WO2014073520A1 - 合金化溶融亜鉛めっき鋼板とその製造方法 - Google Patents

合金化溶融亜鉛めっき鋼板とその製造方法 Download PDF

Info

Publication number
WO2014073520A1
WO2014073520A1 PCT/JP2013/079858 JP2013079858W WO2014073520A1 WO 2014073520 A1 WO2014073520 A1 WO 2014073520A1 JP 2013079858 W JP2013079858 W JP 2013079858W WO 2014073520 A1 WO2014073520 A1 WO 2014073520A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
plating
layer
dip galvanized
Prior art date
Application number
PCT/JP2013/079858
Other languages
English (en)
French (fr)
Inventor
宗士 藤田
山中 晋太郎
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL13853672T priority Critical patent/PL2918696T3/pl
Priority to BR112015008396A priority patent/BR112015008396B1/pt
Priority to RU2015121407A priority patent/RU2635499C2/ru
Priority to CA2888738A priority patent/CA2888738C/en
Priority to JP2014517318A priority patent/JP5708884B2/ja
Priority to US14/438,503 priority patent/US10167541B2/en
Priority to MX2015004736A priority patent/MX362505B/es
Priority to ES13853672T priority patent/ES2773302T3/es
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13853672.7A priority patent/EP2918696B1/en
Priority to KR1020157011287A priority patent/KR101699644B1/ko
Priority to CN201380058134.2A priority patent/CN104769146B/zh
Publication of WO2014073520A1 publication Critical patent/WO2014073520A1/ja
Priority to ZA2015/03075A priority patent/ZA201503075B/en
Priority to US16/184,434 priority patent/US10711336B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same. More specifically, a high-strength alloy having a tensile strength of 590 MPa or more, including an alloyed hot-dip galvanized layer excellent in plating wettability and plating adhesion, which can be applied as a member in the fields of automobiles, home appliances, and building materials.
  • the present invention relates to a galvannealed steel sheet and a method for producing the same.
  • an alloyed hot-dip galvanized steel sheet is manufactured by the following method using a continuous hot-dip galvanizing facility.
  • the atmosphere when performing recrystallization annealing is that the oxide of Fe inhibits the wettability between the plating layer and the base steel plate and the adhesion between the plating layer and the base steel plate during the subsequent plating treatment. Heat in a reducing atmosphere.
  • the hot dip galvanization is processed by continuously cooling the steel sheet to a temperature suitable for plating in a reducing atmosphere of Fe without being exposed to the air and immersing it in a hot dip zinc bath.
  • the amount of plating adhesion is controlled by wiping with nitrogen, followed by heating to form an alloyed hot dip galvanized layer on the base steel sheet by alloying reaction of Fe and Zn.
  • the base material is made to contain relatively inexpensive elements such as C, Si, and Mn.
  • the use of high-strength steel sheets with increased strength is increasing.
  • those having a tensile strength of 590 MPa or more are the mainstream.
  • Si and Mn are oxidizable elements as compared to Fe, so heating is performed in a conventional Fe reducing atmosphere. Then, Si and Mn on the surface of the steel sheet are oxidized, and Si and Mn thermally diffused from the inside of the steel sheet to the surface are oxidized on the surface, and oxides of Si and Mn are concentrated on the surface.
  • Si and Mn oxides are concentrated on the surface, in the process of immersing the steel sheet in a molten zinc bath, contact between the molten zinc and the base steel sheet is hindered. The adhesion of plating is reduced.
  • high strength alloyed hot dip galvanized steel sheet is accompanied by a decrease in ductility as the strength of the base steel sheet increases, resulting in a large press load during press forming and shear stress that the plating layer receives from the mold during forming. Since it increases, there exists a problem that a plating layer tends to peel from the interface with a base material steel plate, and an external appearance defect will be carried out by a rust prevention fall or a pushing crease.
  • Patent Document 1 discloses that after annealing in an oxidizing atmosphere of Fe so that the thickness of the oxide film on the surface of the steel sheet becomes 400 to 10,000 mm, hydrogen is added. A method is shown in which Fe is reduced and plated in a furnace atmosphere. Further, in Patent Document 2, after oxidizing Fe on the surface of the steel sheet, by controlling the oxygen potential in the reduction furnace, Fe is reduced and Si is internally oxidized to suppress surface concentration of Si oxide. After that, the method of plating is shown. However, in these techniques, if the reduction time is too long, Si surface concentration is caused. If the reduction time is too short, an Fe oxide film remains on the steel sheet surface.
  • Patent Document 3 discloses a technique for increasing the oxygen potential of an atmosphere, internally oxidizing Si and Mn, and suppressing the concentration of Si and Mn oxide on the surface in an all radiant tube type annealing furnace.
  • Patent Documents 4 and 5 show a method of plating after controlling the surface concentration of both Fe oxide, Si, and Mn oxide by precisely controlling the means for raising the oxygen potential and the conditions thereof. Has been.
  • none of the techniques can sufficiently suppress the concentration of Si and Mn oxides.
  • the internal oxides of Si and Mn formed on the surface of the base steel plate are present in the vicinity of the surface inside the base steel plate, there is a problem that the ductility of the base steel plate is reduced and press forming cannot be performed.
  • the plating layer is subjected to shear stress, there is a problem in that the plating layer peels from the vicinity of the inner surface of the base steel plate where the internal oxide exists.
  • Patent Document 6 discloses a method in which the hydrogen concentration in the atmosphere in recrystallization annealing is increased to a reduction region where Fe, Si, and Mn are not oxidized, and then plating is performed.
  • the presence of C on the surface of the base steel plate reduces the plating adhesion as described above, and the remaining Si and Mn are plated with the base steel plate.
  • it when immersed in a plating bath, it reacts with oxides floating on the surface of the bath to form Si and Mn oxides, which reduces the plating wettability and plating adhesion. Have.
  • Patent Document 7 As a technique for suppressing the concentration of the oxides of Si and Mn, it has been noted in Patent Document 7 that the oxygen potential is controlled in the hot rolling process as focusing on the internal oxidation in advance in the hot rolling process.
  • a technique for producing a hot dip galvanized steel sheet in a continuous hot dip galvanizing facility using a thin steel sheet in which Si is internally oxidized by is shown.
  • the thickness of the internal oxide layer is reduced during the rolling in the cold rolling process, etc., so that the thickness of the internal oxide layer is reduced and Si oxide is concentrated on the surface during the recrystallization annealing process. Therefore, there is a problem that it is insufficient for improving plating wettability and plating adhesion.
  • the Fe oxide formed simultaneously with the internal oxidation of Si in the hot rolling process has a problem that a roll pickup is generated.
  • Patent Documents 1 to 7 are insufficient in all of the above-described improvement of the plating adhesion problem related to the reduction in ductility caused by the increase in strength of the galvannealed steel sheet.
  • the present invention provides a high-strength galvannealed steel sheet having an alloyed galvanized layer excellent in plating wettability and plating adhesion on a base steel sheet containing C, Si, and Mn. And a method for manufacturing the same.
  • the present inventors among the alloyed hot-dip galvanized layer and the base steel plate in the alloyed hot-dip galvanized steel plate, have a ferrite structure particularly directly under the surface of the base steel plate and in the steel plate.
  • the gist of the present invention is as follows. [1] % By mass C: 0.05% or more, 0.50% or less, Si: 0.2% or more, 3.0% or less, Mn: 0.5% or more, 5.0% or less, Al: 0.001 or more and 1.0% or less, P: 0.1% or less, S: 0.01% or less, N: an alloyed hot-dip galvanized steel sheet using a base steel sheet containing 0.01% or less, the balance being Fe and inevitable impurities, and Fe: 5% by mass on the surface of the base steel sheet 15% or less is contained, the balance is made of Zn and inevitable impurities, and an alloyed hot-dip galvanized layer having a thickness of 3 ⁇ m or more and 30 ⁇ m or less is applied.
  • An alloyed hot-dip galvanized steel sheet having the following A layer having a thickness of 2 ⁇ m or more and 20 ⁇ m or less in a base steel sheet.
  • a layer 50% by volume or more of the ferrite structure based on the volume of the A layer, the balance is inevitable, and the content of Fe that is not an oxide is 90% by mass or more based on the mass of the A layer.
  • the total content of oxides of Fe, Si, Mn, P, S, and Al is 10 mass% or less, and the content of C is less than 0.05 mass%.
  • the base steel material is subjected to a continuous hot-dip galvanizing facility equipped with a heating furnace and a soaking furnace, and the base steel material is 500 ° C. or more and 950 ° C. in the heating furnace and the soaking furnace.
  • An alloyed hot-dip galvanized steel sheet which is heated and annealed within the following range, and hot-dip galvanized, and alloyed at a temperature of 440 ° C. or higher and 600 ° C. or lower.
  • Manufacturing method Heating furnace conditions: using an all radiant tube type heating furnace, the temperature of the base steel is within a range of 500 ° C. or more and 950 ° C.
  • the atmosphere of the heating furnace is hydrogen, It has water vapor and nitrogen, and the logarithm log (PH2O / PH2) of the value obtained by dividing the water vapor partial pressure (PH2O) by the hydrogen partial pressure (PH2) is -4.0 or more and less than -2.0, and the hydrogen concentration is 3% by volume.
  • the logarithm log (PH2O / PH2) of the value obtained by dividing the partial pressure of water vapor (PH2O) by the hydrogen partial pressure (PH2) is -8.0 or more and less than -4.0, and the hydrogen concentration is 3 vol% or more and 30 vol. %Less than
  • a high-strength alloying comprising an alloyed hot-dip galvanized layer excellent in plating wettability and plating adhesiveness on a base steel plate having a tensile strength of 590 MPa or more containing C, Si, and Mn.
  • a hot dip galvanized steel sheet is obtained.
  • the steel components of the base steel plate provided with the alloyed hot-dip galvanized layer of the present invention are as follows, and it is assumed that the base steel plate has a tensile strength of 590 MPa or more.
  • % of the steel component demonstrated by the following description means the mass% unless there is particular description.
  • C is an element that can increase the strength of the base steel sheet. However, if it is less than 0.05%, it becomes difficult to achieve both a tensile strength of 590 MPa or more and workability. On the other hand, if it exceeds 0.50%, it is difficult to ensure spot weldability. For this reason, the range is made 0.05% to 0.50%.
  • Si is a strengthening element and is effective in increasing the strength of the base steel sheet. Moreover, precipitation of cementite can be suppressed. If it is less than 0.2%, the effect of increasing the strength is small, and if it exceeds 3.0%, the workability deteriorates. Accordingly, the Si content is in the range of 0.2% to 3.0%.
  • Mn is a strengthening element and is effective in increasing the strength of the base steel sheet. However, if it is less than 0.5%, it is difficult to obtain a tensile strength of 590 MPa or more. On the contrary, if the amount is too large, co-segregation with P and S is promoted, and workability is significantly deteriorated, so 5.0% is made the upper limit. Therefore, the Mn content is in the range of 0.5% to 5.0%.
  • Al promotes ferrite formation and improves ductility. It can also be used as a deoxidizer. If it is less than 0.001%, the effect is insufficient. On the other hand, excessive addition increases the number of Al-based coarse inclusions, causing deterioration of hole expansibility and surface damage. For this reason, the Al content is set to 0.001% or more and 1.0% or less.
  • P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. If it exceeds 0.1%, embrittlement of the weld becomes noticeable, so the appropriate range is made 0.1% or less. That is, P is limited to 0.1% or less as an impurity. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001%.
  • S adversely affects weldability and manufacturability during casting and hot rolling. For this reason, the upper limit is made 0.01% or less. That is, S is limited to 0.01% or less as an impurity. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%. Further, since S is combined with Mn to form coarse MnS and deteriorates bendability and hole expansibility, it is preferable to reduce it as much as possible.
  • N forms coarse nitrides and degrades bendability and hole expandability, so it is necessary to suppress the addition amount. If N exceeds 0.01%, this tendency becomes remarkable. Therefore, the content of N as an impurity is set to 0.01% or less. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit.
  • the base material steel plate of the present invention may further contain one or more of Cr, Ni, Cu, Nb, Ti, V, B, Ca, Mg, La, Ce, and Y as necessary. .
  • Cr Cr is a strengthening element and is important for improving hardenability. However, if the content is less than 0.05%, these effects cannot be obtained. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit is made 1.0%.
  • Ni is a strengthening element and is important for improving hardenability. However, if the content is less than 0.05%, these effects cannot be obtained. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit is made 1.0%.
  • Cu is a strengthening element and is important for improving hardenability. However, if the content is less than 0.05%, these effects cannot be obtained. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 1.0%.
  • Nb is a strengthening element. It contributes to increasing the strength of the base steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the added amount is less than 0.005%, these effects cannot be obtained. Therefore, when it is contained, the lower limit is made 0.005%. If the content exceeds 0.3%, carbonitride precipitates increase and the formability deteriorates, so the upper limit is made 0.3%.
  • Ti is a strengthening element. It contributes to increasing the strength of the base steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the added amount is less than 0.005%, these effects cannot be obtained. Therefore, when it is contained, the lower limit is made 0.005%. If the content exceeds 0.3%, carbonitride precipitates increase and the formability deteriorates, so the upper limit is made 0.3%.
  • V is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the added amount is less than 0.005%, these effects cannot be obtained. Therefore, when it is contained, the lower limit is made 0.005%. If the content exceeds 0.5%, the carbonitride precipitates more and the formability deteriorates, so the upper limit is made 0.5%.
  • B is effective for strengthening grain boundaries and strengthening steel by adding 0.0001% or more. However, when the added amount exceeds 0.01%, the effect is not only saturated but also heat Since the manufacturability at the time of dropping is lowered, the upper limit is made 0.01%.
  • Ca, Mg, La, Ce, and Y can each be contained in the range of 0.0005 to 0.04%. All are elements used for deoxidation, and it is preferable to contain 0.0005% or more. However, when the content exceeds 0.04%, it causes deterioration of molding processability. Therefore, these contents are 0.0005% or more and 0.04% or less, respectively.
  • La, Ce, and Y are often added by misch metal, and in addition to La and Ce, a lanthanoid series element may be contained in combination. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. However, the effects of the present invention are exhibited even when metal La or Ce is added.
  • the alloyed hot-dip galvanized layer of the present invention is formed on the surface of the base steel sheet as a base to ensure rust prevention. Therefore, in the present invention, the above-described decrease in plating adhesion and plating wettability is a very important problem from the viewpoint of ensuring rust prevention.
  • the alloyed hot-dip galvanized layer contains 5% or more and 15% or less of Fe by mass%, and consists of the balance Zn and inevitable impurities.
  • the Fe content is less than 5%, the Fe—Zn alloy phase formed in the plating layer is small and the rust prevention property is insufficient.
  • the press adhesion is reduced during the press forming, because the base steel plate is broken or the plating layer is peeled off.
  • the Fe content exceeds 15%, the ⁇ phase or ⁇ 1 phase having poor ductility is formed thick in the Fe—Zn alloy phase formed in the plating layer. As a result, at the time of press molding, the plating layer peels off at the interface between the plating layer and the base steel plate, and the rust prevention property is lowered.
  • Fe—Zn alloy phase mentioned here means ⁇ phase (FeZn13), ⁇ 1 It means all of the phase (FeZn7), the ⁇ 1 phase (Fe5Zn21), and the ⁇ phase (Fe3Zn10).
  • the plating layer may further contain Al if necessary.
  • Al in the plating layer in an amount of 0.02% to 1.0%, plating wettability and plating adhesion can be further improved.
  • an area of 30 mm ⁇ 30 mm is cut out from an galvannealed steel sheet.
  • the cut sample is immersed in a 5% hydrochloric acid aqueous solution to which 0.02% by volume of an inhibitor (Ibit 700A, manufactured by Asahi Chemical Industry Co., Ltd.) is added, and only the alloyed hot-dip galvanized layer is dissolved.
  • the amount of Fe, Zn, and Al is measured by ICP (ion plasma emission spectrometer) for the solution. It is obtained by dividing the Fe amount by (Fe amount + Zn amount + Al amount) and multiplying by 100. In this invention, let the average value of the value calculated
  • the alloyed hot-dip galvanized layer has a thickness of 3 ⁇ m or more and 30 ⁇ m or less.
  • the thickness is less than 3 ⁇ m, rust prevention is insufficient. In addition, it is difficult to uniformly form the plating layer on the base steel plate, and plating wettability such as non-plating is reduced. If the thickness exceeds 30 ⁇ m, the effect of improving the rust prevention property by the plating layer is saturated, which is not economical. In addition, the residual stress in the plating layer is increased, and the plating adhesion such as peeling of the plating layer during press molding is lowered.
  • JIS H 8501 a microscope cross-sectional test method
  • SEM scanning electron microscope
  • EPMA electron beam microanalyzer
  • the present invention is embedded in a techno bit 4002 (manufactured by Marto Co., Ltd.) and polished paper of # 240, # 320, # 400, # 600, # 800, # 1000 (JIS R 6001), the polished surface was subjected to line analysis with EPMA from the surface of the plated layer of the plated steel plate toward the base steel plate. Then, the length at which Zn was not detected from the surface of the plating layer was determined at any 10 positions separated from each other by 1 mm or more, and the average of the calculated values was defined as the thickness of the alloyed hot-dip galvanized layer.
  • the alloyed hot-dip galvanized steel sheet of the present invention has the following A layer having a thickness of 2 ⁇ m or more and 20 ⁇ m or less immediately below the surface of the base steel sheet and from the surface of the base steel sheet into the steel sheet.
  • a layer containing 50% or more of the volume of ferrite based on the volume of the A layer, and consisting of the remainder inevitable structure, and the content of Fe that is not an oxide is 90% or more based on the mass per A layer,
  • the total content of oxides of Fe, Si, Mn, P, S, and Al is 10 mass% or less, and the content of C is less than 0.05 mass%.
  • the layer A in the present invention is defined by a measurement method described later. Since this layer A has reduced Fe, Si, Mn, P, S, and Al oxides, Si, Mn internal oxides described in prior art documents, etc., or externally oxidized Si, Mn Unlike the layer having, the ferrite structure is mainly composed of a reduced C and excellent ductility. Further, it is a layer that is highly controlled to improve the wettability and adhesion of the plating, and is mainly composed of Fe which is not an oxide highly reactive with zinc.
  • the alloyed hot-dip galvanized steel sheet having the A layer of the present invention is excellent in plating wettability and plating adhesion, while having high strength containing 590 MPa or more of C, Si, Mn and the like.
  • Ferrite is a structure with excellent ductility.
  • the galvannealed steel sheet has a large press load at the time of press forming in combination with a decrease in ductility as the strength increases, and the shear stress received by the plating layer from the mold at the time of forming increases. For this reason, the plating layer easily peels off from the interface with the base material steel plate, and there is a problem relating to a decrease in plating adhesion such that the appearance is poor due to a decrease in rust prevention or a pressing rod.
  • the A layer immediately below the plating layer contains a ferrite structure and is extremely excellent in ductility, so the problem is solved. If the ferrite structure is less than 50% by volume, the improvement in plating adhesion is insufficient.
  • the A layer preferably contains 55% by volume or more of a ferrite structure. As a form of ferrite, acicular ferrite may be included in addition to polygonal ferrite.
  • the inevitable structure of the balance means bainite, martensite, retained austenite, and pearlite.
  • the identification of each phase of the above structure, ferrite, martensite, bainite, austenite, pearlite and the remaining structure, observation of the existing position, and measurement of the area ratio were performed using the Nital reagent and the reagent disclosed in JP 59-219473 A
  • the optical fiber can be quantified by observation with an optical microscope of 1000 times and scanning and transmission electron microscopes of 1000 to 100,000 times.
  • the area ratio of the ferrite structure is obtained by a point count method or image analysis, and the average value is taken as the content ratio on a volume basis.
  • the A layer has a non-oxide Fe content of 90% or more based on the mass of the A layer, the total content of Fe, Si, Mn, P, S, and Al oxides is 10% or less. In order to obtain excellent plating wettability and plating adhesion, it is necessary to make the content of less than 0.05%.
  • Si and Mn are more easily oxidizable elements than Fe.
  • Si and Mn on the surface of the base steel plate are oxidized.
  • Si and Mn thermally diffused from the inside of the base steel plate to the surface are oxidized on the surface, and oxides of Si and Mn are concentrated on the surface.
  • Si and Mn oxides are concentrated on the surface, the wettability of the alloyed hot-dip galvanized layer is prevented because contact between the hot-dip zinc and the base steel plate is hindered in the process of immersing the base steel plate in the molten zinc bath.
  • the A layer which is directly under the plating layer, is mainly composed of Fe, and the oxides of Fe, Si, Mn, P, S, and Al are reduced, and this problem is solved.
  • the oxide referred to here may be either the internal oxidation or the so-called external oxidation concentrated on the surface of the base steel plate.
  • the chemical formula of the oxide is, for example, FeO, Fe2O3, Fe3O4, MnO, MnO2, Mn2O3, Mn3O4, SiO2, P2O5, Al2O3, SO2 or a single oxide of each non-stoichiometric composition, or Examples thereof include composite oxides of FeSiO3, Fe2SiO4, MnSiO3, Mn2SiO4, AlMnO3, Fe2PO3, and Mn2PO3 and composite oxides of the respective non-stoichiometric compositions.
  • the content of Fe that is not an oxide in the A layer is less than 90%, the improvement of plating wettability and plating adhesion is insufficient.
  • the content of Fe is preferably 92% or more.
  • the total content of oxides of Fe, Si, Mn, P, S, and Al in the A layer exceeds 10%, the improvement of plating wettability and plating adhesion is insufficient.
  • the total content of oxides of Fe, Si, Mn, P, S, and Al is preferably 8% or less.
  • the content of Fe that is not an oxide in the A layer is obtained, for example, as follows. Depth direction analysis of alloyed hot-dip galvanized steel sheet using an X-ray photoelectron spectrometer (XPS; PHI5800, ULVAC-PHI Co., Ltd.) equipped with an ion gun. The content was determined from the spectrum of Fe, which was 0, by averaging the depth. Similarly, the total content of oxides of Fe, Si, Mn, P, S, and Al is Fe, Si, Mn, P, and S that are not valence 0 from the time Zn is no longer detected until the depth of 2 ⁇ m. Then, the respective content ratios were obtained from the spectrum of Al, summed, and then averaged by depth.
  • XPS X-ray photoelectron spectrometer
  • the measurement method is not particularly limited, and can be determined by glow discharge optical emission spectrometry (GDS), secondary ion mass spectrometry (SIMS), or time-of-flight secondary ion mass spectrometry (TOF-SIMS) as necessary.
  • GDS glow discharge optical emission spectrometry
  • SIMS secondary ion mass spectrometry
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the content ratio may be obtained by using an analysis means such as a depth direction analysis of the above, a cross-sectional analysis with a transmission electron microscope (TEM), or an electron beam microanalyzer (EPMA).
  • TEM transmission electron microscope
  • EPMA electron beam microanalyzer
  • the base steel sheet is immersed in the molten zinc bath.
  • the reaction between the molten zinc and the base steel plate is hindered and the adhesion of the plating is lowered.
  • the inclusion of C in the galvannealed layer after the alloying reaction reduces the ductility of the plating, and there is a problem that the plating is easily peeled off during press molding.
  • C is extremely reduced in the A layer immediately below the plating layer, and the problem is solved.
  • the C content of the A layer is less than 0.05%, and preferably 0.03% or less.
  • the content ratio of C in the A layer is obtained as follows, for example.
  • the alloyed hot-dip galvanized steel sheet was analyzed in the depth direction by GDS (GDA750, manufactured by Rigaku Corporation), and the content ratio of C up to a depth of 2 ⁇ m after Zn was not detected was obtained by averaging the depth.
  • GDS GDS750, manufactured by Rigaku Corporation
  • the measuring method is not particularly limited, and the content rate is obtained using analytical means such as depth direction analysis with XPS, SIMS, and TOF-SIMS, and cross-sectional analysis with TEM and EPMA, if necessary. May be.
  • the A layer it is necessary for the A layer to have a thickness of 2 ⁇ m or more and 20 ⁇ m or less in order to obtain excellent plating wettability and plating adhesion. If it is less than 2 ⁇ m, the improvement of the plating wettability and the plating adhesion is insufficient, and if it exceeds 20 ⁇ m, the strength of the base steel sheet is lowered.
  • the A layer has a thickness of 2 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of layer A was determined as follows. That is, the volume% of the ferrite structure described above is measured from directly below the surface of the base steel sheet, and the depth at which the ferrite structure is less than 50% by volume (depth from directly below the surface of the base steel sheet) is defined as D1. The depth from when the steel sheet is analyzed in the depth direction by XPS and Zn is no longer detected until the Fe content determined by the above-described method is less than 90% is defined as D2. The total content of each of the Fe, Si, Mn, P, S, and Al spectra obtained by XPS at the same time as D2 from the spectra of Fe, Si, Mn, P, S, and Al that are obtained by the above-described method after Zn is no longer detected exceeds 10%.
  • the depth from when the steel sheet is analyzed in the depth direction by GDS and Zn is no longer detected until the C content obtained by the above-described method reaches 0.05% or more is defined as D4.
  • the smallest value among the average values D1 (AVE) to D4 (AVE) obtained by measuring five points D1 to D4 at positions separated from each other by 20 mm or more and 50 mm or less is the thickness of the A layer.
  • Fe, Si, Mn, Fe, P, S, Al oxides such as external oxides or internal oxides are reduced, and C is also mainly reduced. It is a layer mainly composed of ferrite structure. If the A layer has a thickness within the range of the invention, the wettability of plating and the adhesion of plating are excellent.
  • a steel material having a predetermined component is cast, hot-rolled, pickled, and cold-rolled to form a cold-rolled steel plate (base material steel plate), and a continuous molten zinc equipped with a heating furnace and a soaking furnace.
  • annealing treatment is performed, and galvanizing treatment and alloying treatment are performed.
  • the temperature of the cold-rolled steel sheet in each furnace is within a temperature range of 500 ° C. or more and 950 ° C. or less, and after passing the cold-rolled steel sheet under the following conditions, hot dip galvanization Subsequently, the alloying treatment is performed at an alloying heating temperature of 440 ° C.
  • Heating furnace conditions using an all radiant tube type heating furnace, the temperature of the base steel is within a range of 500 ° C. or more and 950 ° C. or less within 100 seconds to 1000 seconds, and the atmosphere of the heating furnace is hydrogen, It has water vapor and nitrogen, and the logarithm log (PH2O / PH2) of the value obtained by dividing the water vapor partial pressure (PH2O) by the hydrogen partial pressure (PH2) is -4.0 or more and less than -2.0, and the hydrogen concentration is 3% by volume. It is 30 volume% or less.
  • Conditions of soaking furnace The time during which the temperature of the base steel is in the range of 500 ° C. or more and 950 ° C. or less is within 100 seconds to 1000 seconds, and the atmosphere of the soaking furnace has hydrogen, steam and nitrogen,
  • the logarithm log (PH2O / PH2) of the value obtained by dividing the partial pressure (PH2O) by the hydrogen partial pressure (PH2) is from -8.0 to less than -4.0, and the hydrogen concentration is from 3 vol% to 30 vol%.
  • an annealing treatment and a treatment for applying a plating layer are performed in a continuous hot dip galvanizing facility equipped with an all-radiant tube type heating furnace.
  • An all-radiant tube type furnace is difficult to roll pick up and has good annealing treatment productivity.
  • the maximum ultimate sheet temperature of the cold-rolled steel sheet to be passed is 500 ° C. or more and 950 ° C. or less. Necessary for the production of galvanized steel sheets. If it is less than 500 degreeC, the tensile strength of a base material steel plate will be less than 590 MPa. In addition, the Fe natural oxide on the surface of the base steel sheet remains after annealing, and the wettability and adhesion of the plating deteriorate. If it exceeds 950 ° C., excessive heat energy is required and the economical efficiency is lowered. Further, since the volume fraction of ferrite is reduced and the oxides of Si and Mn are excessively formed, the wettability and adhesion of the plating are lowered. Preferably they are 600 degreeC or more and 850 degrees C or less.
  • C, Si, Mn, P, S, and Al on the surface of the base steel sheet are oxidized by increasing the log (PH2O / PH2) of the atmosphere in the furnace.
  • C When C is oxidized, it can be desorbed from the base steel plate as carbon monoxide or carbon dioxide, and the C content on the surface of the base steel plate can be reduced.
  • Si, Mn, P, S, and Al are internally oxidized immediately below the surface of the base steel plate. At this time, the oxidation of Fe can be suppressed by appropriately controlling the height of log (PH2O / PH2). Therefore, excellent plating wettability and plating adhesion can be obtained.
  • the time during which the base steel sheet is in the range of 500 ° C. or higher and 950 ° C. or lower in the heating furnace is 100 seconds or longer and 1000 seconds or shorter. If it is less than 100 seconds, the amount of reduction of the C content and the amount of internal oxidation of Si, Mn, P, S, and Al are small, so that the wettability and adhesion of plating deteriorate. If it exceeds 1000 seconds, the productivity is lowered, the C content is excessively reduced, the tensile strength is lowered, the internal oxidation is excessively advanced, and the adhesion of the plating is lowered due to the generation of internal stress.
  • the atmosphere in which the base steel plate is in the range of 500 ° C. or more and 950 ° C. or less in the heating furnace has hydrogen, water vapor, and nitrogen, and water vapor partial pressure (PH 2 O) is changed to hydrogen partial pressure (PH 2).
  • the logarithm log (PH2O / PH2) of the value divided by is ⁇ 4.0 or more and less than ⁇ 2.0. If log (PH2O / PH2) is less than -4.0, the oxidation reaction of C does not proceed sufficiently, so that the wettability and adhesion of the plating deteriorate.
  • the log (PH2O / PH2) in the heating furnace is set to a range of less than -2.0.
  • the hydrogen concentration in the atmosphere of the heating furnace is 3% by volume or more and 30% by volume or less.
  • the hydrogen concentration is less than 3% by volume, it is difficult to control the hydrogen concentration, and log (PH2O / PH2) variation in the furnace is large. Therefore, plating wettability and plating adhesiveness are reduced. If it exceeds 30% by volume, the amount of hydrogen to be added will increase and the economy will be inferior. In addition, hydrogen penetrates into the steel sheet, causing hydrogen embrittlement and reducing steel sheet strength and plating adhesion.
  • the heating rate of the plate temperature in the heating furnace is not particularly limited, but if it is too slow, the productivity deteriorates, and if it is too fast, heating equipment costs are required, so 0.5 ° C./s or more and 20 ° C./s or less is preferable.
  • the initial plate temperature at the time of entering the heating furnace is not particularly limited, but if it is too high, the Fe oxide is excessively formed on the base steel plate, so that the plating wettability and plating adhesion are lowered, and if it is too low, cooling is performed. Because of the cost, 0 ° C. or higher and 200 ° C. or lower is preferable.
  • the time during which the steel sheet is in the range of 500 ° C. or more and 950 ° C. or less in the soaking furnace is 100 seconds or more and 1000 seconds or less. If it is less than 100 seconds, the reduction of oxides of Si, Mn, P, S, and Al is insufficient, so that the wettability and adhesion of the plating deteriorate. If it exceeds 1000 seconds, the productivity is lowered, and the C content immediately below the surface of the base steel plate is increased by the thermal diffusion of C, so that the wettability and adhesion of the plating are lowered.
  • the steel sheet in an atmosphere in which the steel sheet is in the range of 500 ° C. or higher and 950 ° C. or lower in the soaking furnace, it has hydrogen, water vapor and nitrogen, and the water vapor partial pressure (PH 2 O) is the hydrogen partial pressure (PH 2).
  • the logarithm log (PH2O / PH2) of the divided value is -8.0 or more and less than -4.0. If log (PH2O / PH2) is less than -8.0, in addition to poor industrial feasibility, if ceramic is used in the furnace body, it is reduced and the life of the furnace body is reduced.
  • the atmosphere log (PH 2 O / PH 2) of the soaking furnace is not less than ⁇ 7.0 and less than ⁇ 4.0.
  • the hydrogen concentration in the atmosphere of the soaking furnace is 3% by volume or more and 30% by volume or less. If the hydrogen concentration is less than 3% by volume, it is difficult to control the hydrogen concentration, and log (PH2O / PH2) has a large variation in the furnace, so that the plating wettability and the plating adhesion are deteriorated. If it exceeds 30% by volume, the amount of hydrogen to be added increases and is inferior economically, and hydrogen penetrates into the steel sheet, causing hydrogen embrittlement and reducing the steel sheet strength and plating adhesion.
  • the atmospheric conditions are individually controlled in a heating furnace and a soaking furnace of a continuous hot-dip galvanizing facility.
  • the concentration of nitrogen, water vapor, and hydrogen into each furnace.
  • the oxygen potential log (PH2O / PH2) in the heating furnace is higher than the oxygen potential log (PH2O / PH2) in the soaking furnace. Therefore, when the gas flows from the heating furnace to the soaking furnace, an additional atmosphere with a higher hydrogen concentration or lower steam concentration than between the heating furnace and the soaking furnace is placed between the heating furnace and the soaking furnace. It may be introduced so as to flow toward. When the gas flows from the soaking furnace to the heating furnace, an additional atmosphere with a lower hydrogen concentration or higher steam concentration than that in the soaking furnace is directed to the heating furnace between the heating furnace and the soaking furnace. It may be introduced so that it flows.
  • the base steel plate After the base steel plate has exited the heating furnace and the soaking furnace, it can undergo a general normal process until it is immersed in a hot dip galvanizing bath.
  • a general process After immersion in the hot dip galvanizing bath, a general process can be generally performed as well.
  • the base steel sheet passes through a heating furnace and a soaking furnace, and is cooled and maintained at a temperature as necessary. After being immersed in a hot dip galvanizing bath and hot dip galvanized, it is alloyed as necessary. May be applied.
  • a hot dip galvanizing bath containing a bath temperature of 440 ° C. or higher and lower than 550 ° C., an Al concentration in the bath of 0.08% or higher and 0.24% or lower, and inevitable impurities.
  • the bath temperature is less than 440 ° C., it is difficult to control the adhesion amount of the plating because there is a possibility that solidification of molten zinc occurs in the bath.
  • the bath temperature exceeds 550 ° C., the molten zinc vaporizes vigorously on the bath surface, the operation cost increases, and vaporized zinc adheres to the furnace, which causes operational problems.
  • the alloying treatment needs to be performed at 440 ° C. or more and 600 ° C. or less. Below 440 ° C, the alloying progress is slow. If the temperature exceeds 600 ° C., an overalloy produces an excessively hard and brittle Zn-Fe alloy layer ⁇ layer at the interface with the base steel plate, resulting in poor plating adhesion. If the temperature exceeds 600 ° C., the retained austenite phase of the base steel plate is decomposed, so that the balance between strength and ductility of the base steel plate is also deteriorated.
  • the hot dip galvanizing bath had a plating bath temperature of 460 ° C., and the bath composition contained 0.13% Al and 0.03% Fe in addition to Zn.
  • the plating thickness was adjusted by nitrogen gas wiping, and then alloyed by heating in an alloying furnace for 30 seconds. The plating wettability and plating adhesion of the obtained galvannealed steel sheet were evaluated. The results for the examples are shown in Table 2, and the results for the comparative examples are shown in Table 3.
  • EPMA mapping was performed on Zn and Fe at a plating surface of 200 ⁇ m ⁇ 200 ⁇ m at 10 locations 1 mm or more apart from each other in the galvannealed steel sheet.
  • plating wettability is poor (x), if it is confirmed at 1 to 3 of 10 locations.
  • Plating wettability was good ( ⁇ ). If no place was confirmed, the plating wettability was very good ((). ⁇ or ⁇ was evaluated as acceptable for plating wettability, and x was evaluated as unacceptable for plating wettability.
  • Plating adhesion is measured by a powdering test. When the peel width exceeds 2 mm, adhesion is poor (x), 2 mm or less, 1 mm or more is good (O), 1 mm or less is even better ( ⁇ ).
  • tensile test a JIS No. 5 test piece was sampled from a 1.0 mm-thick galvannealed steel sheet in a direction perpendicular to and parallel to the rolling direction, and the tensile properties were evaluated. The average value of the results of five tensile tests in each of the perpendicular direction and the parallel direction was taken as the tensile strength (TS). In addition, about the steel plate with a large material anisotropy, the value of elongation tended to vary.
  • Table 2 Table 2-1, Table 2-2, Table 2-3, Table 2-4
  • Table 3 Examples of the present invention (Table 2) as shown in Table 3-1 and Table 3-2)
  • the plating wettability and plating adhesion were found to be superior to those of the comparative example (Table 3), provided that the log (PH2O / PH2) in the heating furnace was in the range of -4.0 to 0.0.
  • the plating wettability and plating adhesion were superior to those of the comparative example.
  • the log (PH2O / PH2) was -2.0 or more, the deterioration of the internal adhesion of the heating furnace (usually made of SUS) could not be ignored. .
  • the alloyed hot-dip galvanized steel sheet manufactured by the method of the present invention is a high strength having a tensile strength of 590 MPa or more, and is excellent in plating wettability and plating adhesion.
  • the central application is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

C、Si、Mn他を所定量含有する母材鋼板を用いた合金化溶融亜鉛めっき鋼板であって、前記母材鋼板の表面に、質量%でFe:5%以上15%以下を含有する厚み3μm以上30μm以下の合金化溶融亜鉛めっき層が施され、前記母材鋼板の表面直下で且つ前記母材鋼板の表面から前記母材鋼板内に厚み2μm以上20μm以下の、フェライトの組織を50体積%以上含有し、酸化物ではないFeの含有率が90質量%以上、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10質量%以下、Cの含有率が0.05質量%未満であるA層を有する。

Description

合金化溶融亜鉛めっき鋼板とその製造方法
 本発明は、合金化溶融亜鉛めっき鋼板及びその製造方法に関する。更に詳しくは、自動車分野、家電分野、及び建材分野の部材として適用できる、めっき濡れ性及びめっき密着性に優れた合金化溶融亜鉛めっき層を備えた、590MPa以上の引張り強度を有する高強度の合金化溶融亜鉛めっき鋼板、並びにその製造方法に関する。
 自動車分野、家電分野、及び建材分野の部材において、防錆性を付与した表面処理鋼板が使用され、中でも安価に製造でき且つ防錆性に優れた合金化溶融亜鉛めっき鋼板が使用されている。
 一般に合金化溶融亜鉛めっき鋼板は、連続式溶融亜鉛めっき設備を用いて以下の方法で製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面の洗浄を目的として前処理工程にて脱脂及び/又は酸洗するか、あるいは前処理工程を省略して、予熱炉内で母材鋼板表面の油分を燃焼除去した後、加熱して、再結晶焼鈍を行う。再結晶焼鈍を行う際の雰囲気は、後のめっき処理する際にFeの酸化物がめっき層と母材鋼板との濡れ性やめっき層と母材鋼板との密着性を阻害するため、Feの還元性雰囲気中で加熱する。再結晶焼鈍の後は、大気に触れることなく連続的にFeの還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、溶融亜鉛浴に浸漬することで溶融亜鉛めっきを処理する。溶融亜鉛めっきを処理した後は直ちに窒素でワイピングすることでめっき付着量を制御し、その後に加熱することでFeとZnを合金化反応させ合金化溶融亜鉛めっき層を母材鋼板に形成させる。
 近年、特に自動車分野においては衝突時に乗員を保護する機能と、燃費の向上を目的とした軽量化とを両立させるために、C、Si、Mnといった比較的安価な元素を含有させることで母材鋼板の強度を高めた高強度鋼板の使用が増加している。取り分け強度としては590MPa以上の引張り強度を有するものが主流である。
 ところが、Si、Mnを含有した高強度合金化溶融亜鉛めっき鋼板においては、再結晶焼鈍の際、Si、MnはFeに比べ易酸化性な元素であるため、従来のFeの還元性雰囲気で加熱すると鋼板表面のSi、Mnが酸化し、更に該鋼板内部から表面に熱拡散したSi、Mnが該表面で酸化し、該表面でSi、Mnの酸化物が濃化する。該表面でSi、Mn酸化物が濃化すると、該鋼板を溶融亜鉛浴に浸漬する過程で、溶融亜鉛と母材鋼板との接触を妨げるため、合金化溶融亜鉛めっき層のめっきの濡れ性やめっきの密着性が低下する。めっき層の濡れ性が低下すると不めっき欠陥が発生し、外観不良や防錆性の低下といった問題がある。めっきの密着性が低下すると、プレス成型の際にめっきが剥離し、防錆性の低下や押し疵等で外観不良となるといった問題がある。
 更にCを含有した高強度合金化溶融亜鉛めっき鋼板においては、再結晶焼鈍でCが母材鋼板の結晶粒界、粒内に存在すると、溶融亜鉛浴に鋼板を浸漬後のFe-Znの合金化反応の過程で、溶融亜鉛と母材鋼板の該反応が阻害されめっきの密着性が低下する問題がある。更には合金化反応後の合金化溶融亜鉛めっき層中にCが含有されることでめっきの延性が低下し、プレス成型時にめっきが剥離し易い問題もある。
 更に、高強度合金化溶融亜鉛めっき鋼板は、母材鋼板の強度の増加に伴い延性が低下することに相まって、プレス成形時のプレス荷重が大きく、成形時に金型からめっき層が受けるせん断応力が増加するため、めっき層が母材鋼板との界面から剥離し易く、防錆性の低下や押し疵等で外観不良となるといった問題がある。
 前述した焼鈍時のSi、Mnの酸化物の濃化に起因した問題への対策として、従来も種々の技術が示されている。
 Si、Mnの酸化物の濃化を抑制することに着目した技術として、特許文献1に、鋼板表面の酸化膜の厚みが400~10000ÅになるようにFeの酸化雰囲気で焼鈍した後、水素を含む炉内雰囲気中でFeを還元して、めっきする方法が示されている。また、特許文献2には、鋼板表面のFeを酸化した後、還元炉内の酸素ポテンシャルを制御することによって、Feを還元すると共にSiを内部酸化させて、Si酸化物の表面濃化を抑制した後、めっきする方法が示されている。しかし、これら技術においては、還元時間が長過ぎればSiの表面濃化を引起し、還元時間が短過ぎれば鋼板表面にFeの酸化膜が残存するため、めっき層の濡れ性及びめっき層密着性の解消には不十分であるという問題点がある。さらに、焼鈍炉内で鋼板表面にFe酸化物が形成されると、Fe酸化物が炉内ロールに堆積し、堆積物の増加に伴い鋼板に押し疵が発生し外観が低下する、いわゆるロールピックアップの問題が発生する。
 特許文献3には、オールラジアントチューブ型の焼鈍炉で、雰囲気の酸素ポテンシャルを上げ、Si、Mnを内部酸化させ、表面でのSi、Mn酸化物の濃化を抑制する技術が示されている。また、特許文献4、5には、酸素ポテンシャルを上げる手段やその条件を緻密に制御して、Fe酸化物とSi、Mn酸化物の両者の表面濃化を抑制した後、めっきする方法が示されている。しかしいずれの技術もSi、Mn酸化物の濃化の抑制は十分では無い。また母材鋼板表面に形成されるSi、Mnの内部酸化物は、母材鋼板の内部の表面近傍で存在するため、母材鋼板の延性を低下させプレス成型出来なくなるといった問題や、プレス成型時にめっき層がせん断応力を受けると、内部酸化物の存在する母材鋼板の内部の表面近傍からめっき層が剥離するといった問題がある。
 特許文献6には、再結晶焼鈍での雰囲気の水素濃度をFe、及びSi、Mnが酸化しない還元領域まで上げ、その後めっきする方法が示されている。しかしこの技術においては、水素コストが莫大になることに加え、母材鋼板の表面にCが存在するため前述の通りめっき密着性が低下し、また、残存するSi、Mnがめっきと母材鋼板との反応を阻害し、更にめっき浴浸漬時には浴の表面上に浮遊した酸化物と反応してSi、Mnの酸化物を形成するため、めっき濡れ性及びめっき密着性が低下するという問題点を有している。
 更に、前記Si、Mnの酸化物の濃化を抑制する技術としては、熱延工程で事前に内部酸化させることに着目したものとして、特許文献7に、熱延工程で酸素ポテンシャルを制御することによってSiを内部酸化させた薄鋼板を用いて、連続式溶融亜鉛めっき設備で溶融亜鉛めっき鋼板を製造する技術が示されている。しかし、この技術においては、冷延工程等での圧延時に、内部酸化の層も一緒に圧延されてしまうため内部酸化層の厚みが小さくなり、再結晶焼鈍過程でSi酸化物が表面に濃化してしまうため、めっき濡れ性及びめっき密着性の改善には不十分であるという問題点を有する。また、熱延工程でSiを内部酸化させると同時に形成するFeの酸化物が、ロールピックアップを発生させるという問題点を有している。
 また、特許文献1から7の技術では、合金化溶融亜鉛めっき鋼板の高強度化に相まって生じる延性の低下に関連した前述のめっき密着性の問題の改善はいずれも不十分である。
特開昭55-122865号公報 特開2001-323355号公報 特開2008-7842号公報 特開2001-279412号公報 特開2009-209397号公報 特開2010-126757号公報 特開2000-309847号公報
 本発明は、C、Si、Mnを含有した母材鋼板に、めっき濡れ性及びめっき密着性に優れた合金化溶融亜鉛めっき層を備えた、高強度の合金化溶融亜鉛めっき鋼板を提供すること、及びその製造方法を提供することを課題とする。
 上記課題を解決するために、本発明者らは、合金化溶融亜鉛めっき鋼板における合金化溶融亜鉛めっき層と母材鋼板のうち、特に母材鋼板の表面直下で且つ鋼板内において、フェライト組織の含有率、酸化物ではないFeの含有率、Fe、Si、Mn酸化物の含有率、Cの含有率が、めっき濡れ性及びめっき密着性に及ぼす影響に着目した。更に、その製造方法として、加熱炉及び均熱炉を備えた連続式溶融亜鉛めっき設備において、加熱炉、均熱炉のそれぞれの雰囲気の水蒸気分圧PH2Oを水素分圧PH2で除した値の対数log(PH2O/PH2)の値を、それぞれの炉内で制御することに着目し、種々の検討を鋭意進めた。その結果、めっき濡れ性とめっき密着性に優れ、590MPa以上の引張り強度を有する高強度の合金化溶融亜鉛めっき鋼板を製造できることを見出し、本発明に至った。
 即ち、本発明の要旨とするところは、以下の通りである。
[1]
 質量%で、
 C:0.05%以上、0.50%以下、
 Si:0.2%以上、3.0%以下、
 Mn:0.5%以上、5.0%以下、
 Al:0.001以上、1.0%以下、
 P:0.1%以下、
 S:0.01%以下、
 N:0.01%以下
を含有し、残部Feおよび不可避的不純物からなる母材鋼板を用いた合金化溶融亜鉛めっき鋼板であって、前記母材鋼板の表面に、質量%でFe:5%以上15%以下を含有し、残部Znおよび不可避的不純物からなり、厚み3μm以上30μm以下の合金化溶融亜鉛めっき層が施され、前記母材鋼板の表面直下で且つ前記母材鋼板の表面から前記母材鋼板内に厚み2μm以上20μm以下の下記A層を有する、合金化溶融亜鉛めっき鋼板。
A層:A層の体積基準で、フェライトの組織を50体積%以上含有し、残部が不可避的組織より成り、A層の質量基準で、酸化物ではないFeの含有率が90質量%以上、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10質量%以下、Cの含有率が0.05質量%未満である。
[2]
 前記母材鋼板中に、さらに質量%で、
 Cr:0.05%以上、1.0%以下、
 Ni:0.05%以上、1.0%以下、
 Cu:0.05%以上、1.0%以下、
 Nb:0.005%以上、0.3%以下、
 Ti:0.005%以上、0.3%以下、
 V:0.005%以上、0.5%以下、
 B:0.0001%以上、0.01%以下、
 Ca:0.0005%以上、0.04%以下、
 Mg:0.0005%以上、0.04%以下、
 La:0.0005%以上、0.04%以下、
 Ce:0.0005%以上、0.04%以下、
 Y:0.0005%以上、0.04%以下、
の1種または2種以上が含有されている、[1]に記載の合金化溶融亜鉛めっき鋼板。
[3]
 前記合金化溶融亜鉛めっき層中に、さらに質量%でAlを0.02%以上1.0%以下含有する、[1]または[2]に記載の合金化溶融亜鉛めっき鋼板。
[4]
 質量%で、
 C:0.05%以上、0.50%以下、
 Si:0.2%以上、3.0%以下、
 Mn:0.5%以上、5.0%以下、
 Al:0.001以上、1.0%以下、
 P:0.1%以下、
 S:0.01%以下、
 N:0.01%以下
を含有し、残部Feおよび不可避不純物からなる母材鋼材を用いた合金化溶融亜鉛めっき鋼板の製造方法であって、鋳造、熱間圧延、酸洗、冷間圧延を施して母材鋼材とし、前記母材鋼材を、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備を用い、前記加熱炉及び前記均熱炉において前記母材鋼材を500℃以上950℃以下の範囲内に昇温して焼鈍処理し、溶融亜鉛めっき処理、440℃以上600℃以下の温度で合金化処理する製造方法において、前記焼鈍処理を下記条件で行う、合金化溶融亜鉛めっき鋼板の製造方法。
加熱炉の条件:オールラジアントチューブ型の加熱炉を用い、前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記加熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-4.0以上-2.0未満で、水素濃度3体積%以上30体積%以下
均熱炉の条件:前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記均熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-8.0以上-4.0未満で、水素濃度3体積%以上30体積%以下
[5]
 前記母材鋼板中に、さらに質量%で、
 Cr:0.05%以上、1.0%以下、
 Ni:0.05%以上、1.0%以下、
 Cu:0.05%以上、1.0%以下、
 Nb:0.005%以上、0.3%以下、
 Ti:0.005%以上、0.3%以下、
 V:0.005%以上、0.5%以下、
 B:0.0001%以上、0.01%以下、
 Ca:0.0005%以上、0.04%以下、
 Mg:0.0005%以上、0.04%以下、
 La:0.0005%以上、0.04%以下、
 Ce:0.0005%以上、0.04%以下、
 Y:0.0005%以上、0.04%以下、
の1種または2種以上が含有されている、請求項3に記載の合金化溶融亜鉛めっき鋼板の製造方法。
 本発明によれば、C、Si、Mnを含有した590MPa以上の引張り強度を有する母材鋼板に、めっき濡れ性及びめっき密着性に優れた合金化溶融亜鉛めっき層を備えた高強度の合金化溶融亜鉛めっき鋼板が得られる。
後述する本発明の実施例と比較例の結果から得られた、合金化溶融亜鉛めっき層のFe含有率および合金化溶融亜鉛めっき層の膜厚と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉のlog(PH2O/PH2)およびA層のフェライト組織含有率と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉のlog(PH2O/PH2)およびA層の酸化物ではないFeの含有率と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、均熱炉のlog(PH2O/PH2)およびA層のFe、Si、Mn、P、S、Alの酸化物含有率の合計と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉のlog(PH2O/PH2)およびA層のC含有率と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉のlog(PH2O/PH2)およびA層の厚みと、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉の最高到達板温および加熱炉で冷延鋼板の板温が500℃以上950℃以下の範囲内にある時間と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、均熱炉の最高到達板温および均熱炉で冷延鋼板の板温が500℃以上950℃以下の範囲内にある時間と、めっき濡れ性およびめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉のlog(PH2O/PH2)と均熱炉のlog(PH2O/PH2)の、めっき濡れ性とめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、加熱炉の水素濃度と均熱炉の水素濃度の、めっき濡れ性とめっき密着性に対する関係を示すグラフである。 後述する本発明の実施例と比較例の結果から得られた、合金化処理での合金化温度と合金化溶融亜鉛めっき層のFe含有率の、めっき濡れ性とめっき密着性に対する関係を示すグラフである。
 以下、本発明を詳細に説明する。
 まず、前提として本発明の合金化溶融亜鉛めっき層を備える母材鋼板の鋼成分は次の通りであり、更に母材鋼板は590MPa以上の引張り強度を有することを前提とする。尚、以下明細書で説明する鋼成分の%は、特別に説明が無い限り質量%を意味する。
 C:Cは、母材鋼板の強度を上昇できる元素である。しかしながら、0.05%未満であると590MPa以上の引張強度と加工性を両立することが難しくなる。一方、0.50%超となるとスポット溶接性の確保が困難となる。このため、その範囲を0.05%以上0.50%以下とする。
 Si:Siは、強化元素であり、母材鋼板の強度を上昇させることに有効である。また、セメンタイトの析出を抑制することが出来る。0.2%未満では高強度化の効果が小さく、また3.0%を超えると加工性が低下する。従って、Si含有量は0.2%以上3.0%以下の範囲とする。
 Mn:Mnは、強化元素であり、母材鋼板の強度を上昇させることに有効である。しかしながら、0.5%未満であると590MPa以上の引張強度を得ることが困難である。逆に多いとP、Sとの共偏析を助長し、加工性の著しい劣化を招くことから、5.0%を上限とする。従って、Mn含有量は0.5%以上5.0%以下の範囲とする。
 Al:Alは、フェライト形成を促進し、延性を向上させる。また、脱酸材としても活用可能である。0.001%未満ではその効果が不十分である。一方、過剰な添加はAl系の粗大介在物の個数を増大させ、穴拡げ性の劣化や表面傷の原因になる。このことから、Al含有量は、0.001%以上1.0%以下とする。
 P:Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.1%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.1%以下とする。すなわち、Pは不純物として0.1%以下に制限する。Pの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
 S:Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01%以下とする。すなわち、Sは不純物として0.01%以下に制限する。Sの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。また、SはMnと結びついて粗大なMnSを形成し曲げ性や穴拡げ性を劣化させるため、出来るだけ少なくすることが好ましい。
 N:Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。Nが0.01%を超えると、この傾向が顕著となることから、Nは不純物として含有量の範囲を0.01%以下とする。下限は、特に定めることなく本発明の効果は発揮されるが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。
 本発明の母材鋼板は、さらに必要に応じて、Cr、Ni、Cu、Nb、Ti、V、B、Ca、Mg、La、Ce、Yの1種または2種以上を含有しても良い。
 Cr:Crは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.05%未満ではこれらの効果が得られないため、含有する場合は下限値を0.05%とする。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1.0%とする。
 Ni:Niは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.05%未満ではこれらの効果が得られないため、含有する場合は下限値を0.05%とする。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1.0%とする。
 Cu:Cuは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.05%未満ではこれらの効果が得られないため、含有する場合は下限値を0.05%とする。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1.0%とした。
 Nb:Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、母材鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、含有する場合は下限値を0.005%とする。0.3%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.3%とする。
 Ti:Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、母材鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、含有する場合は下限値を0.005%とする。0.3%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.3%とする。
 V:Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、含有する場合は下限値を0.005%とする。0.5%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.5%とする。
 B:Bは、0.0001%以上の添加で粒界の強化や鋼材の強度化に有効であるが、その添加量が0.01%を超えると、その効果が飽和するばかりでなく、熱延時の製造性を低下させることから、その上限を0.01%とする。
 Ca、Mg、La、Ce、Yはそれぞれ0.0005以上0.04%以下含有できる。いずれも脱酸に用いる元素であり、0.0005%以上含有することが好ましい。しかしながら、含有量が0.04%を超えると、成形加工性の悪化の原因となる。そのため、これらの含有量をそれぞれ0.0005%以上0.04%以下とする。
 なお、本発明において、La、Ce、Yはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。
 次に本発明の合金化溶融亜鉛めっき層について説明する。
 本発明の合金化溶融亜鉛めっき層は、防錆性確保のため下地の前記母材鋼板の表面上に形成される。そのため本発明において、前述しためっき密着性やめっき濡れ性が低下することは、防錆性確保の観点から極めて重要な問題となる。
 図1に示す通り、該合金化溶融亜鉛めっき層は、質量%でFeを5%以上15%以下を含有し、残部Zn及び不可避的不純物からなる。
 Fe含有率が5%未満では、該めっき層中に形成されるFe-Zn合金相が少なく防錆性が不足する。加えて、該めっき層の表面の摺動性が低下するためプレス成形の際、母材鋼板の破断や、めっき層が剥離するためめっき密着性が低下する。Fe含有率が15%超では、該めっき層中に形成されるFe-Zn合金相の内、延性に乏しいΓ相又はΓ1相が厚く形成する。その結果、プレス成型の際に該めっき層と下地鋼板との界面で該めっき層が剥離し、防錆性が低下する。なおここで言うFe-Zn合金相とは、ζ相(FeZn13)、δ1
相(FeZn7)、Γ1相(Fe5Zn21)、Γ相(Fe3Zn10)の全てを意味する。
 また、本発明ではめっき層中に、さらに必要に応じてAlを含有しても良い。めっき層中に、Alを0.02%以上1.0%以下含有することで更にめっき濡れ性、めっき密着性を向上することが出来る。
 めっき層当たりのFe含有率の分析方法としては、例えば、合金化溶融亜鉛めっき鋼板から30mm×30mmの面積を切り出す。切り出したサンプルをインヒビター(イビット700A、朝日化学工業株式会社製)を0.02体積%添加した5%塩酸水溶液に浸漬して、合金化溶融亜鉛めっき層だけを溶解させる。その溶解液についてICP(イオンプラズマ発光分析装置)でFe量とZn量とAl量を測定する。そのFe量を(Fe量+Zn量+Al量)で除し、100を乗じることで求まる。本発明では、互いに100mm以上離
れた5箇所から切り出したサンプルから求めた値の平均値をFe含有率とする。
 図1に示す通り、該合金化溶融亜鉛めっき層は、厚み3μm以上30μm以下である。
 厚み3μm未満では防錆性が不足する。加えて、めっき層を母材鋼板に均一に形成させることが困難になり不めっきが発生する等めっき濡れ性が低下する。厚み30μm超では、めっき層による防錆性向上の効果が飽和し経済的ではない。加えて、めっき層内での残留応力が増加し、プレス成型の際にめっき層が剥離する等めっき密着性が低下する。
 合金化溶融亜鉛めっき層の厚みの測定方法については、種々の方法がある。例えば顕微鏡断面試験法(JIS H 8501)が挙げられる。これは、試料の断面を埋め込み研磨した後、必要に応じて腐食液でエッチングし、研磨面を光学顕微鏡や走査型電子顕微鏡(SEM)、電子線マイクロアナライザー(EPMA)等で分析し厚みを求める方法である。本発明ではテクノビット4002(株式会社マルトー社製)に埋め込み、#240、#320、#400、#600、#800、#1000の研磨紙(JIS R
6001)で順に研磨した後、研磨面をEPMAでめっき鋼板の該めっき層表面から下地鋼板に向かって線分析した。そして、該めっき層表面からZnが検出されなくなる長さを、互いに1mm以上離れた任意の10箇所の位置で求め、求めた値の平均値を合金化溶融亜鉛めっき層の厚みとした。
 続いて、本発明で重要なA層について説明する。
 本発明の合金化溶融亜鉛めっき鋼板は、母材鋼板の表面直下で且つ母材鋼板の表面から鋼板内に、厚み2μm以上20μm以下の下記A層を有する。
A層:A層の体積基準で、フェライトの組織を体積50%以上含有し、残部不可避的組織より成り、A層当たりの質量基準で、酸化物ではないFeの含有率が質量90%以上、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10質量%以下、Cの含有率が0.05質量%未満である。
 本発明におけるA層は、後述する測定方法により定義されるものである。このA層は、Fe、Si、Mn、P、S、Alの酸化物が低減されているため、先行技術文献等に記載されているSi、Mnの内部酸化物、又は外部酸化したSi、Mnを有した層とは異なり、Cが低減され、且つ延性に優れるフェライト組織を主体とする。また、亜鉛と反応性の高い酸化物ではないFeが極めて主体の、めっきの濡れ性と密着性の改善に対し緻密に制御された層である。本発明のA層を有する合金化溶融亜鉛めっき鋼板は、590MPa以上のC、Si、Mn等を含有する高強度でありながら、めっきの濡れ性とめっきの密着性に優れる。
 図2に示す通り、A層の体積基準で、フェライトの組織を50体積%以上含有することが、優れためっき密着性を得るために必要である。フェライトは延性に優れる組織である。
 前述した通り、合金化溶融亜鉛めっき鋼板は、強度の増加に伴い延性が低下することに相まって、プレス成形時のプレス荷重が大きく、成形時に金型からめっき層が受けるせん断応力が増加する。そのため、めっき層が母材鋼板との界面から剥離し易く、防錆性の低下や押し疵等で外観不良となるといっためっき密着性の低下に関する問題がある。しかし、本発明ではめっき層直下であるA層がフェライト組織を含有し延性に極めて優れるため、該問題は解消される。該フェライト組織が50体積%未満ではめっき密着性の改善が不十分である。A層は、好ましくはフェライト組織を55体積%以上含有する。フェライトの形態としてポリゴナルフェライトの他に、アシキュラーフェライトを含んでも良い。
 残部の不可避的組織とは、ベイナイト、マルテンサイト、残留オーステナイト、パーライトを意味する。
 なお、上記組織の各相、フェライト、マルテンサイト、ベイナイト、オーステナイト、パーライトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開59-219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡観察及び1000~100000倍の走査型および透過型電子顕微鏡により、定量化が可能である。実施例では母材鋼板の表面直下から2μm深さまでについて、20視野観察を行い、ポイントカウント法や画像解析によりフェライト組織の面積率を求め、その平均値を体積基準での含有率とする。
 またA層は、A層の質量基準で、酸化物ではないFeの含有率が90%以上、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10%以下、Cの含有率が0.05%未満にすることが、優れためっき濡れ性、めっき密着性を得るために必要である。
 前述した通り、Si、Mnを含有した高強度の合金化溶融亜鉛めっき鋼板においては、再結晶焼鈍の際、Si、MnはFeに比べ易酸化性な元素であるため、従来のFeの還元性雰囲気で加熱すると母材鋼板表面のSi、Mnが酸化する。更に母材鋼板の内部から表面に熱拡散したSi、Mnが表面で酸化し、該表面でSi、Mnの酸化物が濃化する。該表面でSi、Mn酸化物が濃化すると、母材鋼板を溶融亜鉛浴に浸漬する過程で、溶融亜鉛と母材鋼板との接触を妨げるため、合金化溶融亜鉛めっき層のめっきの濡れ性やめっきの密着性の低下に関する問題がある。更に、前述した通り先行技術文献に記載されている、Si、Mnの内部酸化物も、母材鋼板の内部の表面近傍に存在する。そのため、母材鋼板の延性や曲げ性を低下させプレス成型出来なくなるといった問題がある。また、プレス成型時にめっき層がせん断応力を受けると、内部酸化物が存在する母材鋼板の内部の表面近傍からめっき層が剥離するといっためっき密着性に関する問題がある。しかし本発明では、めっき層の直下であるA層ではFeが主体であり、Fe、Si、Mn、P、S、Alの酸化物が低減され、該問題は解消される。ここで言う酸化物とは、該内部酸化及び母材鋼板の表面で濃化するいわゆる外部酸化のどちらでも構わない。また該酸化物の化学式としては、例えば、FeO、Fe2O3、Fe3O4、MnO、MnO2、Mn2O3、Mn3O4、SiO2、P2O5、Al2O3、SO2の単独酸化物やそれぞれの非化学量論組成の単独酸化物、又はFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4、AlMnO3、Fe2PO3、Mn2PO3の複合酸化物やそれぞれの非化学量論組成の複合酸化物が挙げられる。
 以上の理由で、図3に示す通り、A層における、酸化物ではないFeの含有率が90%未満ではめっき濡れ性、めっき密着性の改善が不十分である。Feの含有率は好ましくは92%以上である。また図4に示す通り、A層における、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10%超では、めっき濡れ性、めっき密着性の改善が不十分である。Fe、Si、Mn、P、S、Alの酸化物の含有率の合計は好ましくは8%以下である。
 A層における酸化物ではないFeの含有率は、例えば次のようにして求められる。イオン銃を備えたX線光電子分光装置(XPS;PHI5800、アルバック・ファイ株式会社製)で合金化溶融亜鉛めっき鋼板を深さ方向分析し、Znが検出されなくなってから2μm深さまでの、価数0であるFeのスペクトルから含有率を、深さで平均することで求めた。同様にしてFe、Si、Mn、P、S、Alの酸化物の含有率の合計は、Znが検出されなくなってから2μm深さまでの、価数0ではないFe、Si、Mn、P、S、Alのスペクトルからそれぞれの含有率を求め合計した後、深さで平均することで求めた。ただし、特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)での深さ方向分析や、透過型電子顕微鏡(TEM)、電子線マイクロアナライザー(EPMA)での断面分析等の分析手段を用いて含有率を求めても良い。
 更に前述した通り、Cを含有した高強度の合金化溶融亜鉛めっき鋼板においては、再結晶焼鈍でCが母材鋼板の結晶粒界、粒内に存在すると、溶融亜鉛浴に母材鋼板を浸漬後のFe-Znの合金化反応の過程で、溶融亜鉛と母材鋼板の該反応が阻害されめっきの密着性が低下する問題がある。更には合金化反応後の合金化溶融亜鉛めっき層中にCが含有されることでめっきの延性が低下し、プレス成型時にめっきが剥離し易い問題もある。しかし本発明では、めっき層の直下であるA層ではCが極めて低減され、該問題は解消される。以上の理由で、図5に示す通りA層における、Cの含有率が0.05%以上ではめっき密着性の改善は不十分である。A層のCの含有率は、0.05%未満であり、好ましくは0.03%以下である。
 A層におけるCの含有率は、例えば次のようにして求められる。GDS(GDA750、株式会社リガク製)で合金化溶融亜鉛めっき鋼板を深さ方向分析し、Znが検出されなくなってから2μm深さまでのCの含有率を、深さで平均することで求めた。ただし、特に測定方法は限定されるものでなく、必要に応じてXPS、SIMS、TOF-SIMSでの深さ方向分析や、TEM、EPMAでの断面分析等の分析手段を用いて含有率を求めても良い。
 図6に示す通り、A層は厚み2μm以上20μm以下にすることが、優れためっき濡れ性とめっき密着性を得るために必要である。2μm未満ではめっき濡れ性とめっき密着性の改善は不十分であり、20μm超では母材鋼板の強度が低下する。好ましくはA層は厚み2μm以上15μm以下である。
 A層の厚みは次のようにして求めた。即ち、前述したフェライト組織の体積%を、母材鋼板の表面直下から測定し、フェライト組織が50体積%未満となった深さ(母材鋼板の表面直下からの深さ)をD1とする。XPSで鋼板を深さ方向分析しZnが検出されなくなってから前述した方法で求まるFeの含有率が90%未満となるまでの深さをD2とする。D2と同時にXPSで求まる、Znが検出されなくなってから前述の方法で求まる価数0ではないFe、Si、Mn、P、S、Alのスペクトルからそれぞれの含有率を求めた合計が10%超となるまでの深さをD3とする。GDSで鋼板を深さ方向分析しZnが検出されなくなってから前述した方法で求まるCの含有率が0.05%以上となるまでの深さをD4とする。そして、互いに20mm以上50mm以下離れた位置でD1~D4を5点を測定した平均値D1(AVE)~D4(AVE)の内、最も小さな値をA層の厚みとする。このようにして求められるA層では、外部酸化物又は内部酸化物といったFe、Si、Mn、Fe、P、S、Alの酸化物が低減され、更にはCも低減されたFeを主体としたフェライト組織主体の層である。A層が発明の範囲内の厚みであれば、めっきの濡れ性とめっきの密着性に優れる。
 次に、本発明の合金化溶融亜鉛めっき鋼板の製造方法について説明する。
 製造方法としては、所定の成分の鋼材を、鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板(母材鋼板)とし、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備において、焼鈍処理し、そして溶融亜鉛めっき処理、合金化処理する。焼鈍処理を行う加熱炉および均熱炉において、それぞれの炉における冷延鋼板の温度が500℃以上950℃以下の温度範囲内で、且つ下記条件で冷延鋼板を通板した後、溶融亜鉛めっき処理し続いて440℃以上600℃以下の合金化加熱温度で合金化処理する。これらの条件が、本発明のめっき濡れ性、めっき密着性に優れた合金化溶融亜鉛めっき鋼板を製造するために重要である。
加熱炉の条件:オールラジアントチューブ型の加熱炉を用い、前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記加熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-4.0以上-2.0未満で、水素濃度3体積%以上30体積%以下である。
均熱炉の条件:前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記均熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-8.0以上-4.0未満で、水素濃度3体積%以上30体積%以下である。
 本発明の製造方法では、オールラジアントチューブ型の加熱炉を備えた連続式溶融亜鉛めっき設備にて焼鈍処理、めっき層を施す処理を行う。オールラジアントチューブ型の加熱炉はロールピックアップしにくく焼鈍処理の生産性が良い。
 図7、図8に示す通り、該加熱炉条件、該均熱条件については、通板する冷延鋼板の最高到達板温が500℃以上950℃以下であることが、本発明の合金化溶融亜鉛めっき鋼板の製造上必要である。500℃未満では、母材鋼板の引張り強度が590MPa未満となる。加えて、母材鋼板の表面のFeの自然酸化物が、焼鈍後に残存し、めっきの濡れ性や密着性が低下する。950℃超では過剰な熱エネルギーを必要とし経済性が低下する。また、フェライトの体積率の減少やSi、Mnの酸化物が過剰に形成するため、めっきの濡れ性や密着性が低下する。好ましくは600℃以上850℃以下である。
 該加熱炉では、炉内雰囲気のlog(PH2O/PH2)を高くすることで母材鋼板の表面のC、Si、Mn、P、S、Alを酸化させる。Cは酸化することで、一酸化炭素または二酸化炭素として母材鋼板から脱離し母材鋼板の表面のC含有率を低減することが出来る。更にSi、Mn、P、S、Alは母材鋼板の表面直下で内部酸化する。このときlog(PH2O/PH2)の高さを適切に制御することでFeの酸化は抑制出来る。そのため優れためっき濡れ性、めっき密着性が得られる。
 図7に示す通り、該加熱炉で母材鋼板が500℃以上950℃以下の範囲内にある時間は、100秒以上1000秒以下である。100秒未満ではC含有率の低減量、Si、Mn、P、S、Alの内部酸化する量が少ないため、めっきの濡れ性や密着性が低下する。1000秒超では生産性が低下すると共に、C含有率が過剰に低減し引張り強度の低下や、内部酸化が過剰に進み内部応力の発生によりめっきの密着性が低下する。
 図9に示す通り、該加熱炉で母材鋼板が500℃以上950℃以下の範囲内にある雰囲気は、水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-4.0以上-2.0未満である。log(PH2O/PH2)が-4.0未満では、Cの酸化反応が十分進まないためめっきの濡れ性や密着性が低下する。log(PH2O/PH2)が0.0超ではFeの酸化物が鋼板表面に過剰に形成するためめっきの濡れ性や密着性が低下する。加えて、母材のCが酸化し過剰に脱離し、母材の引張り強度の低下や、Si、Mn、P、S、Alの内部酸化が過剰に進み鋼板の内部応力が増加し、めっき密着性の低下が生じる。log(PH2O/PH2)が0.0以下であれば、それらの問題は回避されるものの、log(PH2O/PH2)が-2.0以上では、加熱炉の内貼り(通常SUS製)の劣化が無視できなくなり、工業的に好ましくない。そこで本発明では、加熱炉でのlog(PH2O/PH2)を-2.0未満の範囲とした。
 図10に示す通り、該加熱炉の雰囲気における水素濃度は3体積%以上30体積%以下である。水素濃度が3体積%未満では水素濃度を制御することが難しくlog(PH2O/PH2)の炉内ばらつきが大きい。そのため、めっき濡れ性やめっき密着性が低下する。30体積%超では投入する水素量が増え経済的に劣る。加えて、鋼板内部に水素が侵入し水素脆化が起こり鋼板強度やめっき密着性を低下させる。
 該加熱炉における板温の昇温速度は特に限定しないが、遅過ぎれば生産性が悪化し、速過ぎれば加熱設備コストがかかるため、0.5℃/s以上20℃/s以下が好ましい。
 該加熱炉内へ進入時の初期の板温は特に限定しないが、高過ぎればFe酸化物が過剰に母材鋼板に形成されるためめっき濡れ性やめっき密着性が低下し、低過ぎれば冷却コストがかかるため、0℃以上200℃以下が好ましい。
 続いて、加熱炉に引き続く均熱炉の条件について説明する。
 該均熱炉では、炉内雰囲気のlog(PH2O/PH2)を低くすることで、加熱炉で形成された母材鋼板の表面直下のSi、Mn、P、S、Alが内部酸化、及び外部酸化して形成した酸化物を還元する。十分に還元することで、優れためっき濡れ性、めっき密着性が得られる。
 図8に示す通り、該均熱炉で鋼板が500℃以上950℃以下の範囲内にある時間は、100秒以上1000秒以下である。100秒未満ではSi、Mn、P、S、Alの酸化物の還元が不十分であるため、めっきの濡れ性や密着性が低下する。1000秒超では生産性が低下すると共に、Cの熱拡散によって母材鋼板の表面直下のC含有率が増大しめっきの濡れ性、密着性が低下する。
 図9に示す通り、該均熱炉で鋼板が500℃以上950℃以下の範囲内にある雰囲気では、水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-8.0以上-4.0未満である。log(PH2O/PH2)が-8.0未満では、工業的な実現性に乏しいことに加え、炉体にセラミックが使用されている場合は還元されてしまい炉体寿命を低下させてしまう。log(PH2O/PH2)が-4.0以上ではSi、Mn、P、S、Alの還元が不十分であり、Si、Mn、Alは外部酸化してしまうため、めっきの濡れ性や密着性が低下する。加えて、母材鋼板中のCが酸化反応により脱離し母材鋼板の引張り強度が低下する。より好ましくは均熱炉の雰囲気log(PH2O/PH2)は-7.0以上-4.0未満である。
 図10に示す通り、該均熱炉の雰囲気における水素濃度は3体積%以上30体積%以下である。水素濃度が3体積%未満では水素濃度を制御することが難しくlog(PH2O/PH2)の炉内ばらつきが大きいためめっき濡れ性やめっき密着性が低下する。30体積%超では投入する水素量が増え経済的に劣ることに加え、鋼板内部に水素が侵入し水素脆化が起こり鋼板強度やめっき密着性を低下させる。
 連続式溶融亜鉛めっき設備の加熱炉、均熱炉にて、雰囲気条件をそれぞれ個別に制御することが、本発明の溶融亜鉛めっき鋼板の製造方法の特徴である。個別に制御するためには、炉それぞれに、窒素、水蒸気、水素の濃度を制御して投入する必要がある。更に加熱炉内の酸素ポテンシャルlog(PH2O/PH2)の方が、均熱炉内の酸素ポテンシャルlog(PH2O/PH2)より高いことが必要である。そのため、加熱炉から均熱炉に向かってガスが流れている場合では、加熱炉と均熱炉の間から、加熱炉内よりも高い水素濃度、又は低い水蒸気濃度の追加の雰囲気を均熱炉に向かって流れるように導入すれば良い。均熱炉から加熱炉に向かってガスが流れている場合では、加熱炉と均熱炉の間から、均熱炉内よりも低い水素濃度、又は高い水蒸気濃度の追加の雰囲気を加熱炉に向かって流れるように導入すれば良い。
 母材鋼板が、加熱炉、均熱炉を出た後は、溶融亜鉛めっき浴に浸漬されるまでは一般的な通常の工程を経ることができる。例えば除冷工程、急冷工程、過時効工程、第2冷却工程、ウオータークエンチ工程、再加熱工程等の単独、又はこれら組み合わせいずれを経ても良い。溶融亜鉛めっき浴浸漬後も同様に一般的に通常の工程を経ることができる。
 母材鋼板が、加熱炉、均熱炉を通過し、冷却および必要に応じて温度の保持を行なわれ、溶融亜鉛めっき浴に浸漬されて溶融亜鉛めっきされた後、必要に応じて合金化処理を施してもよい。
 溶融亜鉛めっき処理では浴温440℃以上550℃未満、浴中Al濃度が0.08%以上0.24%以下、不可避的不純物を含有する溶融亜鉛めっき浴を用いることが好ましい。
 浴温が440℃未満では、浴中で溶融亜鉛の凝固が起こる可能性があるためめっきの付着量制御が困難になる。浴温が550℃を超えると浴表面で溶融亜鉛の蒸発が激しく、操業コスト高くなり、気化した亜鉛が炉内へ付着するため操業上問題がある。
 溶融亜鉛めっき鋼板をめっき処理するときに、浴中のAl濃度が0.08%未満になると、ζ層が多量に生成しめっき密着性が低下し、合計が0.24%超になると、浴中又は浴上で酸化したAlが増加し、めっき濡れ性が低下する。
 図11に示す通り、溶融亜鉛めっき処理した後の合金化処理では、合金化処理は440℃以上600℃以下で行うことが必要である。440℃未満では合金化進行が遅い。600℃超では過合金により母材鋼板との界面に硬くて脆いZn-Fe合金層のΓ層が過剰に生成しめっき密着性が劣化する。また600℃超では、母材鋼板の残留オーステナイト相が分解するため、母材鋼板の強度と延性のバランスも劣化する。
 以下、実施例により本発明を具体的に説明する。
 通常の鋳造、熱間圧延、酸洗、冷間圧延を施した表1(表1-1、表1-2)に示す1mm厚の冷延鋼板(母材鋼板)の供試材1~94を用意した。そして、これら供試材1~94の中から適宜選択して、前述の通りロールピックアップしにくく比較的生産性の高い加熱方法であるオールラジアントチューブ型加熱炉を備えた連続式溶融亜鉛めっき設備にて、表2、表3の条件で焼鈍処理、溶融亜鉛めっき処理、合金化処理を行った。オールラジアントチューブ型を利用することで前述の通りロールピックアップしにくく生産性も良い。
 均熱炉の後は一般的な除冷、急冷、過時効、第2冷却工程を経て溶融亜鉛めっき浴に浸漬した。溶融亜鉛めっき浴はめっき浴温460℃で、浴組成はZn以外に0.13%のAlと0.03%のFeを含有させた。母材鋼板を溶融亜鉛めっき浴に浸漬した後、窒素ガスワイピングによりめっき厚みを調整し、その後、合金化炉で30秒加熱することで合金化処理した。得られた合金化溶融亜鉛めっき鋼板のめっき濡れ性、及びめっき密着性を評価した。実施例についての結果を表2に、比較例についての結果を表3に示す。
 めっき濡れ性は合金化溶融亜鉛めっき鋼板の、互いに1mm以上離れた10箇所について、めっき表面200μm×200μmをZnとFeについてそれぞれEPMAマッピングした。Znが無く且つFeが露出している場合が、10箇所の内の4箇所以上で確認された場合はめっき濡れ性不良(×)、10箇所の内の1~3箇所で確認された場合はめっき濡れ性良好(○)、1箇所も確認出来なかった場合はめっき濡れ性非常に良好(◎)とした。○又は◎をめっき濡れ性の合格、×をめっき濡れ性の不合格と評価した。
 めっき密着性は、パウダリング試験で測定し、その剥離幅が2mm超となった場合を密着性不良(×)、2mm以下1mm超を密着性良好(○)、1mm以下を密着性更に良好(◎)とした。パウダリング試験とは、合金化溶融亜鉛めっき鋼板にセロテープ(登録商標)を貼り、テープ面をR=1、90℃で曲げ、曲げ戻しをした後、テープを剥離した時の剥離幅を測定する密着性検査方法である。
 引張試験は、1.0mm厚の合金化溶融亜鉛めっき鋼板から圧延方向に直角方向及び平行にJIS5号試験片を採取し、引張特性を評価した。直角方向と平行それぞれで各5本引張試験を行なった結果の平均値を、引張り強度(TS)とした。なお、材質の異方性が大きい鋼板に関しては、伸びの値がばらつく傾向にあった。
 表2(表2-1、表2-2、表2-3、表2-4)、表3(表3-1、表3-2に示す通り、本発明の実施例(表2)のめっき濡れ性、めっき密着性は、比較例(表3)に比べ優れることが判った。なお、加熱炉でのlog(PH2O/PH2)が-4.0以上0.0以下の範囲であれば、めっき濡れ性、めっき密着性は、比較例に比べ優れていたが、log(PH2O/PH2)が-2.0以上では、加熱炉の内貼り(通常SUS製)の劣化が無視できなくなった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明法で製造された合金化溶融亜鉛めっき鋼板は、590MPa以上の引張り強度を有する高強度であり、めっき濡れ性及びめっき密着性に優れるので、自動車分野、及び家電分野、建材分野の部材を中心としての適用が見込まれる。
 

Claims (5)

  1.  質量%で、
     C:0.05%以上、0.50%以下、
     Si:0.2%以上、3.0%以下、
     Mn:0.5%以上、5.0%以下、
     Al:0.001以上、1.0%以下、
     P:0.1%以下、
     S:0.01%以下、
     N:0.01%以下
    を含有し、残部Feおよび不可避的不純物からなる母材鋼板を用いた合金化溶融亜鉛めっき鋼板であって、前記母材鋼板の表面に、質量%でFe:5%以上15%以下を含有し、残部Znおよび不可避的不純物からなり、厚み3μm以上30μm以下の合金化溶融亜鉛めっき層が施され、前記母材鋼板の表面直下で且つ前記母材鋼板の表面から前記母材鋼板内に厚み2μm以上20μm以下の下記A層を有する、合金化溶融亜鉛めっき鋼板。
    A層:A層の体積基準で、フェライトの組織を50体積%以上含有し、残部が不可避的組織より成り、A層の質量基準で、酸化物ではないFeの含有率が90質量%以上、Fe、Si、Mn、P、S、Alの酸化物の含有率の合計が10質量%以下、Cの含有率が0.05質量%未満である。
  2.  前記母材鋼板中に、さらに質量%で、
     Cr:0.05%以上、1.0%以下、
     Ni:0.05%以上、1.0%以下、
     Cu:0.05%以上、1.0%以下、
     Nb:0.005%以上、0.3%以下、
     Ti:0.005%以上、0.3%以下、
     V:0.005%以上、0.5%以下、
     B:0.0001%以上、0.01%以下、
     Ca:0.0005%以上、0.04%以下、
     Mg:0.0005%以上、0.04%以下、
     La:0.0005%以上、0.04%以下、
     Ce:0.0005%以上、0.04%以下、
     Y:0.0005%以上、0.04%以下、
    の1種または2種以上が含有されている、請求項1に記載の合金化溶融亜鉛めっき鋼板。
  3.  前記合金化溶融亜鉛めっき層中に、さらに質量%でAlを0.02%以上1.0%以下含有する、請求項1または2に記載の合金化溶融亜鉛めっき鋼板。
  4.  質量%で、
     C:0.05%以上、0.50%以下、
     Si:0.2%以上、3.0%以下、
     Mn:0.5%以上、5.0%以下、
     Al:0.001以上、1.0%以下、
     P:0.1%以下、
     S:0.01%以下、
     N:0.01%以下
    を含有し、残部Feおよび不可避不純物からなる母材鋼材を用いた合金化溶融亜鉛めっき鋼板の製造方法であって、鋳造、熱間圧延、酸洗、冷間圧延を施して母材鋼材とし、前記母材鋼材を、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備を用い、前記加熱炉及び前記均熱炉において前記母材鋼材を500℃以上950℃以下の範囲内に昇温して焼鈍処理し、溶融亜鉛めっき処理、440℃以上600℃以下の温度で合金化処理する製造方法において、前記焼鈍処理を下記条件で行う、合金化溶融亜鉛めっき鋼板の製造方法。
    加熱炉の条件:オールラジアントチューブ型の加熱炉を用い、前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記加熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-4.0以上-2.0未満で、水素濃度3体積%以上30体積%以下
    均熱炉の条件:前記母材鋼材の温度が500℃以上950℃以下の範囲内にある時間が100秒~1000秒以内、前記均熱炉の雰囲気が水素、水蒸気および窒素を有し、水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-8.0以上-4.0未満で、水素濃度3体積%以上30体積%以下
  5.  前記母材鋼板中に、さらに質量%で、
     Cr:0.05%以上、1.0%以下、
     Ni:0.05%以上、1.0%以下、
     Cu:0.05%以上、1.0%以下、
     Nb:0.005%以上、0.3%以下、
     Ti:0.005%以上、0.3%以下、
     V:0.005%以上、0.5%以下、
     B:0.0001%以上、0.01%以下、
     Ca:0.0005%以上、0.04%以下、
     Mg:0.0005%以上、0.04%以下、
     La:0.0005%以上、0.04%以下、
     Ce:0.0005%以上、0.04%以下、
     Y:0.0005%以上、0.04%以下、
    の1種または2種以上が含有されている、請求項3に記載の合金化溶融亜鉛めっき鋼板の製造方法。
     
PCT/JP2013/079858 2012-11-06 2013-11-05 合金化溶融亜鉛めっき鋼板とその製造方法 WO2014073520A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
MX2015004736A MX362505B (es) 2012-11-06 2013-11-05 Lamina de acero galvanizada por inmersion en caliente aleada y metodo para manufacturar la misma.
RU2015121407A RU2635499C2 (ru) 2012-11-06 2013-11-05 Гальванизированный горячим погружением и легированный стальной лист и способ его изготовления
CA2888738A CA2888738C (en) 2012-11-06 2013-11-05 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same
JP2014517318A JP5708884B2 (ja) 2012-11-06 2013-11-05 合金化溶融亜鉛めっき鋼板とその製造方法
US14/438,503 US10167541B2 (en) 2012-11-06 2013-11-05 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same
PL13853672T PL2918696T3 (pl) 2012-11-06 2013-11-05 Stopowa blacha stalowa cienka cynkowana zanurzeniowo na gorąco i sposób jej wytwarzania
ES13853672T ES2773302T3 (es) 2012-11-06 2013-11-05 Chapa de acero aleado y galvanizado por inmersión en caliente y método de fabricación de la misma
BR112015008396A BR112015008396B1 (pt) 2012-11-06 2013-11-05 chapa de aço galvanizada por imersão a quente em liga e método de produção da mesma
EP13853672.7A EP2918696B1 (en) 2012-11-06 2013-11-05 Alloyed hot-dip galvanized steel sheet and method for manufacturing same
KR1020157011287A KR101699644B1 (ko) 2012-11-06 2013-11-05 합금화 용융 아연 도금 강판과 그 제조 방법
CN201380058134.2A CN104769146B (zh) 2012-11-06 2013-11-05 合金化热浸镀锌钢板及其制造方法
ZA2015/03075A ZA201503075B (en) 2012-11-06 2015-05-05 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same
US16/184,434 US10711336B2 (en) 2012-11-06 2018-11-08 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-244274 2012-11-06
JP2012244274 2012-11-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/438,503 A-371-Of-International US10167541B2 (en) 2012-11-06 2013-11-05 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same
US16/184,434 Division US10711336B2 (en) 2012-11-06 2018-11-08 Alloyed hot-dip galvanized steel sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014073520A1 true WO2014073520A1 (ja) 2014-05-15

Family

ID=50684623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079858 WO2014073520A1 (ja) 2012-11-06 2013-11-05 合金化溶融亜鉛めっき鋼板とその製造方法

Country Status (14)

Country Link
US (2) US10167541B2 (ja)
EP (1) EP2918696B1 (ja)
JP (1) JP5708884B2 (ja)
KR (1) KR101699644B1 (ja)
CN (1) CN104769146B (ja)
BR (1) BR112015008396B1 (ja)
CA (1) CA2888738C (ja)
ES (1) ES2773302T3 (ja)
MX (1) MX362505B (ja)
PL (1) PL2918696T3 (ja)
RU (1) RU2635499C2 (ja)
TW (1) TWI494442B (ja)
WO (1) WO2014073520A1 (ja)
ZA (1) ZA201503075B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235922A4 (en) * 2014-12-19 2017-11-01 Posco Hot dipped galvanized steel sheet with excellent hole expansibility, hot dipped galvannealed steel sheet, and manufacturing method therefor
KR20180016518A (ko) 2015-06-11 2018-02-14 신닛테츠스미킨 카부시키카이샤 합금화 용융 아연 도금 강판 및 그 제조 방법
JP2020509183A (ja) * 2016-12-19 2020-03-26 ポスコPosco 曲げ加工性に優れた超高強度鋼板及びその製造方法
WO2023182524A1 (ja) * 2022-03-25 2023-09-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP7477065B1 (ja) 2023-03-31 2024-05-01 Jfeスチール株式会社 めっき鋼板の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033901A1 (ja) * 2015-08-24 2017-03-02 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板及びその製造方法
JP6460053B2 (ja) * 2016-06-27 2019-01-30 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
KR101853767B1 (ko) * 2016-12-05 2018-05-02 주식회사 포스코 강의 제조 방법 및 이를 이용하여 제조된 강
CN111902553B (zh) 2018-03-30 2022-04-01 日本制铁株式会社 钢板及其制造方法
TWI651417B (zh) * 2018-08-09 2019-02-21 中國鋼鐵股份有限公司 熱浸鍍鋅鋼材及其製造方法
EP3715490B1 (en) * 2019-03-29 2023-08-23 Bayerische Motoren Werke Aktiengesellschaft Method of casting steel alloy component and cast component
DE102019108459B4 (de) * 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
DE102019108457B4 (de) * 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JP2000309847A (ja) 1999-04-20 2000-11-07 Kawasaki Steel Corp 熱延鋼板、溶融めっき熱延鋼板およびそれらの製造方法
JP2001279412A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 耐食性の良好なSi含有高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2001323355A (ja) 2000-05-11 2001-11-22 Nippon Steel Corp めっき密着性と塗装後耐食性の良好なSi含有高強度溶融亜鉛めっき鋼板と塗装鋼板およびその製造方法
JP2007211280A (ja) * 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2009209397A (ja) 2008-03-03 2009-09-17 Jfe Steel Corp めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
JP2010126757A (ja) 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011025042A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011153349A (ja) * 2010-01-27 2011-08-11 Sumitomo Metal Ind Ltd 外観特性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011231367A (ja) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法
JP2012012683A (ja) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法
JP2012012655A (ja) * 2010-06-30 2012-01-19 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
JP2001200352A (ja) 2000-01-20 2001-07-24 Nkk Corp 耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP4283408B2 (ja) 2000-02-14 2009-06-24 新日本製鐵株式会社 成形性の優れた溶融亜鉛メッキ高強度薄鋼板とその製造方法
KR100747133B1 (ko) 2001-06-06 2007-08-09 신닛뽄세이테쯔 카부시키카이샤 고가공(高加工)시의 내피로성, 내식성, 연성 및 도금부착성을 갖는 고강도 용융 아연 도금 강판 및 합금화 용융아연 도금 강판
JP4331915B2 (ja) 2001-07-12 2009-09-16 新日本製鐵株式会社 疲労耐久性および耐食性に優れた高強度高延性溶融Znめっき鋼板及びその製造方法
JP4275424B2 (ja) 2002-02-12 2009-06-10 Jfeスチール株式会社 高張力溶融亜鉛めっき鋼板及びその製造方法、並びに高張力合金化溶融亜鉛めっき鋼板及びその製造方法
BRPI0408983B1 (pt) * 2003-03-31 2014-08-05 Nippon Steel & Sumitomo Metal Corp Folha de aço revestida com liga de zinco fundido e processo de produção da mesma
CA2521710C (en) 2003-04-10 2009-09-29 Nippon Steel Corporation High strength molten zinc plated steel sheet and process of production of same
JP4192051B2 (ja) * 2003-08-19 2008-12-03 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP5223360B2 (ja) 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5595913B2 (ja) 2008-07-09 2014-09-24 スズキ株式会社 亜鉛めっき鋼板のレーザ重ね溶接方法
JP2010018874A (ja) * 2008-07-14 2010-01-28 Kobe Steel Ltd 合金化溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板の製造方法
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
MX359228B (es) * 2011-09-30 2018-09-20 Nippon Steel & Sumitomo Metal Corp Planta de acero que tiene capa galvanizada por inmersión en caliente y que muestra humectabilidad por deposición y adhesión por deposición superior, y método de producción para la misma.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JP2000309847A (ja) 1999-04-20 2000-11-07 Kawasaki Steel Corp 熱延鋼板、溶融めっき熱延鋼板およびそれらの製造方法
JP2001279412A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 耐食性の良好なSi含有高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2001323355A (ja) 2000-05-11 2001-11-22 Nippon Steel Corp めっき密着性と塗装後耐食性の良好なSi含有高強度溶融亜鉛めっき鋼板と塗装鋼板およびその製造方法
JP2007211280A (ja) * 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2009209397A (ja) 2008-03-03 2009-09-17 Jfe Steel Corp めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
JP2010126757A (ja) 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011025042A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011153349A (ja) * 2010-01-27 2011-08-11 Sumitomo Metal Ind Ltd 外観特性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011231367A (ja) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法
JP2012012655A (ja) * 2010-06-30 2012-01-19 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2012012683A (ja) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235922A4 (en) * 2014-12-19 2017-11-01 Posco Hot dipped galvanized steel sheet with excellent hole expansibility, hot dipped galvannealed steel sheet, and manufacturing method therefor
US10351924B2 (en) 2014-12-19 2019-07-16 Posco Hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having improved hole expansion ratio, and manufacturing methods thereof
KR20180016518A (ko) 2015-06-11 2018-02-14 신닛테츠스미킨 카부시키카이샤 합금화 용융 아연 도금 강판 및 그 제조 방법
US10745775B2 (en) 2015-06-11 2020-08-18 Nippon Steel Corporation Galvannealed steel sheet and method for producing the same
JP2020509183A (ja) * 2016-12-19 2020-03-26 ポスコPosco 曲げ加工性に優れた超高強度鋼板及びその製造方法
US11193189B2 (en) 2016-12-19 2021-12-07 Posco Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
WO2023182524A1 (ja) * 2022-03-25 2023-09-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP7468823B2 (ja) 2022-03-25 2024-04-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP7477065B1 (ja) 2023-03-31 2024-05-01 Jfeスチール株式会社 めっき鋼板の製造方法

Also Published As

Publication number Publication date
RU2015121407A (ru) 2016-12-27
MX2015004736A (es) 2016-02-05
CA2888738C (en) 2018-02-06
MX362505B (es) 2019-01-22
CN104769146B (zh) 2016-08-24
CA2888738A1 (en) 2014-05-15
BR112015008396B1 (pt) 2019-12-03
EP2918696B1 (en) 2020-01-01
CN104769146A (zh) 2015-07-08
KR101699644B1 (ko) 2017-01-24
EP2918696A1 (en) 2015-09-16
BR112015008396A2 (pt) 2017-07-04
TWI494442B (zh) 2015-08-01
JP5708884B2 (ja) 2015-04-30
TW201432057A (zh) 2014-08-16
KR20150060974A (ko) 2015-06-03
US10711336B2 (en) 2020-07-14
JPWO2014073520A1 (ja) 2016-09-08
US20190078190A1 (en) 2019-03-14
ZA201503075B (en) 2016-01-27
RU2635499C2 (ru) 2017-11-13
ES2773302T3 (es) 2020-07-10
EP2918696A4 (en) 2016-07-20
PL2918696T3 (pl) 2020-07-13
US10167541B2 (en) 2019-01-01
US20150275345A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5708884B2 (ja) 合金化溶融亜鉛めっき鋼板とその製造方法
JP5907221B2 (ja) めっき濡れ性及びめっき密着性に優れた合金化溶融亜鉛めっき層を備えた鋼板とその製造方法
JP5206705B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101831173B1 (ko) 외관성과 도금 밀착성이 우수한 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판 그리고 그들의 제조 방법
JP5648755B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5417797B2 (ja) 高強度溶融亜鉛系めっき鋼板およびその製造方法
JP5982905B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5799819B2 (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
KR101789958B1 (ko) 합금화 용융 아연 도금 강판 및 그 제조 방법
WO2020148944A1 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101647225B1 (ko) 표면품질 및 내파우더링성이 우수한 고강도 합금화용융아연도금강판 및 그 제조방법
JP6164280B2 (ja) 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
US20140342182A1 (en) Galvannealed steel sheet having high corrosion resistance after painting
JP5552861B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552860B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014517318

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/004736

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2888738

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14438503

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015008396

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157011287

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201502667

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853672

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015121407

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015008396

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150415