動ローラR5、R6は、基板Pの搬送方向に所定の間隔を空けて配置されている。駆動ローラR5は、搬送される基板Pの上流側を挟持して回転し、駆動ローラR6は、搬送される基板Pの下流側を挟持して回転することで、基板Pを処理装置U4へ向けて供給する。このとき、基板Pは、たるみが与えられているため、駆動ローラR6よりも搬送方向の下流側において生ずる搬送速度の変動を吸収でき、搬送速度の変動による基板Pへの露光処理の影響を縁切りすることができる。また、処理装置U3内には、マスクMのマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)する為に、基板Pに予め形成されたアライメントマーク等を検出するアライメント顕微鏡AM1、AM2が設けられている。 Further, the processing apparatus U3 has two sets of drive rollers R5 and R6 that send the substrate P to the downstream side in the transport direction in a state in which the substrate P after the exposure is slackened. The two sets of drive rollers R5 and R6 are arranged at a predetermined interval in the transport direction of the substrate P. The driving roller R5 rotates while sandwiching the upstream side of the substrate P to be transported, and the driving roller R6 rotates while sandwiching the downstream side of the substrate P to be transported, thereby directing the substrate P toward the processing apparatus U4. Supply. At this time, since the substrate P is slack, it is possible to absorb fluctuations in the conveyance speed that occur downstream in the conveyance direction with respect to the driving roller R6, and to eliminate the influence of the exposure process on the substrate P due to fluctuations in the conveyance speed. can do. In addition, in the processing apparatus U3, an alignment microscope that detects an alignment mark or the like formed in advance on the substrate P in order to relatively align (align) a partial image of the mask pattern of the mask M with the substrate P. AM1 and AM2 are provided.
 処理装置U4は、処理装置U3から搬送された露光後の基板Pに対して、湿式による現像処理、無電解メッキ処理等を行なう湿式処理装置である。処理装置U4は、その内部に、鉛直方向(Z方向)に階層化された3つの処理槽BT1、BT2、BT3と、基板Pを搬送する複数のローラとを有する。複数のローラは、3つの処理槽BT1、BT2、BT3の内部を、基板Pが順に通過する搬送経路となるように配置される。処理槽BT3の搬送方向における下流側には、駆動ローラR7が設けられ、駆動ローラR7は、処理槽BT3を通過した基板Pを挟持しながら回転することで、基板Pを処理装置U5へ向けて供給する。 The processing apparatus U4 is a wet processing apparatus that performs wet development processing, electroless plating processing, and the like on the exposed substrate P transferred from the processing apparatus U3. The processing apparatus U4 has three processing tanks BT1, BT2, and BT3 that are hierarchized in the vertical direction (Z direction) and a plurality of rollers that transport the substrate P therein. The plurality of rollers are arranged so as to serve as a conveyance path through which the substrate P sequentially passes through the three processing tanks BT1, BT2, and BT3. A driving roller R7 is provided on the downstream side in the transport direction of the processing tank BT3. The driving roller R7 rotates while sandwiching the substrate P that has passed through the processing tank BT3, so that the substrate P is directed toward the processing apparatus U5. Supply.
 図示は省略するが、処理装置U5は、処理装置U4から搬送された基板Pを乾燥させる乾燥装置である。処理装置U5は、処理装置U4において湿式処理された基板Pに付着する水分含有量を、所定の水分含有量に調整する。処理装置U5により乾燥された基板Pは、幾つかの処理装置を経て、処理装置Unに搬送される。そして、処理装置Unで処理された後、基板Pは、基板回収装置4の回収用ロールFR2に巻き上げられる。 Although illustration is abbreviate | omitted, the processing apparatus U5 is a drying apparatus which dries the board | substrate P conveyed from the processing apparatus U4. The processing apparatus U5 adjusts the moisture content adhering to the substrate P wet-processed in the processing apparatus U4 to a predetermined moisture content. The substrate P dried by the processing apparatus U5 is transferred to the processing apparatus Un through several processing apparatuses. Then, after being processed by the processing device Un, the substrate P is wound up on the recovery roll FR2 of the substrate recovery device 4.
 上位制御装置5は、基板供給装置2、基板回収装置4及び複数の処理装置U1~Unを統括制御する。上位制御装置5は、基板供給装置2及び基板回収装置4を制御して、基板Pを基板供給装置2から基板回収装置4へ向けて搬送させる。また、上位制御装置5は、基板Pの搬送に同期させながら、複数の処理装置U1~Unを制御して、基板Pに対する各種処理を実行させる。 The host control device 5 performs overall control of the substrate supply device 2, the substrate recovery device 4, and the plurality of processing devices U1 to Un. The host control device 5 controls the substrate supply device 2 and the substrate recovery device 4 to transport the substrate P from the substrate supply device 2 toward the substrate recovery device 4. In addition, the host controller 5 controls the plurality of processing apparatuses U1 to Un to execute various processes on the substrate P while synchronizing with the transport of the substrate P.
<露光装置(基板処理装置)>
 次に、第1実施形態の処理装置U3としての露光装置(基板処理装置)の構成について、図2から図7を参照して説明する。図2は、第1実施形態の露光装置(基板処理装置)の全体構成を示す図である。図3は、図2に示す露光装置の照明領域及び投影領域の配置を示す図である。図4は、図2に示す露光装置の照明光学系及び投影光学系の構成を示す図である。図5Aは、マスクにおける照明光束及び投影光束を示す図である。図5Bは、偏光ビームスプリッタから見た第4リレーレンズを示す図である。図6は、偏光ビームスプリッタにおける照明光束及び投影光束を示す図である。図7は、照明光学系の配置が可能な配置領域を示す図である。
<Exposure device (substrate processing device)>
Next, the configuration of an exposure apparatus (substrate processing apparatus) as the processing apparatus U3 of the first embodiment will be described with reference to FIGS. FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment. FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG. FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG. FIG. 5A is a diagram illustrating an illumination light beam and a projection light beam in a mask. FIG. 5B is a diagram illustrating the fourth relay lens viewed from the polarization beam splitter. FIG. 6 is a diagram showing an illumination light beam and a projection light beam in the polarization beam splitter. FIG. 7 is a diagram illustrating an arrangement region in which the illumination optical system can be arranged.
 図2に示す露光装置U3は、いわゆる走査露光装置であり、基板Pを搬送方向(走査方向)に搬送しながら、円筒状のマスクMの外周面に形成されたマスクパターンの像を、基板Pの表面に投影露光する。なお、図2及び図4~図7では、X方向、Y方向及びZ方向が直交する直交座標系となっており、図1と同様の直交座標系となっている。 The exposure apparatus U3 shown in FIG. 2 is a so-called scanning exposure apparatus, and transfers an image of a mask pattern formed on the outer peripheral surface of the cylindrical mask M while transporting the substrate P in the transport direction (scanning direction). Projection exposure is performed on the surface. 2 and 4 to 7 are orthogonal coordinate systems in which the X direction, the Y direction, and the Z direction are orthogonal to each other, and the same orthogonal coordinate system as that in FIG. 1 is used.
 先ず、露光装置U3に用いられるマスクMについて説明する。マスクMは、例えば金属製の円筒体を用いた反射型の円筒マスクとなっている。マスクMは、Y方向に延びる第1軸AX1を中心とする曲率半径Rmとなる外周面(円周面)を有する円筒体に形成され、径方向に一定の肉厚を有している。マスクMの円周面は、所定のマスクパターンが形成されたマスク面P1となっている。マスク面P1は、所定方向に光束を高い効率で反射する高反射部と、所定方向に光束を反射しないまたは低い効率で反射する反射抑制部(或いは光吸収部)とを含み、マスクパターンは、高反射部及び反射抑制部により形成されている。このようなマスクMは、金属製の円筒体であることから、安価に作成することができる。 First, the mask M used in the exposure apparatus U3 will be described. The mask M is a reflective cylindrical mask using, for example, a metal cylinder. The mask M is formed in a cylindrical body having an outer peripheral surface (circumferential surface) having a curvature radius Rm with the first axis AX1 extending in the Y direction as the center, and has a constant thickness in the radial direction. The circumferential surface of the mask M is a mask surface P1 on which a predetermined mask pattern is formed. The mask surface P1 includes a high reflection part that reflects the light beam in a predetermined direction with high efficiency, and a reflection suppression part (or light absorption part) that does not reflect the light beam in the predetermined direction or reflects it with low efficiency, and the mask pattern is It is formed by a high reflection portion and a reflection suppression portion. Since such a mask M is a metal cylinder, it can be produced at low cost.
 なお、マスクMは、1個の表示デバイスに対応するパネル用パターンの全体または一部が形成されていてもよいし、複数個の表示デバイスに対応するパネル用パターンが形成された多面取りであってもよい。また、マスクMには、パネル用パターンが第1軸AX1の周りの周方向に繰り返し複数個形成されていてもよいし、小型のパネル用パターンが第1軸AX1に平行な方向に繰り返し複数形成されていてもよい。さらに、マスクMは、第1の表示デバイスのパネル用パターンと、第1の表示デバイスとサイズ等が異なる第2の表示デバイスのパネル用パターンとが形成されていてもよい。また、マスクMは、第1軸AX1を中心とする曲率半径Rmとなる円周面を有していればよく、円筒体の形状に限定されない。例えば、マスクMは、円周面を有する円弧状の板材であってもよい。また、マスクMは薄板状であってもよく、薄板状のマスクMを湾曲させて、円周面を有するように円柱状の母材や円筒状のフレームに貼り付けてもよい。 Note that the mask M may be formed with the whole or a part of the panel pattern corresponding to one display device, or may be a multi-surface pattern in which panel patterns corresponding to a plurality of display devices are formed. May be. Further, a plurality of panel patterns may be repeatedly formed in the circumferential direction around the first axis AX1, or a plurality of small panel patterns may be repeatedly formed in a direction parallel to the first axis AX1. May be. Further, the mask M may be formed with a panel pattern for the first display device and a panel pattern for the second display device having a size different from that of the first display device. Moreover, the mask M should just have the circumferential surface used as the curvature radius Rm centering on 1st axis | shaft AX1, and is not limited to the shape of a cylindrical body. For example, the mask M may be an arc-shaped plate having a circumferential surface. The mask M may be a thin plate, or the thin mask M may be curved and attached to a columnar base material or a cylindrical frame so as to have a circumferential surface.
 次に、図2に示す露光装置U3について説明する。露光装置U3は、上記した駆動ローラR4~R6、エッジポジションコントローラEPC3及びアライメント顕微鏡AM1、AM2の他に、マスク保持機構11と、基板支持機構12と、照明光学系ILと、投影光学系PLと、下位制御装置16とを有する。露光装置U3は、光源装置13から射出された照明光束EL1を、照明光学系IL及び投影光学系PLで案内することで、マスク保持機構11で保持したマスクMのマスクパターンの像を、基板支持機構12で支持した基板Pに投射する。 Next, the exposure apparatus U3 shown in FIG. 2 will be described. In addition to the drive rollers R4 to R6, the edge position controller EPC3, and the alignment microscopes AM1 and AM2, the exposure apparatus U3 includes a mask holding mechanism 11, a substrate support mechanism 12, an illumination optical system IL, and a projection optical system PL. And a lower control device 16. The exposure apparatus U3 guides the illumination light beam EL1 emitted from the light source device 13 by the illumination optical system IL and the projection optical system PL, thereby supporting the mask pattern image of the mask M held by the mask holding mechanism 11 on the substrate. Projection is performed on the substrate P supported by the mechanism 12.
 下位制御装置16は、露光装置U3の各部を制御し、各部に処理を実行させる。下位制御装置16は、デバイス製造システム1の上位制御装置5の一部または全部であってもよい。また、下位制御装置16は、上位制御装置5に制御され、上位制御装置5とは別の装置であってもよい。下位制御装置16は、例えば、コンピュータを含む。 The lower-level control device 16 controls each part of the exposure apparatus U3 and causes each part to execute processing. The lower level control device 16 may be a part or all of the higher level control device 5 of the device manufacturing system 1. Further, the lower level control device 16 may be a device controlled by the higher level control device 5 and different from the higher level control device 5. The lower control device 16 includes, for example, a computer.
 マスク保持機構11は、マスクMを保持するマスク保持ドラム(マスク保持部材)21と、マスク保持ドラム21を回転させる第1駆動部22とを有している。マスク保持ドラム21は、マスクMの第1軸AX1が回転中心となるようにマスクMを保持する。第1駆動部22は、下位制御装置16に接続され、第1軸AX1を回転中心にマスク保持ドラム21を回転させる。 The mask holding mechanism 11 includes a mask holding drum (mask holding member) 21 that holds the mask M, and a first drive unit 22 that rotates the mask holding drum 21. The mask holding drum 21 holds the mask M so that the first axis AX1 of the mask M is the center of rotation. The first drive unit 22 is connected to the lower control device 16 and rotates the mask holding drum 21 around the first axis AX1.
 なお、マスク保持機構11は、円筒体のマスクMをマスク保持ドラム21で保持したが、この構成に限らない。マスク保持機構11は、マスク保持ドラム21の外周面に倣って薄板状のマスクMを巻き付けて保持してもよい。また、マスク保持機構11は、円弧状の板材となるマスクMをマスク保持ドラム21の外周面において保持してもよい。 The mask holding mechanism 11 holds the cylindrical mask M with the mask holding drum 21, but is not limited to this configuration. The mask holding mechanism 11 may wind and hold a thin plate-like mask M following the outer peripheral surface of the mask holding drum 21. The mask holding mechanism 11 may hold the mask M, which is an arcuate plate material, on the outer peripheral surface of the mask holding drum 21.
 基板支持機構12は、基板Pを支持する円筒状の基板支持ドラム(基板支持部材)25と、基板支持ドラム25を回転させる第2駆動部26と、一対のエア・ターンバーATB1、ATB2と、一対のガイドローラ27、28とを有している。基板支持ドラム25は、Y方向に延びる第2軸AX2を中心とする曲率半径Rfaとなる外周面(円周面)を有する円筒形状に形成されている。ここで、第1軸AX1と第2軸AX2とは互いに平行になっており、第1軸AX1及び第2軸AX2を通る面を中心面CLとしている。基板支持ドラム25の円周面の一部は、基板Pを支持する支持面P2となっている。つまり、基板支持ドラム25は、その支持面P2に基板Pが巻き付けられることで、基板Pを支持する。第2駆動部26は、下位制御装置16に接続され、第2軸AX2を回転中心に基板支持ドラム25を回転させる。一対のエア・ターンバーATB1,ATB2は、基板支持ドラム25を挟んで、基板Pの搬送方向の上流側及び下流側にそれぞれ設けられている。一対のエア・ターンバーATB1,ATB2は、基板Pの表面側に設けられ、鉛直方向(Z方向)において基板支持ドラム25の支持面P2よりも下方側に配置されている。一対のガイドローラ27、28は、一対のエア・ターンバーATB1,ATB2を挟んで、基板Pの搬送方向の上流側及び下流側にそれぞれ設けられている。一対のガイドローラ27、28は、その一方のガイドローラ27が駆動ローラR4から搬送された基板Pをエア・ターンバーATB1に案内し、その他方のガイドローラ28がエア・ターンバーATB2から搬送された基板Pを駆動ローラR5に案内する。 The substrate support mechanism 12 includes a cylindrical substrate support drum (substrate support member) 25 that supports the substrate P, a second drive unit 26 that rotates the substrate support drum 25, a pair of air turn bars ATB1 and ATB2, and a pair. Guide rollers 27 and 28. The substrate support drum 25 is formed in a cylindrical shape having an outer peripheral surface (circumferential surface) having a radius of curvature Rfa around the second axis AX2 extending in the Y direction. Here, the first axis AX1 and the second axis AX2 are parallel to each other, and a plane passing through the first axis AX1 and the second axis AX2 is a center plane CL. A part of the circumferential surface of the substrate support drum 25 is a support surface P2 that supports the substrate P. That is, the substrate support drum 25 supports the substrate P by winding the substrate P around the support surface P2. The second drive unit 26 is connected to the lower control device 16 and rotates the substrate support drum 25 about the second axis AX2. The pair of air turn bars ATB1 and ATB2 are respectively provided on the upstream side and the downstream side in the transport direction of the substrate P with the substrate support drum 25 interposed therebetween. The pair of air turn bars ATB1 and ATB2 are provided on the surface side of the substrate P, and are disposed below the support surface P2 of the substrate support drum 25 in the vertical direction (Z direction). The pair of guide rollers 27 and 28 are respectively provided on the upstream side and the downstream side in the transport direction of the substrate P with the pair of air turn bars ATB1 and ATB2 interposed therebetween. The pair of guide rollers 27, 28 guides the substrate P, one of which is conveyed from the driving roller R4, to the air turn bar ATB1, and the other guide roller 28, which is conveyed from the air turn bar ATB2. P is guided to the driving roller R5.
 従って、基板支持機構12は、駆動ローラR4から搬送された基板Pを、ガイドローラ27によりエア・ターンバーATB1に案内し、エア・ターンバーATB1を通過した基板Pを、基板支持ドラム25に導入する。基板支持機構12は、第2駆動部26により基板支持ドラム25を回転させることで、基板支持ドラム25に導入した基板Pを、基板支持ドラム25の支持面P2で支持しながら、エア・ターンバーATB2へ向けて搬送する。基板支持機構12は、エア・ターンバーATB2に搬送された基板Pを、エア・ターンバーATB2によりガイドローラ28に案内し、ガイドローラ28を通過した基板Pを、駆動ローラR5に案内する。 Therefore, the substrate support mechanism 12 guides the substrate P conveyed from the driving roller R4 to the air turn bar ATB1 by the guide roller 27, and introduces the substrate P that has passed through the air turn bar ATB1 into the substrate support drum 25. The substrate support mechanism 12 rotates the substrate support drum 25 by the second drive unit 26, thereby supporting the substrate P introduced into the substrate support drum 25 on the support surface P2 of the substrate support drum 25, while the air turn bar ATB2. Transport toward The substrate support mechanism 12 guides the substrate P conveyed to the air turn bar ATB2 to the guide roller 28 by the air turn bar ATB2, and guides the substrate P that has passed through the guide roller 28 to the drive roller R5.
 このとき、第1駆動部22及び第2駆動部26に接続された下位制御装置16は、マスク保持ドラム21と基板支持ドラム25とを所定の回転速度比で同期回転させることによって、マスクMのマスク面P1に形成されたマスクパターンの像が、基板支持ドラム25の支持面P2に巻き付けられた基板Pの表面(円周面に倣って湾曲した面)に連続的に繰り返し投影露光される。 At this time, the low-order control device 16 connected to the first drive unit 22 and the second drive unit 26 synchronously rotates the mask holding drum 21 and the substrate support drum 25 at a predetermined rotation speed ratio, thereby The image of the mask pattern formed on the mask surface P1 is continuously and repeatedly projected and exposed on the surface of the substrate P (surface curved along the circumferential surface) wound around the support surface P2 of the substrate support drum 25.
 光源装置13は、マスクMに照明される照明光束EL1を出射する。光源装置13は、光源31と導光部材32とを有する。光源31は、基板Pの表面に形成された光感応層に化学的な作用を与える所定の波長の光を射出する光源である。光源31には、例えば水銀ランプ等のランプ光源、又はレーザーダイオード、発光ダイオード(LED)等が用いられる。光源31が射出する照明光は、例えばランプ光源から射出される輝線(g線、h線、i線)、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)等である。ここで、光源31は、i線(365nmの波長)以下の波長を含む照明光束EL1を射出することが好ましい。i線以下の波長となる照明光束EL1を発生する光源31として、波長355nmのレーザ光を射出するYAGの第3高調波レーザ、波長266nmのレーザ光を射出するYAGの第4高調波レーザ、または波長248nmのレーザ光を射出するKrFエキシマレーザ等を用いることができる。 The light source device 13 emits an illumination light beam EL1 that is illuminated by the mask M. The light source device 13 includes a light source 31 and a light guide member 32. The light source 31 is a light source that emits light of a predetermined wavelength that gives a chemical action to the photosensitive layer formed on the surface of the substrate P. As the light source 31, for example, a lamp light source such as a mercury lamp, a laser diode, a light emitting diode (LED), or the like is used. Illumination light emitted from the light source 31 includes, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from a lamp light source, far-ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), and ArF excimer laser light. (Wavelength 193 nm). Here, it is preferable that the light source 31 emits an illumination light beam EL1 including a wavelength equal to or shorter than i-line (365 nm wavelength). As the light source 31 that generates the illumination light beam EL1 having a wavelength of i-line or less, a YAG third harmonic laser that emits laser light with a wavelength of 355 nm, a YAG fourth harmonic laser that emits laser light with a wavelength of 266 nm, or A KrF excimer laser or the like that emits laser light having a wavelength of 248 nm can be used.
 ここで、光源装置13から出射された照明光束EL1は、後述の偏光ビームスプリッタPBSに入射する。照明光束EL1は、偏光ビームスプリッタPBSによる照明光束EL1の分離によってエネルギーロスが生じることを抑制すべく、入射される照明光束EL1が偏光ビームスプリッタPBSにおいてほぼ全て反射するような光束にすることが好ましい。偏光ビームスプリッタPBSは、S偏光の直線偏光となる光束を反射し、P偏光の直線偏光となる光束を透過する。このため、光源装置13は、偏光ビームスプリッタPBSに入射する照明光束EL1が直線偏光(S偏光)の光束となる照明光束EL1を出射する。よって、光源装置13は、偏光ビームスプリッタPBSに波長及び位相が揃った偏光レーザ光を出射する。 Here, the illumination light beam EL1 emitted from the light source device 13 is incident on a polarization beam splitter PBS described later. The illumination light beam EL1 is preferably a light beam that reflects almost all of the incident illumination light beam EL1 on the polarization beam splitter PBS in order to suppress energy loss due to separation of the illumination light beam EL1 by the polarization beam splitter PBS. . The polarization beam splitter PBS reflects a light beam that becomes S-polarized linearly polarized light and transmits a light beam that becomes P-polarized linearly polarized light. For this reason, the light source device 13 emits the illumination light beam EL1 in which the illumination light beam EL1 incident on the polarization beam splitter PBS becomes a linearly polarized light (S-polarized light). Therefore, the light source device 13 emits polarized laser light having the same wavelength and phase to the polarization beam splitter PBS.
 導光部材32は、光源31から出射された照明光束EL1を照明光学系ILに導く。導光部材32は、光ファイバ、またはミラーを用いたリレーモジュール等で構成される。なお、導光部材32は、照明光学系ILが複数設けられている場合、光源31からの照明光束EL1を複数に分離し、複数の照明光束EL1を複数の照明光学系ILに導く。また、導光部材32は、例えば光源31から射出される光束が偏光レーザ光である場合、光ファイバとして偏波保持ファイバ(偏波面保存ファイバ)を用い、偏波保持ファイバにより偏光レーザ光の偏光状態を維持したまま導光してもよい。 The light guide member 32 guides the illumination light beam EL1 emitted from the light source 31 to the illumination optical system IL. The light guide member 32 includes an optical fiber or a relay module using a mirror. When a plurality of illumination optical systems IL are provided, the light guide member 32 separates the illumination light beam EL1 from the light source 31 into a plurality of light beams and guides the plurality of illumination light beams EL1 to the plurality of illumination optical systems IL. For example, when the light beam emitted from the light source 31 is polarized laser light, the light guide member 32 uses a polarization maintaining fiber (polarization plane preserving fiber) as the optical fiber, and polarization of the polarized laser light by the polarization maintaining fiber. The light may be guided while maintaining the state.
 ここで、図3に示すように、第1実施形態の露光装置U3は、いわゆるマルチレンズ方式を想定した露光装置である。なお、図3には、マスク保持ドラム21に保持された円筒マスクM上の照明領域IRを-Z側から見た平面図(図3の左図)と、基板支持ドラム25に支持された基板P上の投影領域PAを+Z側から見た平面図(図3の右図)とが図示されている。図3の符号Xsは、マスク保持ドラム21及び基板支持ドラム25の移動方向(回転方向)を示す。マルチレンズ方式の露光装置U3は、マスクM上の複数(第1実施形態では例えば6つ)の照明領域IR1~IR6に照明光束EL1をそれぞれ照明し、各照明光束EL1が各照明領域IR1~IR6に反射されることで得られる複数の投影光束EL2を、基板P上の複数(第1実施形態では例えば6つ)の投影領域PA1~PA6に投影露光する。 Here, as shown in FIG. 3, the exposure apparatus U3 of the first embodiment is an exposure apparatus assuming a so-called multi-lens system. 3 shows a plan view (left view of FIG. 3) of the illumination area IR on the cylindrical mask M held on the mask holding drum 21 as viewed from the −Z side, and the substrate supported by the substrate support drum 25. A plan view (right view of FIG. 3) of the projection area PA on P viewed from the + Z side is shown. 3 indicates the moving direction (rotating direction) of the mask holding drum 21 and the substrate support drum 25. The multi-lens type exposure apparatus U3 illuminates a plurality of (for example, six in the first embodiment) illumination areas IR1 to IR6 on the mask M with the illumination light beam EL1, respectively, and each illumination light beam EL1 corresponds to each illumination area IR1 to IR6. A plurality of projection light beams EL2 obtained by being reflected by the projection are projected and exposed to a plurality of projection areas PA1 to PA6 (for example, six in the first embodiment) on the substrate P.
 先ず、照明光学系ILにより照明される複数の照明領域IR1~IR6について説明する。図3に示すように、複数の照明領域IR1~IR6は、中心面CLを挟んで回転方向に2列に配置され、回転方向の上流側のマスクM上に奇数番の第1照明領域IR1、第3照明領域IR3及び第5照明領域IR5が配置され、回転方向の下流側のマスクM上に偶数番の第2照明領域IR2、第4照明領域IR4及び第6照明領域IR6が配置される。各照明領域IR1~IR6は、マスクMの軸方向(Y方向)に延びる平行な短辺及び長辺を有する細長い台形状(矩形状)の領域となっている。このとき、台形状の各照明領域IR1~IR6は、その短辺が中心面CL側に位置し、その長辺が外側に位置する領域となっている。第1照明領域IR1、第3照明領域IR3及び第5照明領域IR5は、軸方向に所定の間隔を空けて配置されている。また、第2照明領域IR2、第4照明領域IR4及び第6照明領域IR6は、軸方向に所定の間隔を空けて配置されている。このとき、第2照明領域IR2は、軸方向において、第1照明領域IR1と第3照明領域IR3との間に配置される。同様に、第3照明領域IR3は、軸方向において、第2照明領域IR2と第4照明領域IR4との間に配置される。第4照明領域IR4は、軸方向において、第3照明領域IR3と第5照明領域IR5との間に配置される。第5照明領域IR5は、軸方向において、第4照明領域IR4と第6照明領域IR6との間に配置される。各照明領域IR1~IR6は、マスクMの周方向からみて、隣り合う台形状の照明領域IRの斜辺部の三角部が重なるように(オーバーラップするように)配置されている。なお、第1実施形態において、各照明領域IR1~IR6は、台形状の領域としたが、長方形状の領域であってもよい。 First, a plurality of illumination areas IR1 to IR6 illuminated by the illumination optical system IL will be described. As shown in FIG. 3, the plurality of illumination areas IR1 to IR6 are arranged in two rows in the rotation direction across the center plane CL, and the odd-numbered first illumination areas IR1 on the mask M on the upstream side in the rotation direction, The third illumination region IR3 and the fifth illumination region IR5 are arranged, and the even-numbered second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged on the mask M on the downstream side in the rotation direction. Each illumination region IR1 to IR6 is an elongated trapezoidal (rectangular) region having parallel short sides and long sides extending in the axial direction (Y direction) of the mask M. At this time, each of the trapezoidal illumination areas IR1 to IR6 is an area where the short side is located on the center plane CL side and the long side is located outside. The first illumination region IR1, the third illumination region IR3, and the fifth illumination region IR5 are arranged at predetermined intervals in the axial direction. In addition, the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged at a predetermined interval in the axial direction. At this time, the second illumination region IR2 is disposed between the first illumination region IR1 and the third illumination region IR3 in the axial direction. Similarly, the third illumination region IR3 is disposed between the second illumination region IR2 and the fourth illumination region IR4 in the axial direction. The fourth illumination region IR4 is disposed between the third illumination region IR3 and the fifth illumination region IR5 in the axial direction. The fifth illumination region IR5 is disposed between the fourth illumination region IR4 and the sixth illumination region IR6 in the axial direction. The illumination areas IR1 to IR6 are arranged such that the triangular portions of the oblique sides of the adjacent trapezoidal illumination areas IR overlap (overlapping) when viewed from the circumferential direction of the mask M. In the first embodiment, the illumination areas IR1 to IR6 are trapezoidal areas, but may be rectangular areas.
 また、マスクMは、マスクパターンが形成されるパターン形成領域A3と、マスクパターンが形成されないパターン非形成領域A4とを有する。パターン非形成領域A4は、照明光束EL1を吸収する反射し難い領域であり、パターン形成領域A3を枠状に囲んで配置されている。第1~第6照明領域IR1~IR6は、パターン形成領域A3のY方向の全幅をカバーするように、配置されている。 The mask M has a pattern formation area A3 where a mask pattern is formed and a pattern non-formation area A4 where a mask pattern is not formed. The pattern non-formation region A4 is a region that hardly absorbs the illumination light beam EL1, and is arranged so as to surround the pattern formation region A3 in a frame shape. The first to sixth illumination regions IR1 to IR6 are arranged so as to cover the entire width in the Y direction of the pattern formation region A3.
 照明光学系ILは、複数の照明領域IR1~IR6に応じて複数(第1実施形態では例えば6つ)設けられている。複数の照明光学系IL1~IL6には、光源装置13からの照明光束EL1がそれぞれ入射する。各照明光学系IL1~IL6は、光源装置13から入射された各照明光束EL1を、各照明領域IR1~IR6にそれぞれ導く。つまり、第1照明光学系IL1は、照明光束EL1を第1照明領域IR1に導き、同様に、第2~第6照明光学系IL2~IL6は、照明光束EL1を第2~第6照明領域IR2~IR6に導く。複数の照明光学系IL1~IL6は、中心面CLを挟んでマスクMの周方向に2列に配置される。複数の照明光学系IL1~IL6は、中心面CLを挟んで、第1、第3、第5照明領域IR1、IR3、IR5が配置される側(図2の左側)に、第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5が配置される。第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5は、Y方向に所定の間隔を空けて配置される。また、複数の照明光学系IL1~IL6は、中心面CLを挟んで、第2、第4、第6照明領域IR2、IR4、IR6が配置される側(図2の右側)に、第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6が配置される。第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6は、Y方向に所定の間隔を空けて配置される。このとき、第2照明光学系IL2は、軸方向において、第1照明光学系IL1と第3照明光学系IL3との間に配置される。同様に、第3照明光学系IL3は、軸方向において、第2照明光学系IL2と第4照明光学系IL4との間に配置される。第4照明光学系IL4は、軸方向において、第3照明光学系IL3と第5照明光学系IL5との間に配置される。第5照明光学系IL5は、軸方向において、第4照明光学系IL4と第6照明光学系IL6との間に配置される。また、第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5と、第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6とは、Y方向からみて中心面CLを中心に対称に配置されている。 A plurality of (for example, six in the first embodiment) illumination optical systems IL are provided according to the plurality of illumination regions IR1 to IR6. The illumination light beam EL1 from the light source device 13 is incident on each of the plurality of illumination optical systems IL1 to IL6. Each illumination optical system IL1 to IL6 guides each illumination light beam EL1 incident from the light source device 13 to each illumination region IR1 to IR6. That is, the first illumination optical system IL1 guides the illumination light beam EL1 to the first illumination region IR1, and similarly, the second to sixth illumination optical systems IL2 to IL6 transmit the illumination light beam EL1 to the second to sixth illumination regions IR2. Lead to IR6. The plurality of illumination optical systems IL1 to IL6 are arranged in two rows in the circumferential direction of the mask M across the center plane CL. The plurality of illumination optical systems IL1 to IL6 are arranged on the side where the first, third, and fifth illumination regions IR1, IR3, and IR5 are arranged (left side in FIG. 2) with the center plane CL interposed therebetween. IL1, third illumination optical system IL3, and fifth illumination optical system IL5 are arranged. The first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5 are arranged at a predetermined interval in the Y direction. In addition, the plurality of illumination optical systems IL1 to IL6 has the second illumination on the side where the second, fourth, and sixth illumination regions IR2, IR4, and IR6 are disposed (right side in FIG. 2) with the center plane CL interposed therebetween. An optical system IL2, a fourth illumination optical system IL4, and a sixth illumination optical system IL6 are arranged. The second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are arranged at a predetermined interval in the Y direction. At this time, the second illumination optical system IL2 is disposed between the first illumination optical system IL1 and the third illumination optical system IL3 in the axial direction. Similarly, the third illumination optical system IL3 is disposed between the second illumination optical system IL2 and the fourth illumination optical system IL4 in the axial direction. The fourth illumination optical system IL4 is disposed between the third illumination optical system IL3 and the fifth illumination optical system IL5 in the axial direction. The fifth illumination optical system IL5 is disposed between the fourth illumination optical system IL4 and the sixth illumination optical system IL6 in the axial direction. The first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5, and the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are from the Y direction. As a result, they are arranged symmetrically about the center plane CL.
 次に、図4を参照して、各照明光学系IL1~IL6について説明する。なお、各照明光学系IL1~IL6は、同様の構成となっているため、第1照明光学系IL1(以下、単に照明光学系ILという)を例に説明する。 Next, the illumination optical systems IL1 to IL6 will be described with reference to FIG. Since each of the illumination optical systems IL1 to IL6 has the same configuration, the first illumination optical system IL1 (hereinafter simply referred to as illumination optical system IL) will be described as an example.
 照明光学系ILは、照明領域IR(第1照明領域IR1)を照射する照明光束EL1が均一な照度分布となるように、ケーラー照明法を適用している。また、照明光学系ILは、偏光ビームスプリッタPBSを用いた落射照明系となっている。照明光学系ILは、光源装置13からの照明光束EL1の入射側から順に、照明光学モジュールILMと、偏光ビームスプリッタPBSと、1/4波長板41とを有する。 The illumination optical system IL applies the Koehler illumination method so that the illumination light beam EL1 irradiating the illumination region IR (first illumination region IR1) has a uniform illuminance distribution. The illumination optical system IL is an epi-illumination system using a polarization beam splitter PBS. The illumination optical system IL includes an illumination optical module ILM, a polarization beam splitter PBS, and a quarter wavelength plate 41 in order from the incident side of the illumination light beam EL1 from the light source device 13.
 図4に示すように、照明光学モジュールILMは、照明光束EL1の入射側から順に、コリメータレンズ51と、フライアイレンズ52と、複数のコンデンサーレンズ53と、シリンドリカルレンズ54と、照明視野絞り55と、複数のリレーレンズ56とを含んでおり、第1光軸BX1上に設けられている。コリメータレンズ51は、光源装置13の導光部材32の出射側に設けられている。コリメータレンズ51の光軸は、第1光軸BX1上に配置される。コリメータレンズ51は、フライアイレンズ52の入射側の面全体を照射する。フライアイレンズ52は、コリメータレンズ51の出射側に設けられている。フライアイレンズ52の出射側の面の中心は、第1光軸BX1上に配置される。フライアイレンズ52は、コリメータレンズ51からの照明光束EL1を、多数の点光源像の各々から発散する光束に分割する。このとき、点光源像が生成されるフライアイレンズ52の出射側の面は、フライアイレンズ52から照明視野絞り55を介して後述する投影光学系PLの第1凹面鏡72に至る各種レンズによって、第1凹面鏡72の反射面が位置する瞳面と光学的に共役となるように配置される。 As shown in FIG. 4, the illumination optical module ILM includes a collimator lens 51, a fly-eye lens 52, a plurality of condenser lenses 53, a cylindrical lens 54, and an illumination field stop 55 in order from the incident side of the illumination light beam EL1. The plurality of relay lenses 56 are provided on the first optical axis BX1. The collimator lens 51 is provided on the emission side of the light guide member 32 of the light source device 13. The optical axis of the collimator lens 51 is disposed on the first optical axis BX1. The collimator lens 51 irradiates the entire incident side surface of the fly-eye lens 52. The fly-eye lens 52 is provided on the emission side of the collimator lens 51. The center of the exit side surface of the fly-eye lens 52 is disposed on the first optical axis BX1. The fly-eye lens 52 divides the illumination light beam EL1 from the collimator lens 51 into light beams that diverge from each of a large number of point light source images. At this time, the exit-side surface of the fly-eye lens 52 on which the point light source image is generated is formed by various lenses from the fly-eye lens 52 through the illumination field stop 55 to the first concave mirror 72 of the projection optical system PL described later. The reflecting surface of the first concave mirror 72 is arranged so as to be optically conjugate with the pupil plane on which it is located.
 コンデンサーレンズ53は、フライアイレンズ52の出射側に設けられている。コンデンサーレンズ53の光軸は、第1光軸BX1上に配置される。コンデンサーレンズ53は、フライアイレンズ52で分割された照明光束EL1の各々を、シリンドリカルレンズ54を介して照明視野絞り55上で重畳させる。それによって、照明光束EL1は照明視野絞り55上で均一な照度分布となる。シリンドリカルレンズ54は、入射側が平面となり出射側が凸となる平凸シリンドリカルレンズである。シリンドリカルレンズ54は、コンデンサーレンズ53の出射側に設けられている。シリンドリカルレンズ54の光軸は、第1光軸BX1上に配置される。 The condenser lens 53 is provided on the emission side of the fly-eye lens 52. The optical axis of the condenser lens 53 is disposed on the first optical axis BX1. The condenser lens 53 superimposes each of the illumination light beams EL1 divided by the fly-eye lens 52 on the illumination field stop 55 via the cylindrical lens 54. Accordingly, the illumination light beam EL1 has a uniform illuminance distribution on the illumination field stop 55. The cylindrical lens 54 is a plano-convex cylindrical lens in which the incident side is flat and the emission side is convex. The cylindrical lens 54 is provided on the exit side of the condenser lens 53. The optical axis of the cylindrical lens 54 is disposed on the first optical axis BX1.
 シリンドリカルレンズ54は、図4中のXZ面内において第1光軸BX1に直交する方向に、照明光束EL1の主光線を収れんさせる。シリンドリカルレンズ54は、照明視野絞り55の入射側に隣接して設けられている。照明視野絞り55の開口部は、照明領域IRと同様の形状となる台形状または長方形等の矩形状に形成されており、照明視野絞り55の開口部の中心は、第1光軸BX1上に配置される。このとき、照明視野絞り55は、照明視野絞り55からマスクMに至る各種レンズによって、マスクM上の照明領域IRと光学的に共役な面に配置される。リレーレンズ56は、照明視野絞り55の出射側に設けられている。リレーレンズ56の光軸は、第1光軸BX1上に配置される。リレーレンズ56は、照明視野絞り55からの照明光束EL1を偏光ビームスプリッタPBSに入射させる。 The cylindrical lens 54 converges the principal ray of the illumination light beam EL1 in a direction orthogonal to the first optical axis BX1 in the XZ plane in FIG. The cylindrical lens 54 is provided adjacent to the incident side of the illumination field stop 55. The opening of the illumination field stop 55 is formed in a rectangular shape such as a trapezoid or a rectangle having the same shape as the illumination region IR, and the center of the opening of the illumination field stop 55 is on the first optical axis BX1. Be placed. At this time, the illumination field stop 55 is arranged on a surface optically conjugate with the illumination region IR on the mask M by various lenses from the illumination field stop 55 to the mask M. The relay lens 56 is provided on the emission side of the illumination field stop 55. The optical axis of the relay lens 56 is disposed on the first optical axis BX1. The relay lens 56 causes the illumination light beam EL1 from the illumination field stop 55 to enter the polarization beam splitter PBS.
 照明光学モジュールILMに照明光束EL1が入射すると、照明光束EL1は、コリメータレンズ51によりフライアイレンズ52の入射側の面全体を照射する光束となる。フライアイレンズ52に入射した照明光束EL1は、多数の点光源像に分割された照明光束EL1となって、コンデンサーレンズ53を介してシリンドリカルレンズ54に入射する。シリンドリカルレンズ54に入射した照明光束EL1は、XZ面内において第1光軸BX1に直交する方向に収れんする。シリンドリカルレンズ54を通った照明光束EL1は、照明視野絞り55に入射する。照明視野絞り55に入射した照明光束EL1は、照明視野絞り55の開口部(台形または長方形等の矩形状)を通過し、リレーレンズ56を介して偏光ビームスプリッタPBSに入射する。 When the illumination light beam EL1 enters the illumination optical module ILM, the illumination light beam EL1 becomes a light beam that irradiates the entire incident-side surface of the fly-eye lens 52 by the collimator lens 51. The illumination light beam EL1 incident on the fly-eye lens 52 becomes the illumination light beam EL1 divided into a number of point light source images, and enters the cylindrical lens 54 via the condenser lens 53. The illumination light beam EL1 incident on the cylindrical lens 54 is converged in the direction orthogonal to the first optical axis BX1 in the XZ plane. The illumination light beam EL <b> 1 that has passed through the cylindrical lens 54 enters the illumination field stop 55. The illumination light beam EL1 incident on the illumination field stop 55 passes through an opening (a trapezoid or a rectangular shape such as a rectangle) of the illumination field stop 55, and enters the polarization beam splitter PBS via the relay lens 56.
 偏光ビームスプリッタPBSは、照明光学モジュールILMと中心面CLとの間に配置されている。偏光ビームスプリッタPBSは、照明光学モジュールILMからの照明光束EL1を反射する一方で、マスクMで反射された投影光束EL2を透過している。すなわち、照明光学モジュールILMからの照明光束EL1をS偏光の直線偏光とすることで、偏光ビームスプリッタPBSに入射する投影光束EL2は、1/4波長板41の作用によって、P偏光の直線偏光となって偏光ビームスプリッタPBSを透過する。 The polarization beam splitter PBS is disposed between the illumination optical module ILM and the center plane CL. The polarization beam splitter PBS reflects the illumination light beam EL1 from the illumination optical module ILM and transmits the projection light beam EL2 reflected by the mask M. That is, by making the illumination light beam EL1 from the illumination optical module ILM into S-polarized linearly polarized light, the projected light beam EL2 incident on the polarization beam splitter PBS is converted into P-polarized linearly polarized light by the action of the quarter wavelength plate 41. Is transmitted through the polarization beam splitter PBS.
 なお、偏光ビームスプリッタPBSの詳細については後述するが、図6に示すように、偏光ビームスプリッタPBSは、第1プリズム91と、第2プリズム92と、第1プリズム91及び第2プリズム92の間に設けられた偏光膜(波面分割面)93とを有している。第1プリズム91及び第2プリズム92は、石英ガラスで構成され、XZ面内において三角形状の三角プリズムとなっている。そして、偏光ビームスプリッタPBSは、三角形状の第1プリズム91と第2プリズム92とが偏光膜93を挟んで接合されることで、XZ面内において四角形状となる。 Although details of the polarization beam splitter PBS will be described later, the polarization beam splitter PBS is provided between the first prism 91, the second prism 92, and the first prism 91 and the second prism 92, as shown in FIG. And a polarizing film (wavefront dividing surface) 93 provided on the surface. The first prism 91 and the second prism 92 are made of quartz glass and are triangular prisms in the XZ plane. The polarizing beam splitter PBS has a quadrangular shape in the XZ plane by joining the triangular first prism 91 and the second prism 92 with the polarizing film 93 interposed therebetween.
 第1プリズム91は、照明光束EL1及び投影光束EL2が入射する側のプリズムである。第2プリズム92は、偏光膜93を透過する投影光束EL2が出射する側のプリズムである。偏光膜93には、第1プリズム91から第2プリズム92へ向かう照明光束EL1が入射する。偏光膜93は、S偏光(直線偏光)の照明光束EL1を反射し、P偏光(直線偏光)の投影光束EL2を透過する。 The first prism 91 is a prism on the side on which the illumination light beam EL1 and the projection light beam EL2 are incident. The second prism 92 is a prism on the side from which the projection light beam EL <b> 2 that passes through the polarizing film 93 is emitted. The illumination light beam EL <b> 1 traveling from the first prism 91 to the second prism 92 is incident on the polarizing film 93. The polarizing film 93 reflects the S-polarized (linearly polarized) illumination light beam EL1 and transmits the P-polarized (linearly polarized) light beam EL2.
 偏光ビームスプリッタPBSは、偏光膜(波面分割面)93に達する照明光束EL1の大部分を反射すると共に、投影光束EL2の大部分を透過することが好ましい。偏光ビームスプリッタPBSの波面分割面での偏光分離特性は消光比で表されるが、その消光比は波面分割面に向かう光線の入射角によっても変わる為、波面分割面の特性は、実用上の結像性能への影響が問題にならないように、照明光束EL1や投影光束EL2のNA(開口数)も考慮して設計される。 The polarizing beam splitter PBS preferably reflects most of the illumination light beam EL1 reaching the polarizing film (wavefront dividing surface) 93 and transmits most of the projection light beam EL2. The polarization splitting characteristic at the wavefront splitting plane of the polarization beam splitter PBS is expressed by the extinction ratio, but the extinction ratio also changes depending on the incident angle of the light beam toward the wavefront splitting plane. The design is made in consideration of the NA (numerical aperture) of the illumination light beam EL1 and the projection light beam EL2 so that the influence on the imaging performance is not a problem.
 1/4波長板41は、偏光ビームスプリッタPBSとマスクMとの間に配置されている。1/4波長板41は、偏光ビームスプリッタPBSで反射された照明光束EL1を直線偏光(S偏光)から円偏光に変換する。円偏光の照明光束EL1の照射によってマスクMで反射した光(円偏光)は、1/4波長板41によってP偏光(直線偏光)の投影光束EL2に変換される。 The quarter wavelength plate 41 is disposed between the polarization beam splitter PBS and the mask M. The quarter wavelength plate 41 converts the illumination light beam EL1 reflected by the polarization beam splitter PBS from linearly polarized light (S polarized light) to circularly polarized light. The light (circularly polarized light) reflected by the mask M by the irradiation of the circularly polarized illumination light beam EL1 is converted by the quarter wavelength plate 41 into the P-polarized light beam (linearly polarized light beam) EL2.
 図5Aは、マスクM上の照明領域IRに照射される照明光束EL1と、照明領域IRで反射された投影光束EL2との振る舞いを、XZ面(第1軸AX1と垂直な面)内で誇張して示した図である。図5Aに示すように、上記した照明光学系ILは、マスクMの照明領域IRで反射される投影光束EL2の主光線がテレセントリック(平行系)となるように、マスクMの照明領域IRに照射される照明光束EL1の主光線を、XZ面(第1軸AX1と垂直な面)内では意図的に非テレセントリックな状態にし、YZ面(中心面CLと平行)内ではテレセントリックな状態にする。照明光束EL1のそのような特性は、図4中に示したシリンドリカルレンズ54によって与えられる。具体的には、マスク面P1上の照明領域IRの周方向の中央の点Q1を通って第1軸AX1に向かう線と、マスク面P1の半径Rmの1/2の円との交点Q2を設定したとき、照明領域IRを通る照明光束EL1の各主光線が、XZ面では交点Q2に向かうように、シリンドリカルレンズ54の凸円筒レンズ面の曲率を設定する。このようにすると、照明領域IR内で反射した投影光束EL2の各主光線は、XZ面内では、第1軸AX1、点Q1、交点Q2を通る直線と平行(テレセントリック)な状態となる。 FIG. 5A exaggerates the behavior of the illumination light beam EL1 applied to the illumination region IR on the mask M and the projection light beam EL2 reflected by the illumination region IR in the XZ plane (plane perpendicular to the first axis AX1). FIG. As shown in FIG. 5A, the illumination optical system IL described above irradiates the illumination area IR of the mask M so that the principal ray of the projection light beam EL2 reflected by the illumination area IR of the mask M is telecentric (parallel system). The chief ray of the illumination light beam EL1 is intentionally made non-telecentric in the XZ plane (plane perpendicular to the first axis AX1) and telecentric in the YZ plane (parallel to the center plane CL). Such a characteristic of the illumination light beam EL1 is given by the cylindrical lens 54 shown in FIG. Specifically, an intersection point Q2 between a line that passes through the central point Q1 in the circumferential direction of the illumination region IR on the mask surface P1 and goes to the first axis AX1 and a circle that is ½ of the radius Rm of the mask surface P1. When set, the curvature of the convex cylindrical lens surface of the cylindrical lens 54 is set so that each principal ray of the illumination light beam EL1 passing through the illumination region IR is directed to the intersection point Q2 on the XZ plane. In this way, each principal ray of the projection light beam EL2 reflected in the illumination region IR is in a state (telecentric) parallel to a straight line passing through the first axis AX1, the point Q1, and the intersection point Q2 in the XZ plane.
 次に、投影光学系PLにより投影露光される複数の投影領域PA1~PA6について説明する。図3に示すように、基板P上の複数の投影領域PA1~PA6は、マスクM上の複数の照明領域IR1~IR6と対応させて配置されている。つまり、基板P上の複数の投影領域PA1~PA6は、中心面CLを挟んで搬送方向に2列に配置され、搬送方向の上流側の基板P上に奇数番の第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5が配置され、搬送方向の下流側の基板P上に偶数番の第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6が配置される。各投影領域PA1~PA6は、基板Pの幅方向(Y方向)に延びる短辺及び長辺を有する細長い台形状(矩形状)の領域となっている。このとき、台形状の各投影領域PA1~PA6は、その短辺が中心面CL側に位置し、その長辺が外側に位置する領域となっている。第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5は、幅方向に所定の間隔を空けて配置されている。また、第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6は、幅方向に所定の間隔を空けて配置されている。このとき、第2投影領域PA2は、軸方向において、第1投影領域PA1と第3投影領域PA3との間に配置される。同様に、第3投影領域PA3は、軸方向において、第2投影領域PA2と第4投影領域PA4との間に配置される。第4投影領域PA4は、第3投影領域PA3と第5投影領域PA5との間に配置される。第5投影領域PA5は、第4投影領域PA4と第6投影領域PA6との間に配置される。各投影領域PA1~PA6は、各照明領域IR1~IR6と同様に、基板Pの搬送方向からみて、隣り合う台形状の投影領域PAの斜辺部の三角部が重なるように(オーバーラップするように)配置されている。このとき、投影領域PAは、隣り合う投影領域PAの重複する領域での露光量が、重複しない領域での露光量と実質的に同じになるような形状になっている。そして、第1~第6投影領域PA1~PA6は、基板P上に露光される露光領域A7のY方向の全幅をカバーするように、配置されている。 Next, a plurality of projection areas PA1 to PA6 that are projected and exposed by the projection optical system PL will be described. As shown in FIG. 3, the plurality of projection areas PA1 to PA6 on the substrate P are arranged in correspondence with the plurality of illumination areas IR1 to IR6 on the mask M. That is, the plurality of projection areas PA1 to PA6 on the substrate P are arranged in two rows in the transport direction across the center plane CL, and the odd-numbered first projection areas PA1 and the first projection areas PA1 on the substrate P on the upstream side in the transport direction are arranged. The third projection area PA3 and the fifth projection area PA5 are arranged, and the even-numbered second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged on the substrate P on the downstream side in the transport direction. Each of the projection areas PA1 to PA6 is an elongated trapezoidal (rectangular) area having a short side and a long side extending in the width direction (Y direction) of the substrate P. At this time, each of the trapezoidal projection areas PA1 to PA6 is an area where the short side is located on the center plane CL side and the long side is located outside. The first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged at predetermined intervals in the width direction. Further, the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged at a predetermined interval in the width direction. At this time, the second projection area PA2 is arranged between the first projection area PA1 and the third projection area PA3 in the axial direction. Similarly, the third projection area PA3 is arranged between the second projection area PA2 and the fourth projection area PA4 in the axial direction. The fourth projection area PA4 is disposed between the third projection area PA3 and the fifth projection area PA5. The fifth projection area PA5 is disposed between the fourth projection area PA4 and the sixth projection area PA6. As in the illumination areas IR1 to IR6, the projection areas PA1 to PA6 are overlapped so that the triangular portions of the oblique sides of the adjacent trapezoidal projection areas PA overlap each other when viewed from the transport direction of the substrate P. ) Is arranged. At this time, the projection area PA has such a shape that the exposure amount in the area where the adjacent projection areas PA overlap is substantially the same as the exposure amount in the non-overlapping area. The first to sixth projection areas PA1 to PA6 are arranged so as to cover the entire width in the Y direction of the exposure area A7 exposed on the substrate P.
 ここで、図2において、XZ面内で見たとき、マスクM上の照明領域IR1(及びIR3,IR5)の中心点から照明領域IR2(及びIR4,IR6)の中心点までの周長は、支持面P2に倣った基板P上の投影領域PA1(及びPA3,PA5)の中心点から投影領域PA2(及びPA4,PA6)の中心点までの周長と、実質的に等しく設定されている。 Here, in FIG. 2, when viewed in the XZ plane, the circumference from the center point of the illumination region IR1 (and IR3, IR5) on the mask M to the center point of the illumination region IR2 (and IR4, IR6) is The circumferential length from the center point of the projection area PA1 (and PA3, PA5) on the substrate P following the support surface P2 to the center point of the projection area PA2 (and PA4, PA6) is set to be substantially equal.
 投影光学系PLは、複数の投影領域PA1~PA6に応じて複数(第1実施形態では例えば6つ)設けられている。複数の投影光学系PL1~PL6には、複数の照明領域IR1~IR6から反射された複数の投影光束EL2がそれぞれ入射する。各投影光学系PL1~PL6は、マスクMで反射された各投影光束EL2を、各投影領域PA1~PA6にそれぞれ導く。つまり、第1投影光学系PL1は、第1照明領域IR1からの投影光束EL2を第1投影領域PA1に導き、同様に、第2~第6投影光学系PL2~PL6は、第2~第6照明領域IR2~IR6からの各投影光束EL2を第2~第6投影領域PA2~PA6に導く。複数の投影光学系PL1~PL6は、中心面CLを挟んでマスクMの周方向に2列に配置される。複数の投影光学系PL1~PL6は、中心面CLを挟んで、第1、第3、第5投影領域PA1、PA3、PA5が配置される側(図2の左側)に、第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5が配置される。第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5は、Y方向に所定の間隔を空けて配置される。また、複数の投影光学系PL1~PL6は、中心面CLを挟んで、第2、第4、第6投影領域PA2、PA4、PA6が配置される側(図2の右側)に、第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6が配置される。第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6は、Y方向に所定の間隔を空けて配置される。このとき、第2投影光学系PL2は、軸方向において、第1投影光学系PL1と第3投影光学系PL3との間に配置される。同様に、第3投影光学系PL3は、軸方向において、第2投影光学系PL2と第4投影光学系PL4との間に配置される。第4投影光学系PL4は、第3投影光学系PL3と第5投影光学系PL5との間に配置される。第5投影光学系PL5は、第4投影光学系PL4と第6投影光学系PL6との間に配置される。また、第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5と、第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6とは、Y方向からみて中心面CLを中心に対称に配置されている。 A plurality of projection optical systems PL (for example, six in the first embodiment) are provided according to the plurality of projection areas PA1 to PA6. A plurality of projection light beams EL2 reflected from the plurality of illumination regions IR1 to IR6 are incident on the plurality of projection optical systems PL1 to PL6, respectively. Each projection optical system PL1 to PL6 guides each projection light beam EL2 reflected by the mask M to each projection area PA1 to PA6. That is, the first projection optical system PL1 guides the projection light beam EL2 from the first illumination area IR1 to the first projection area PA1, and similarly, the second to sixth projection optical systems PL2 to PL6 are second to sixth. Each projection light beam EL2 from the illumination regions IR2 to IR6 is guided to the second to sixth projection regions PA2 to PA6. The plurality of projection optical systems PL1 to PL6 are arranged in two rows in the circumferential direction of the mask M across the center plane CL. The plurality of projection optical systems PL1 to PL6 has a first projection optical system on the side (left side in FIG. 2) on which the first, third, and fifth projection areas PA1, PA3, and PA5 are arranged with the center plane CL interposed therebetween. PL1, a third projection optical system PL3, and a fifth projection optical system PL5 are arranged. The first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5 are arranged at a predetermined interval in the Y direction. Further, the plurality of projection optical systems PL1 to PL6 has the second projection on the side (the right side in FIG. 2) on which the second, fourth, and sixth projection areas PA2, PA4, and PA6 are arranged with the center plane CL interposed therebetween. An optical system PL2, a fourth projection optical system PL4, and a sixth projection optical system PL6 are arranged. The second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are arranged at a predetermined interval in the Y direction. At this time, the second projection optical system PL2 is disposed between the first projection optical system PL1 and the third projection optical system PL3 in the axial direction. Similarly, the third projection optical system PL3 is disposed between the second projection optical system PL2 and the fourth projection optical system PL4 in the axial direction. The fourth projection optical system PL4 is disposed between the third projection optical system PL3 and the fifth projection optical system PL5. The fifth projection optical system PL5 is disposed between the fourth projection optical system PL4 and the sixth projection optical system PL6. The first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5, and the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are from the Y direction. As a result, they are arranged symmetrically about the center plane CL.
 再び、図4を参照して、各投影光学系PL1~PL6について説明する。なお、各投影光学系PL1~PL6は、同様の構成となっているため、第1投影光学系PL1(以下、単に投影光学系PLという)を例に説明する。 Again, the projection optical systems PL1 to PL6 will be described with reference to FIG. Since the projection optical systems PL1 to PL6 have the same configuration, the first projection optical system PL1 (hereinafter simply referred to as the projection optical system PL) will be described as an example.
 投影光学系PLは、マスクM上の照明領域IR(第1照明領域IR1)におけるマスクパターンの像を、基板P上の投影領域PAに投影する。投影光学系PLは、マスクMからの投影光束EL2の入射側から順に、上記の1/4波長板41と、上記の偏光ビームスプリッタPBSと、投影光学モジュールPLMとを有する。 The projection optical system PL projects an image of the mask pattern in the illumination area IR (first illumination area IR1) on the mask M onto the projection area PA on the substrate P. The projection optical system PL includes the quarter-wave plate 41, the polarization beam splitter PBS, and the projection optical module PLM in order from the incident side of the projection light beam EL2 from the mask M.
 1/4波長板41及び偏光ビームスプリッタPBSは、照明光学系ILと兼用となっている。換言すれば、照明光学系IL及び投影光学系PLは、1/4波長板41及び偏光ビームスプリッタPBSを共有している。 The quarter-wave plate 41 and the polarization beam splitter PBS are also used as the illumination optical system IL. In other words, the illumination optical system IL and the projection optical system PL share the quarter wavelength plate 41 and the polarization beam splitter PBS.
 図5Aで説明したように、照明領域IRで反射された投影光束EL2は、テレセントリックな光束(主光線が互いに平行な状態)となって、投影光学系PLに入射する。照明領域IRで反射された円偏光となる投影光束EL2は、1/4波長板41により円偏光から直線偏光(P偏光)に変換された後、偏光ビームスプリッタPBSに入射する。偏光ビームスプリッタPBSに入射した投影光束EL2は、偏光ビームスプリッタPBSを透過した後、投影光学モジュールPLMに入射する。 As described with reference to FIG. 5A, the projection light beam EL2 reflected by the illumination region IR becomes a telecentric light beam (in which the principal rays are parallel to each other) and enters the projection optical system PL. The projection light beam EL2 that is circularly polarized light reflected by the illumination region IR is converted from circularly polarized light to linearly polarized light (P-polarized light) by the quarter wavelength plate 41, and then enters the polarization beam splitter PBS. The projection light beam EL2 incident on the polarization beam splitter PBS passes through the polarization beam splitter PBS and then enters the projection optical module PLM.
 投影光学モジュールPLMは、照明光学モジュールILMに対応して設けられている。つまり、第1投影光学系PL1の投影光学モジュールPLMは、第1照明光学系IL1の照明光学モジュールILMによって照明される第1照明領域IR1のマスクパターンの像を、基板P上の第1投影領域PA1に投影する。同様に、第2~第6投影光学系PL2~PL6の投影光学モジュールPLMは、第2~第6照明光学系IL2~IL6の照明光学モジュールILMによって照明される第2~第6照明領域IR2~IR6のマスクパターンの像を、基板P上の第2~第6投影領域PA2~PA6に投影する。 The projection optical module PLM is provided corresponding to the illumination optical module ILM. That is, the projection optical module PLM of the first projection optical system PL1 converts the mask pattern image of the first illumination area IR1 illuminated by the illumination optical module ILM of the first illumination optical system IL1 into the first projection area on the substrate P. Project to PA1. Similarly, the projection optical modules PLM of the second to sixth projection optical systems PL2 to PL6 have second to sixth illumination regions IR2 to IR2 illuminated by the illumination optical modules ILM of the second to sixth illumination optical systems IL2 to IL6. The image of the IR6 mask pattern is projected onto the second to sixth projection areas PA2 to PA6 on the substrate P.
 図4に示すように、投影光学モジュールPLMは、照明領域IRにおけるマスクパターンの像を中間像面P7に結像する第1光学系61と、第1光学系61により結像した中間像の少なくとも一部を基板Pの投影領域PAに再結像する第2光学系62と、中間像が形成される中間像面P7に配置された投影視野絞り63とを備える。また、投影光学モジュールPLMは、フォーカス補正光学部材64と、像シフト用光学部材65と、倍率補正用光学部材66と、ローテーション補正機構67と、偏光調整機構(偏光調整手段)68とを備える。 As shown in FIG. 4, the projection optical module PLM includes a first optical system 61 that forms an image of the mask pattern in the illumination region IR on the intermediate image plane P7, and at least an intermediate image formed by the first optical system 61. A second optical system 62 for re-imaging a part of the image on the projection area PA of the substrate P, and a projection field stop 63 disposed on the intermediate image plane P7 on which the intermediate image is formed are provided. The projection optical module PLM includes a focus correction optical member 64, an image shift optical member 65, a magnification correction optical member 66, a rotation correction mechanism 67, and a polarization adjustment mechanism (polarization adjustment means) 68.
 第1光学系61及び第2光学系62は、例えばダイソン系を変形したテレセントリックな反射屈折光学系である。第1光学系61は、その光軸(以下、第2光軸BX2という)が中心面CLに対して実質的に直交する。第1光学系61は、第1偏向部材70と、第1レンズ群71と、第1凹面鏡72とを備える。第1偏向部材70は、第1反射面P3と第2反射面P4とを有する三角プリズムである。第1反射面P3は、偏光ビームスプリッタPBSからの投影光束EL2を反射させ、反射させた投影光束EL2を第1レンズ群71を通って第1凹面鏡72に入射させる面となっている。第2反射面P4は、第1凹面鏡72で反射された投影光束EL2が第1レンズ群71を通って入射し、入射した投影光束EL2を投影視野絞り63へ向けて反射する面となっている。第1レンズ群71は、各種レンズを含み、各種レンズの光軸は、第2光軸BX2上に配置されている。第1凹面鏡72は、第1光学系61の瞳面に配置され、フライアイレンズ52により生成される多数の点光源像と光学的に共役な関係に設定される。 The first optical system 61 and the second optical system 62 are, for example, telecentric catadioptric optical systems obtained by modifying a Dyson system. The first optical system 61 has its optical axis (hereinafter referred to as the second optical axis BX2) substantially orthogonal to the center plane CL. The first optical system 61 includes a first deflecting member 70, a first lens group 71, and a first concave mirror 72. The first deflecting member 70 is a triangular prism having a first reflecting surface P3 and a second reflecting surface P4. The first reflecting surface P3 is a surface that reflects the projection light beam EL2 from the polarization beam splitter PBS and causes the reflected projection light beam EL2 to enter the first concave mirror 72 through the first lens group 71. The second reflecting surface P4 is a surface on which the projection light beam EL2 reflected by the first concave mirror 72 enters through the first lens group 71 and reflects the incident projection light beam EL2 toward the projection field stop 63. . The first lens group 71 includes various lenses, and the optical axes of the various lenses are disposed on the second optical axis BX2. The first concave mirror 72 is disposed on the pupil plane of the first optical system 61 and is set in an optically conjugate relationship with a number of point light source images generated by the fly-eye lens 52.
 偏光ビームスプリッタPBSからの投影光束EL2は、第1偏向部材70の第1反射面P3で反射され、第1レンズ群71の上半分の視野領域を通って第1凹面鏡72に入射する。第1凹面鏡72に入射した投影光束EL2は、第1凹面鏡72で反射され、第1レンズ群71の下半分の視野領域を通って第1偏向部材70の第2反射面P4に入射する。第2反射面P4に入射した投影光束EL2は、第2反射面P4で反射され、フォーカス補正光学部材64及び像シフト用光学部材65を通過し、投影視野絞り63に入射する。 The projection light beam EL2 from the polarization beam splitter PBS is reflected by the first reflecting surface P3 of the first deflecting member 70, and enters the first concave mirror 72 through the upper half field region of the first lens group 71. The projection light beam EL2 incident on the first concave mirror 72 is reflected by the first concave mirror 72, passes through the lower half field of view of the first lens group 71, and enters the second reflective surface P4 of the first deflecting member 70. The projection light beam EL2 incident on the second reflection surface P4 is reflected by the second reflection surface P4, passes through the focus correction optical member 64 and the image shift optical member 65, and enters the projection field stop 63.
 投影視野絞り63は、投影領域PAの形状を規定する開口を有する。すなわち、投影視野絞り63の開口の形状が投影領域PAの形状を規定することになる。 The projection field stop 63 has an opening that defines the shape of the projection area PA. That is, the shape of the opening of the projection field stop 63 defines the shape of the projection area PA.
 第2光学系62は、第1光学系61と同様の構成であり、中間像面P7を挟んで第1光学系61と対称に設けられている。第2光学系62は、その光軸(以下、第3光軸BX3という)が中心面CLに対して実質的に直交し、第2光軸BX2と平行になっている。第2光学系62は、第2偏向部材80と、第2レンズ群81と、第2凹面鏡82とを備える。第2偏向部材80は、第3反射面P5と第4反射面P6とを有する。第3反射面P5は、投影視野絞り63からの投影光束EL2を反射させ、反射させた投影光束EL2を第2レンズ群81を通って第2凹面鏡82に入射させる面となっている。第4反射面P6は、第2凹面鏡82で反射された投影光束EL2が第2レンズ群81を通って入射し、入射した投影光束EL2を投影領域PAへ向けて反射する面となっている。第2レンズ群81は、各種レンズを含み、各種レンズの光軸は、第3光軸BX3上に配置されている。第2凹面鏡82は、第2光学系62の瞳面に配置され、第1凹面鏡72に結像した多数の点光源像と光学的に共役な関係に設定される。 The second optical system 62 has the same configuration as that of the first optical system 61, and is provided symmetrically with the first optical system 61 with the intermediate image plane P7 interposed therebetween. The second optical system 62 has an optical axis (hereinafter referred to as a third optical axis BX3) that is substantially perpendicular to the center plane CL and parallel to the second optical axis BX2. The second optical system 62 includes a second deflecting member 80, a second lens group 81, and a second concave mirror 82. The second deflecting member 80 has a third reflecting surface P5 and a fourth reflecting surface P6. The third reflecting surface P5 is a surface that reflects the projection light beam EL2 from the projection field stop 63 and causes the reflected projection light beam EL2 to enter the second concave mirror 82 through the second lens group 81. The fourth reflecting surface P6 is a surface on which the projection light beam EL2 reflected by the second concave mirror 82 enters through the second lens group 81 and reflects the incident projection light beam EL2 toward the projection area PA. The second lens group 81 includes various lenses, and the optical axes of the various lenses are disposed on the third optical axis BX3. The second concave mirror 82 is disposed on the pupil plane of the second optical system 62 and is set in an optically conjugate relationship with a number of point light source images formed on the first concave mirror 72.
 投影視野絞り63からの投影光束EL2は、第2偏向部材80の第3反射面P5で反射され、第2レンズ群81の上半分の視野領域を通って第2凹面鏡82に入射する。第2凹面鏡82に入射した投影光束EL2は、第2凹面鏡82で反射され、第2レンズ群81の下半分の視野領域を通って第2偏向部材80の第4反射面P6に入射する。第4反射面P6に入射した投影光束EL2は、第4反射面P6で反射され、倍率補正用光学部材66を通過し、投影領域PAに投射される。これにより、照明領域IRにおけるマスクパターンの像は、投影領域PAに等倍(×1)で投影される。 The projection light beam EL2 from the projection field stop 63 is reflected by the third reflecting surface P5 of the second deflecting member 80, and enters the second concave mirror 82 through the upper half field region of the second lens group 81. The projection light beam EL <b> 2 that has entered the second concave mirror 82 is reflected by the second concave mirror 82, passes through the lower half field of view of the second lens group 81, and enters the fourth reflecting surface P <b> 6 of the second deflecting member 80. The projection light beam EL2 incident on the fourth reflection surface P6 is reflected by the fourth reflection surface P6, passes through the magnification correction optical member 66, and is projected onto the projection area PA. Thereby, the image of the mask pattern in the illumination area IR is projected to the projection area PA at the same magnification (× 1).
 フォーカス補正光学部材64は、第1偏向部材70と投影視野絞り63との間に配置されている。フォーカス補正光学部材64は、基板P上に投影されるマスクパターンの像のフォーカス状態を調整する。フォーカス補正光学部材64は、例えば、2枚のクサビ状のプリズムを逆向き(図4ではX方向について逆向き)にして、全体として透明な平行平板になるように重ね合わせたものである。この1対のプリズムを互いに対向する面間の間隔を変えずに斜面方向にスライドさせることにより、平行平板としての厚みを可変にする。これによって第1光学系61の実効的な光路長を微調整し、中間像面P7及び投影領域PAに形成されるマスクパターンの像のピント状態が微調整される。 The focus correction optical member 64 is disposed between the first deflection member 70 and the projection field stop 63. The focus correction optical member 64 adjusts the focus state of the mask pattern image projected onto the substrate P. For example, the focus correction optical member 64 is formed by superposing two wedge-shaped prisms in opposite directions (in the opposite direction in the X direction in FIG. 4) so as to form a transparent parallel plate as a whole. By sliding the pair of prisms in the direction of the slope without changing the distance between the faces facing each other, the thickness of the parallel plate is made variable. As a result, the effective optical path length of the first optical system 61 is finely adjusted, and the focus state of the mask pattern image formed on the intermediate image plane P7 and the projection area PA is finely adjusted.
 像シフト用光学部材65は、第1偏向部材70と投影視野絞り63との間に配置されている。像シフト用光学部材65は、基板P上に投影されるマスクパターンの像を像面内において移動可能に調整する。像シフト用光学部材65は、図4のXZ面内で傾斜可能な透明な平行平板ガラスと、図4のYZ面内で傾斜可能な透明な平行平板ガラスとで構成される。その2枚の平行平板ガラスの各傾斜量を調整することで、中間像面P7及び投影領域PAに形成されるマスクパターンの像をX方向やY方向に微少シフトさせることができる。 The image shifting optical member 65 is disposed between the first deflecting member 70 and the projection field stop 63. The image shift optical member 65 adjusts the image of the mask pattern projected onto the substrate P so as to be movable in the image plane. The image shifting optical member 65 is composed of a transparent parallel flat glass that can be tilted in the XZ plane of FIG. 4 and a transparent parallel flat glass that can be tilted in the YZ plane of FIG. By adjusting the respective tilt amounts of the two parallel flat glass plates, the image of the mask pattern formed on the intermediate image plane P7 and the projection area PA can be slightly shifted in the X direction and the Y direction.
 倍率補正用光学部材66は、第2偏向部材80と基板Pとの間に配置されている。倍率補正用光学部材66は、例えば、凹レンズ、凸レンズ、凹レンズの3枚を所定間隔で同軸に配置し、前後の凹レンズは固定して、間の凸レンズを光軸(主光線)方向に移動させるように構成したものである。これによって、投影領域PAに形成されるマスクパターンの像は、テレセントリックな結像状態を維持しつつ、等方的に微少量だけ拡大または縮小される。なお、倍率補正用光学部材66を構成する3枚のレンズ群の光軸は、投影光束EL2の主光線と平行になるようにXZ面内では傾けられている。 The magnification correcting optical member 66 is disposed between the second deflection member 80 and the substrate P. In the magnification correcting optical member 66, for example, a concave lens, a convex lens, and a concave lens are arranged coaxially at predetermined intervals, the front and rear concave lenses are fixed, and the convex lens between them is moved in the optical axis (principal ray) direction. It is configured. As a result, the mask pattern image formed in the projection area PA is isotropically enlarged or reduced by a small amount while maintaining a telecentric imaging state. The optical axes of the three lens groups constituting the magnification correcting optical member 66 are inclined in the XZ plane so as to be parallel to the principal ray of the projection light beam EL2.
 ローテーション補正機構67は、例えば、アクチュエータ(図示略)によって、第1偏向部材70をZ軸と平行な軸周りに微少回転させるものである。このローテーション補正機構67は、第1偏向部材70を回転させることによって、中間像面P7に形成されるマスクパターンの像を、その中間像面P7内で微少回転させることができる。 The rotation correction mechanism 67 is a mechanism that slightly rotates the first deflection member 70 around an axis parallel to the Z axis by an actuator (not shown), for example. The rotation correction mechanism 67 can rotate the first deflecting member 70 to slightly rotate the image of the mask pattern formed on the intermediate image plane P7 within the intermediate image plane P7.
 偏光調整機構68は、例えば、アクチュエータ(図示略)によって、1/4波長板41を、板面に直交する軸回りに回転させて、偏光方向を調整するものである。偏光調整機構68は、1/4波長板41を回転させることによって、投影領域PAに投射される投影光束EL2の照度を調整することができる。 The polarization adjustment mechanism 68 adjusts the polarization direction by rotating the quarter-wave plate 41 around an axis orthogonal to the plate surface by an actuator (not shown), for example. The polarization adjusting mechanism 68 can adjust the illuminance of the projection light beam EL2 projected on the projection area PA by rotating the quarter wavelength plate 41.
 このように構成された投影光学系PLにおいて、マスクMからの投影光束EL2は、照明領域IRからマスク面P1の法線方向に出射し、1/4波長板41及び偏光ビームスプリッタPBSを通って第1光学系61に入射する。第1光学系61に入射した投影光束EL2は、第1光学系61の第1偏向部材70の第1反射面(平面鏡)P3で反射され、第1レンズ群71を通って第1凹面鏡72で反射される。第1凹面鏡72で反射された投影光束EL2は、再び第1レンズ群71を通って第1偏向部材70の第2反射面(平面鏡)P4で反射されて、フォーカス補正光学部材64及び像シフト用光学部材65を透過して、投影視野絞り63に入射する。投影視野絞り63を通った投影光束EL2は、第2光学系62の第2偏向部材80の第3反射面(平面鏡)P5で反射され、第2レンズ群81を通って第2凹面鏡82で反射される。第2凹面鏡82で反射された投影光束EL2は、再び第2レンズ群81を通って第2偏向部材80の第4反射面(平面鏡)P6で反射されて、倍率補正用光学部材66に入射する。倍率補正用光学部材66から出射した投影光束EL2は、基板P上の投影領域PAに入射し、照明領域IR内に現れるマスクパターンの像が投影領域PAに等倍(×1)で投影される。 In the thus configured projection optical system PL, the projection light beam EL2 from the mask M is emitted from the illumination region IR in the normal direction of the mask surface P1, and passes through the quarter-wave plate 41 and the polarization beam splitter PBS. The light enters the first optical system 61. The projection light beam EL2 incident on the first optical system 61 is reflected by the first reflecting surface (plane mirror) P3 of the first deflecting member 70 of the first optical system 61, passes through the first lens group 71, and is reflected by the first concave mirror 72. Reflected. The projection light beam EL2 reflected by the first concave mirror 72 passes through the first lens group 71 again and is reflected by the second reflecting surface (planar mirror) P4 of the first deflecting member 70, and the focus correction optical member 64 and the image shifter. The light passes through the optical member 65 and enters the projection field stop 63. The projection light beam EL2 that has passed through the projection field stop 63 is reflected by the third reflecting surface (planar mirror) P5 of the second deflecting member 80 of the second optical system 62, and then reflected by the second concave mirror 82 through the second lens group 81. Is done. The projection light beam EL2 reflected by the second concave mirror 82 passes through the second lens group 81 again, is reflected by the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80, and enters the magnification correcting optical member 66. . The projection light beam EL2 emitted from the magnification correcting optical member 66 is incident on the projection area PA on the substrate P, and an image of the mask pattern appearing in the illumination area IR is projected to the projection area PA at the same magnification (× 1). .
 本実施形態において、第1偏向部材70の第2反射面(平面鏡)P4と、第2偏向部材80の第3反射面(平面鏡)P5は、中心面CL(或いは光軸BX2、BX3)に対して45°傾いた面となっているが、第1偏向部材70の第1反射面(平面鏡)P3と、第2偏向部材80の第4反射面(平面鏡)P6は、中心面CL(或いは光軸BX2、BX3)に対して45°以外の角度に設定される。第1偏向部材70の第1反射面P3の中心面CL(或いは光軸BX2)に対する角度α°(絶対値)は、図6において、点Q1、交点Q2、第1軸AX1を通る直線と中心面CLとのなす角度をθ°としたとき、α°=45°+θ°/2の関係に定められる。同様に、第2偏向部材80の第4反射面P6の中心面CL(或いは光軸BX2)に対する角度β°(絶対値)は、基板支持ドラム25の外周面の周方向に関する投影領域PA内の中心点を通る投影光束EL2の主光線と中心面CLとのZX面内での角度をε°としたとき、β°=45°+ε°/2の関係に定められる。 In the present embodiment, the second reflecting surface (plane mirror) P4 of the first deflecting member 70 and the third reflecting surface (plane mirror) P5 of the second deflecting member 80 are relative to the center plane CL (or the optical axes BX2, BX3). The first reflecting surface (plane mirror) P3 of the first deflecting member 70 and the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80 are center plane CL (or light). An angle other than 45 ° is set with respect to the axes BX2, BX3). The angle α ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the first reflecting surface P3 of the first deflecting member 70 is the straight line and center passing through the point Q1, the intersection point Q2, and the first axis AX1 in FIG. When the angle between the surface CL and the surface CL is θ °, the relationship is α ° = 45 ° + θ ° / 2. Similarly, the angle β ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the fourth reflecting surface P6 of the second deflecting member 80 is within the projection area PA in the circumferential direction of the outer peripheral surface of the substrate support drum 25. When the angle in the ZX plane between the principal ray of the projection light beam EL2 passing through the center point and the center plane CL is ε °, the relationship is β ° = 45 ° + ε ° / 2.
<照明光学系及び投影光学系の構成>
 さらに、図4と共に、図6及び図7を参照し、第1実施形態の露光装置U3の照明光学系IL及び投影光学系PLの構成について詳細に説明する。
<Configuration of illumination optical system and projection optical system>
Furthermore, with reference to FIGS. 6 and 7 together with FIG. 4, the configuration of the illumination optical system IL and the projection optical system PL of the exposure apparatus U3 of the first embodiment will be described in detail.
 上記したように、図4に示す照明光学系ILは、照明光学モジュールILMを有し、投影光学系PLは、投影光学モジュールPLMを有し、照明光学系IL及び投影光学系PLは、偏光ビームスプリッタPBS及び1/4波長板41を共有している。照明光学モジュールILM及び偏光ビームスプリッタPBSは、中心面CLが延在する方向(Z方向)において、マスクMと投影光学モジュールPLMとの間に設けられている。具体的に、偏光ビームスプリッタPBSは、Z方向において、マスクMと投影光学モジュールPLMの第1偏向部材70との間に設けられ、X方向において、中心面CLと照明光学モジュールILMとの間に設けられる。また、照明光学モジュールILMは、Z方向において、マスクMと投影光学モジュールPLMの第1レンズ群71との間に設けられ、X方向において、偏光ビームスプリッタPBSを挟んで中心面CL側の反対側に設けられる。 As described above, the illumination optical system IL shown in FIG. 4 has the illumination optical module ILM, the projection optical system PL has the projection optical module PLM, and the illumination optical system IL and the projection optical system PL are polarized beams. The splitter PBS and the quarter wave plate 41 are shared. The illumination optical module ILM and the polarization beam splitter PBS are provided between the mask M and the projection optical module PLM in the direction (Z direction) in which the center plane CL extends. Specifically, the polarization beam splitter PBS is provided between the mask M and the first deflection member 70 of the projection optical module PLM in the Z direction, and between the center plane CL and the illumination optical module ILM in the X direction. Provided. The illumination optical module ILM is provided between the mask M and the first lens group 71 of the projection optical module PLM in the Z direction, and is opposite to the center plane CL side with the polarization beam splitter PBS in the X direction. Is provided.
 ここで、図7を参照し、照明光学モジュールILMを配置可能な配置領域Eについて説明する。XZ面内における配置領域Eは、第1ラインL1と、第2ラインL2と、第3ラインL3とで区画された領域である。第2ラインL2は、マスクMで反射された投影光束EL2の主光線(例えば図5A中の点Q1を通る)である。第1ラインL1は、マスクMで反射された投影光束EL2の主光線とマスク面P1とが交わる交点(例えば図5A中の点Q1)における、マスク面P1の接線(接面)である。第3ラインL3は、投影光学モジュールPLMと空間的に干渉しないように、第1光学系61の第2光軸BX2と平行に設定される線である。照明光学モジュールILMは、第1ラインL1、第2ラインL2及び第3ラインL3で囲まれた配置領域E内に配置される。マスクMを円筒とした場合、図7のように、第3ラインL3と第1ラインL1のZ方向の間隔が中心面CLから離れるに従って大きくなるように、第1ラインL1を傾けることができる。その為、照明光学モジュールILMの設置が容易になる。 Here, with reference to FIG. 7, the arrangement area E in which the illumination optical module ILM can be arranged will be described. The arrangement area E in the XZ plane is an area partitioned by the first line L1, the second line L2, and the third line L3. The second line L2 is the principal ray of the projection light beam EL2 reflected by the mask M (for example, passing through the point Q1 in FIG. 5A). The first line L1 is a tangent (tangent surface) of the mask surface P1 at an intersection (for example, a point Q1 in FIG. 5A) where the principal ray of the projection light beam EL2 reflected by the mask M and the mask surface P1 intersect. The third line L3 is a line set in parallel with the second optical axis BX2 of the first optical system 61 so as not to spatially interfere with the projection optical module PLM. The illumination optical module ILM is arranged in an arrangement area E surrounded by the first line L1, the second line L2, and the third line L3. When the mask M is a cylinder, as shown in FIG. 7, the first line L1 can be inclined so that the distance between the third line L3 and the first line L1 in the Z direction increases as the distance from the center plane CL increases. Therefore, installation of the illumination optical module ILM is facilitated.
 また、照明光学モジュールILMは、照明光学モジュールILMから偏光ビームスプリッタPBSの偏光膜93に入射する照明光束EL1の主光線の入射角βによっても、その配置が規定される。図6に示すように、照明領域IRで反射された投影光束EL2の主光線(例えば図5A中の点Q1を通る)と中心面CLとが為す角度をθとする。このとき、照明光学モジュールILMは、偏光ビームスプリッタPBSの偏光膜93に入射する照明光束EL1の主光線の入射角β(後述ではθ1として説明している)が、45°×0.8≦β≦(45°+θ/2)×1.2の範囲内となるように配置される。つまり、この入射角βの角度範囲は、偏光ビームスプリッタPBSの偏光膜93に適した入射角βで照明光束EL1を入射させつつも、マスクM及び投影光学モジュールPLMに物理的に干渉しないように照明光学モジュールILMを配置可能な範囲となっている。なお、上記の入射角βの角度範囲は、照明光束EL1の開口数(NA)で決まる角度分布も考慮して決められるが、45°≦β≦(45°+θ/2)がより好ましい。また、最適となる入射角βは、照明光学モジュールILMの第1光軸BX1が投影光学モジュールPLMの第2光軸BX2と平行となった状態において、偏光ビームスプリッタPBSの偏光膜93に照明光束EL1を入射させたときの入射角である。 The arrangement of the illumination optical module ILM is also defined by the incident angle β of the chief ray of the illumination light beam EL1 incident on the polarization film 93 of the polarization beam splitter PBS from the illumination optical module ILM. As shown in FIG. 6, an angle formed by the principal ray (for example, passing through the point Q1 in FIG. 5A) of the projection light beam EL2 reflected by the illumination region IR and the center plane CL is defined as θ. At this time, in the illumination optical module ILM, the incident angle β (described as θ1 in the following) of the illumination light beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is 45 ° × 0.8 ≦ β It arrange | positions so that it may become in the range of <= (45 degrees + (theta) / 2) * 1.2. That is, the angle range of the incident angle β is such that the illumination light beam EL1 is incident at an incident angle β suitable for the polarizing film 93 of the polarizing beam splitter PBS, but does not physically interfere with the mask M and the projection optical module PLM. The illumination optical module ILM can be disposed. The angle range of the incident angle β is determined in consideration of an angular distribution determined by the numerical aperture (NA) of the illumination light beam EL1, but 45 ° ≦ β ≦ (45 ° + θ / 2) is more preferable. Further, the optimum incident angle β is such that the illumination light beam is applied to the polarizing film 93 of the polarization beam splitter PBS in a state where the first optical axis BX1 of the illumination optical module ILM is parallel to the second optical axis BX2 of the projection optical module PLM. It is an incident angle when EL1 is incident.
 偏光ビームスプリッタPBSは、偏光膜93を挟んで接合される2つの三角プリズム(例えば石英製)91、92で構成される。照明光学モジュールILMからの照明光束EL1を入射するプリズム(第1プリズム)91の入射面は、照明光学モジュールILMの光軸BX1と垂直に設定され、照明光束EL1をマスクMに向けて射出する面は、投影光束EL2の主光線(例えば図5A中の点Q1と回転中心軸(第1軸)AX1とを結ぶ線)と垂直に設定される。また、マスクMからの投影光束EL2を、プリズム91、偏光膜93を介して投影光学モジュールPLMに向けて透過するプリズム(第2プリズム)92の射出面も、投影光束EL2の主光線(例えば図5A中の点Q1と回転中心軸AX1とを結ぶ線)と垂直に設定される。従って、偏光ビームスプリッタPBSは、テレセントリックな主光線を持つ投影光束EL2に対して、一定の厚みを有する光学平行平板となっている。 The polarizing beam splitter PBS is composed of two triangular prisms (for example, made of quartz) 91 and 92 joined with a polarizing film 93 interposed therebetween. The incident surface of the prism (first prism) 91 that receives the illumination light beam EL1 from the illumination optical module ILM is set perpendicular to the optical axis BX1 of the illumination optical module ILM, and is a surface that emits the illumination light beam EL1 toward the mask M. Is set perpendicular to the principal ray of the projection light beam EL2 (for example, a line connecting the point Q1 in FIG. 5A and the rotation center axis (first axis) AX1). The exit surface of the prism (second prism) 92 that transmits the projection light beam EL2 from the mask M to the projection optical module PLM through the prism 91 and the polarizing film 93 is also the principal ray (for example, FIG. 5A is set perpendicular to a line connecting the point Q1 in 5A and the rotation center axis AX1. Therefore, the polarization beam splitter PBS is an optical parallel plate having a certain thickness with respect to the projection light beam EL2 having a telecentric principal ray.
 図4に示すように、照明光学モジュールILMは、偏光ビームスプリッタPBS側において、投影光学モジュールPLMと物理的に干渉し易くなるため、照明光学モジュールILMに含まれる各種レンズ(第1レンズ)の一部を切り欠いている。なお、第1実施形態では、照明光学モジュールILMの各種レンズの一部を切り欠いた場合について説明するが、この構成に限らない。つまり、投影光学モジュールPLMも、偏光ビームスプリッタPBS側において、照明光学モジュールILMと物理的に干渉し易くなるため、投影光学モジュールPLMに含まれる各種レンズ(第2レンズ)の一部を切り欠いてもよい。従って、照明光学モジュールILM及び投影光学モジュールPLMの両方に含まれる各種レンズの一部を切り欠いてもよい。しかしながら、一般に、照明光学モジュールILMは、投影光学モジュールPLMに比して要求される光学的な精度が低いため、照明光学モジュールILMの各種レンズの一部を切り欠くことが、簡単で好ましい。 As shown in FIG. 4, the illumination optical module ILM is likely to physically interfere with the projection optical module PLM on the polarization beam splitter PBS side, and therefore, one of various lenses (first lenses) included in the illumination optical module ILM. The part is notched. In addition, although 1st Embodiment demonstrates the case where a part of various lenses of the illumination optical module ILM are notched, it is not restricted to this structure. That is, since the projection optical module PLM also easily physically interferes with the illumination optical module ILM on the polarization beam splitter PBS side, some of the various lenses (second lenses) included in the projection optical module PLM are cut out. Also good. Accordingly, some of the various lenses included in both the illumination optical module ILM and the projection optical module PLM may be cut out. However, in general, the illumination optical module ILM requires lower optical accuracy than the projection optical module PLM, and therefore it is simple and preferable to cut out some of the various lenses of the illumination optical module ILM.
 照明光学モジュールILMは、偏光ビームスプリッタPBS側に設けられた複数のリレーレンズ56の一部が切り欠かれている。複数のリレーレンズ56は、照明光束EL1の入射側から順に、第1リレーレンズ56a、第2リレーレンズ56b、第3リレーレンズ56c、第4リレーレンズ56dとなっている。第4リレーレンズ56dは、偏光ビームスプリッタPBSに隣接して設けられている。第3リレーレンズ56cは、第4リレーレンズ56dに隣接して設けられている。第2リレーレンズ56bは、第3リレーレンズ56cに所定の間隔を空けて設けられており、第2リレーレンズ56bと第3リレーレンズ56cとの間は、第2リレーレンズ56bと第1リレーレンズ56aとの間に比して長くなっている。第1リレーレンズ56aは、第2リレーレンズ56bに隣接して設けられている。偏光ビームスプリッタPBSに遠い側の第1リレーレンズ56a及び第2リレーレンズ56bは、光軸を中心として円形に形成されている。一方、偏光ビームスプリッタPBSに近い側の第3リレーレンズ56c及び第4リレーレンズ56dは、円形の一部を切り欠いた形状になっている。 The illumination optical module ILM has a part of a plurality of relay lenses 56 provided on the polarization beam splitter PBS side. The plurality of relay lenses 56 are, in order from the incident side of the illumination light beam EL1, a first relay lens 56a, a second relay lens 56b, a third relay lens 56c, and a fourth relay lens 56d. The fourth relay lens 56d is provided adjacent to the polarization beam splitter PBS. The third relay lens 56c is provided adjacent to the fourth relay lens 56d. The second relay lens 56b is provided at a predetermined interval from the third relay lens 56c, and the second relay lens 56b and the first relay lens are provided between the second relay lens 56b and the third relay lens 56c. It is longer than 56a. The first relay lens 56a is provided adjacent to the second relay lens 56b. The first relay lens 56a and the second relay lens 56b on the side far from the polarization beam splitter PBS are formed in a circle around the optical axis. On the other hand, the third relay lens 56c and the fourth relay lens 56d on the side close to the polarization beam splitter PBS have a shape in which a part of a circle is cut out.
 第3リレーレンズ56c及び第4リレーレンズ56dに照明光束EL1が入射すると、第3リレーレンズ56c及び第4リレーレンズ56dには、照明光束EL1が入射する入射領域S2と、照明光束EL1が入射しない非入射領域S1とが形成される。第3リレーレンズ56c及び第4リレーレンズ56dは、非入射領域S1の一部を欠損して形成することで、円形の一部を切り欠いた形状に形成される。具体的に、第3リレーレンズ56c及び第4リレーレンズ56dは、XZ面内において第1光軸BX1に直交する直交方向の両側を、直交方向に垂直な面で切った形状となっている。このため、第3リレーレンズ56c及び第4リレーレンズ56dは、第1光軸BX1上から見ると、略楕円形、略長円形状、略小判形等を含む形状となっている。 When the illumination light beam EL1 enters the third relay lens 56c and the fourth relay lens 56d, the incident region S2 where the illumination light beam EL1 enters and the illumination light beam EL1 do not enter the third relay lens 56c and the fourth relay lens 56d. A non-incident region S1 is formed. The third relay lens 56c and the fourth relay lens 56d are formed in a shape in which a part of a circular shape is cut out by forming a part of the non-incident region S1. Specifically, the third relay lens 56c and the fourth relay lens 56d have a shape in which both sides in the orthogonal direction orthogonal to the first optical axis BX1 are cut by surfaces perpendicular to the orthogonal direction in the XZ plane. Therefore, when viewed from above the first optical axis BX1, the third relay lens 56c and the fourth relay lens 56d have a shape including a substantially elliptical shape, a substantially oval shape, a substantially oval shape, and the like.
 ここで、図4中の偏光ビームスプリッタPBSに最も近い第4リレーレンズ56dの外形の一例を、図5Bを参照して説明する。この図5Bは、偏光ビームスプリッタPBS側から第4リレーレンズ56dを見たもので、照明光束EL1が通る入射領域S2を挟んで、Z方向の上下に照明光束EL1が通らない非入射領域S1が存在する。第4リレーレンズ56dは、所定直径の円形レンズとして製造された後、非入射領域S1に相当する部分をカットして作られる。 Here, an example of the outer shape of the fourth relay lens 56d closest to the polarization beam splitter PBS in FIG. 4 will be described with reference to FIG. 5B. FIG. 5B is a view of the fourth relay lens 56d from the polarization beam splitter PBS side. A non-incident region S1 where the illumination light beam EL1 does not pass vertically in the Z direction is sandwiched between the incident region S2 through which the illumination light beam EL1 passes. Exists. The fourth relay lens 56d is manufactured by cutting a portion corresponding to the non-incident region S1 after being manufactured as a circular lens having a predetermined diameter.
 その円形レンズの直径は、マスクM上の照明領域IRの大きさ、ワーキングディスタンス、照明光束EL1の開口数(NA)、及び図5Aで説明した照明光束EL1の主光線の非テレセンの度合に応じて決められる。図5Bにおいて、マスクM上に設定される照明領域IR(ここでは光軸BX1が通る点Q1を中心としたY方向を長辺とする長方形とする)の四隅に着目する。その四隅のひとつの点をFFaとすると、照明領域IR中の点FFaは、第4リレーレンズ56dを通る照明光束EL1のうち、ほぼ円形の部分照明光束EL1aによって照射される。部分照明光束EL1aの第4リレーレンズ56d上での円形分布の寸法は、ワーキングディスタンス(焦点距離)や照明光束EL1の開口数(NA)で決まる。 The diameter of the circular lens depends on the size of the illumination area IR on the mask M, the working distance, the numerical aperture (NA) of the illumination light beam EL1, and the degree of non-telecentricity of the chief ray of the illumination light beam EL1 described in FIG. 5A. Can be decided. In FIG. 5B, attention is paid to the four corners of the illumination region IR set on the mask M (here, a rectangle having a long side in the Y direction around the point Q1 through which the optical axis BX1 passes). Assuming that one of the four corners is FFa, the point FFa in the illumination region IR is irradiated with a substantially circular partial illumination light beam EL1a out of the illumination light beam EL1 passing through the fourth relay lens 56d. The size of the circular distribution of the partial illumination light beam EL1a on the fourth relay lens 56d is determined by the working distance (focal length) and the numerical aperture (NA) of the illumination light beam EL1.
 また、図5Aで説明したように、マスクM上での照明光束EL1の各主光線は、XZ面内では非テレセントリックな状態となるので、マスクM上の点FFaを通る部分照明光束EL1aの主光線は、第4リレーレンズ56d上では、Z方向に一定量シフトすることになる。このように、照明領域IRの四隅(及び外縁上)の各点を照射する部分照明光束の第4リレーレンズ56d上での分布の全てを重畳したものが、第4リレーレンズ56d上の入射領域S2に分布する照明光束EL1となる。従って、照明光束EL1の第4リレーレンズ56d上での分布(広がり)を、照明光束EL1のXZ面内での非テレセントリックな状態も加味して求め、入射領域S2(照明光束EL1の分布領域)をカバーする大きさとなるように、第4リレーレンズ56dの形状と寸法を決めれば良い。 Further, as described with reference to FIG. 5A, each principal ray of the illumination light beam EL1 on the mask M is in a non-telecentric state in the XZ plane, and thus the principal illumination light beam EL1a passing through the point FFa on the mask M The light beam is shifted by a certain amount in the Z direction on the fourth relay lens 56d. As described above, an incident region on the fourth relay lens 56d is obtained by superimposing all the distributions on the fourth relay lens 56d of the partial illumination light beam that irradiates each of the four corners (and on the outer edge) of the illumination region IR. The illumination light beam EL1 distributed in S2. Accordingly, the distribution (spreading) of the illumination light beam EL1 on the fourth relay lens 56d is obtained in consideration of the non-telecentric state in the XZ plane of the illumination light beam EL1, and the incident region S2 (distribution region of the illumination light beam EL1). What is necessary is just to determine the shape and dimension of the 4th relay lens 56d so that it may become the magnitude | size which covers this.
 第4リレーレンズ56dと同様に、図4中の他のレンズ56c、又はレンズ56a、56bについても、実質的な照明光束EL1の分布領域を考慮して、それをカバーする大きさとなるように、レンズの外形と寸法を決めることができる。 Similar to the fourth relay lens 56d, the other lens 56c in FIG. 4 or the lenses 56a and 56b are also sized so as to cover the distribution area of the substantial illumination light beam EL1 in consideration of the distribution area. The outer shape and dimensions of the lens can be determined.
 一般に、パワー(屈折力)を持つ高精度なレンズは、光学ガラスや石英等の円形の硝材の表面を研磨して作られるが、初めから、例えば図5Bのようにして決められた入射領域S2に相当する大きさの略小判形、略楕円形、略長円形状、又は略長方形の硝材を用意し、その表面を研磨して所望のレンズ面を形成しても良い。その場合は、非入射領域S1に相当する部分をカットする工程が不要となる。 In general, a high-precision lens having power (refractive power) is made by polishing the surface of a circular glass material such as optical glass or quartz. From the beginning, for example, an incident region S2 determined as shown in FIG. 5B. An approximately oval, approximately oval, approximately oval, or approximately rectangular glass material having a size corresponding to 1 may be prepared, and the surface thereof may be polished to form a desired lens surface. In that case, a step of cutting a portion corresponding to the non-incident region S1 becomes unnecessary.
<偏光ビームスプリッタ>
 次に、第1実施形態の露光装置U3に設けられた偏光ビームスプリッタPBSの構成について、図6、図8から図11を参照して説明する。図8は、第1実施形態の偏光ビームスプリッタの偏光膜周りの構成を示す図である。図9は、第1実施形態に対する比較例の偏光ビームスプリッタの偏光膜周りの構成を示す図である。図10は、図8に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。図11は、図9に示す偏光ビームスプリッタの透過特性及び反射特性を示すグラフである。
<Polarized beam splitter>
Next, the configuration of the polarization beam splitter PBS provided in the exposure apparatus U3 of the first embodiment will be described with reference to FIGS. 6 and 8 to 11. FIG. FIG. 8 is a diagram illustrating a configuration around the polarizing film of the polarizing beam splitter according to the first embodiment. FIG. 9 is a diagram illustrating a configuration around a polarizing film of a polarizing beam splitter of a comparative example with respect to the first embodiment. FIG. 10 is a graph showing transmission characteristics and reflection characteristics of the polarizing beam splitter shown in FIG. FIG. 11 is a graph showing transmission characteristics and reflection characteristics of the polarization beam splitter shown in FIG.
 図6に示すように、偏光ビームスプリッタPBSは、第1プリズム91と、第2プリズム92と、第1プリズム91及び第2プリズム92の間に設けられた偏光膜93とを有している。第1プリズム91及び第2プリズム92は、石英ガラスで構成され、XZ面内において異なる三角形状の三角プリズムとなっている。そして、偏光ビームスプリッタPBSは、三角形状の第1プリズム91と第2プリズム92とが偏光膜93を挟んで接合されることで、XZ面内において四角形状となる。 As shown in FIG. 6, the polarizing beam splitter PBS includes a first prism 91, a second prism 92, and a polarizing film 93 provided between the first prism 91 and the second prism 92. The first prism 91 and the second prism 92 are made of quartz glass and are triangular prisms having different triangular shapes in the XZ plane. The polarizing beam splitter PBS has a quadrangular shape in the XZ plane by joining the triangular first prism 91 and the second prism 92 with the polarizing film 93 interposed therebetween.
 第1プリズム91は、照明光束EL1及び投影光束EL2が入射する側のプリズムである。第1プリズム91は、照明光学モジュールILMからの照明光束EL1が入射する第1面D1と、マスクMからの投影光束EL2が入射する第2面D2とを有している。第1面D1は、照明光束EL1の主光線に対して垂直面となっている。また、第2面D2は、投影光束EL2の主光線に対して垂直面となっている。 The first prism 91 is a prism on the side on which the illumination light beam EL1 and the projection light beam EL2 are incident. The first prism 91 has a first surface D1 on which the illumination light beam EL1 from the illumination optical module ILM is incident, and a second surface D2 on which the projection light beam EL2 from the mask M is incident. The first surface D1 is a surface perpendicular to the chief ray of the illumination light beam EL1. The second surface D2 is a surface perpendicular to the principal ray of the projection light beam EL2.
 第2プリズム92は、偏光膜93を透過する投影光束EL2が出射する側のプリズムである。第2プリズム92は、第1プリズム91の第1面D1に対向する第3面D3と、第1プリズム91の第2面D2に対向する第4面D4とを有している。第4面D4は、第1プリズム91に入射した投影光束EL2が偏光膜93を透過して出射する面となっており、出射する投影光束EL2の主光線に対して垂直面となっている。このとき、第1面D1は、対向する第3面D3と非平行となる一方で、第2面D2は、対向する第4面D4と平行となる。 The second prism 92 is a prism on the side from which the projection light beam EL2 transmitted through the polarizing film 93 is emitted. The second prism 92 has a third surface D3 that faces the first surface D1 of the first prism 91, and a fourth surface D4 that faces the second surface D2 of the first prism 91. The fourth surface D4 is a surface on which the projection light beam EL2 incident on the first prism 91 is transmitted through the polarizing film 93 and is emitted, and is a surface perpendicular to the principal light beam of the projection light beam EL2 to be emitted. At this time, the first surface D1 is non-parallel to the opposing third surface D3, while the second surface D2 is parallel to the opposing fourth surface D4.
 偏光膜93には、第1プリズム91から第2プリズム92へ向かう照明光束EL1が入射する。偏光膜93は、S偏光(直線偏光)の照明光束EL1を反射し、P偏光(直線偏光)の投影光束EL2を透過する。偏光膜93は、主成分が二酸化ケイ素(SiO)の膜体と、主成分が酸化ハフニウム(HfO)の膜体とを膜厚方向に積層して形成されている。酸化ハフニウムは、石英と同等に光束の吸収が少ない材料であり、光束の吸収による変化が生じ難い材料である。この偏光膜93は、所定のブリュースター角θBとなる膜になっている。ここで、ブリュースター角θBは、P偏光の反射率がゼロとなる角である。 The illumination light beam EL <b> 1 traveling from the first prism 91 to the second prism 92 is incident on the polarizing film 93. The polarizing film 93 reflects the S-polarized (linearly polarized) illumination light beam EL1 and transmits the P-polarized (linearly polarized) light beam EL2. The polarizing film 93 is formed by laminating a film body whose main component is silicon dioxide (SiO 2 ) and a film body whose main component is hafnium oxide (HfO 2 ) in the film thickness direction. Hafnium oxide is a material that absorbs as little light as quartz, and hardly changes due to the absorption of light. The polarizing film 93 is a film having a predetermined Brewster angle θB. Here, the Brewster angle θB is an angle at which the reflectance of P-polarized light becomes zero.
 ブリュースター角θBは、下記の式から算出される。なお、nhは、酸化ハフニウムの屈折率であり、nLは、二酸化ケイ素の屈折率であり、nsは、プリズム(石英ガラス)の屈折率である。
θB=arcsin([(nh×nL)/{ns(nh+nL)}]0.5
ここで、nh=2.07(HfO)、nL=1.47(SiO)、ns=1.47(石英ガラス)、とすると、上記の式から、偏光膜93のブリュースター角θBは、略54.6°になる。
The Brewster angle θB is calculated from the following equation. Note that nh is the refractive index of hafnium oxide, nL is the refractive index of silicon dioxide, and ns is the refractive index of the prism (quartz glass).
θB = arcsin ([(nh 2 × nL 2 ) / {ns 2 (nh 2 + nL 2 )}] 0.5 )
Here, when nh = 2.07 (HfO 2 ), nL = 1.47 (SiO 2 ), and ns = 1.47 (quartz glass), the Brewster angle θB of the polarizing film 93 is , Approximately 54.6 °.
 但し、各材料の屈折率nh、nL、nsは、上記数値に一義的に限定されるものではない。屈折率は、概ね紫外から可視光までの使用波長に対して変化し、多少の範囲を持つ。また、各種材料に若干の添加を行なうことによって屈折率が変化する場合もある。例えば、酸化ハフニウムの屈折率nhは、2.00~2.15の範囲、二酸化ケイ素の屈折率nLは、1.45~1.48の範囲に分布する。また使用波長により屈折が変化することを考慮すると、プリズム(石英ガラス)の屈折率nsも変化することになる。屈折率nsは上記SiOと同様に1.45~1.48の範囲にあるとすると、上記の式から導かれる偏光膜93のブリュースター角θBは、52.4°~57.3°の範囲を持つことになる。 However, the refractive indexes nh, nL, and ns of the respective materials are not uniquely limited to the above numerical values. The refractive index generally varies with the wavelength used from ultraviolet to visible light, and has a certain range. In addition, the refractive index may change by slightly adding various materials. For example, the refractive index nh of hafnium oxide is distributed in the range of 2.00 to 2.15, and the refractive index nL of silicon dioxide is distributed in the range of 1.45 to 1.48. In consideration of the change in refraction depending on the wavelength used, the refractive index ns of the prism (quartz glass) also changes. Assuming that the refractive index ns is in the range of 1.45 to 1.48 as in the case of SiO 2 above, the Brewster angle θB of the polarizing film 93 derived from the above formula is 52.4 ° to 57.3 °. Will have a range.
 このように、各材料の屈折率nh、nL、nsが材料組成や使用波長によって若干変わることから、ブリュースター角θBも変わり得るが、以下の具体例では、θB=54.6°として説明する。 As described above, since the refractive indexes nh, nL, and ns of each material slightly change depending on the material composition and the wavelength used, the Brewster angle θB can also be changed. However, in the following specific example, explanation will be made assuming that θB = 54.6 °. .
 このとき、図6に示すように補助線(点線)L1を引くと、偏光膜93と第1面D1とのなす角度θ2は、偏光膜93に入射する照明光束EL1の主光線の入射角θ1と同じ角度になることが分かる。つまり、第1プリズム91は、第1面D1と偏光膜93とがなす角度θ2が、照明光束EL1の主光線の入射角θ1と同じ角度となるように形成される。 At this time, when the auxiliary line (dotted line) L1 is drawn as shown in FIG. 6, the angle θ2 formed between the polarizing film 93 and the first surface D1 is the incident angle θ1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93. It turns out that it becomes the same angle. That is, the first prism 91 is formed such that the angle θ2 formed by the first surface D1 and the polarizing film 93 is the same as the incident angle θ1 of the principal ray of the illumination light beam EL1.
 尚、図6では、照明光束EL1を偏光膜93で反射させ、マスクMからの反射光(投影光束EL2)は偏光膜93を透過させるように、偏光ビームスプリッタPBSを構成したが、偏光膜93に対する照明光束EL1と投影光束EL2の反射・透過特性は逆にしても良い。即ち、照明光束EL1は偏光膜93を透過させ、マスクMからの反射光(投影光束EL2)は偏光膜93で反射させるようにしても良い。そのような実施形態については後述する。 In FIG. 6, the polarization beam splitter PBS is configured such that the illumination light beam EL1 is reflected by the polarization film 93 and the reflected light from the mask M (projection light beam EL2) is transmitted through the polarization film 93. The reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 may be reversed. That is, the illumination light beam EL1 may be transmitted through the polarizing film 93, and the reflected light from the mask M (projection light beam EL2) may be reflected by the polarizing film 93. Such an embodiment will be described later.
 図8に示すように、偏光膜93は、第1プリズム91と第2プリズム92とを結ぶ方向が膜厚方向となっている。偏光膜93は、二酸化ケイ素の第1膜体H1と酸化ハフニウムの第2膜体H2とを有しており、第1膜体H1と第2膜体H2とが膜厚方向に積層されている。具体的に、偏光膜93は、第1膜体H1と第2膜体H2とからなる層体Hを、膜厚方向に周期的に複数積層した周期層となっている。ここで、偏光膜93に入射する照明光束EL1の主光線の入射角θ1が54.6°のブリュースター角θBとなる場合、偏光膜93は、層体Hを18周期以上30周期以下とした周期層に形成される。層体Hは、照明光束EL1の波長λに対してλ/4波長となる膜厚の第1膜体H1と、第1膜体H1を挟んで膜厚方向の両側に設けられ、照明光束EL1の波長λに対してλ/8波長となる膜厚の一対の第2膜体H2とを含んで構成される。このように構成された層体Hは、膜厚方向に複数積層されることで、層体Hの各第2膜体H2が、隣接する層体Hの各第2膜体H2と一体になり、λ/4波長の膜厚となる第2膜体H2が形成される。このため、偏光膜93は、膜厚方向の両側の膜体が、λ/8波長の膜厚となる一対の第2膜体H2となり、λ/8波長の膜厚となる一対の第2膜体H2の間において、λ/4波長の膜厚となる第1膜体H1とλ/4波長の膜厚となる第2膜体H2とが交互に設けられる。 As shown in FIG. 8, in the polarizing film 93, the direction connecting the first prism 91 and the second prism 92 is the film thickness direction. The polarizing film 93 includes a first film body H1 of silicon dioxide and a second film body H2 of hafnium oxide, and the first film body H1 and the second film body H2 are stacked in the film thickness direction. . Specifically, the polarizing film 93 is a periodic layer in which a plurality of layer bodies H composed of the first film body H1 and the second film body H2 are periodically stacked in the film thickness direction. Here, when the incident angle θ1 of the chief ray of the illumination light beam EL1 incident on the polarizing film 93 becomes the Brewster angle θB of 54.6 °, the polarizing film 93 has the layered body H of 18 cycles or more and 30 cycles or less. Formed in the periodic layer. The layer body H is provided on the both sides in the film thickness direction with the first film body H1 having a thickness of λ / 4 wavelength with respect to the wavelength λ of the illumination light beam EL1 and the first film body H1, and the illumination light beam EL1. And a pair of second film bodies H2 having a thickness of λ / 8 wavelength with respect to the wavelength λ. A plurality of layer bodies H configured as described above are laminated in the film thickness direction so that each second film body H2 of the layer body H is integrated with each second film body H2 of the adjacent layer body H. The second film body H2 having a film thickness of λ / 4 wavelength is formed. Therefore, in the polarizing film 93, the film bodies on both sides in the film thickness direction become a pair of second film bodies H2 having a film thickness of λ / 8 wavelength, and a pair of second films having a film thickness of λ / 8 wavelength. Between the bodies H2, first film bodies H1 having a thickness of λ / 4 wavelength and second film bodies H2 having a thickness of λ / 4 wavelength are alternately provided.
 また、偏光膜93は、接着剤またはオプティカルコンタクトによって、第1プリズム91及び第2プリズム92の間に固定される。例えば、偏光ビームスプリッタPBSは、第1プリズム91上に偏光膜93が形成された後、接着剤を介して第2プリズム92が偏光膜93上に接合して形成される。 Further, the polarizing film 93 is fixed between the first prism 91 and the second prism 92 by an adhesive or an optical contact. For example, the polarizing beam splitter PBS is formed by forming the polarizing film 93 on the first prism 91 and then bonding the second prism 92 on the polarizing film 93 via an adhesive.
 次に、図10を参照して、上記の偏光ビームスプリッタPBSの透過特性及び反射特性について説明する。図10では、偏光ビームスプリッタPBSの偏光膜93に入射する照明光束EL1の主光線の入射角θ1を、54.6°のブリュースター角θBとし、偏光膜93は、21周期層とし、照明光束EL1は、第3(3倍)高調波のYAGレーザを用いている。図10に示すグラフは、その横軸が入射角θ1となっており、その縦軸が、透過率・反射率となっている。図10に示すグラフにおいて、Rsは、偏光膜93に入射するS偏光の反射光束であり、Rpは、偏光膜93に入射するP偏光の反射光束であり、Tsは、偏光膜93に入射するS偏光の透過光束であり、Tpは、偏光膜93に入射するP偏光の透過光束である。 Next, the transmission characteristics and reflection characteristics of the polarizing beam splitter PBS will be described with reference to FIG. In FIG. 10, the incident angle θ1 of the chief ray of the illumination light beam EL1 incident on the polarization film 93 of the polarization beam splitter PBS is set to a Brewster angle θB of 54.6 °, the polarization film 93 is a 21 period layer, and the illumination light beam EL1 uses a YAG laser of the third (triple) harmonic. In the graph shown in FIG. 10, the horizontal axis represents the incident angle θ1, and the vertical axis represents the transmittance / reflectance. In the graph shown in FIG. 10, Rs is an S-polarized reflected light beam incident on the polarizing film 93, Rp is a P-polarized reflected light beam incident on the polarizing film 93, and Ts is incident on the polarizing film 93. An S-polarized transmitted light beam, and Tp is a P-polarized transmitted light beam incident on the polarizing film 93.
 ここで、偏光ビームスプリッタPBSの偏光膜93は、S偏光の反射光束(照明光束)を反射し、P偏光の透過光束(投影光束)を透過する構成となっていることから、反射光束Rsの反射率が高く、透過光束Tpの透過率が高い膜特性が優れた偏光膜93となる。換言すれば、反射光束Rpの反射率が低く、透過光束Tsの透過率が低い膜特性が優れた偏光膜となる。図10において、最適に使用可能な偏光膜93の透過率・反射率の範囲は、54.6°のブリュースター角θBにおける反射光束Rsの反射率及び透過光束Tpの透過率に対し、透過率・反射率が-5%の低下を許容する範囲である。つまり、ブリュースター角θBにおける透過率・反射率は100%であることから、反射光束Rsの反射率及び透過光束Tpの透過率が95%以上となる範囲が、最適に使用できる偏光膜93の透過率・反射率の範囲である。図10に示す場合では、反射光束Rsの反射率及び透過光束Tpの透過率が95%以上となる範囲において、入射角θ1の範囲は、46.8°以上61.4°以下となる。 Here, the polarizing film 93 of the polarizing beam splitter PBS is configured to reflect the reflected light beam (illumination light beam) of S-polarized light and transmit the transmitted light beam (projected light beam) of P-polarized light. A polarizing film 93 having high reflectance and excellent film characteristics with high transmittance of the transmitted light beam Tp is obtained. In other words, a polarizing film having excellent film characteristics in which the reflectance of the reflected light beam Rp is low and the transmittance of the transmitted light beam Ts is low. In FIG. 10, the range of transmittance / reflectance of the polarizing film 93 that can be used optimally is the transmittance with respect to the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp at the Brewster angle θB of 54.6 °. -Reflectance is in a range that allows a decrease of -5%. That is, since the transmittance / reflectance at the Brewster angle θB is 100%, the range in which the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more can be optimally used. This is the range of transmittance and reflectance. In the case shown in FIG. 10, in the range where the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more, the range of the incident angle θ1 is 46.8 ° or more and 61.4 ° or less.
 以上から、図10では、偏光ビームスプリッタPBSの偏光膜93に入射する照明光束EL1の主光線の入射角θ1を、54.6°のブリュースター角θBとした場合、照明光束EL1の主光線以外の光線の入射角の範囲を、46.8°以上61.4°以下とすることができるため、偏光膜93に入射させる照明光束EL1の入射角の角度範囲を14.6°の範囲にできることが分かる。 From the above, in FIG. 10, when the incident angle θ1 of the chief ray of the illumination beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is set to a Brewster angle θB of 54.6 °, other than the chief ray of the illumination beam EL1 Since the incident angle range of the light beam can be 46.8 ° or more and 61.4 ° or less, the incident angle range of the illumination light beam EL1 incident on the polarizing film 93 can be set to a range of 14.6 °. I understand.
 従って、露光装置U3の照明光学モジュールILMは、偏光ビームスプリッタPBSの偏光膜93に入射する照明光束EL1の入射角θ1の角度範囲が、46.8°以上61.4°以下になると共に、照明光束EL1の主光線が54.6°のブリュースター角θBになるように、照明光束EL1を出射できる。 Therefore, in the illumination optical module ILM of the exposure apparatus U3, the angle range of the incident angle θ1 of the illumination light beam EL1 incident on the polarizing film 93 of the polarization beam splitter PBS is 46.8 ° or more and 61.4 ° or less, and illumination is performed. The illumination light beam EL1 can be emitted so that the principal ray of the light beam EL1 has a Brewster angle θB of 54.6 °.
 次に、図9を参照し、図8に示す第1実施形態の偏光ビームスプリッタPBSに対する比較例としての偏光ビームスプリッタPBSについて説明する。比較例となる偏光ビームスプリッタPBSは、第1実施形態と略同様の構成となっており、第1プリズム91と、第2プリズム92と、第1プリズム91及び第2プリズム92の間に設けられた偏光膜100とを有している。第1プリズム91及び第2プリズム92は、第1実施形態と同様であるため、説明を省略する。 Next, a polarization beam splitter PBS as a comparative example with respect to the polarization beam splitter PBS of the first embodiment shown in FIG. 8 will be described with reference to FIG. A polarizing beam splitter PBS as a comparative example has substantially the same configuration as that of the first embodiment, and is provided between the first prism 91, the second prism 92, and the first prism 91 and the second prism 92. The polarizing film 100. Since the first prism 91 and the second prism 92 are the same as those in the first embodiment, description thereof is omitted.
 比較例となる偏光ビームスプリッタPBSの偏光膜100には、偏光膜100に入射する照明光束EL1の主光線が45°の入射角θ1になるような膜となっている。具体的に、偏光膜100に入射する照明光束EL1の主光線が45°の入射角θ1となる場合、偏光膜100は、第1実施形態と同様の層体Hを膜厚方向に31周期以上40周期以下とした周期層となっている。 The polarizing film 100 of the polarizing beam splitter PBS as a comparative example is a film in which the principal ray of the illumination light beam EL1 incident on the polarizing film 100 has an incident angle θ1 of 45 °. Specifically, when the chief ray of the illumination light beam EL1 incident on the polarizing film 100 has an incident angle θ1 of 45 °, the polarizing film 100 includes the same layered body H as in the first embodiment for 31 periods or more in the film thickness direction. It is a periodic layer with 40 cycles or less.
 次に、図11を参照して、比較例の偏光ビームスプリッタPBSの透過特性及び反射特性について説明する。図11では、偏光ビームスプリッタPBSの偏光膜100に入射する照明光束EL1の主光線の入射角θ1を、45°の入射角とし、偏光膜100は、33周期層とし、照明光束EL1は、第3(3倍)高調波のYAGレーザを用いている。図11に示すグラフは、図10と同様に、その横軸が入射角、その縦軸が透過率・反射率、Rsが偏光膜100に入射するS偏光の反射光束、Rpが偏光膜100に入射するP偏光の反射光束、Tsが偏光膜100に入射するS偏光の透過光束、Tpが偏光膜100に入射するP偏光の透過光束である。 Next, the transmission characteristics and reflection characteristics of the polarizing beam splitter PBS of the comparative example will be described with reference to FIG. In FIG. 11, the incident angle θ1 of the chief ray of the illumination light beam EL1 incident on the polarization film 100 of the polarization beam splitter PBS is 45 °, the polarization film 100 is a 33-period layer, and the illumination light beam EL1 is the first light beam EL1. A YAG laser of 3 (three times) harmonics is used. In the graph shown in FIG. 11, the horizontal axis represents the incident angle, the vertical axis represents the transmittance / reflectance, Rs represents the S-polarized reflected light beam incident on the polarizing film 100, and Rp represents the polarizing film 100 as in FIG. 10. An incident P-polarized reflected beam, Ts is an S-polarized transmitted beam incident on the polarizing film 100, and Tp is a P-polarized transmitted beam incident on the polarizing film 100.
 図11において、最適に使用可能な偏光膜100の透過率・反射率の範囲は、反射光束Rsの反射率及び透過光束Tpの透過率が95%以上となる範囲である。図11に示す場合では、反射光束Rsの反射率及び透過光束Tpの透過率が95%以上となる範囲において、入射角θ1の範囲は、41.9°以上48.7°以下となる。 In FIG. 11, the range of transmittance and reflectance of the polarizing film 100 that can be optimally used is a range in which the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more. In the case shown in FIG. 11, in the range where the reflectance of the reflected light beam Rs and the transmittance of the transmitted light beam Tp are 95% or more, the range of the incident angle θ1 is 41.9 ° or more and 48.7 ° or less.
 以上から、図11では、偏光ビームスプリッタPBSの偏光膜100に入射する照明光束EL1の主光線の入射角θ1を、45°とした場合、照明光束EL1の主光線以外の光線の入射角θ1の角度範囲を、41.9°以上48.7°以下とすることができるため、偏光膜100に入射させる照明光束EL1の入射角θ1の角度範囲を6.8°の範囲にできることが分かる。よって、図8に示す偏光ビームスプリッタPBSは、図9に示す偏光ビームスプリッタPBSに比して、照明光束EL1の入射角θ1の角度範囲を、2倍程度広くすることができる。 From the above, in FIG. 11, when the incident angle θ1 of the chief ray of the illumination beam EL1 incident on the polarizing film 100 of the polarization beam splitter PBS is 45 °, the incident angle θ1 of the beam other than the chief ray of the illumination beam EL1 Since the angle range can be 41.9 ° or more and 48.7 ° or less, it can be seen that the angle range of the incident angle θ1 of the illumination light beam EL1 incident on the polarizing film 100 can be set to a range of 6.8 °. Therefore, the polarization beam splitter PBS shown in FIG. 8 can make the angle range of the incident angle θ1 of the illumination light beam EL1 about twice as large as that of the polarization beam splitter PBS shown in FIG.
<デバイス製造方法>
 次に、図12を参照して、デバイス製造方法について説明する。図12は、第1実施形態のデバイス製造方法を示すフローチャートである。
<Device manufacturing method>
Next, a device manufacturing method will be described with reference to FIG. FIG. 12 is a flowchart illustrating the device manufacturing method according to the first embodiment.
 図12に示すデバイス製造方法では、まず、例えば有機EL等の自発光素子による表示パネルの機能・性能設計を行い、必要な回路パターンや配線パターンをCAD等で設計する(ステップS201)。次いで、CAD等で設計された各種レイヤー毎のパターンに基づいて、必要なレイヤー分のマスクMを製作する(ステップS202)。また、表示パネルの基材となる可撓性の基板P(樹脂フィルム、金属箔膜、プラスチック等)が巻かれた供給用ロールFR1を準備しておく(ステップS203)。なお、このステップS203にて用意しておくロール状の基板Pは、必要に応じてその表面を改質したもの、下地層(例えばインプリント方式による微小凹凸)を事前形成したもの、光感応性の機能膜や透明膜(絶縁材料)を予めラミネートしたもの、でも良い。 In the device manufacturing method shown in FIG. 12, first, the function / performance design of a display panel using, for example, a self-luminous element such as an organic EL is performed, and necessary circuit patterns and wiring patterns are designed using CAD or the like (step S201). Next, a mask M for a necessary layer is manufactured based on the pattern for each layer designed by CAD or the like (step S202). In addition, a supply roll FR1 around which a flexible substrate P (resin film, metal foil film, plastic, etc.) serving as a display panel base material is wound is prepared (step S203). Note that the roll-shaped substrate P prepared in step S203 has a surface modified as necessary, a pre-formed base layer (for example, micro unevenness by an imprint method), and light sensitivity. The functional film or transparent film (insulating material) previously laminated may be used.
 次いで、基板P上に表示パネルデバイスを構成する電極や配線、絶縁膜、TFT(薄膜半導体)等によって構成されるバックプレーン層を形成すると共に、そのバックプレーンに積層されるように、有機EL等の自発光素子による発光層(表示画素部)が形成される(ステップS204)。このステップS204には、先の各実施形態で説明した露光装置U3を用いて、フォトレジスト層を露光する従来のフォトリソグラフィ工程も含まれるが、フォトレジストの代わりに感光性シランカップリング材を塗布した基板Pをパターン露光して表面に親撥水性によるパターンを形成する露光工程、光感応性の触媒層をパターン露光し無電解メッキ法によって金属膜のパターン(配線、電極等)を形成する湿式工程、或いは、銀ナノ粒子を含有した導電性インク等によってパターンを描画する印刷工程、等による処理も含まれる。 Next, a backplane layer composed of electrodes, wiring, insulating film, TFT (thin film semiconductor), etc. constituting the display panel device is formed on the substrate P, and an organic EL or the like is laminated on the backplane. A light emitting layer (display pixel portion) is formed by the self light emitting element (step S204). This step S204 includes a conventional photolithography process in which the photoresist layer is exposed using the exposure apparatus U3 described in the previous embodiments, but a photosensitive silane coupling material is applied instead of the photoresist. Patterning the exposed substrate P to form a pattern based on hydrophilicity and water repellency on the surface, and wet processing for patterning the photosensitive catalyst layer and patterning the metal film (wiring, electrode, etc.) by electroless plating The process includes a process or a printing process in which a pattern is drawn with a conductive ink containing silver nanoparticles, or the like.
 次いで、ロール方式で長尺の基板P上に連続的に製造される表示パネルデバイス毎に、基板Pをダイシングしたり、各表示パネルデバイスの表面に、保護フィルム(対環境バリア層)やカラーフィルターシート等を貼り合せたりして、デバイスを組み立てる(ステップS205)。次いで、表示パネルデバイスが正常に機能するか、所望の性能や特性を満たしているかの検査工程が行なわれる(ステップS206)。以上のようにして、表示パネル(フレキシブル・ディスプレー)を製造することができる。 Next, the substrate P is diced for each display panel device continuously manufactured on the long substrate P by a roll method, and a protective film (environmental barrier layer) or a color filter is formed on the surface of each display panel device. A device is assembled by pasting sheets or the like (step S205). Next, an inspection process is performed to determine whether the display panel device functions normally or satisfies desired performance and characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.
 以上、第1実施形態は、偏光ビームスプリッタPBSを用いた落射照明となる照明光学系ILにおいて、偏光ビームスプリッタPBSにより照明光束EL1を反射し、投影光束EL2を透過する場合、偏光ビームスプリッタPBSを照明光学系IL及び投影光学系PLで共有し、照明光学モジュールILM内の少なくとも偏光ビームスプリッタPBSに近いレンズ素子の外形を、照明光束EL1の分布に応じた形状に設定することにより、照明光学モジュールILM及び偏光ビームスプリッタPBSを、マスクMと投影光学モジュールPLMとの間に設けることができる。このため、照明光学系IL及び投影光学系PLの物理的な干渉、特に、照明光学モジュールILMと投影光学モジュールPLMとの物理的な干渉条件を緩和し、照明光学モジュールILMと偏光ビームスプリッタPBSとの配置の自由度、投影光学モジュールPLMと偏光ビームスプリッタPBSとの配置の自由度を高められ、照明光学系IL及び投影光学系PLを容易に配置することが可能となる。 As described above, in the first embodiment, in the illumination optical system IL that is epi-illumination using the polarization beam splitter PBS, when the illumination light beam EL1 is reflected by the polarization beam splitter PBS and the projection light beam EL2 is transmitted, the polarization beam splitter PBS is used. The illumination optical module is shared by the illumination optical system IL and the projection optical system PL, and the outer shape of the lens element in the illumination optical module ILM at least near the polarization beam splitter PBS is set to a shape corresponding to the distribution of the illumination light beam EL1. An ILM and a polarizing beam splitter PBS can be provided between the mask M and the projection optical module PLM. For this reason, the physical interference between the illumination optical system IL and the projection optical system PL, particularly the physical interference condition between the illumination optical module ILM and the projection optical module PLM, is alleviated, and the illumination optical module ILM and the polarization beam splitter PBS The degree of freedom of arrangement and the degree of freedom of arrangement of the projection optical module PLM and the polarization beam splitter PBS can be increased, and the illumination optical system IL and the projection optical system PL can be easily arranged.
 また、第1実施形態は、偏光ビームスプリッタPBSに隣接する第4リレーレンズ56dや第3リレーレンズ56cが、実質的に照明光束EL1が通る部分(入射領域S2)を含み、実質的に照明光束EL1が通らない部分(非入射領域S1)の無いレンズ外形とした為、コンパクトな照明光学モジュールILMとしつつも、照明光束EL1をほとんどロスすることなく、照明領域IRの照明条件(テレセン性、照度均一性等)を高精度に維持しつつ、照明光学モジュールILM及び投影光学モジュールPLMの配置の自由度を高めることができる。 In the first embodiment, the fourth relay lens 56d and the third relay lens 56c adjacent to the polarization beam splitter PBS substantially include a portion (incident region S2) through which the illumination light beam EL1 passes, and substantially the illumination light beam. Since the lens outer shape does not have a portion where EL1 does not pass (non-incident region S1), the illumination condition (telecentricity, illuminance) of the illumination region IR is hardly lost while the compact illumination optical module ILM is obtained. The degree of freedom of arrangement of the illumination optical module ILM and the projection optical module PLM can be increased while maintaining uniformity and the like with high accuracy.
 なお、第1実施形態では、照明光学モジュールILMに含まれるレンズの一部を欠損させて外形を小さくしたが、投影光学モジュールPLMに含まれるレンズの一部を欠損させて外形を小さくしてもよい。この場合も、照明光学モジュールILMと同様に、偏光ビームスプリッタPBSに近い側のレンズ、例えば、第1レンズ群71の第1偏向部材70側にあるレンズの一部を欠損させて外形を小さくすることができる。 In the first embodiment, a part of the lens included in the illumination optical module ILM is lost to reduce the outer shape, but a part of the lens included in the projection optical module PLM may be lost to reduce the outer shape. Good. Also in this case, as in the illumination optical module ILM, the outer shape is reduced by deleting a part of the lens near the polarizing beam splitter PBS, for example, a part of the first lens group 71 on the first deflection member 70 side. be able to.
 また、第1実施形態は、偏光ビームスプリッタPBSの偏光膜93を、二酸化ケイ素の第1膜体H1と酸化ハフニウムの第2膜体H2とを膜厚方向に積層して形成することができる。このため、偏光膜93は、偏光膜93に入射するS偏光の反射光束(照明光束)の反射率、及び偏光膜93に入射するP偏光の透過光束(投影光束)の透過率を高いものとすることができる。これにより、偏光ビームスプリッタPBSは、i線以下の波長となるエネルギー密度の高い照明光束EL1が偏光膜93に入射した場合であっても、偏光膜93に加わる負荷を抑制することができ、反射光束と透過光束とに好適に分離することができる。 In the first embodiment, the polarizing film 93 of the polarizing beam splitter PBS can be formed by laminating the first film body H1 of silicon dioxide and the second film body H2 of hafnium oxide in the film thickness direction. Therefore, the polarizing film 93 has a high reflectance of the S-polarized reflected light beam (illumination light beam) incident on the polarizing film 93 and the transmittance of the P-polarized transmitted light beam (projected light beam) incident on the polarizing film 93. can do. As a result, the polarizing beam splitter PBS can suppress the load applied to the polarizing film 93 even when the illumination light beam EL1 having a high energy density having a wavelength equal to or shorter than the i-line is incident on the polarizing film 93. The light beam and the transmitted light beam can be suitably separated.
 また、第1実施形態は、偏光膜93を、偏光膜93に入射する照明光束EL1の主光線の入射角θ1が54.6°のブリュースター角θBとなる膜に形成することができる。換言すれば、偏光膜93に入射する照明光束EL1の主光線を54.6°のブリュースター角θBとすることで、偏光膜93に入射する照明光束EL1の入射角θ1の角度範囲を、46.8°以上61.4°以下にすることができる。このため、偏光膜93に入射する照明光束EL1の入射角θ1の角度範囲を広くすることができる。これにより、照明光束EL1の入射角θ1の角度範囲を広くできる分、偏光ビームスプリッタPBSに隣接して設けられるレンズの開口数NAを大きくすることが可能となる。このため、開口数NAが大きいレンズを用いることが可能となることで、露光装置U3の解像度を高めることができ、基板Pに対し微細なマスクパターンを露光することが可能となる。 Further, in the first embodiment, the polarizing film 93 can be formed into a film in which the incident angle θ1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93 is a Brewster angle θB of 54.6 °. In other words, by setting the principal ray of the illumination light beam EL1 incident on the polarizing film 93 to a Brewster angle θB of 54.6 °, the angle range of the incident angle θ1 of the illumination light beam EL1 incident on the polarizing film 93 is 46 It can be set to 8 ° or more and 61.4 ° or less. For this reason, the angle range of the incident angle θ1 of the illumination light beam EL1 incident on the polarizing film 93 can be widened. As a result, the numerical aperture NA of the lens provided adjacent to the polarization beam splitter PBS can be increased by the amount that the angle range of the incident angle θ1 of the illumination light beam EL1 can be widened. For this reason, since it becomes possible to use a lens with a large numerical aperture NA, the resolution of the exposure apparatus U3 can be increased, and a fine mask pattern can be exposed to the substrate P.
 尚、偏光膜93を構成する材料(膜体)の屈折率のばらつきにより、第1実施形態における偏光膜93のブリュースター角θBは、52.4°~57.3°の範囲を取り得る為、その範囲を考慮して、偏光膜93に入射する照明光束EL1の入射角θ1の角度範囲を設定すれば良い。 The Brewster angle θB of the polarizing film 93 in the first embodiment can be in the range of 52.4 ° to 57.3 ° due to variations in the refractive index of the material (film body) constituting the polarizing film 93. The angle range of the incident angle θ1 of the illumination light beam EL1 incident on the polarizing film 93 may be set in consideration of the range.
 また、第1実施形態は、偏光ビームスプリッタPBSの第1面D1と第3面D3とを非平行にし、第2面D2と第4面D4とを平行にすることができる。また、第1実施形態は、第1面D1と偏光膜93とのなす角度θ2を、偏光膜93に入射する照明光束EL1の主光線の入射角θ1と同じにすることができる。このため、第1面D1に入射する照明光束EL1の主光線に対し、第1面D1を垂直面にすることができ、また、第2面D2に入射する投影光束EL2の主光線に対し、第2面D2を垂直面にすることができる。これにより、偏光ビームスプリッタPBSは、第1面D1における照明光束EL1の反射を抑制でき、また、第2面D2における投影光束EL2の反射を抑制できる。 In the first embodiment, the first surface D1 and the third surface D3 of the polarization beam splitter PBS can be made non-parallel, and the second surface D2 and the fourth surface D4 can be made parallel. In the first embodiment, the angle θ2 formed by the first surface D1 and the polarizing film 93 can be made the same as the incident angle θ1 of the principal ray of the illumination light beam EL1 incident on the polarizing film 93. For this reason, the first surface D1 can be a vertical surface with respect to the principal ray of the illumination light beam EL1 incident on the first surface D1, and the principal ray of the projection light beam EL2 incident on the second surface D2 The second surface D2 can be a vertical surface. Thereby, the polarization beam splitter PBS can suppress the reflection of the illumination light beam EL1 on the first surface D1, and can suppress the reflection of the projection light beam EL2 on the second surface D2.
 また、第1実施形態は、所定の層体Hを膜厚方向に周期的に複数積層することで、周期層となる偏光膜93を形成することができる。このとき、一例として挙げた、照明光束EL1の主光線の入射角θ1が54.6°のブリュースター角θBとなる偏光膜93(図8)は、照明光束EL1の主光線の入射角θ1が45°となる偏光ビームスプリッタPBSの偏光膜100(図9)に比して、周期層を少なくすることができる。このため、図8の偏光膜93は、図9の偏光膜100に比して周期層が少ない分、簡易な構造にでき、偏光ビームスプリッタPBSの製造コストを低減することができる。 In the first embodiment, the polarizing film 93 serving as a periodic layer can be formed by periodically laminating a plurality of predetermined layer bodies H in the film thickness direction. At this time, as an example, the polarizing film 93 (FIG. 8) in which the incident angle θ1 of the chief ray of the illumination light beam EL1 becomes the Brewster angle θB of 54.6 ° has the incident angle θ1 of the chief light beam of the illumination light beam EL1. Compared with the polarizing film 100 (FIG. 9) of the polarizing beam splitter PBS that is 45 °, the number of periodic layers can be reduced. Therefore, the polarizing film 93 shown in FIG. 8 can have a simple structure because the number of periodic layers is smaller than that of the polarizing film 100 shown in FIG. 9, and the manufacturing cost of the polarizing beam splitter PBS can be reduced.
 また、第1実施形態は、接着剤またはオプティカルコンタクトによって、偏光膜93を第1プリズム91と第2プリズム92との間に好適に固定できる。なお、第1実施形態において、偏光ビームスプリッタPBSと1/4波長板41とを、接着剤またはオプティカルコンタクトによって一体に固定してもよい。この場合、偏光ビームスプリッタPBSと1/4波長板41との相対的な位置ズレの発生を抑制できる。 In the first embodiment, the polarizing film 93 can be suitably fixed between the first prism 91 and the second prism 92 by an adhesive or an optical contact. In the first embodiment, the polarization beam splitter PBS and the quarter-wave plate 41 may be integrally fixed with an adhesive or an optical contact. In this case, the occurrence of relative positional deviation between the polarizing beam splitter PBS and the quarter wavelength plate 41 can be suppressed.
 また、第1実施形態は、照明光束EL1として、i線以下の波長を用いることができ、例えば、高調波レーザやエキシマレーザを用いることができるため、露光処理に適した照明光束EL1を用いることが可能となる。 In the first embodiment, a wavelength of i-line or less can be used as the illumination light beam EL1, and for example, a harmonic laser or an excimer laser can be used. Therefore, the illumination light beam EL1 suitable for exposure processing is used. Is possible.
 また、第1実施形態は、偏光調整機構68により1/4波長板41の偏光方向を調整することで、投影領域PAの照度を調整することができるため、複数の投影領域PA1~PA6の照度を均一にすることができる。 In the first embodiment, since the illuminance of the projection area PA can be adjusted by adjusting the polarization direction of the quarter-wave plate 41 by the polarization adjustment mechanism 68, the illuminance of the plurality of projection areas PA1 to PA6 is adjusted. Can be made uniform.
[第2実施形態]
 次に、図13を参照して、第2実施形態の露光装置U3について説明する。なお、重複する記載を避けるべく、第1実施形態と異なる部分についてのみ説明し、第1実施形態と同様の構成要素については、第1実施形態と同じ符号を付して説明する。図13は、第2実施形態の露光装置(基板処理装置)の全体構成を示す図である。第1実施形態の露光装置U3は、円筒状の反射型のマスクMを、回転可能なマスク保持ドラム21に保持する構成であったが、第2実施形態の露光装置U3は、平板状の反射型マスクMAを、移動可能なマスク保持機構11に保持する構成となっている。
[Second Embodiment]
Next, an exposure apparatus U3 according to the second embodiment will be described with reference to FIG. In order to avoid overlapping descriptions, only different parts from the first embodiment will be described, and the same components as those in the first embodiment will be described with the same reference numerals as those in the first embodiment. FIG. 13 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment. Although the exposure apparatus U3 of the first embodiment is configured to hold the cylindrical reflective mask M on the rotatable mask holding drum 21, the exposure apparatus U3 of the second embodiment has a flat plate-like reflection. The mold mask MA is held by a movable mask holding mechanism 11.
 第2実施形態の露光装置U3において、マスク保持機構11は、平面状のマスクMAを保持するマスクステージ110と、マスクステージ110を中心面CLと直交する面内でX方向に沿って走査移動させる移動装置(図示略)とを備える。 In the exposure apparatus U3 of the second embodiment, the mask holding mechanism 11 scans and moves the mask stage 110 that holds the planar mask MA and the mask stage 110 along the X direction within a plane orthogonal to the center plane CL. A moving device (not shown).
 図13のマスクMAのマスク面P1は実質的にXY面と平行な平面であるので、マスクMAから反射された投影光束EL2の主光線は、XY面と垂直になる。このため、マスクMA上の各照明領域IR1~IR6を照明する照明光学系IL1~IL6からの照明光束EL1の主光線もXY面に対して垂直になるように配置される。 Since the mask surface P1 of the mask MA in FIG. 13 is a plane substantially parallel to the XY plane, the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane. For this reason, the principal rays of the illumination light beam EL1 from the illumination optical systems IL1 to IL6 that illuminate the illumination regions IR1 to IR6 on the mask MA are also arranged so as to be perpendicular to the XY plane.
 マスクMAで反射される投影光束EL2の主光線がXY面と垂直になる場合、投影光束EL2の主光線に応じて、配置領域Eを区画する第1ラインL1及び第2ラインL2も変化する。つまり、第2ラインL2は、マスクMAと投影光束EL2の主光線とが交わる交点からXY面に垂直な方向となり、第1ラインL1は、マスクMAと投影光束EL2の主光線とが交わる交点からXY面に平行な方向となる。このため、照明光学モジュールILMの配置は、配置領域Eの変更に伴って適宜変更され、照明光学モジュールILMの配置の変更に伴って、偏光ビームスプリッタPBSの配置も適宜変更される。 When the chief ray of the projection light beam EL2 reflected by the mask MA becomes perpendicular to the XY plane, the first line L1 and the second line L2 that partition the arrangement area E also change according to the chief ray of the projection light beam EL2. That is, the second line L2 is a direction perpendicular to the XY plane from the intersection point where the mask MA and the principal ray of the projection beam EL2 intersect, and the first line L1 is from the intersection point where the mask MA and the principal ray of the projection beam EL2 intersect. The direction is parallel to the XY plane. For this reason, the arrangement of the illumination optical module ILM is appropriately changed in accordance with the change in the arrangement region E, and the arrangement of the polarization beam splitter PBS is also appropriately changed in accordance with the change in the arrangement of the illumination optical module ILM.
 また、マスクMAから反射される投影光束EL2の主光線がXY面と垂直になる場合、投影光学モジュールPLMの第1光学系61に含まれる第1偏向部材70の第1反射面P3は、偏光ビームスプリッタPBSからの投影光束EL2を反射させ、反射させた投影光束EL2を第1レンズ群71を通って第1凹面鏡72に入射させる角度にされる。具体的に、第1偏向部材70の第1反射面P3は、第2光軸BX2(XY面)に対して実質的に45°に設定される。 When the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane, the first reflection surface P3 of the first deflecting member 70 included in the first optical system 61 of the projection optical module PLM is polarized. The projection light beam EL2 from the beam splitter PBS is reflected, and the reflected projection light beam EL2 is incident on the first concave mirror 72 through the first lens group 71. Specifically, the first reflecting surface P3 of the first deflecting member 70 is set to substantially 45 ° with respect to the second optical axis BX2 (XY surface).
 また、第2実施形態においても、先の図2と同様に、XZ面内で見たとき、マスクMA上の照明領域IR1(及びIR3,IR5)の中心点から照明領域IR2(及びIR4,IR6)の中心点までの周長は、支持面P2に倣った基板P上の投影領域PA1(及びPA3,PA5)の中心点から第2投影領域PA2(及びPA4,PA6)の中心点までの周長と、実質的に等しく設定されている。 Also in the second embodiment, similarly to FIG. 2, the illumination region IR2 (and IR4, IR6) from the center point of the illumination region IR1 (and IR3, IR5) on the mask MA when viewed in the XZ plane. ) To the center point of the projection area PA1 (and PA3, PA5) on the substrate P following the support surface P2 to the center point of the second projection area PA2 (and PA4, PA6). The length is set substantially equal.
 図13の露光装置U3においても、下位制御装置16が、マスク保持機構11の移動装置(走査露光用のリニアモータや微動用のアクチュエータ等)を制御し、基板支持ドラム25の回転と同期してマスクステージ110を駆動する。図13の露光装置U3では、マスクMAの+X方向への同期移動で走査露光を行なった後、-X方向の初期位置にマスクMAを戻す動作(巻戻し)が必要となる。そのため、基板支持ドラム25を一定速度で連続回転させて基板Pを等速で送り続ける場合、マスクMAの巻戻し動作の間、基板P上にはパターン露光が行なわれず、基板Pの搬送方向に関してパネル用パターンが飛び飛びに(離間して)形成されることになる。しかしながら、実用上、走査露光時の基板Pの速度(ここでは周速)とマスクMAの速度は50mm/s~100mm/sと想定されていることから、マスクMAの巻戻しの際にマスクステージ110を、例えば500mm/sの最高速で駆動すれば、基板P上に形成されるパネル用パターン間の搬送方向に関する余白を狭くすることができる。 Also in the exposure apparatus U3 of FIG. 13, the lower order control device 16 controls the moving device (scanning exposure linear motor, fine movement actuator, etc.) of the mask holding mechanism 11 and is synchronized with the rotation of the substrate support drum 25. The mask stage 110 is driven. In the exposure apparatus U3 of FIG. 13, after performing scanning exposure by synchronous movement of the mask MA in the + X direction, an operation (rewinding) of returning the mask MA to the initial position in the −X direction is required. Therefore, when the substrate support drum 25 is continuously rotated at a constant speed and the substrate P is continuously fed at a constant speed, pattern exposure is not performed on the substrate P during the rewinding operation of the mask MA, and the transport direction of the substrate P is not related. The panel pattern is formed in a jump (separated) manner. However, since the speed of the substrate P (peripheral speed here) and the speed of the mask MA during scanning exposure are assumed to be 50 mm / s to 100 mm / s in practice, the mask stage is used when the mask MA is rewound. If 110 is driven at a maximum speed of, for example, 500 mm / s, the margin in the transport direction between panel patterns formed on the substrate P can be reduced.
[第3実施形態]
 次に、図14を参照して、第3実施形態の露光装置U3について説明する。なお、重複する記載を避けるべく、第1実施形態(又は第2実施形態)と異なる部分についてのみ説明し、第1実施形態(又は第2実施形態)と同様の構成要素については、第1実施形態(又は第2実施形態)と同じ符号を付して説明する。図14は、第3実施形態の露光装置(基板処理装置)の構成を示す図である。図14の露光装置U3は、先の各実施形態と同様に、反射型の円筒マスクMからの反射光(投影光束EL2)を、平面状に搬送される可撓性の基板P上に投影しつつ、円筒マスクMの回転による周速度と基板Pの搬送速度とを同期させる走査露光装置である。
[Third Embodiment]
Next, an exposure apparatus U3 of the third embodiment will be described with reference to FIG. In order to avoid overlapping descriptions, only parts different from the first embodiment (or the second embodiment) will be described, and the same components as those in the first embodiment (or the second embodiment) will be described in the first embodiment. The same reference numerals as those of the form (or the second embodiment) are given for explanation. FIG. 14 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment. The exposure apparatus U3 in FIG. 14 projects the reflected light (projected light beam EL2) from the reflective cylindrical mask M onto the flexible substrate P that is transported in a planar manner, as in the previous embodiments. On the other hand, the scanning exposure apparatus synchronizes the peripheral speed by the rotation of the cylindrical mask M and the transport speed of the substrate P.
 第3実施形態の露光装置U3は、偏光ビームスプリッタPBSにおける照明光束EL1と投影光束EL2の反射・透過特性を逆にした場合の露光装置の一例となっている。図14において、照明光学モジュールILMの光軸BX1に沿って配置されるリレーレンズ56のうち、少なくとも最も偏光ビームスプリッタPBSに近いリレーレンズ56は、照明光束EL1が通らない部分(非入射領域S1)を無くした形状とすることにより、投影光学モジュールPLMとの空間的な干渉を避けてある。また、照明光学モジュールILMの光軸BX1の延長線は第1軸AX1(回転中心となる線)と交差する。 The exposure apparatus U3 of the third embodiment is an example of an exposure apparatus when the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 in the polarization beam splitter PBS are reversed. In FIG. 14, among the relay lenses 56 arranged along the optical axis BX1 of the illumination optical module ILM, at least the relay lens 56 closest to the polarization beam splitter PBS does not pass the illumination light beam EL1 (non-incident region S1). By eliminating the shape, spatial interference with the projection optical module PLM is avoided. In addition, the extension line of the optical axis BX1 of the illumination optical module ILM intersects the first axis AX1 (line serving as the rotation center).
 偏光ビームスプリッタPBSは、互いに平行な第2面D2と第4面D4とが、照明光学モジュールILMの光軸BX1(第1光軸)と垂直になるように配置され、第1面D1が投影光学モジュールPLMの光軸BX4(第4光軸)と垂直になるように配置される。光軸BX1と光軸BX4とのXZ面内での交差角度は、偏光膜93の先の図6の条件と同様であるが、ここでは投影光束EL2をブリュースター角θB(52.4°~57.3°)で反射させるように、90°以外の角度に設定される。 The polarization beam splitter PBS is disposed such that the second surface D2 and the fourth surface D4 parallel to each other are perpendicular to the optical axis BX1 (first optical axis) of the illumination optical module ILM, and the first surface D1 is projected. The optical module PLM is arranged so as to be perpendicular to the optical axis BX4 (fourth optical axis) of the optical module PLM. The intersection angle between the optical axis BX1 and the optical axis BX4 in the XZ plane is the same as that of the polarizing film 93 in FIG. 6, but here the projection light beam EL2 is changed to the Brewster angle θB (52.4 ° ˜ It is set to an angle other than 90 ° so as to reflect at 57.3 °.
 本実施形態における偏光ビームスプリッタPBSの偏光膜93(波面分割面)は、二酸化ケイ素の第1膜体と酸化ハフニウムの第2膜体とを膜厚方向に複数積層して形成することができる。そのため、偏光膜93は、偏光膜93に入射するS偏光の反射率、及び偏光膜93に入射するP偏光の透過率を高いものとすることができる。これにより、偏光ビームスプリッタPBSは、i線以下の波長となるエネルギー密度の高い照明光束EL1が偏光膜93に入射した場合であっても、偏光膜93に加わる負荷を抑制することができ、反射光束と透過光束とに好適に分離することができる。偏光膜93を二酸化ケイ素の第1膜体H1と酸化ハフニウムの第2膜体H2との積層構造にすることは、先の第1実施形態、または第2実施形態で用いる偏光ビームスプリッタPBSにも同様に適用できる。 The polarizing film 93 (wavefront splitting surface) of the polarizing beam splitter PBS in the present embodiment can be formed by stacking a plurality of silicon dioxide first film bodies and hafnium oxide second film bodies in the film thickness direction. Therefore, the polarizing film 93 can increase the reflectance of S-polarized light incident on the polarizing film 93 and the transmittance of P-polarized light incident on the polarizing film 93. As a result, the polarizing beam splitter PBS can suppress the load applied to the polarizing film 93 even when the illumination light beam EL1 having a high energy density having a wavelength equal to or shorter than the i-line is incident on the polarizing film 93. The light beam and the transmitted light beam can be suitably separated. The polarizing film 93 having a laminated structure of the first film body H1 of silicon dioxide and the second film body H2 of hafnium oxide is also applied to the polarizing beam splitter PBS used in the first embodiment or the second embodiment. The same applies.
 第3実施形態の場合、偏光ビームスプリッタPBSの第4面D4からは、P偏光の照明光束EL1が入射する。その為、照明光束EL1は、偏光膜93を透過して第2面D2から射出し、1/4波長板41を通って円偏光に変換されて、マスクMのマスク面P1上の照明領域IRに照射される。マスクMの回転に伴って、照明領域IR内に現れるマスクパターンから発生(反射)する投影光束EL2(円偏光)は、1/4波長板41によってS偏光に変換され、偏光ビームスプリッタPBSの第2面D2に入射する。S偏光となった投影光束EL2は、偏光膜93で反射されて、偏光ビームスプリッタPBSの第1面D1から投影光学モジュールPLMに向けて射出する。 In the case of the third embodiment, the P-polarized illumination light beam EL1 is incident from the fourth surface D4 of the polarization beam splitter PBS. Therefore, the illumination light beam EL1 passes through the polarizing film 93 and exits from the second surface D2, passes through the quarter-wave plate 41, is converted into circularly polarized light, and the illumination region IR on the mask surface P1 of the mask M. Is irradiated. As the mask M rotates, the projection light beam EL2 (circularly polarized light) generated (reflected) from the mask pattern appearing in the illumination region IR is converted to S-polarized light by the quarter-wave plate 41, and the first light beam of the polarizing beam splitter PBS. Incident on two surfaces D2. The projection light beam EL2 that has become S-polarized light is reflected by the polarizing film 93 and is emitted from the first surface D1 of the polarization beam splitter PBS toward the projection optical module PLM.
 本実施形態では、投影光束EL2のうち、マスクM上の照明領域IRの中心(点Q1)を通る主光線Lsが、投影光学モジュールPLMの光軸BX4から偏心した位置で、投影光学モジュールPLMの最初のレンズ系G1に入射する。投影光束EL2の広がり(開口数NA)が小さい場合、レンズ系G1のうち、投影光束EL2が実質的に通らない部分を無くした形状とすることによって、偏光ビームスプリッタPBSを円筒マスクMに近付けた場合に、投影光学モジュールPLMの一部(レンズ系G1)が、円筒マスクMや照明光学モジュールILMの一部(レンズ56)と空間的に干渉することが避けられる。 In the present embodiment, the principal ray Ls passing through the center (point Q1) of the illumination region IR on the mask M in the projection light beam EL2 is decentered from the optical axis BX4 of the projection optical module PLM, and the projection optical module PLM The light enters the first lens system G1. When the spread (numerical aperture NA) of the projection light beam EL2 is small, the polarizing beam splitter PBS is brought close to the cylindrical mask M by eliminating the portion of the lens system G1 through which the projection light beam EL2 does not substantially pass. In this case, a part of the projection optical module PLM (lens system G1) can be prevented from spatially interfering with a part of the cylindrical mask M and the illumination optical module ILM (lens 56).
 図14において、投影光学モジュールPLMは、レンズ系G1とレンズ系G2とを光軸BX4に沿って配置した全屈折系の投影光学系として説明するが、このような系に限られず、凹面、凸面、或いは平面のミラーとレンズとを組み合わせた反射屈折型の投影光学系であっても良い。また、レンズ系G1は全屈折系とし、レンズ系G2を反射屈折系としてもよく、マスク面P1上の照明領域IR内のパターンの像を、基板P上の投影領域PAに結像するときの倍率も、等倍(×1)以外の拡大や縮小の何れであっても良い。 In FIG. 14, the projection optical module PLM will be described as an all-refractive projection optical system in which the lens system G1 and the lens system G2 are arranged along the optical axis BX4. However, the projection optical module PLM is not limited to such a system. Alternatively, it may be a catadioptric projection optical system combining a flat mirror and a lens. Further, the lens system G1 may be an all-refractive system, and the lens system G2 may be a catadioptric system. When the image of the pattern in the illumination area IR on the mask surface P1 is formed on the projection area PA on the substrate P, The magnification may be any of enlargement or reduction other than equal magnification (× 1).
 図14では、基板Pを支持する基板支持部材PHを、平坦な表面として、その表面と基板Pの裏面との間に、数μm程度のエアベアリング層(気体軸受け)が形成されるような構成とし、基板Pの少なくとも投影領域PAを含む所定範囲内では、ニップ式の駆動ローラ等を用いて、基板Pに一定のテンションを付与して平坦にしつつ、基板Pを長尺方向(X方向)に送る搬送機構が設けられる。勿論、本実施形態でも、基板Pを先の図2に示したような基板支持ドラム25のような円筒体の一部に巻き付けて搬送する構成であっても良い。 In FIG. 14, the substrate support member PH that supports the substrate P has a flat surface, and an air bearing layer (gas bearing) of about several μm is formed between the surface and the back surface of the substrate P. Within a predetermined range including at least the projection area PA of the substrate P, a constant tension is applied to the substrate P by using a nip type driving roller and the substrate P is flattened while the substrate P is in the longitudinal direction (X direction). A transport mechanism is provided for feeding to Of course, in this embodiment, the substrate P may be wound around a part of a cylindrical body such as the substrate support drum 25 as shown in FIG.
 また、図14のような、照明光学モジュールILM、偏光ビームスプリッタPBS、1/4波長板41、投影光学モジュールPLMで構成される露光ユニットを、マスクMの回転中心軸(第1軸)AX1の方向に複数設けて、マルチ化する場合は、マスクMの回転中心線である第1軸AX1を含み、ZY面と平行な中心面CLを挟んで対称的に露光ユニットを配置すれば良い。 Further, as shown in FIG. 14, an exposure unit composed of the illumination optical module ILM, the polarization beam splitter PBS, the quarter wavelength plate 41, and the projection optical module PLM is connected to the rotation center axis (first axis) AX1 of the mask M. In the case where a plurality is provided in the direction to make a multi-layer, the exposure units may be arranged symmetrically with a center plane CL including the first axis AX1 that is the rotation center line of the mask M and parallel to the ZY plane.
 以上の第3実施形態では、酸化ハフニウムの膜体と二酸化ケイ素の膜体との積層構造による偏光膜(多層膜)93を備えた偏光ビームスプリッタPBSを使うことによって、照明光束EL1として紫外波長域の高輝度のレーザ光を使う場合でも、高解像のパターン露光を安定的に継続することができる。このような偏光膜93を備えた偏光ビームスプリッタPBSは、先の第1実施形態、第2実施形態でも同様に利用可能である。 In the third embodiment described above, the polarization beam splitter PBS provided with the polarizing film (multilayer film) 93 having a laminated structure of the hafnium oxide film body and the silicon dioxide film body is used, so that the illumination light beam EL1 has an ultraviolet wavelength region. Even when a high-intensity laser beam is used, high-resolution pattern exposure can be stably continued. The polarizing beam splitter PBS provided with such a polarizing film 93 can be similarly used in the first and second embodiments.
[第4実施形態]
 次に、図15を参照して、第4実施形態の露光装置U3について説明する。なお、重複する記載を避けるべく、第1実施形態(から第3実施形態)と異なる部分についてのみ説明し、第1実施形態(から第3実施形態)と同様の構成要素については、第1実施形態(から第3実施形態)と同じ符号を付して説明する。図15は、第4実施形態の露光装置(基板処理装置)の全体構成を示す図である。第1実施形態の露光装置U3は、円筒状の反射型のマスクMを、回転可能なマスク保持ドラム21に保持する構成であったが、第4実施形態の露光装置U3は、平板状の反射型のマスクMAを、移動可能なマスク保持機構11に保持する構成となっている。
[Fourth Embodiment]
Next, an exposure apparatus U3 according to the fourth embodiment will be described with reference to FIG. In order to avoid overlapping descriptions, only the parts different from the first embodiment (from the third embodiment) will be described, and the same components as those in the first embodiment (from the third embodiment) will be described in the first embodiment. Description will be made with the same reference numerals as those of the embodiment (from the third embodiment). FIG. 15 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the fourth embodiment. Although the exposure apparatus U3 of the first embodiment is configured to hold the cylindrical reflective mask M on the rotatable mask holding drum 21, the exposure apparatus U3 of the fourth embodiment has a flat plate-like reflection. The mold mask MA is held by a movable mask holding mechanism 11.
 第4実施形態の露光装置U3において、マスク保持機構11は、平面状のマスクMAを保持するマスクステージ110と、マスクステージ110を中心面CLと直交する面内でX方向に沿って走査移動させる移動装置(図示略)とを備える。 In the exposure apparatus U3 of the fourth embodiment, the mask holding mechanism 11 scans and moves the mask stage 110 that holds the planar mask MA and the mask stage 110 along the X direction in a plane orthogonal to the center plane CL. A moving device (not shown).
 図15のマスクMAのマスク面P1は実質的にXY面と平行な平面であるので、マスクMAから反射された投影光束EL2の主光線は、XY面と垂直になる。このため、マスクMA上の各照明領域IR1~IR6を照明する照明光学系IL1~IL6からの照明光束EL1の主光線もXY面に対して垂直になるように配置される。 Since the mask surface P1 of the mask MA in FIG. 15 is substantially a plane parallel to the XY plane, the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane. For this reason, the principal rays of the illumination light beam EL1 from the illumination optical systems IL1 to IL6 that illuminate the illumination regions IR1 to IR6 on the mask MA are also arranged so as to be perpendicular to the XY plane.
 マスクMAに照明される照明光束EL1の主光線がXY面と垂直になる場合、偏光ビームスプリッタPBSは、偏光膜93に入射する照明光束EL1の主光線の入射角θ1がブリュースター角θB(52.4°~57.3°)となり、偏光膜93で反射した照明光束EL1の主光線がXY面と垂直になるように配置される。この偏光ビームスプリッタPBSの配置の変更に伴って、照明光学モジュールILMの配置も適宜変更される。 When the principal ray of the illumination light beam EL1 illuminated by the mask MA is perpendicular to the XY plane, the polarization beam splitter PBS is configured such that the incident angle θ1 of the principal beam of the illumination light beam EL1 incident on the polarizing film 93 is the Brewster angle θB (52 .4 ° to 57.3 °), and the principal ray of the illumination light beam EL1 reflected by the polarizing film 93 is arranged so as to be perpendicular to the XY plane. With the change in the arrangement of the polarization beam splitter PBS, the arrangement of the illumination optical module ILM is also changed as appropriate.
 また、マスクMAから反射される投影光束EL2の主光線がXY面と垂直になる場合、投影光学モジュールPLMの第1光学系61に含まれる第1偏向部材70の第1反射面P3は、偏光ビームスプリッタPBSからの投影光束EL2を反射させ、反射させた投影光束EL2を第1レンズ群71を通って第1凹面鏡72に入射させる角度にされる。具体的に、第1偏向部材70の第1反射面P3は、第2光軸BX2(XY面)に対して実質的に45°に設定される。 When the principal ray of the projection light beam EL2 reflected from the mask MA is perpendicular to the XY plane, the first reflection surface P3 of the first deflecting member 70 included in the first optical system 61 of the projection optical module PLM is polarized. The projection light beam EL2 from the beam splitter PBS is reflected, and the reflected projection light beam EL2 is incident on the first concave mirror 72 through the first lens group 71. Specifically, the first reflecting surface P3 of the first deflecting member 70 is set to substantially 45 ° with respect to the second optical axis BX2 (XY surface).
 また、第4実施形態においても、先の図2と同様に、XZ面内で見たとき、マスクMA上の照明領域IR1(及びIR3,IR5)の中心点から照明領域IR2(及びIR4,IR6)の中心点までの周長は、支持面P2に倣った基板P上の投影領域PA1(及びPA3,PA5)の中心点から投影領域PA2(及びPA4,PA6)の中心点までの周長と、実質的に等しく設定されている。 Also in the fourth embodiment, similarly to FIG. 2, the illumination region IR2 (and IR4, IR6) from the center point of the illumination region IR1 (and IR3, IR5) on the mask MA when viewed in the XZ plane. ) To the center point of the projection area PA1 (and PA3, PA5) on the substrate P following the support surface P2 to the center point of the projection area PA2 (and PA4, PA6) Are set substantially equal.
 図15の露光装置U3においても、下位制御装置16が、マスク保持機構11の移動装置(走査露光用のリニアモータや微動用のアクチュエータ等)を制御し、基板支持ドラム25の回転と同期してマスクステージ110を駆動する。図15の露光装置U3では、マスクMAの+X方向への同期移動で走査露光を行なった後、-X方向の初期位置にマスクMAを戻す動作(巻戻し)が必要となる。そのため、基板支持ドラム25を一定速度で連続回転させて基板Pを等速で送り続ける場合、マスクMAの巻戻し動作の間、基板P上にはパターン露光が行なわれず、基板Pの搬送方向に関してパネル用パターンが飛び飛びに(離間して)形成されることになる。しかしながら、実用上、走査露光時の基板Pの速度(ここでは周速)とマスクMAの速度は50mm/s~100mm/sと想定されていることから、マスクMAの巻戻しの際にマスクステージ110を、例えば500mm/sの最高速で駆動すれば、基板P上に形成されるパネル用パターン間の搬送方向に関する余白を狭くすることができる。 In the exposure apparatus U3 of FIG. 15 as well, the lower order control device 16 controls the moving device (scanning exposure linear motor, fine movement actuator, etc.) of the mask holding mechanism 11 in synchronization with the rotation of the substrate support drum 25. The mask stage 110 is driven. In the exposure apparatus U3 of FIG. 15, after performing scanning exposure by synchronous movement of the mask MA in the + X direction, an operation (rewinding) of returning the mask MA to the initial position in the −X direction is required. Therefore, when the substrate support drum 25 is continuously rotated at a constant speed and the substrate P is continuously fed at a constant speed, pattern exposure is not performed on the substrate P during the rewinding operation of the mask MA, and the transport direction of the substrate P is not related. The panel pattern is formed in a jump (separated) manner. However, since the speed of the substrate P (peripheral speed here) and the speed of the mask MA during scanning exposure are assumed to be 50 mm / s to 100 mm / s in practice, the mask stage is used when the mask MA is rewound. If 110 is driven at a maximum speed of, for example, 500 mm / s, the margin in the transport direction between panel patterns formed on the substrate P can be reduced.
[第5実施形態]
 次に、図16を参照して、第5実施形態の露光装置U3について説明する。なお、重複する記載を避けるべく、第1実施形態(から第4実施形態)と異なる部分についてのみ説明し、第1実施形態(から第4実施形態)と同様の構成要素については、第1実施形態(から第4実施形態)と同じ符号を付して説明する。図16は、第5実施形態の露光装置(基板処理装置)の構成を示す図である。第5実施形態の露光装置U3は、偏光ビームスプリッタPBSにおける照明光束EL1と投影光束EL2の反射・透過特性を逆にした場合の露光装置の一例となっている。図16において、照明光学モジュールILMの光軸BX1に沿って配置されるリレーレンズ56のうち、少なくとも最も偏光ビームスプリッタPBSに近いリレーレンズ56は、照明光束EL1が通らない部分を切り欠くことにより、投影光学モジュールPLMとの空間的な干渉を避けてある。また、照明光学モジュールILMの光軸BX1の延長線は第1軸AX1(回転中心となる線)と交差する。
[Fifth Embodiment]
Next, an exposure apparatus U3 according to the fifth embodiment will be described with reference to FIG. In order to avoid overlapping descriptions, only the parts different from the first embodiment (from the fourth embodiment) will be described, and the same components as those in the first embodiment (from the fourth embodiment) will be described in the first embodiment. Description will be made with the same reference numerals as those of the embodiment (from the fourth embodiment). FIG. 16 is a view showing the arrangement of an exposure apparatus (substrate processing apparatus) according to the fifth embodiment. The exposure apparatus U3 of the fifth embodiment is an example of an exposure apparatus when the reflection / transmission characteristics of the illumination light beam EL1 and the projection light beam EL2 in the polarization beam splitter PBS are reversed. In FIG. 16, among the relay lenses 56 arranged along the optical axis BX1 of the illumination optical module ILM, at least the relay lens 56 closest to the polarization beam splitter PBS cuts out a portion through which the illumination light beam EL1 does not pass. Spatial interference with the projection optical module PLM is avoided. In addition, the extension line of the optical axis BX1 of the illumination optical module ILM intersects the first axis AX1 (line serving as the rotation center).
 偏光ビームスプリッタPBSは、互いに平行な第2面D2と第4面D4とが、照明光学モジュールILMの光軸BX1(第1光軸)と垂直になるように配置され、第1面D1が投影光学モジュールPLMの光軸BX4(第4光軸)と垂直になるように配置される。光軸BX1と光軸BX4とのXZ面内での交差角度は、偏光膜93の先の図6の条件と同様であり、ここでは投影光束EL2をブリュースター角θB(52.4°~57.3°)で反射させるように、90°以外の角度に設定される。 The polarization beam splitter PBS is disposed such that the second surface D2 and the fourth surface D4 parallel to each other are perpendicular to the optical axis BX1 (first optical axis) of the illumination optical module ILM, and the first surface D1 is projected. The optical module PLM is arranged so as to be perpendicular to the optical axis BX4 (fourth optical axis) of the optical module PLM. The intersection angle between the optical axis BX1 and the optical axis BX4 in the XZ plane is the same as the condition of FIG. 6 of the polarizing film 93. Here, the projection light beam EL2 is changed into the Brewster angle θB (52.4 ° to 57). .3 °) is set to an angle other than 90 °.
 本実施形態の場合、偏光ビームスプリッタPBSの第4面D4からは、P偏光の照明光束EL1が入射する。その為、照明光束EL1は、偏光膜93を透過して第2面D2から射出し、1/4波長板41を通って円偏光に変換されて、マスクMのマスク面P1上の照明領域IRに照射される。マスクMの回転に伴って、照明領域IR内に現れるマスクパターンから発生(反射)する投影光束EL2(円偏光)は、1/4波長板41によってS偏光に変換され、偏光ビームスプリッタPBSの第2面D2に入射する。S偏光となった投影光束EL2は、偏光膜93で反射されて、偏光ビームスプリッタPBSの第1面D1から投影光学モジュールPLMに向けて射出する。 In the case of the present embodiment, the P-polarized illumination light beam EL1 is incident from the fourth surface D4 of the polarization beam splitter PBS. Therefore, the illumination light beam EL1 passes through the polarizing film 93 and exits from the second surface D2, passes through the quarter-wave plate 41, is converted into circularly polarized light, and the illumination region IR on the mask surface P1 of the mask M. Is irradiated. As the mask M rotates, the projection light beam EL2 (circularly polarized light) generated (reflected) from the mask pattern appearing in the illumination region IR is converted to S-polarized light by the quarter-wave plate 41, and the first light beam of the polarizing beam splitter PBS. Incident on two surfaces D2. The projection light beam EL2 that has become S-polarized light is reflected by the polarizing film 93 and is emitted from the first surface D1 of the polarization beam splitter PBS toward the projection optical module PLM.
 本実施形態では、投影光束EL2のうち、マスクM上の照明領域IRの中心を通る主光線Lsが、投影光学モジュールPLMの光軸BX4から偏心した位置で、投影光学モジュールPLMの最初のレンズ系G1に入射する。投影光束EL2の広がり(開口数NA)が小さい場合、レンズ系G1のうち、投影光束EL2が通らない部分を切り欠くことによって、照明光学モジュールILMのレンズ56との空間的な干渉を避けることができる。 In the present embodiment, the principal ray Ls passing through the center of the illumination area IR on the mask M in the projection light beam EL2 is decentered from the optical axis BX4 of the projection optical module PLM, and is the first lens system of the projection optical module PLM. Incident on G1. When the spread (numerical aperture NA) of the projection light beam EL2 is small, it is possible to avoid spatial interference with the lens 56 of the illumination optical module ILM by cutting out a portion of the lens system G1 through which the projection light beam EL2 does not pass. it can.
 図16において、投影光学モジュールPLMは、レンズ系G1とレンズ系G2とを光軸BX4に沿って配置した全屈折系の投影光学系として説明するが、このような系に限られず、凹面、凸面、或いは平面のミラーとレンズとを組み合わせた反射屈折型の投影光学系であっても良い。また、レンズ系G1は全屈折系とし、レンズ系G2を反射屈折系としてもよく、マスク面P1上の照明領域IR内のパターンの像を、基板P上の投影領域PAに結像するときの倍率も、等倍(×1)以外の拡大や縮小の何れであっても良い。 In FIG. 16, the projection optical module PLM will be described as an all-refractive projection optical system in which the lens system G1 and the lens system G2 are arranged along the optical axis BX4. However, the projection optical module PLM is not limited to such a system. Alternatively, it may be a catadioptric projection optical system combining a flat mirror and a lens. Further, the lens system G1 may be an all-refractive system, and the lens system G2 may be a catadioptric system. When the image of the pattern in the illumination area IR on the mask surface P1 is formed on the projection area PA on the substrate P, The magnification may be any of enlargement or reduction other than equal magnification (× 1).
 図16では、基板Pを支持する基板支持部材PHを、平坦な表面として、その表面と基板Pの裏面との間に、数μm程度のエアベアリング層(気体軸受け)が形成されるような構成とし、基板Pの少なくとも投影領域PAを含む所定範囲内では、基板Pに一定のテンションを付与して平坦にしつつ、基板Pを長尺方向(X方向)に送る搬送機構が設けられる。勿論、本実施形態でも、基板Pを先の図2に示したような基板支持ドラム25のような円筒体の一部に巻き付けて搬送する構成であっても良い。 In FIG. 16, the substrate support member PH that supports the substrate P has a flat surface, and an air bearing layer (gas bearing) of about several μm is formed between the surface and the back surface of the substrate P. In addition, within a predetermined range including at least the projection area PA of the substrate P, there is provided a transport mechanism that feeds the substrate P in the longitudinal direction (X direction) while applying a certain tension to the substrate P to make it flat. Of course, in this embodiment, the substrate P may be wound around a part of a cylindrical body such as the substrate support drum 25 as shown in FIG.
 また、図16のような、照明光学モジュールILM、偏光ビームスプリッタPBS、1/4波長板41、投影光学モジュールPLMで構成される露光ユニットを、マスクMの回転中心軸(第1軸)AX1の方向に複数設けて、マルチ化する場合は、マスクMの回転中心線である第1軸AX1を含み、ZY面と平行な中心面CLを挟んで対称的に露光ユニットを配置すれば良い。 Further, as shown in FIG. 16, an exposure unit composed of the illumination optical module ILM, the polarization beam splitter PBS, the quarter wavelength plate 41, and the projection optical module PLM is connected to the rotation center axis (first axis) AX1 of the mask M. In the case where a plurality is provided in the direction to make a multi-layer, the exposure units may be arranged symmetrically with a center plane CL including the first axis AX1 that is the rotation center line of the mask M and parallel to the ZY plane.
 以上の第5実施形態のような露光装置U3であっても、酸化ハフニウムの膜体と二酸化ケイ素の膜体との積層構造による偏光膜(多層膜)93を備えた偏光ビームスプリッタPBSを使うことによって、照明光束EL1として紫外波長域の高輝度のレーザ光を使う場合でも、高解像のパターン露光を安定的に継続することができる。 Even in the exposure apparatus U3 as in the fifth embodiment described above, a polarization beam splitter PBS provided with a polarizing film (multilayer film) 93 having a laminated structure of a hafnium oxide film body and a silicon dioxide film body is used. Thus, even when high-luminance laser light in the ultraviolet wavelength region is used as the illumination light beam EL1, high-resolution pattern exposure can be stably continued.
 以上の各実施形態で説明した露光装置U3は、予め決まったマスクパターンを平面状又は円筒状に固定したマスクMを使うものとしたが、可変のマスクパターンを投影露光する装置、例えば、特許第4223036号に開示されたマスクレス露光装置のビームスプリッタとして、同様に利用可能である。 The exposure apparatus U3 described in each of the above embodiments uses a mask M in which a predetermined mask pattern is fixed in a planar shape or a cylindrical shape. However, an apparatus that projects and exposes a variable mask pattern, for example, Patent No. It can be similarly used as a beam splitter of the maskless exposure apparatus disclosed in Japanese Patent No. 423036.
 そのマスクレス露光装置は、ビームスプリッタで反射された露光用の照明光を受けるプログラム可能なミラー・アレーと、このミラー・アレーでパターン化されたビーム(反射光束)を、ビームスプリッタと投影システム(マイクロレンズアレーを含むこともある)とを介して、基板上に投影するような構成となっている。このようなマスクレス露光装置のビームスプリッタとして、先の図8に示したような偏光ビームスプリッタPBSを用いると、照明光として紫外波長域の高輝度のレーザ光を使っても、高解像のパターン露光を安定的に継続することができる。 The maskless exposure apparatus includes a programmable mirror array that receives exposure illumination light reflected by a beam splitter, and a beam (reflected light beam) patterned by the mirror array. The microlens array may be included) and projected onto the substrate. When the polarizing beam splitter PBS as shown in FIG. 8 is used as the beam splitter of such a maskless exposure apparatus, even if high-intensity laser light in the ultraviolet wavelength region is used as illumination light, high resolution is achieved. Pattern exposure can be continued stably.
 先の各実施形態で用いる偏光ビームスプリッタPBSは、偏光膜93として、主成分が二酸化ケイ素(SiO)の膜体と、主成分が酸化ハフニウム(HfO)の膜体とを膜厚方向に繰り返し積層したもので構成したが、他の材料であっても良い。例えば、石英や二酸化ケイ素(SiO)と同様に、波長355nm近辺の紫外線に対して低屈折率であって、紫外レーザ光に対して耐性の高い材料であるフッ化マグネシウム(MgF)も利用できる。また、酸化ハフニウム(HfO)と同様に、波長355nm近辺の紫外線に対して高屈折率であって、紫外レーザ光に対して耐性の高い材料である酸化ジルコニウム(ZrO)が利用できる。そこで、これらの材料の組合せを変えて得られる偏光膜93の特性についてシミュレーションした結果を、以下の図17から図22に基づいて説明する。 The polarizing beam splitter PBS used in each of the previous embodiments has, as the polarizing film 93, a film body whose main component is silicon dioxide (SiO 2 ) and a film body whose main component is hafnium oxide (HfO 2 ) in the film thickness direction. Although it is configured by repeatedly laminating, other materials may be used. For example, similarly to quartz and silicon dioxide (SiO 2 ), magnesium fluoride (MgF 2 ), which is a material having a low refractive index with respect to ultraviolet rays in the vicinity of a wavelength of 355 nm and high resistance to ultraviolet laser light, is also used. it can. Further, similarly to hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), which is a material having a high refractive index with respect to ultraviolet rays near a wavelength of 355 nm and high resistance to ultraviolet laser light, can be used. Therefore, simulation results of the characteristics of the polarizing film 93 obtained by changing the combination of these materials will be described with reference to FIGS. 17 to 22 below.
 図17は、高屈折率の材料として酸化ハフニウム(HfO)の膜体を使い、低屈折率の材料としてフッ化マグネシウム(MgF)の膜体を使う場合の偏光膜93の構成を模式的に示す断面である。酸化ハフニウムの屈折率nhを2.07、フッ化マグネシウムの屈折率nLを1.40、プリズム(石英ガラス)の屈折率nsを1.47とすると、ブリュースター角θBは、
θB=arcsin([(nh×nL)/{ns(nh+nL)}]0.5)、
より、約52.1°になる。
FIG. 17 schematically illustrates the configuration of the polarizing film 93 when a film body of hafnium oxide (HfO 2 ) is used as a high refractive index material and a magnesium fluoride (MgF 2 ) film body is used as a low refractive index material. It is a cross section shown in. When the refractive index nh of hafnium oxide is 2.07, the refractive index nL of magnesium fluoride is 1.40, and the refractive index ns of the prism (quartz glass) is 1.47, the Brewster angle θB is
θB = arcsin ([(nh 2 × nL 2 ) / {ns 2 (nh 2 + nL 2 )}] 0.5 ),
Therefore, it becomes about 52.1 °.
 そこで、厚み78.6nmのフッ化マグネシウムの膜体の上下に、厚み22.8nmの酸化ハフニウムの膜体を積層したものを周期層として、これを21周期分積層した偏光膜93を、第1プリズム91と第2プリズム92との接合面の間に設ける。この図17に示す偏光膜93を備えた偏光ビームスプリッタPBSにおいては、シミュレーションの結果、図18のような光学特性が得られた。シミュレーション上の照明光の波長を355nmとすると、P偏光に対する反射率Rpが5%以下(透過率Tpが95%以上)となる入射角θ1は43.5°以上となり、S偏光に対する反射率Rsが95%以上(透過率Tsが5%以下)となる入射角θ1は59.5°以下となる。本例の場合も、ブリュースター角θB(52.1°)に対して、-8.6°~+7.4°の約15°の範囲で、良好な偏光分離特性を得ることができる。 Therefore, a polarizing film 93 in which a layer of hafnium oxide having a thickness of 22.8 nm is laminated on top and bottom of a film body of magnesium fluoride having a thickness of 78.6 nm is used as a periodic layer. Provided between the joint surfaces of the prism 91 and the second prism 92. In the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 17, the optical characteristics as shown in FIG. 18 were obtained as a result of simulation. When the wavelength of illumination light in the simulation is 355 nm, the incident angle θ1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 43.5 ° or more, and the reflectance Rs for S-polarized light Is 95% or more (transmittance Ts is 5% or less), and the incident angle θ1 is 59.5 ° or less. Also in this example, good polarization splitting characteristics can be obtained in a range of about 15 ° from −8.6 ° to + 7.4 ° with respect to the Brewster angle θB (52.1 °).
 また、図19は、高屈折率の材料として酸化ジルコニウム(ZrO)の膜体を使い、低屈折率の材料として二酸化ケイ素(SiO)の膜体を使う場合の偏光膜93の構成を模式的に示す断面である。酸化ジルコニウムの屈折率nhを2.12、二酸化ケイ素の屈折率nLを1.47、プリズム(石英ガラス)の屈折率nsを1.47とすると、ブリュースター角θBは、上記の式より、約55.2°になる。 FIG. 19 schematically shows the configuration of the polarizing film 93 when a zirconium oxide (ZrO 2 ) film is used as the high refractive index material and a silicon dioxide (SiO 2 ) film is used as the low refractive index material. FIG. When the refractive index nh of zirconium oxide is 2.12, the refractive index nL of silicon dioxide is 1.47, and the refractive index ns of the prism (quartz glass) is 1.47, the Brewster angle θB is about 55.2 °.
 そこで、厚み88.2nmの二酸化ケイ素の膜体の上下に、厚み20.2nmの酸化ジルコニウムの膜体を積層したものを周期層として、これを21周期分積層した偏光膜93を、第1プリズム91と第2プリズム92との接合面の間に設ける。この図19に示す偏光膜93を備えた偏光ビームスプリッタPBSにおいては、シミュレーションの結果、図20のような光学特性が得られた。シミュレーション上の照明光の波長を355nmとすると、P偏光に対する反射率Rpが5%以下(透過率Tpが95%以上)となる入射角θ1は47.7°となり、S偏光に対する反射率Rsが95%以上(透過率Tsが5%以下)となる入射角θ1は64.1°となる。本例の場合も、ブリュースター角θB(55.2°)に対して-7.5°~+8.9°の約16.4°の範囲で、良好な偏光分離特性を得ることができる。 Therefore, a polarizing film 93 in which 21 cycles of zirconium oxide film bodies having a thickness of 20.2 nm are laminated on top and bottom of a silicon dioxide film body having a thickness of 88.2 nm is used as the first prism. It is provided between the joint surfaces of 91 and the second prism 92. In the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 19, the optical characteristics as shown in FIG. 20 were obtained as a result of the simulation. When the wavelength of illumination light in the simulation is 355 nm, the incident angle θ1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 47.7 °, and the reflectance Rs for S-polarized light is The incident angle θ1 that is 95% or more (transmittance Ts is 5% or less) is 64.1 °. Also in this example, good polarization separation characteristics can be obtained in a range of about 16.4 ° from −7.5 ° to + 8.9 ° with respect to the Brewster angle θB (55.2 °).
 さらに、図21は、高屈折率の材料として酸化ジルコニウム(ZrO)の膜体を使い、低屈折率の材料としてフッ化マグネシウム(MgF)の膜体を使う場合の偏光膜93の構成を模式的に示す断面である。酸化ジルコニウムの屈折率nhを2.12、フッ化マグネシウムの屈折率nLを1.40、プリズム(石英ガラス)の屈折率nsを1.47とすると、ブリュースター角θBは、上記の式より、約52.6°になる。 Further, FIG. 21 shows the configuration of the polarizing film 93 when a film body of zirconium oxide (ZrO 2 ) is used as a high refractive index material and a magnesium fluoride (MgF 2 ) film body is used as a low refractive index material. It is a cross section shown typically. When the refractive index nh of zirconium oxide is 2.12, the refractive index nL of magnesium fluoride is 1.40, and the refractive index ns of the prism (quartz glass) is 1.47, the Brewster angle θB is It will be about 52.6 °.
 そこで、厚み77.3nmのフッ化マグネシウムの膜体の上下に、厚み22.1nmの酸化ジルコニウムの膜体を積層したものを周期層として、これを21周期分積層した偏光膜93を、第1プリズム91と第2プリズム92との接合面の間に設ける。この図21に示す偏光膜93を備えた偏光ビームスプリッタPBSにおいては、シミュレーションの結果、図22のような光学特性が得られた。シミュレーション上の照明光の波長を355nmとすると、P偏光に対する反射率Rpが5%以下(透過率Tpが95%以上)となる入射角θ1は43.1°となり、S偏光に対する反射率Rsが95%以上(透過率Tsが5%以下)となる入射角θ1は60.7°となる。本例の場合も、ブリュースター角θB(52.6°)に対して-9.5°~+8.1°の約17.6°の範囲で、良好な偏光分離特性を得ることができる。 Therefore, a polarizing film 93 in which 21 cycles of zirconium oxide film bodies having a thickness of 22.1 nm are laminated on top and bottom of a magnesium fluoride film body having a thickness of 77.3 nm is formed as a first layer. Provided between the joint surfaces of the prism 91 and the second prism 92. In the polarizing beam splitter PBS provided with the polarizing film 93 shown in FIG. 21, the optical characteristics as shown in FIG. 22 were obtained as a result of the simulation. When the wavelength of illumination light in the simulation is 355 nm, the incident angle θ1 at which the reflectance Rp for P-polarized light is 5% or less (transmittance Tp is 95% or more) is 43.1 °, and the reflectance Rs for S-polarized light is R3.1. The incident angle θ1 that is 95% or more (transmittance Ts is 5% or less) is 60.7 °. Also in this example, good polarization separation characteristics can be obtained in a range of about 17.6 ° from −9.5 ° to + 8.1 ° with respect to the Brewster angle θB (52.6 °).
 先の図4で示したように、マスクMで反射した投影光束EL2は、等倍の投影光学系PLの開口数(NA)で制限される広がり角θnaを伴って、基板Pに投影される。開口数NAは、NA=sin(θna)で定義され、照明光束EL1の波長λと共に、投影光学系PLによる投影像の解像力RSを決める。照明光束EL1の開口数も、マスクMが図15に示したように、平坦なマスク面P1である場合は、投影光学系PLのマスクM側の開口数NAと同じか、それ以下に設定される。 As shown in FIG. 4, the projection light beam EL2 reflected by the mask M is projected onto the substrate P with a spread angle θna limited by the numerical aperture (NA) of the projection optical system PL of equal magnification. . The numerical aperture NA is defined by NA = sin (θna), and determines the resolving power RS of the projection image by the projection optical system PL together with the wavelength λ of the illumination light beam EL1. The numerical aperture of the illumination light beam EL1 is also set to be equal to or less than the numerical aperture NA on the mask M side of the projection optical system PL when the mask M is a flat mask surface P1 as shown in FIG. The
 例えば、照明光束EL1の波長λを355nm、プロセスファクターkを0.5として、解像力RSとして3μmを得る場合、RS=k・(λ/NA)より、等倍の投影光学系PLのマスク側の開口数NAは約0.06(θna≒3.4°)となる。照明光学系ILからの照明光束EL1の開口数は、一般に投影光学系PLのマスクM側の開口数NAよりも僅かに小さいが、ここでは等しいものと仮定する。 For example, when the wavelength λ of the illumination light beam EL1 is 355 nm, the process factor k is 0.5, and 3 μm is obtained as the resolving power RS, the mask side of the projection optical system PL of the same magnification from RS = k · (λ / NA) The numerical aperture NA is about 0.06 (θna≈3.4 °). The numerical aperture of the illumination light beam EL1 from the illumination optical system IL is generally slightly smaller than the numerical aperture NA on the mask M side of the projection optical system PL, but is assumed to be equal here.
 ところが、先の図5Aで説明したように、マスク面P1が半径Rmの円筒面に沿って形成される円筒マスクMである場合、照明光束EL1の主光線は、円筒マスクMの円周方向に関しては、さらに広い角度で広がっている。ここで、図3中に示したマスク上の照明領域IRの周方向の露光幅をDeとすると、図5A中の点Q1を通る照明光束EL1の主光線に対して、露光幅Deの最も周方向の端を通る照明光束EL1の主光線は、概ね、以下のような角度φだけ傾いている。
sinφ≒(De/2)/(Rm/2)
However, as described above with reference to FIG. 5A, when the mask surface P1 is the cylindrical mask M formed along the cylindrical surface having the radius Rm, the principal ray of the illumination light beam EL1 is related to the circumferential direction of the cylindrical mask M. Is spreading at a wider angle. Here, when the exposure width in the circumferential direction of the illumination region IR on the mask shown in FIG. 3 is De, the most peripheral of the exposure width De with respect to the principal ray of the illumination light beam EL1 passing through the point Q1 in FIG. 5A. The chief ray of the illumination light beam EL1 passing through the end of the direction is generally inclined by an angle φ as follows.
sinφ≈ (De / 2) / (Rm / 2)
 ここで、円筒マスクMの曲率半径Rmを150mm、露光幅Deを10mmとすると、角度φは約3.8°となる。さらに、露光幅Deの最も周方向の端を通る照明光束EL1の主光線に対して、照明光束EL1の開口数分の角度θna(約3.4°)分が加わることから、照明領域IRへの照明光束EL1の広がり角は、点Q1を通る照明光束EL1の主光線に対して、±(φ+θna)の範囲を取る。即ち、上記の数値例では、±7.2°となり、照明光束EL1は円筒マスク面の周方向に関して14.4°の角度範囲に渡って分布することになる。 Here, when the curvature radius Rm of the cylindrical mask M is 150 mm and the exposure width De is 10 mm, the angle φ is about 3.8 °. Furthermore, an angle θna (about 3.4 °) corresponding to the numerical aperture of the illumination light beam EL1 is added to the chief ray of the illumination light beam EL1 passing through the edge in the most circumferential direction of the exposure width De. The divergence angle of the illumination light beam EL1 takes a range of ± (φ + θna) with respect to the principal ray of the illumination light beam EL1 passing through the point Q1. That is, in the above numerical example, ± 7.2 °, and the illumination light beam EL1 is distributed over an angular range of 14.4 ° with respect to the circumferential direction of the cylindrical mask surface.
 このように、照明光束EL1は、比較的大きな角度範囲を伴って円筒マスク面P1に入射するように設定されるが、そのような角度範囲であっても、先の図8、図10に示した実施形態の偏光ビームスプリッタPBS、及び、図17~22に示した実施例の偏光ビームスプリッタPBSであれば、照明光束EL1と投影光束EL2とを良好に偏光分離することができる。 As described above, the illumination light beam EL1 is set so as to enter the cylindrical mask surface P1 with a relatively large angle range. Even in such an angle range, the illumination light beam EL1 is shown in FIGS. With the polarization beam splitter PBS of the embodiment and the polarization beam splitter PBS of the example shown in FIGS. 17 to 22, the illumination light beam EL1 and the projection light beam EL2 can be polarized and separated satisfactorily.
 また、投影光学系PLがマスク面P1のパターンを基板P上に拡大投影する露光装置では、投影光学系PLのマスク面P1側の開口数NAmが、基板P側の開口数NApに対して、拡大倍率Mp分だけ増大する。例えば、先に例示した等倍の投影光学系で得られる解像力RSと同じ解像力を得るのであれば、拡大倍率Mpが2倍の投影光学系におけるマスク側の開口数NAは約0.12となり、それだけ投影光束EL2の広がり角θnaも±6.8°(幅で14.6°)と大きくなる。しかしながら、偏光ビームスプリッタPBSで良好に偏光分離できる入射角度範囲が、図10の場合は約14.6°、図18の場合は約16°、図20の場合は約16.4°、そして図22の場合は約17.6°となり、いずれの場合も、その広がり角θnaをカバーしていることから、良好な像質で拡大投影露光ができる。 In the exposure apparatus in which the projection optical system PL enlarges and projects the pattern of the mask surface P1 onto the substrate P, the numerical aperture NAm on the mask surface P1 side of the projection optical system PL is smaller than the numerical aperture NAp on the substrate P side. Increases by the magnification Mp. For example, if the same resolving power as the resolving power RS obtained with the same-magnification projection optical system exemplified above is obtained, the numerical aperture NA on the mask side in the projection optical system with the magnification Mp of 2 is about 0.12. Accordingly, the spread angle θna of the projection light beam EL2 is also increased to ± 6.8 ° (14.6 ° in width). However, the incident angle range in which polarization polarization can be satisfactorily separated by the polarization beam splitter PBS is about 14.6 ° in the case of FIG. 10, about 16 ° in the case of FIG. 18, about 16.4 ° in the case of FIG. In the case of 22, the angle is about 17.6 °, and in any case, since the spread angle θna is covered, enlarged projection exposure can be performed with good image quality.
 以上のように、マスクMを円筒マスクとする場合は、マスク面P1上の照明領域IRに照射される照明光束EL1の周方向に関する最大の角度範囲がカバーされるように、偏光分離特性が良好なブリュースター角θBを含む入射角度範囲の偏光ビームスプリッタPBSが選定される。また、図17~22に例示した偏光ビームスプリッタPBSのブリュースター角θBは、何れも50°以上であり、図4、図6に示したように、照明光学系ILの光軸BX1と投影光学系PLの光軸BX2(又はBX3)とを平行にする場合でも、円筒マスクMに向かう照明光束EL1とマスク面で反射する投影光束EL2のXZ面内での各進行方向を、中心面CLに対して傾けることができ、良好な結像性能を確保することができる。 As described above, when the mask M is a cylindrical mask, the polarization separation characteristic is good so that the maximum angular range in the circumferential direction of the illumination light beam EL1 irradiated to the illumination region IR on the mask surface P1 is covered. A polarizing beam splitter PBS having an incident angle range including a small Brewster angle θB is selected. Also, the Brewster angle θB of the polarization beam splitter PBS illustrated in FIGS. 17 to 22 is 50 ° or more, and as shown in FIGS. 4 and 6, the optical axis BX1 of the illumination optical system IL and the projection optics Even when the optical axis BX2 (or BX3) of the system PL is made parallel, each traveling direction in the XZ plane of the illumination light beam EL1 directed to the cylindrical mask M and the projection light beam EL2 reflected by the mask surface is defined as the central plane CL. It is possible to incline it, and it is possible to ensure good imaging performance.
 なお、以上の各実施形態において、偏光膜93を構成する酸化ハフニウムの膜体、又は酸化ジルコニウムの膜体は、紫外域(波長400nm以下)の光に対して高い屈折率nhを呈するが、その屈折率nhと基材(プリズム91、92)の屈折率nsとの比nh/nsが1.3以上であれば良く、高屈折率材料としては、二酸化チタン(TiO)の膜体、五酸化タンタル(Ta)の膜体も利用可能である。 In each of the embodiments described above, the hafnium oxide film body or the zirconium oxide film body constituting the polarizing film 93 exhibits a high refractive index nh with respect to light in the ultraviolet region (wavelength 400 nm or less). The ratio nh / ns between the refractive index nh and the refractive index ns of the base material (prisms 91 and 92) may be 1.3 or more. As a high refractive index material, a titanium dioxide (TiO 2 ) film body, five A film of tantalum oxide (Ta 2 O 5 ) can also be used.
 1 デバイス製造システム
 2 基板供給装置
 4 基板回収装置
 5 上位制御装置
 11 マスク保持機構
 12 基板支持機構
 13 光源装置
 16 下位制御装置
 21 マスク保持ドラム
 25 基板支持ドラム
 31 光源
 32 導光部材
 41 1/4波長板
 51 コリメータレンズ
 52 フライアイレンズ
 53 コンデンサーレンズ
 54 シリンドリカルレンズ
 55 照明視野絞り
 56a~56d リレーレンズ
 61 第1光学系
 62 第2光学系
 63 投影視野絞り
 64 フォーカス補正光学部材
 65 像シフト用光学部材
 66 倍率補正用光学部材
 67 ローテーション補正機構
 68 偏光調整機構
 70 第1偏向部材
 71 第1レンズ群
 72 第1凹面鏡
 80 第2偏向部材
 81 第2レンズ群
 82 第2凹面鏡
 91 第1プリズム
 92 第2プリズム
 93 偏光膜
 110 マスクステージ(第2実施形態)
 P 基板
 FR1 供給用ロール
 FR2 回収用ロール
 U1~Un 処理装置
 U3 露光装置(基板処理装置)
 M マスク
 MA マスク(第2実施形態)
 AX1 第1軸
 AX2 第2軸
 P1 マスク面
 P2 支持面
 P7 中間像面
 EL1 照明光束
 EL2 投影光束
 Rm 曲率半径
 Rfa 曲率半径
 CL 中心面
 PBS 偏光ビームスプリッタ
 IR1~IR6 照明領域
 IL1~IL6 照明光学系
 ILM 照明光学モジュール
 PA1~PA6 投影領域
 PL1~PL6 投影光学系
 PLM 投影光学モジュール
 BX1 第1光軸
 BX2 第2光軸
 BX3 第3光軸
 D1 偏光ビームスプリッタPBSの第1面
 D2 偏光ビームスプリッタPBSの第2面
 D3 偏光ビームスプリッタPBSの第3面
 D4 偏光ビームスプリッタPBSの第4面
 θ 角度
 θ1(β) 入射角
 θB ブリュースター角
 S1 非入射領域
 S2 入射領域
 H 層体
 H1 第1膜体
 H2 第2膜体
DESCRIPTION OF SYMBOLS 1 Device manufacturing system 2 Substrate supply apparatus 4 Substrate collection | recovery apparatus 5 Host control apparatus 11 Mask holding mechanism 12 Substrate support mechanism 13 Light source apparatus 16 Subordinate control apparatus 21 Mask holding drum 25 Substrate support drum 31 Light source 32 Light guide member 41 1/4 wavelength Plate 51 Collimator lens 52 Fly eye lens 53 Condenser lens 54 Cylindrical lens 55 Illumination field stop 56a to 56d Relay lens 61 First optical system 62 Second optical system 63 Projection field stop 64 Focus correction optical member 65 Image shift optical member 66 Magnification Optical member for correction 67 Rotation correction mechanism 68 Polarization adjustment mechanism 70 First deflection member 71 First lens group 72 First concave mirror 80 Second deflection member 81 Second lens group 82 Second concave mirror 91 First prism 92 Second prism 93 Polarization Membrane 10 mask stage (Second Embodiment)
P substrate FR1 supply roll FR2 recovery roll U1 to Un processing apparatus U3 exposure apparatus (substrate processing apparatus)
M mask MA mask (second embodiment)
AX1 1st axis AX2 2nd axis P1 Mask surface P2 Support surface P7 Intermediate image plane EL1 Illumination beam EL2 Projection beam Rm Curvature radius Rfa Curvature radius CL Center plane PBS Polarizing beam splitter IR1 to IR6 Illumination region IL1 to IL6 Illumination optical system ILM illumination Optical module PA1 to PA6 Projection area PL1 to PL6 Projection optical system PLM Projection optical module BX1 First optical axis BX2 Second optical axis BX3 Third optical axis D1 First surface of polarization beam splitter PBS D2 Second surface of polarization beam splitter PBS D3 Third surface of polarizing beam splitter PBS D4 Fourth surface of polarizing beam splitter PBS θ angle θ1 (β) Incident angle θB Brewster angle S1 Non-incident region S2 Incident region H Layer body H1 First film body H2 Second film body

Claims (42)

  1.  反射型のマスクを保持するマスク保持部材と、
     入射する照明光束を前記マスクへ向けて反射する一方で、前記照明光束が前記マスクにより反射されることで得られる投影光束を透過するビームスプリッタと、
     前記照明光束を前記ビームスプリッタへ入射させる照明光学モジュールと、
     前記ビームスプリッタを透過した前記投影光束を光感応性の基板に投影する投影光学モジュールと、を備え、
     前記照明光束を前記マスクへ導く照明光学系は、前記照明光学モジュールと前記ビームスプリッタとを含み、
     前記投影光束を前記基板へ導く投影光学系は、前記投影光学モジュールと前記ビームスプリッタとを含み、
     前記照明光学モジュール及び前記ビームスプリッタは、前記マスクと前記投影光学モジュールとの間に設けられている
    基板処理装置。
    A mask holding member for holding a reflective mask;
    A beam splitter that reflects incident illumination light flux toward the mask while transmitting a projection light flux obtained by the illumination light beam being reflected by the mask;
    An illumination optical module for causing the illumination light beam to enter the beam splitter;
    A projection optical module that projects the projection light beam transmitted through the beam splitter onto a light-sensitive substrate, and
    The illumination optical system for guiding the illumination light beam to the mask includes the illumination optical module and the beam splitter,
    The projection optical system for guiding the projection light beam to the substrate includes the projection optical module and the beam splitter,
    The illumination optical module and the beam splitter are substrate processing apparatuses provided between the mask and the projection optical module.
  2.  前記照明光学系は、前記照明光束による前記マスク上の照明領域を矩形状に制限する光学部材を含み、
     前記照明光学モジュールは、前記照明光束を入射して前記ビームスプリッタに向けて射出する第1レンズを有し、
     前記第1レンズは、前記照明光束が通る第1入射領域に対応した形状の外形を有するように成形される
    請求項1に記載の基板処理装置。
    The illumination optical system includes an optical member that limits an illumination area on the mask by the illumination light beam to a rectangular shape,
    The illumination optical module has a first lens that enters the illumination light beam and emits the light toward the beam splitter,
    The substrate processing apparatus according to claim 1, wherein the first lens is shaped to have an outer shape corresponding to a first incident region through which the illumination light beam passes.
  3.  前記第1レンズは、外形が円形のレンズの一部を切り欠いた形状になっている
    請求項2に記載の基板処理装置。
    The substrate processing apparatus according to claim 2, wherein the first lens has a shape in which a part of a lens having a circular outer shape is cut out.
  4.  前記第1レンズは、前記ビームスプリッタに隣接して配置されている
    請求項2または3に記載の基板処理装置。
    The substrate processing apparatus according to claim 2, wherein the first lens is disposed adjacent to the beam splitter.
  5.  前記投影光学モジュールは、前記ビームスプリッタからの前記投影光束を入射する第2レンズを有し、
     前記第2レンズは、前記光感応性の基板上の投影領域に向かう前記投影光束が通る第2入射領域に対応した形状の外形を有するように成形される
    請求項1から4のいずれか1項に記載の基板処理装置。
    The projection optical module has a second lens that enters the projection light beam from the beam splitter,
    The said 2nd lens is shape | molded so that it may have the external shape of the shape corresponding to the 2nd incident area | region through which the said projection light beam which goes to the projection area | region on the said photosensitive substrate passes. 2. The substrate processing apparatus according to 1.
  6.  前記第2レンズは、外形が円形のレンズの一部を切り欠いた形状になっている
    請求項5に記載の基板処理装置。
    The substrate processing apparatus according to claim 5, wherein the second lens has a shape in which a part of a lens having a circular outer shape is cut out.
  7.  前記第2レンズは、前記ビームスプリッタに隣接して配置されている
    請求項5または6に記載の基板処理装置。
    The substrate processing apparatus according to claim 5, wherein the second lens is disposed adjacent to the beam splitter.
  8.  前記基板を支持面で支持する基板支持部材を、さらに備え、
     前記マスクのマスク面は、第1軸を中心とした第1の曲率半径となる第1円周面に沿って形成され、
     前記基板支持部材の前記支持面は、第2軸を中心とした第2の曲率半径となる第2円周面に沿って形成され、
     前記第1軸と前記第2軸とは平行になっており、
     前記第1軸及び前記第2軸を通る中心面と前記投影光束の主光線との、前記マスク面の第1円周面の周方向に為す角度をθとすると、
     前記ビームスプリッタに入射する前記照明光束の主光線の入射角βは、45°×0.8≦β≦(45°+θ/2)×1.2の範囲内である
    請求項1から7のいずれか1項に記載の基板処理装置。
    A substrate support member for supporting the substrate by a support surface;
    The mask surface of the mask is formed along a first circumferential surface having a first radius of curvature around the first axis,
    The support surface of the substrate support member is formed along a second circumferential surface having a second radius of curvature centered on a second axis,
    The first axis and the second axis are parallel,
    An angle between the central plane passing through the first axis and the second axis and the principal ray of the projected light beam in the circumferential direction of the first circumferential surface of the mask surface is θ,
    The incident angle β of the principal ray of the illumination light beam incident on the beam splitter is in a range of 45 ° × 0.8 ≦ β ≦ (45 ° + θ / 2) × 1.2. The substrate processing apparatus according to claim 1.
  9.  前記基板を支持面で支持する基板支持部材を、さらに備え、
     前記マスクのマスク面は、第1軸を中心とした第1の曲率半径となる第1円周面に沿って形成され、
     前記基板支持部材の前記支持面は、第2軸を中心とした第2の曲率半径となる第2円周面に沿って形成され、
     前記第1軸と前記第2軸とは平行になっており、
     前記照明光学系は、前記マスク上に形成される複数の照明領域に対応させて複数設けられ、前記複数の照明光学系は、前記照明光束を前記複数の照明領域へ導いており、
     前記投影光学系は、前記複数の照明光学系に対応させて複数設けられ、前記複数の投影光学系は、前記複数の照明領域からの前記複数の投影光束を、前記基板上に形成される複数の投影領域へ導いており、
     前記複数の照明光学系及び前記複数の投影光学系は、前記マスクの周方向に2列に並んで配置され、
     1列目の照明光学系及び1列目の投影光学系と、2列目の照明光学系及び2列目の投影光学系とは、前記第1軸及び前記第2軸を通る中心面を挟んで、対称に配置されている
    請求項1から8のいずれか1項に記載の基板処理装置。
    A substrate support member for supporting the substrate by a support surface;
    The mask surface of the mask is formed along a first circumferential surface having a first radius of curvature around the first axis,
    The support surface of the substrate support member is formed along a second circumferential surface having a second radius of curvature centered on a second axis,
    The first axis and the second axis are parallel,
    The illumination optical system is provided in a plurality corresponding to a plurality of illumination areas formed on the mask, and the plurality of illumination optical systems guides the illumination light flux to the plurality of illumination areas,
    A plurality of the projection optical systems are provided corresponding to the plurality of illumination optical systems, and the plurality of projection optical systems are a plurality of projection light beams from the plurality of illumination regions formed on the substrate. To the projected area of
    The plurality of illumination optical systems and the plurality of projection optical systems are arranged in two rows in the circumferential direction of the mask,
    The first row illumination optical system, the first row projection optical system, the second row illumination optical system, and the second row projection optical system sandwich a center plane passing through the first axis and the second axis. The substrate processing apparatus according to claim 1, which is arranged symmetrically.
  10.  前記ビームスプリッタは偏光ビームスプリッタであり、前記偏光ビームスプリッタと前記マスクとの間に設けられた波長板を、さらに備え、
     前記波長板は、前記偏光ビームスプリッタから前記マスクに向かう前記照明光束の偏光状態を変えると共に、前記マスクから前記偏光ビームスプリッタに入射する前記投影光束の偏光状態をさらに変える
    請求項1から9のいずれか1項に記載の基板処理装置。
    The beam splitter is a polarizing beam splitter, and further comprises a wave plate provided between the polarizing beam splitter and the mask,
    The wave plate changes the polarization state of the illumination light beam from the polarization beam splitter toward the mask, and further changes the polarization state of the projection light beam incident on the polarization beam splitter from the mask. The substrate processing apparatus according to claim 1.
  11.  前記照明光学系は、前記ビームスプリッタから前記マスクのマスク面へ向かう前記照明光束の主光線を、前記第1軸から前記第1の曲率半径の約1/2の半径位置に向かわせることにより、前記第1円周面に沿った周方向に関して互いに非平行な状態とするシリンドリカルレンズを含む
    請求項8または9に記載の基板処理装置。
    The illumination optical system directs the principal ray of the illumination light beam traveling from the beam splitter toward the mask surface of the mask from a first axis to a radial position of about ½ of the first curvature radius, The substrate processing apparatus of Claim 8 or 9 containing the cylindrical lens made into a mutually non-parallel state regarding the circumferential direction along the said 1st circumferential surface.
  12.  前記照明光学系から前記マスクに照明される前記照明光束の配向特性は、前記マスクで反射する前記投影光束の主光線が互いに平行なテレセントリックな状態になるように設定される
    請求項1から10のいずれか1項に記載の基板処理装置。
    11. The alignment characteristic of the illumination light beam illuminated on the mask from the illumination optical system is set so that chief rays of the projection light beam reflected by the mask are parallel to each other in a telecentric state. The substrate processing apparatus of any one of Claims.
  13.  前記照明光束は、レーザである
    請求項1から12のいずれか1項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the illumination light beam is a laser.
  14.  請求項1から13のいずれか1項に記載の基板処理装置と、
     前記基板処理装置に前記基板を供給する基板供給装置と、を備える
    デバイス製造システム。
    A substrate processing apparatus according to any one of claims 1 to 13,
    A device manufacturing system comprising: a substrate supply device that supplies the substrate to the substrate processing apparatus.
  15.  請求項1から13のいずれか1項に記載の基板処理装置を用いて前記基板を投影露光することと、
     投影露光された前記基板を処理することにより、前記マスクのパターンを前記基板上に形成することと、を含む
    デバイス製造方法。
    Projecting and exposing the substrate using the substrate processing apparatus according to claim 1;
    Forming a pattern of the mask on the substrate by processing the substrate subjected to the projection exposure.
  16.  反射型のマスクを保持するマスク保持部材と、
     入射する照明光束を前記マスクへ向けて透過する一方で、前記照明光束が前記マスクにより反射されることで得られる投影光束を反射するビームスプリッタと、
     前記照明光束を前記ビームスプリッタへ入射させる照明光学モジュールと、
     前記ビームスプリッタで反射した前記投影光束を光感応性の基板に投影する投影光学モジュールと、を備え、
     前記照明光束を前記マスクへ導く照明光学系は、前記照明光学モジュールと前記ビームスプリッタとを含み、
     前記投影光束を前記基板へ導く投影光学系は、前記投影光学モジュールと前記ビームスプリッタとを含み、
     前記照明光学モジュール及び前記ビームスプリッタは、前記マスクと前記投影光学モジュールとの間に設けられている
    基板処理装置。
    A mask holding member for holding a reflective mask;
    A beam splitter that reflects incident illumination light flux toward the mask while reflecting a projection light flux obtained by the illumination light beam being reflected by the mask;
    An illumination optical module for causing the illumination light beam to enter the beam splitter;
    A projection optical module that projects the projected light beam reflected by the beam splitter onto a light-sensitive substrate, and
    The illumination optical system for guiding the illumination light beam to the mask includes the illumination optical module and the beam splitter,
    The projection optical system for guiding the projection light beam to the substrate includes the projection optical module and the beam splitter,
    The illumination optical module and the beam splitter are substrate processing apparatuses provided between the mask and the projection optical module.
  17.  前記照明光学系は、前記照明光束による前記マスク上の照明領域を矩形状または長方形状に制限する光学部材を含み、
     前記照明光学モジュールは、前記照明光束を入射して前記ビームスプリッタに向けて射出する第1レンズを有し、
     前記第1レンズは、前記照明光束が通る第1入射領域に対応した形状の外形を有するように成形される
    請求項16に記載の基板処理装置。
    The illumination optical system includes an optical member that limits an illumination area on the mask by the illumination light beam to a rectangular shape or a rectangular shape,
    The illumination optical module has a first lens that enters the illumination light beam and emits the light toward the beam splitter,
    The substrate processing apparatus according to claim 16, wherein the first lens is shaped to have an outer shape corresponding to a first incident region through which the illumination light beam passes.
  18.  前記第1レンズは、外形が円形のレンズの一部を切り欠いた形状になっている
    請求項17に記載の基板処理装置。
    The substrate processing apparatus according to claim 17, wherein the first lens has a shape in which a part of a lens having a circular outer shape is cut out.
  19.  前記第1レンズは、前記ビームスプリッタに隣接して配置されている
    請求項17または18に記載の基板処理装置。
    The substrate processing apparatus according to claim 17, wherein the first lens is disposed adjacent to the beam splitter.
  20.  前記投影光学モジュールは、前記投影光束を入射する第2レンズを有し、
     前記第2レンズは、前記投影光束が通る第2入射領域に対応した形状の外形を有するように成形される
    請求項16から19のいずれか1項に記載の基板処理装置。
    The projection optical module has a second lens that enters the projection light beam,
    20. The substrate processing apparatus according to claim 16, wherein the second lens is shaped so as to have an outer shape corresponding to a second incident region through which the projection light beam passes.
  21.  第1プリズムと、
     前記第1プリズムの1つの面と対向した面を有する第2プリズムと、
     前記第1プリズムから前記第2プリズムに向かう入射光束を、偏光状態に応じて、前記第1プリズム側に反射する反射光束、又は前記第2プリズム側に透過する透過光束に分離する為に、前記第1プリズムと前記第2プリズムとの対向する面の間に設けられ、二酸化ケイ素を主成分とする第1膜体と酸化ハフニウムを主成分とする第2膜体とを膜厚方向に積層した偏光膜と、
    を備える偏光ビームスプリッタ。
    A first prism;
    A second prism having a surface facing one surface of the first prism;
    In order to separate the incident light beam from the first prism toward the second prism into a reflected light beam reflected to the first prism side or a transmitted light beam transmitted to the second prism side according to the polarization state, A first film body mainly composed of silicon dioxide and a second film body mainly composed of hafnium oxide, which are provided between the opposing surfaces of the first prism and the second prism, are stacked in the film thickness direction. A polarizing film;
    A polarization beam splitter.
  22.  前記偏光膜は、52.4°~57.3°のブリュースター角となる膜である
    請求項21に記載の偏光ビームスプリッタ。
    The polarizing beam splitter according to claim 21, wherein the polarizing film is a film having a Brewster angle of 52.4 ° to 57.3 °.
  23.  前記第1プリズムは、前記入射光束が入射する第1面と、前記偏光膜で反射した前記反射光束が出射する第2面と、を有し、
     前記第2プリズムは、前記第1面に対向する第3面と、前記第2面に対向する第4面と、を有し、
     前記第1面は、入射する前記入射光束の主光線に対して直交する垂直面となっており、
     前記第2面は、出射する前記反射光束の主光線に対して直交する垂直面となっており、
     前記第3面は、前記第1面と非平行に設けられ、
     前記第4面は、前記第2面と平行に設けられる
    請求項21または22に記載の偏光ビームスプリッタ。
    The first prism has a first surface on which the incident light beam is incident, and a second surface on which the reflected light beam reflected by the polarizing film is emitted,
    The second prism has a third surface facing the first surface, and a fourth surface facing the second surface,
    The first surface is a vertical surface orthogonal to the principal ray of the incident light flux that is incident,
    The second surface is a vertical surface orthogonal to the principal ray of the reflected luminous flux that is emitted,
    The third surface is provided non-parallel to the first surface;
    The polarization beam splitter according to claim 21 or 22, wherein the fourth surface is provided in parallel with the second surface.
  24.  前記第1面と前記偏光膜とのなす角度は、前記偏光膜に入射する前記入射光束の主光線の入射角と同じである
    請求項23に記載の偏光ビームスプリッタ。
    24. The polarizing beam splitter according to claim 23, wherein an angle formed between the first surface and the polarizing film is the same as an incident angle of a principal ray of the incident light beam incident on the polarizing film.
  25.  前記偏光膜は、層体を膜厚方向に複数積層した周期層となっており、
     前記層体は、
     二酸化ケイ素で構成され、前記入射光束の波長λに対してλ/4波長となる膜厚の前記第1膜体と、
     前記第1膜体を挟んで膜厚方向の両側に設けられ、酸化ハフニウムで構成され、前記入射光束の波長λに対してλ/8波長となる膜厚の前記第2膜体と、を有する
    請求項21から24のいずれか1項に記載の偏光ビームスプリッタ。
    The polarizing film is a periodic layer in which a plurality of layer bodies are laminated in the film thickness direction,
    The layer body is
    The first film body made of silicon dioxide and having a thickness of λ / 4 wavelength with respect to the wavelength λ of the incident light beam;
    The second film body is provided on both sides in the film thickness direction with the first film body interposed therebetween, is made of hafnium oxide, and has a thickness of λ / 8 wavelength with respect to the wavelength λ of the incident light beam. The polarizing beam splitter according to any one of claims 21 to 24.
  26.  前記偏光膜は、接着剤またはオプティカルコンタクトによって、前記第1プリズム及び前記第2プリズムの間に固定される
    請求項21から25のいずれか1項に記載の偏光ビームスプリッタ。
    The polarizing beam splitter according to any one of claims 21 to 25, wherein the polarizing film is fixed between the first prism and the second prism by an adhesive or an optical contact.
  27.  反射型のマスクを保持するマスク保持部材と、
     照明光束を前記マスクへ導く照明光学モジュールと、
     前記照明光束が前記マスクにより反射されることで得られる投影光束を被投影体に投影する投影光学モジュールと、
     前記照明光学モジュールと前記マスクとの間であって、且つ前記マスクと前記投影光学モジュールとの間に配置される、請求項21から26のいずれか1項に記載の偏光ビームスプリッタと、波長板と、を有し、
     前記照明光束は、前記偏光ビームスプリッタの前記偏光膜に入射する入射角が、52.4°~57.3°のブリュースター角を含む所定の角度範囲となっており、
     前記偏光ビームスプリッタが、前記照明光束を前記マスクに向けて反射させると共に、前記投影光束を前記投影光学モジュールに向けて透過させるように、前記波長板は、前記偏光ビームスプリッタからの前記照明光束を偏光すると共に、前記マスクからの前記投影光束をさらに偏光する基板処理装置。
    A mask holding member for holding a reflective mask;
    An illumination optical module for guiding an illumination beam to the mask;
    A projection optical module that projects a projection light beam obtained by the illumination light beam being reflected by the mask onto a projection target;
    27. The polarizing beam splitter and the wave plate according to claim 21, which are disposed between the illumination optical module and the mask and between the mask and the projection optical module. And having
    The illumination light beam has an incident angle incident on the polarizing film of the polarizing beam splitter in a predetermined angle range including a Brewster angle of 52.4 ° to 57.3 °,
    The wave plate reflects the illumination light beam from the polarization beam splitter so that the polarization beam splitter reflects the illumination light beam toward the mask and transmits the projection light beam toward the projection optical module. A substrate processing apparatus for polarizing and further polarizing the projection light beam from the mask.
  28.  前記所定の角度範囲は、41.5°以上61.4°以下である
    請求項27に記載の基板処理装置。
    The substrate processing apparatus according to claim 27, wherein the predetermined angle range is not less than 41.5 ° and not more than 61.4 °.
  29.  前記照明光束の主光線は、前記偏光膜に入射する入射角が、前記ブリュースター角である
    請求項27または28に記載の基板処理装置。
    The substrate processing apparatus according to claim 27 or 28, wherein an incident angle of the principal ray of the illumination light beam incident on the polarizing film is the Brewster angle.
  30.  前記照明光束は、i線以下の波長である
    請求項27から29のいずれか1項に記載の基板処理装置。
    30. The substrate processing apparatus according to claim 27, wherein the illumination light beam has a wavelength of i-line or less.
  31.  前記照明光束は、高調波レーザである
    請求項27から30のいずれか1項に記載の基板処理装置。
    31. The substrate processing apparatus according to claim 27, wherein the illumination light beam is a harmonic laser.
  32.  前記照明光束は、エキシマレーザである
    請求項27から31のいずれか1項に記載の基板処理装置。
    32. The substrate processing apparatus according to claim 27, wherein the illumination light beam is an excimer laser.
  33.  前記照明光学モジュールから前記マスクに照明される前記照明光束は、前記マスクで反射する前記投影光束がテレセントリックとなる光束である
    請求項27から32のいずれか1項に記載の基板処理装置。
    The substrate processing apparatus according to any one of claims 27 to 32, wherein the illumination light beam illuminating the mask from the illumination optical module is a light beam in which the projection light beam reflected by the mask is telecentric.
  34.  前記偏光ビームスプリッタ及び前記波長板は、接着剤またはオプティカルコンタクトによって固定される
    請求項27から33のいずれか1項に記載の基板処理装置。
    The substrate processing apparatus according to claim 27, wherein the polarizing beam splitter and the wave plate are fixed by an adhesive or an optical contact.
  35.  前記照明光学モジュールは、前記マスク上に形成される複数の照明領域に対応させて複数設けられ、前記複数の照明光学モジュールは、前記照明光束を前記複数の照明領域へ導いており、
     前記投影光学モジュールは、前記複数の照明光学モジュールに対応させて複数設けられ、前記複数の投影光学モジュールは、前記複数の照明領域からの前記複数の投影光束を、前記被投影体上に形成される複数の投影領域へ導いており、
     前記偏光ビームスプリッタ及び前記波長板は、前記複数の照明光学モジュール及び前記複数の投影光学モジュールに対応させて複数設けられ、
     前記複数の波長板の偏光方向をそれぞれ調整する偏光調整手段を、さらに備えた
    請求項27から34のいずれか1項に記載の基板処理装置。
    The illumination optical module is provided in a plurality corresponding to a plurality of illumination areas formed on the mask, and the plurality of illumination optical modules guides the illumination light flux to the plurality of illumination areas,
    A plurality of the projection optical modules are provided corresponding to the plurality of illumination optical modules, and the plurality of projection optical modules are formed on the projection target with the plurality of projection light beams from the plurality of illumination regions. Led to multiple projection areas,
    A plurality of the polarizing beam splitter and the wave plate are provided corresponding to the plurality of illumination optical modules and the plurality of projection optical modules,
    35. The substrate processing apparatus according to claim 27, further comprising a polarization adjusting unit that adjusts the polarization directions of the plurality of wavelength plates.
  36.  請求項27から35のいずれか1項に記載の基板処理装置と、
     前記基板処理装置に前記被投影体を供給する基板供給装置と、を備える
    デバイス製造システム。
    A substrate processing apparatus according to any one of claims 27 to 35;
    A device manufacturing system comprising: a substrate supply device that supplies the projection target to the substrate processing apparatus.
  37.  請求項27から35のいずれか1項に記載の基板処理装置を用いて前記被投影体に投影露光をすることと、
     投影露光された前記被投影体を処理することにより、前記マスクのパターンを形成することと、を含む
    デバイス製造方法。
    Performing projection exposure on the projection object using the substrate processing apparatus according to any one of claims 27 to 35;
    Forming a pattern of the mask by processing the projection-exposed object to be projected.
  38.  反射型のマスクを保持するマスク保持部材と、
     照明光束を前記マスクへ導く照明光学モジュールと、
     前記照明光束が前記マスクにより反射されることで得られる投影光束を被投影体に投影する投影光学モジュールと、
     前記照明光学モジュールと前記マスクとの間であって、且つ前記マスクと前記投影光学モジュールとの間に配置される、請求項1又は2のいずれか1項に記載の偏光ビームスプリッタと、波長板と、を有し、
     前記投影光束は、前記偏光ビームスプリッタの前記偏光膜に入射する入射角が、52.4°~57.3°のブリュースター角を含む所定の角度範囲となっており、
     前記偏光ビームスプリッタが、前記照明光束を前記マスクに向けて透過させると共に、前記投影光束を前記投影光学モジュールに向けて反射させるように、前記波長板は、前記偏光ビームスプリッタからの前記照明光束を偏光すると共に、前記マスクからの前記投影光束をさらに偏光する基板処理装置。
    A mask holding member for holding a reflective mask;
    An illumination optical module for guiding an illumination beam to the mask;
    A projection optical module that projects a projection light beam obtained by the illumination light beam being reflected by the mask onto a projection target;
    3. The polarizing beam splitter according to claim 1, wherein the polarizing beam splitter and the wave plate are disposed between the illumination optical module and the mask and between the mask and the projection optical module. And having
    The projection light beam has an incident angle incident on the polarizing film of the polarizing beam splitter in a predetermined angle range including a Brewster angle of 52.4 ° to 57.3 °,
    The wave plate transmits the illumination light beam from the polarization beam splitter so that the polarization beam splitter transmits the illumination light beam toward the mask and reflects the projection light beam toward the projection optical module. A substrate processing apparatus for polarizing and further polarizing the projection light beam from the mask.
  39.  2つの光学プリズムの接合面に偏光膜を有し、一方の光学プリズムから他方の光学プリズムに向かう中心波長λの紫外線光を偏光状態に応じて前記偏光膜で分離する偏光ビームスプリッタであって、
     前記偏光膜は、
     前記波長λにおいて前記光学プリズムの屈折率よりも大きい第1屈折率を有する第1膜体と、
     前記波長λにおいて前記第1屈折率よりも小さい第2屈折率を有する第2膜体とを、膜厚方向に複数繰り返し積層して構成され、
     前記偏光膜によって得られる前記波長λの紫外線光に対するブリュースター角を50°以上にすること、
    を特徴とする偏光ビームスプリッタ。
    A polarizing beam splitter that has a polarizing film on a joint surface between two optical prisms, and that separates ultraviolet light having a central wavelength λ from one optical prism toward the other optical prism by the polarizing film according to a polarization state;
    The polarizing film is
    A first film body having a first refractive index larger than the refractive index of the optical prism at the wavelength λ;
    The second film body having a second refractive index smaller than the first refractive index at the wavelength λ is configured by repeatedly laminating in the film thickness direction,
    A Brewster angle with respect to ultraviolet light of the wavelength λ obtained by the polarizing film is set to 50 ° or more;
    A polarizing beam splitter.
  40.  前記光学プリズムは石英で構成され、
     前記第1膜体を、酸化ハフニウム、酸化ジルコニウム、二酸化チタン、五酸化タンタルのいずれか1つとし、
     前記第2膜体を、二酸化ケイ素とフッ化マグネシウムのいずれか一方とした
    ことを特徴とする請求項39に記載の偏光ビームスプリッタ。
    The optical prism is made of quartz,
    The first film body is one of hafnium oxide, zirconium oxide, titanium dioxide, and tantalum pentoxide,
    40. The polarizing beam splitter according to claim 39, wherein the second film body is one of silicon dioxide and magnesium fluoride.
  41.  前記偏光膜に入射するP偏光に対して95%以上の透過率で、且つ5%以下の反射率となる第1入射角度と、前記偏光膜に入射するS偏光に対して95%以上の反射率で、且つ5%以下の透過率となる第2入射角度との間に前記ブリュースター角が存在するように、前記第1膜体と前記第2膜体とを繰り返し積層したことを特徴とする請求項40に記載の偏光ビームスプリッタ。 A first incident angle with a transmittance of 95% or more for P-polarized light incident on the polarizing film and a reflectance of 5% or less, and a reflection of 95% or more for S-polarized light incident on the polarizing film The first film body and the second film body are repeatedly laminated so that the Brewster angle exists between the first incident angle and the second incident angle at which the transmittance is 5% or less. The polarizing beam splitter according to claim 40.
  42.  前記第1入射角度と前記第2入射角度との差を14°以上としたことを特徴とする請求項41に記載の偏光ビームスプリッタ。 The polarization beam splitter according to claim 41, wherein a difference between the first incident angle and the second incident angle is 14 ° or more.
PCT/JP2013/079911 2012-11-06 2013-11-05 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method WO2014073535A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014545710A JP6540027B2 (en) 2012-11-06 2013-11-05 Substrate processing equipment
KR1020187017562A KR101984451B1 (en) 2012-11-06 2013-11-05 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method
KR1020197011130A KR102045713B1 (en) 2012-11-06 2013-11-05 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method
KR1020157011676A KR101979979B1 (en) 2012-11-06 2013-11-05 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method
KR1020187001013A KR101900225B1 (en) 2012-11-06 2013-11-05 Polarization beam splitter and exposure apparatus using the polarization beam splitter
CN201380067898.8A CN104885012B (en) 2012-11-06 2013-11-05 Polarising beam splitter, substrate board treatment, device inspection apparatus and device making method
HK16100427.5A HK1212476A1 (en) 2012-11-06 2016-01-15 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012244731 2012-11-06
JP2012-244731 2012-11-06
JP2013-128877 2013-06-19
JP2013128877 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014073535A1 true WO2014073535A1 (en) 2014-05-15

Family

ID=50684638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079911 WO2014073535A1 (en) 2012-11-06 2013-11-05 Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method

Country Status (6)

Country Link
JP (3) JP6540027B2 (en)
KR (4) KR101984451B1 (en)
CN (3) CN104885012B (en)
HK (3) HK1212476A1 (en)
TW (3) TWI683345B (en)
WO (1) WO2014073535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143750A (en) * 2018-09-08 2019-01-04 深圳阜时科技有限公司 A kind of optical module, optical projection mould group, sensing device and equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547172B (en) * 2015-09-17 2018-11-13 上海微电子装备(集团)股份有限公司 A kind of exposure device
CN108169923B (en) * 2017-12-21 2021-01-26 冯杰 Light source polarizer
CN113686892B (en) * 2021-08-20 2023-08-25 四川轻化工大学 Novel bearing surface defect intelligent detection system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241502A (en) * 1988-03-23 1989-09-26 Namiki Precision Jewel Co Ltd Polarizing element for optical isolator
JPH11264904A (en) * 1998-03-17 1999-09-28 Nikon Corp Prism type optical element
JP2001297980A (en) * 2000-02-05 2001-10-26 Carl Zeiss:Fa Projection aligner for microlithography
JP2001343609A (en) * 2000-05-31 2001-12-14 Mitsubishi Electric Corp Illumination device and projection type display device using this illumination device
JP2003114326A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized beam splitter and optical apparatus using the polarized beam splitter
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2008304614A (en) * 2007-06-06 2008-12-18 Canon Inc Polarization element and exposure device
JP2009055044A (en) * 2007-08-28 2009-03-12 Samsung Electronics Co Ltd Exposure apparatus and method of exposing semiconductor substrate
JP2010204588A (en) * 2009-03-06 2010-09-16 Nikon Corp Exposure apparatus, exposure method, and method for manufacturing device
JP2011043679A (en) * 2009-08-21 2011-03-03 Fujifilm Corp Zoom lens and image pickup apparatus
JP2011221536A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask moving device, exposure device, substrate processor and device manufacturing method
JP2011221538A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method
JP2011221537A (en) * 2010-04-13 2011-11-04 Nikon Corp Exposure device, substrate processing device, and method of manufacturing device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279984A4 (en) * 2000-03-31 2004-11-24 Nikon Corp Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
JP2005024941A (en) * 2003-07-03 2005-01-27 Nikon Corp Projection optical system, projection aligner, and projection exposing method
JP2006098719A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Exposure apparatus
JP2006220879A (en) * 2005-02-10 2006-08-24 Sony Corp Polarizer, luminescent device, and liquid crystal display
JP2007163804A (en) * 2005-12-13 2007-06-28 Canon Inc Polarization beam splitter
JP2007227438A (en) 2006-02-21 2007-09-06 Nikon Corp Exposure apparatus and exposure method, and mask for light exposure
JP4905455B2 (en) * 2006-09-08 2012-03-28 株式会社ニコン Mask, exposure apparatus, and device manufacturing method
US7580131B2 (en) * 2007-04-17 2009-08-25 Asml Netherlands B.V. Angularly resolved scatterometer and inspection method
CN101165597B (en) * 2007-10-11 2010-04-14 上海微电子装备有限公司 Aligning system and lightscribing device using the system
KR101562073B1 (en) * 2007-10-16 2015-10-21 가부시키가이샤 니콘 Illumination optical system, exposure apparatus, and device manufacturing method
JP5533659B2 (en) * 2008-10-10 2014-06-25 株式会社ニコン Flexible substrate, display element manufacturing method, and display element manufacturing apparatus
US8264666B2 (en) * 2009-03-13 2012-09-11 Nikon Corporation Exposure apparatus, exposure method, and method of manufacturing device
US8541163B2 (en) * 2009-06-05 2013-09-24 Nikon Corporation Transporting method, transporting apparatus, exposure method, and exposure apparatus
US20110037962A1 (en) * 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
US20130027684A1 (en) * 2010-04-13 2013-01-31 Tohru Kiuchi Exposure apparatus, substrate processing apparatus, and device manufacturing method
US9355818B2 (en) * 2010-05-28 2016-05-31 Kla-Tencor Corporation Reflection electron beam projection lithography using an ExB separator
CN103119519B (en) * 2010-09-29 2016-02-17 东友精细化工有限公司 Exposure system
WO2012100791A1 (en) * 2011-01-29 2012-08-02 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
KR101723354B1 (en) * 2011-02-24 2017-04-05 가부시키가이샤 니콘 Substrate processing method and substrate processing apparatus
KR101849508B1 (en) * 2011-12-20 2018-05-28 가부시키가이샤 니콘 Substrate processing device, device manufacturing system and device manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241502A (en) * 1988-03-23 1989-09-26 Namiki Precision Jewel Co Ltd Polarizing element for optical isolator
JPH11264904A (en) * 1998-03-17 1999-09-28 Nikon Corp Prism type optical element
JP2001297980A (en) * 2000-02-05 2001-10-26 Carl Zeiss:Fa Projection aligner for microlithography
JP2001343609A (en) * 2000-05-31 2001-12-14 Mitsubishi Electric Corp Illumination device and projection type display device using this illumination device
JP2003114326A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized beam splitter and optical apparatus using the polarized beam splitter
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2008304614A (en) * 2007-06-06 2008-12-18 Canon Inc Polarization element and exposure device
JP2009055044A (en) * 2007-08-28 2009-03-12 Samsung Electronics Co Ltd Exposure apparatus and method of exposing semiconductor substrate
JP2010204588A (en) * 2009-03-06 2010-09-16 Nikon Corp Exposure apparatus, exposure method, and method for manufacturing device
JP2011043679A (en) * 2009-08-21 2011-03-03 Fujifilm Corp Zoom lens and image pickup apparatus
JP2011221536A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask moving device, exposure device, substrate processor and device manufacturing method
JP2011221538A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method
JP2011221537A (en) * 2010-04-13 2011-11-04 Nikon Corp Exposure device, substrate processing device, and method of manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143750A (en) * 2018-09-08 2019-01-04 深圳阜时科技有限公司 A kind of optical module, optical projection mould group, sensing device and equipment

Also Published As

Publication number Publication date
KR20180008893A (en) 2018-01-24
CN104885012B (en) 2017-07-28
JP6512253B2 (en) 2019-05-15
TWI683345B (en) 2020-01-21
CN107255911A (en) 2017-10-17
CN107272095A (en) 2017-10-20
CN107272095B (en) 2020-04-28
TW201738934A (en) 2017-11-01
TW201432785A (en) 2014-08-16
TWI627662B (en) 2018-06-21
TWI596652B (en) 2017-08-21
JP2018025810A (en) 2018-02-15
TW201738933A (en) 2017-11-01
KR101984451B1 (en) 2019-05-30
KR20180071428A (en) 2018-06-27
HK1245410A1 (en) 2018-08-24
KR20150083852A (en) 2015-07-20
HK1212476A1 (en) 2016-06-10
KR102045713B1 (en) 2019-11-15
JP6540027B2 (en) 2019-07-10
KR101900225B1 (en) 2018-09-18
JP2019117409A (en) 2019-07-18
JP6705527B2 (en) 2020-06-03
JPWO2014073535A1 (en) 2016-09-08
CN104885012A (en) 2015-09-02
CN107255911B (en) 2019-07-09
KR101979979B1 (en) 2019-05-17
KR20190044126A (en) 2019-04-29
HK1245418B (en) 2020-04-24

Similar Documents

Publication Publication Date Title
JP6705527B2 (en) Projection exposure device
JP7070598B2 (en) Scanning exposure method and device manufacturing method
JP6635167B2 (en) Projection exposure apparatus and device manufacturing method
KR102096961B1 (en) Display panel manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854051

Country of ref document: EP

Kind code of ref document: A1