WO2014073340A1 - 丸編機の巻取制御方法および装置 - Google Patents

丸編機の巻取制御方法および装置 Download PDF

Info

Publication number
WO2014073340A1
WO2014073340A1 PCT/JP2013/078049 JP2013078049W WO2014073340A1 WO 2014073340 A1 WO2014073340 A1 WO 2014073340A1 JP 2013078049 W JP2013078049 W JP 2013078049W WO 2014073340 A1 WO2014073340 A1 WO 2014073340A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
knitting
winding
position control
knitted fabric
Prior art date
Application number
PCT/JP2013/078049
Other languages
English (en)
French (fr)
Inventor
大西康司
三谷直也
Original Assignee
株式会社福原精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社福原精機製作所 filed Critical 株式会社福原精機製作所
Priority to CN201380057721.XA priority Critical patent/CN104769171B/zh
Priority to US14/440,231 priority patent/US20150376822A1/en
Priority to EP13853958.0A priority patent/EP2918713A4/en
Publication of WO2014073340A1 publication Critical patent/WO2014073340A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/88Take-up or draw-off devices for knitting products

Definitions

  • the present invention relates to a winding control method and apparatus for winding a tubular knitted fabric produced by a circular knitting machine.
  • a circular knitting machine is produced by a knitting unit that produces a cylindrical knitted fabric by rotating a cylinder containing a knitting needle in a needle groove by driving a motor and supplying yarn to the knitting needle, and the knitting unit.
  • a winding mechanism for winding the tubular knitted fabric In this winding mechanism section, a servo motor capable of precise and high-speed control is often used to drive the winding roller, and command pulses synchronized with the operation of the knitting section are given to the servo driver to give the knitted fabric. Control to wind up. In this case, a torque control mode for controlling the output torque of the servo motor to be constant and a position control mode for controlling the rotation angle of the servo motor to be constant are often used.
  • the knitted fabric is rotated with respect to one rotation of the cylinder of the knitting part due to changes in the knitting conditions such as the knitting structure, stitch amount, knitting timing, yarn used, etc.
  • Production volume may change during operation.
  • the production amount of an all-knit knitted fabric is larger than that of a knitted fabric using welts or tacks, and the larger the stitch amount, the larger the production amount.
  • By making the output torque of the torque (servo) motor constant automatic torque adjustment is performed by controlling the torque motor so as to maintain a constant winding tension even if the knitted fabric production amount changes.
  • the knitted fabric has a problem that a stop step, which is a knitting defect with a line-like step around the cylindrical knitted fabric, and a transverse step, which is a knitting defect with a spiral step during operation, are likely to occur. .
  • the position control mode can take up a set amount of the knitted fabric, so that it is possible to wind up a stable knitted fabric with few stops and lateral steps.
  • the knitted fabric production amount that is the rotation angle of the servo motor per one rotation of the cylinder of the knitting unit, that is, the movement amount data per one pulse of the command pulse number to the servo motor is manually set in advance.
  • the knitted fabric is wound at a constant winding tension by giving this as position control data to the servo motor driver.
  • the knitted fabric amount is always taken up according to the position control data during operation.
  • the position control mode is used as it is, it may be possible to cope with a slight change in the production amount of the knitted fabric, but it is in operation due to a change in the knitting structure due to the electronic needle selection function, such as garment length knitting.
  • the allowable range that can be accommodated by adjusting the winding amount may be exceeded.
  • the winding tension of the knitted fabric becomes extremely weak or strong, the quality of the knitted fabric is adversely affected by knitting flaws, or the operation cannot be continued due to yarn breakage or a yarn feeder alarm, Appropriate and stable knitted fabrics may not be produced and may not be wound up. In order to prevent this, it is necessary to stop and reset the operation in response to a large change in the production amount of the knitted fabric, which leads to a decrease in production efficiency.
  • the winding of the knitted fabric is started in the torque control mode, and after the winding state in the torque control mode is stabilized, the position control mode is used. It is known that the knitted fabric is automatically wound up (for example, Patent Document 2), but this method is used to shift the mode at the start of operation, and the production volume during operation is large. It cannot respond to changes.
  • the present invention relates to a winding control method for a circular knitting machine capable of winding a knitted fabric with an appropriate and stable winding tension in a position control mode even when the production amount of the knitted fabric changes greatly during operation. And to provide an apparatus.
  • a winding control method and apparatus for a circular knitting machine sets a knitted fabric by a winding mechanism including a winding roller and a winding servomotor for driving the roller.
  • a tubular knitted fabric produced by the knitting unit is wound based on the knitting conditions, and the winding mechanism unit is controlled by the winding control unit.
  • Specific knitting data that influences the production amount of the knitted fabric during operation among the knitting conditions under a position control mode in which the winding control unit controls the winding amount according to the position control data.
  • the production amount data is changed in response to the change in position, and the position control data corresponding to the winding amount of the knitted fabric is set to change synchronously with the change in the production amount data.
  • the production amount data is changed in response to a change in the specific knitting data that affects the production amount of the knitted fabric during operation. Since the control is performed so that the position control data corresponding to the winding amount of the knitted fabric is changed in synchronization with the change of the production amount data, the change in the production amount of the knitted fabric is large.
  • the production amount data can be changed from the change of the specific knitting data, and this can be synchronized with the position control data, so that the production amount of the knitted fabric and the winding amount can be matched.
  • the knitted fabric can be wound with an appropriate and stable winding tension.
  • the specific knitting data includes at least one of knitting structure data, stitch amount data, knitting timing data, and used yarn data, and a change in position control data corresponding to the change in the specific knitting data is detected.
  • the changed position control data is set based on the change in the specific knitting data. Therefore, quick response is possible, and more appropriate and stable winding of the knitted fabric is possible.
  • the specific knitting data is set for one course of the knitting structure, that is, for each row in the horizontal direction of the knitting structure. Therefore, it is possible to wind up the knitted fabric which is appropriate and stable for each course against changes in the production amount of the knitted fabric.
  • a change in the knitting operation data corresponding to the change in the specific knitting data among the knitting conditions is stored in advance, and the knitting operation data and the predetermined data corresponding to the production amount data are collated and matched.
  • the production amount data is obtained from the predetermined data, and the production amount data is changed by repeating this, and the position control data is set to change in synchronization with the change of the production amount data.
  • the predetermined data is a pair with the knitting operation data and refers to data set in advance as data to be collated with the knitting operation data.
  • the configuration of the existing apparatus that does not have the specification capable of setting the production volume data can be obtained. By using it as it is, the production amount and the winding amount of the knitted fabric can be matched.
  • the knitting operation data is rotation speed data of the knitting portion. Therefore, the position control data can be set more easily with respect to the change of the specific knitting data.
  • the rotational speed data and the predetermined data are collated for each course of the knitting structure, and if the rotational speed data does not change, acquisition of the production amount data corresponding to the matching predetermined data and the production amount data; Without synchronizing the position control data, the settings of the production volume data and the position control data are held as they are, and the next course is verified.
  • four types of the predetermined data are set, the first data is the default data for the inching speed, the second data is the default data at a lower speed than the first data, and the third data is the medium speed higher than the first data.
  • the predetermined data and the fourth data are high-speed predetermined data that is faster than the third data. Therefore, the position control data can be set more easily with respect to the change of the specific knitting data.
  • 1 is an overall front view of a circular knitting machine according to an embodiment of the present invention. It is a block diagram of the winding control part 6 of 1st Embodiment. It is a flowchart which shows operation
  • FIG. 1 is an overall front view of a circular knitting machine having an electronic needle selection function according to a first embodiment of the present invention.
  • the circular knitting machine 1 controls a knitting unit 2 that produces a tubular knitted fabric, a winding mechanism unit 3 that winds up the produced tubular knitted fabric, and a winding mechanism unit 3. And a winding unit including the winding control unit 6.
  • a control operation unit 20 for performing data input to the apparatus, various displays, and the like is provided.
  • the knitting portion 2 is installed above a bed 22 supported by a plurality of legs 21.
  • a plurality of posts 24 are erected on the bed 22, and a horizontal member 25 is fixed to the upper part by a connecting member.
  • the yarn supplying section 9 is supported on the horizontal member 25.
  • a knitted fabric is sandwiched between a plurality of rollers, and a tension roller 4a that feeds the tensioned knitted fabric under a certain tension and feeds it downward, a winding roller 4b that winds the fed knitted fabric, and a roller drive
  • a take-up mechanism 3 including a take-up servo motor 5 is installed below the bed 22 is provided an overall control unit 8 for controlling the control operation unit 20 and the entire circular knitting machine.
  • FIG. 2 shows a block diagram of the winding control unit 6 in the apparatus of the first embodiment.
  • the overall control unit 8 controls the entire circular knitting machine.
  • the knitting condition setting and the winding condition setting are integrally controlled.
  • the knitting condition setting unit 11 stores in advance the specific knitting data 14 that affects the production amount of the knitted fabric during operation and the production amount data 15 that changes in response to the change of the specific knitting data 14. ing.
  • the specific knitting data 14 and the corresponding production volume data 15 constitute a data file DF.
  • the specific knitting data 14 includes at least one of knitting structure data, stitch amount data, knitting timing data, and used yarn data. Further, each data is read from the data file DF by an information transmission means such as USB or LAN.
  • the position control data 18 corresponding to the winding amount of the knitted fabric is set in the winding condition setting unit 17.
  • the position control data 18 changes in synchronization with the changing production data 15.
  • the position control data 18 changes in synchronization with the production amount data 15 that changes based on the change in the specific knitting data 14.
  • the position control data 18 is input corresponding to each course of the knitting structure.
  • the knitting unit 2 of FIG. 1 is driven by a main motor 7 by driving a cylinder of the knitting unit 2 in which a plurality of knitting needles (not shown) are slidably accommodated in a needle groove based on knitting conditions set for a desired knitted fabric.
  • the yarn is rotated, the yarn is supplied from the yarn supplying section 9 to the knitting needle, the stitches are stacked in a spiral shape, and a tubular knitted fabric is knitted.
  • the main motor 7 that rotates the cylinder of the knitting unit 2 is controlled by the overall control unit 8 so as to be driven at a predetermined rotational speed by frequency control using an inverter, for example.
  • the winding control unit 6 in FIG. 2 is provided in the winding servo driver 10 provided in the winding mechanism unit 3 in FIG. 1, the overall control unit 8, and the winding mechanism unit 3 in FIG.
  • a gear ring disposed inside the bed and the take-up mechanism unit 3 are coupled to each other), and a knitting machine rotation detection unit (rotary encoder) 12 that detects the rotation speed of the cylinder by the main motor 7. I have.
  • the take-up servo driver 10 performs PWM control by outputting a PWM control output (shown c) to the take-up servo motor 5, and the rotation angle (shown) of the cylinder by the main motor 7 input from the knitting portion rotation detecting unit 12 is illustrated.
  • the rotation angle of the take-up servo motor 5 is controlled by giving the take-up servo motor 5 the number of output pulses of the command pulse synchronized with the knitting portion rotation detection signal e).
  • the winding servo driver 10 is not shown, but in addition to the motor control / PWM control output unit and the knitting unit rotation detection signal input unit, a serial communication unit with the overall control unit, a winding servo driver 5 described later, A feedback current detection unit and a motor rotation angle input unit.
  • the winding servo motor 5 shown in FIG. In the position control mode, the winding servo motor 5 shown in FIG. In this position control, high-precision rotation angle control of the take-up servomotor 5 is performed while maintaining a constant take-up tension. Therefore, the position control is affected by mechanical load fluctuations such as gears and rollers of the take-up mechanism 3. Therefore, it is possible to always wind up the same knitted fabric production amount and to wind it with a stable winding tension.
  • the overall control unit 8 outputs position control data (d in the figure) corresponding to the knitting structure data of the current course to the winding servo driver 10.
  • the take-up servo driver 10 performs PWM control output corresponding to the position control data to the take-up servo motor 5, thereby performing motor control (position control data and current of the take-up servo motor 5 in the position control mode). C) is performed.
  • the overall control unit 8 controls the actuator, stitch, timing, striper, etc. (not shown) of the knitting unit 2 and electric power supplied to the apparatus under the knitting conditions.
  • FIG. 3 is a flowchart showing this operation.
  • a data file DF is created for each course of the knitting organization.
  • a data file DF of the production volume data 15 corresponding to the specific knitting data 14 is stored in the overall control unit 8 in advance.
  • the data file DF of the overall control unit 8 is read (step S1). Then, the operation starts, and knitting of the knitted fabric is started under the knitting conditions including the read knitting structure (step S2). Thereafter, the apparatus reads the production amount data input corresponding to the knitting structure data of the current course (step S3), and the read production amount data is synchronized with the position control data and obtained to the servo driver 10. The position control data is output, the rotation angle of the take-up servo motor 5 is controlled, the take-up amount of the position control data is executed (step S4), and the process proceeds to step S3. Since the production volume data is set for each course of the knitting organization, the production volume data is read and executed for each course. Steps S3 and S4 are repeated until the operation is stopped.
  • the overall control unit 8 produces the knitted fabric that can be generated depending on the magnitude of the change in the knitted fabric production amount when the winding amount is increased or decreased simultaneously with the change in the knitting structure and the timing at which the servo driver 10 receives the position control data.
  • a correction program that issues a command for increasing / decreasing the winding amount to the winding mechanism unit 3 by shifting several pulses earlier or later.
  • the production amount data corresponding to the change in the specific knitting data that affects the production amount of the knitted fabric during operation is selected from the knitting data related to the knitting conditions under the position control mode.
  • the position control data corresponding to the winding amount of the knitted fabric is set in synchronization with the change in the production amount data.
  • the overall control unit 8 differs from the first embodiment in that the production amount data 15 and the position control data 18 are directly synchronized, thereby substantially controlling the knitting condition setting and the winding condition setting simultaneously.
  • an existing apparatus that does not support production volume data is used as it is, and the knitting condition setting and the winding condition setting are performed by separate control.
  • FIG. 4 shows a block diagram of the winding control unit 6 in the apparatus of the second embodiment.
  • the overall control unit 8 controls the entire circular knitting machine.
  • the knitting condition setting unit 11 includes specific knitting data 14 that affects the production amount of the knitted fabric during operation, and the specific knitting data 14.
  • knitting operation data 16 such as rotation speed data of the knitting unit 2 is stored in advance. Since the rotation speed data 16 is composed of numerical values, the exchange of data is fast and data creation is easy.
  • the specific knitting data 14 and the rotational speed data 16 constitute a data file DF.
  • the position control data 18 corresponding to the winding amount of the knitted fabric is set in the winding condition setting unit 17.
  • the position control data collating unit 19 collates the rotational speed data 16 with the default data 20 for each course of the knitting structure, and obtains the production amount data 15 corresponding to the matched default data 20, By repeating this, the production volume data 15 is changed, and the position control data 18 is changed in synchronization therewith. In this way, the position control data 18 is set based on the change in the specific knitting data 14.
  • the existing apparatus can execute the knitting by inputting and reading the knitting data such as the knitting structure data of the knitting condition in the setting of the knitting condition.
  • the production amount data is input and read and the winding is performed.
  • equipment such as development of data creation / reading software, expansion of circuits, etc.
  • the configuration of the existing apparatus is used as it is.
  • the organization data of the specific organization data has a large amount of data, and it is difficult to collate data, and it takes time and labor to create the default data.
  • the correspondence between the production amount data and the position control data is determined according to the knitting operation data such as the rotation speed data of the knitting unit and the predetermined value.
  • the existing apparatus is simply used as it is, so that the production amount and the winding amount of the knitted fabric are matched.
  • the rotational speed of the knitting unit 2 is not lower than the predetermined speed, depending on the knitting conditions such as the knitting structure, stitch amount, knitting timing, yarn used, etc., which is the specific knitting data, the knitting part 2 may not be knitted without any knitting defect, actuator, auto stitch, auto Timing control, striper, etc. cannot be operated.
  • the rotation speed data has a specification that can be input to the data file, and also changes in response to changes in the specific knitting data. Yes.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the second embodiment.
  • a data file DF is created for each course of the knitting organization.
  • the specific knitting data 14 and the corresponding data file DF of the rotational speed data 16 are stored in the overall control unit 8 in advance.
  • the data file DF is read by the overall control unit 8 (step T1). Then, the operation starts, and knitting of the knitted fabric is started under the knitting conditions including the read knitting structure (step T2).
  • the apparatus reads the rotational speed data corresponding to one course of the current knitting structure data (step T3), and confirms whether or not there has been a change from the rotational speed data of the previous course corresponding to the change of the specific knitting data 15 ( Step T4). If not changed, the production amount data and the position control data are not changed (step T7-2), and the process proceeds to step T3. If it has changed, it is checked whether this is the default data set as “high speed” (step T5-1). If it is “high speed”, the production volume data corresponding to this is acquired (step T6-1). Similarly, it is checked whether or not the preset data is set as “medium speed”, “inching” (inching), and “low speed” (steps T5-2, T5-3, T5-4). Data is acquired (steps T6-2, T6-3, T6-4).
  • step T7-1 the position control data obtained is output to the servo driver 10
  • step T7-2 the rotation angle of the take-up servo motor 5
  • step T7-2 the production amount data and the position control data are not changed (step T7-2)
  • step T3 The rotation speed data is read for each course, and steps T3 to T7-1 or T7-2 are repeated until the knitting machine is stopped. In this way, the position control data changes in synchronization with the change in the production data.
  • the correspondence between the production amount data and the position control data in the first embodiment is replaced with the collation of the knitting operation data (rotational speed data) and the predetermined data, so that the existing apparatus can be simply used.
  • the production amount of the knitted fabric and the winding amount can be matched by using the above configuration as it is.
  • the knitted fabric is not stopped in the position control mode with little influence on the knitted fabric quality without stopping the operation of the apparatus. Can be wound with an appropriate and stable winding tension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)

Abstract

丸編機の巻取制御方法および装置は、巻取制御部(6)によって、位置制御データどおりの巻取量を巻き取るよう制御する位置制御モードのもとで、編成条件のうち、稼働中における編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、編地の巻取量に対応する位置制御データを同期して変化するように設定する。

Description

丸編機の巻取制御方法および装置 関連出願
 本願は、日本国で2012年11月7日に出願した特願2012-245768の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、丸編機で生産された筒状の編地を巻き取る巻取制御方法および装置に関する。
 一般に、丸編機は、編針を針溝に収容したシリンダをモータによる駆動で回動させ、編針に糸を供給させて筒状の編地を生産する編成部と、この編成部により生産された筒状の編地を巻き取る巻取機構部とを有している。この巻取機構部では、巻取ローラを駆動させるために、精密で高速な制御が可能なサーボモータを使用する場合が多く、編成部の稼働に同期した指令パルスをサーボドライバに与えて編地を巻き取る制御を行う。この場合、サーボモータの出力トルクを一定に制御するトルク制御モード、およびサーボモータの回転角度を一定に制御する位置制御モードが多く使用されている。
 電子選針機能を有する丸編機では、稼働中に、編地の編成条件である編組織、ステッチ量、編成タイミング、使用糸等の編成条件変化によって、編成部のシリンダ1回転に対する編地の生産量が稼動中に変化する場合がある。例えば、編組織はウエルトやタックを使用する組織の編地よりもオールニットの編地の方が生産量は多くなり、ステッチ量は大きいほど生産量が多くなる。この生産量の変化に対応すべく、前記したトルク制御モードを使用することが知られている(例えば、特許文献1)。トルク(サーボ)モータの出力トルクを一定にすることで、編地生産量が変化しても一定の巻取張力を保つようトルクモータを制御して、自動トルク調整が行われる。
 ところで、一定の巻取張力を保つトルク制御モードの使用では、使用糸や編組織等の編成条件によっては、当該巻取張力や使用糸の性質などの影響を受けて、稼働停止時に、生産される編地に円筒編地の周状に線のような段が付く編欠陥である止段や、稼動中に螺旋状の段が付く編欠陥である横段が発生しやすいという問題があった。
 一方、位置制御モードは、トルク制御モードと異なり、設定した一定の編地量を巻き取ることができるため、止段や横段の少ない安定した編地の巻き取りが可能となる。位置制御モードは、予め編成部のシリンダ1回転あたりのサーボモータの回転角度である編地生産量、つまりサーボモータへの指令パルス数の1パルスあたりの移動量データを手動で予め設定しておき、これをサーボモータドライバに位置制御データとして与えることにより、編地を一定の巻取張力で巻き取るモードである。制御操作部で1つの位置制御データを設定することで、稼働中は常にこの位置制御データどおりの編地量を巻き取る。
特許第2733760号公報 特開第2010-285700号
 しかし、位置制御モードをそのまま使用した場合、多少の編地の生産量変化には対応できる場合もあるが、例えばガーメントレングス編のように、電子選針機能による編組織の変化等により、稼動中に編地の生産量が大きく変わるとき、巻取量の調整で対応できる許容範囲を超える場合がある。この場合、編地の巻取張力が極端に弱く又は強くなり、編傷によって編地の品質に悪影響が出たり、糸切れや給糸装置のアラームによって稼動が継続不可となったりすることにより、適切で安定した編地の生産ができないことがあり、巻き取りもできないこととなる。これを防止するには、編地の生産量の大きな変化に対して、稼働を停止させて再設定する必要があり、そのため生産効率の低下を招くこととなる。
 また、編地生産量の変化に対応しながら位置制御モードを使用する方法としては、編地の巻き取りをトルク制御モードで開始させ、該トルク制御モードにおける巻き取り状態が安定した後に位置制御モードに移行させて自動的に編地の巻き取りを行うことが知られているが(例えば、特許文献2)、この方法は運転開始時にモード移行させるものであって、稼働中における生産量の大きな変化には対応できない。
 本発明は、稼働中に編地の生産量が大きく変化する場合であっても、位置制御モードで編地を適切で安定した巻取張力で巻き取ることができる丸編機の巻取制御方法および装置を提供することを目的としている。
 前記目的を達成するために、本発明にかかる丸編機の巻取制御方法および装置は、巻取ローラおよびローラ駆動用の巻取サーボモータを含む巻取機構部により、編地の設定された編成条件に基づき編成部で生産された筒状の編地を巻き取り、巻取制御部により前記巻取機構部を制御するものである。前記巻取制御部によって、位置制御データどおりの巻取量を巻き取るよう制御する位置制御モードのもとで、前記編成条件のうち、稼働中における前記編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、前記編地の巻取量に対応する位置制御データを同期して変化するように設定する。
 この構成によれば、位置制御モードのもとで、編成条件に関する編成データのうち、稼働中における編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、前記編地の巻取量に対応する位置制御データを同期して変化するように設定する制御を行うので、 編地の生産量の変化が大きい場合であっても、位置制御モードのもとで、特定編成データの変化から生産量データを変化させ、これと位置制御データを同期させて、編地の生産量と巻取量を一致させることができるから、適切で安定した巻取張力で編地の巻き取りが可能となる。
 好ましくは、前記特定編成データは、少なくとも編組織データ、ステッチ量データ、編成タイミングデータ、および使用糸データの1つを含むものであり、この特定編成データの変化に対応する位置制御データの変化を予め記憶させておき、当該生産量データの変化と位置制御データの変化を同期させることで、前記特定編成データの変化に基づいて前記変化させた位置制御データが設定される。したがって、迅速な応答が可能となり、より適切で安定した編地の巻き取りが可能となる。
 また、前記特定編成データが編組織1コース、つまり編組織の横方向の1列ごとに設定されている。したがって、編地の生産量の変化に対して1コースごとに適切で安定した編地の巻き取りができる。
 好ましくは、前記編成条件のうち前記特定編成データの変化に対応する前記編成作動データの変化を予め記憶させておき、前記編成作動データと前記生産量データに対応する既定データとを照合し、合致した既定データから生産量データを得て、これを繰り返すことで生産量データを変化させ、この生産量データの変化に同期して前記位置制御データが変化するように設定されている。ここで、既定データとは、編成作動データと一対をなすもので、編成作動データと照合させるデータとして予め設定されているデータをいう。したがって、前記した生産量データの変化と位置制御データの変化の対応を、編成作動データと既定データの照合に代替させることにより、生産量データを設定できる仕様になっていない既存の装置の構成をそのまま利用して、編地の生産量と巻取量を一致させることができる。
 また、好ましくは、前記編成作動データが編成部の回転速度データである。したがって、特定編成データの変化に対して、より簡便に位置制御データを設定できる。
 好ましくは、前記回転速度データと前記既定データとを編組織1コースごとに照合し、当該回転速度データが変化していなければ、合致する既定データに対応する生産量データの取得および生産量データと位置制御データの同期を行わずに、生産量データおよび位置制御データの設定をそのまま保持し、次コースの照合を行う。また、前記既定データが4種類設定されており、第1データがインチングスピードの既定データ、第2データが第1データよりも低速の既定データ、第3データが第1データよりも速い中速の既定データ、第4データが第3データよりも早い高速の既定データである。したがって、特定編成データの変化に対して、より簡便に位置制御データを設定できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付のクレーム(請求の範囲)によって定まる。添付図面において、複数の図面における同一の部品符号は同一部分を示す。
本発明の一実施形態にかかる丸編機の全体の正面図である。 第1実施形態の巻取制御部6のブロック図である。 第1実施形態の動作を示すフローチャートである。 第2実施形態の巻取制御部6のブロック図である。 第2実施形態の動作を示すフローチャートである。
 以下、本発明の実施形態を図面に従って説明するが、本発明の実施形態は本実施形態に限定されない。図1は、本発明の第1実施形態にかかる電子選針機能を有する丸編機の全体の正面図である。図1に示すように、丸編機1は、筒状の編地を生産する編成部2と、生産された筒状の編地を巻き取る巻取機構部3および巻取機構部3を制御する巻取制御部6からなる巻取部とを備えている。編成部2を含む装置本体側には、装置へのデータ入力や各種の表示などを行うための制御操作部20が設けられている。
 図1において、複数個の脚21によって支持されたベッド22の上方に編成部2が設置されている。ベッド22上には複数本のポスト24が立てられてあり、その上部は連結部材によって水平部材25が固定されている。水平部材25に給糸部9が支持されている。ベッド22の下方には編み立てられた編地を複数のローラで挟み込んで引っ張り編地に一定の張力をかけ下方へ送り出す引張ローラ4a、送り出された編地を巻き取る巻取ローラ4bおよびローラ駆動用の巻取サーボモータ5を含む巻取機構部3が設置されている。ベッド22の下方には前記制御操作部20および丸編機全体を制御する全体制御部8が設けられている。
 図2は、第1実施形態の装置における巻取制御部6のブロック図を示す。全体制御部8は、丸編機全体を制御するもので、この実施形態では、編成条件設定と巻取条件設定の制御を一体に行っている。編成条件設定部11に編成条件のうち、稼働中における編地の生産量に影響する特定編成データ14と、この特定編成データ14の変化に対応して変化する生産量データ15とが予め記憶されている。この特定編成データ14と対応する生産量データ15とでデータファイルDFを構成する。
 特定編成データ14には、少なくとも編組織データ、ステッチ量データ、編成タイミングデータ、使用糸データの1つが含まれる。また、データファイルDFは、各データがUSBやLAN等の情報伝達手段によって読み込まれる。
 巻取条件設定部17に、編地の巻取量に対応する位置制御データ18が設定されている。位置制御データ18は前記変化する生産量データ15と同期して変化する。データファイルDFを読み込むことにより、特定編成データ14の変化に基づいて変化する生産量データ15と同期して位置制御データ18が変化する。位置制御データ18は、編組織1コースごとに対応して入力されている。
 図1の編成部2は、所望の編地のために設定された編成条件に基づいて、図示しない複数の編針を滑動自在に針溝に収容した編成部2のシリンダをメインモータ7による駆動で回動させ、編針に給糸部9から糸を供給させて螺旋状に編目を積み重ね、筒状の編地を編み立てる。編成部2のシリンダを回転させるメインモータ7は、前記全体制御部8により、例えばインバータによる周波数制御によって所定回転数で駆動するように制御される。
 図2の前記巻取制御部6は、図1の巻取機構部3に設けられた巻取サーボドライバ10と、前記全体制御部8と、図1の巻取機構部3に設けられて(シリンダを駆動し、ベッド内部に配置されたギアリングと巻取機構部3とは連結されている)、メインモータ7によるシリンダの回転数を検知する編機回転検出部(ロータリーエンコーダ)12とを備えている。
 巻取サーボドライバ10は、巻取サーボモータ5に対してPWM制御出力(図示c)をしてPWM制御するもので、編成部回転検出部12から入力するメインモータ7によるシリンダの回転角度(図示eの編成部回転検出信号)に同期した指令パルスの出力パルス数を巻取サーボモータ5に与えることにより、巻取サーボモータ5の回転角度を制御する。巻取サーボドライバ10は、いずれも図示しないが、これらモータ制御・PWM制御出力部および編成部回転検出信号入力部のほかに、全体制御部とのシリアル通信部、後述する巻取サーボドライバ5との間におけるフィードバック電流検出部、モータ回転角度入力部を有している。
 位置制御モードは、編成部のシリンダの回転に対して図2の巻取サーボモータ5を一定の回転角度(図示bのモータ回転信号)で回転させる制御を行う。この位置制御では、一定の巻取張力を保持しながら巻取サーボモータ5の高精度な回転角度制御を行うので、巻取機構部3のギアやローラなどの機械的な負荷変動の影響を受けないから、常に同じ編地生産量を巻き取ることができ、安定した巻取張力で巻き取ることが可能となる。
 全体制御部8は巻取サーボドライバ10に対して、現在のコースの編組織データに対応した位置制御データ(図示d)を出力する。巻取サーボドライバ10は巻取サーボモータ5に対して、前記位置制御データに対応したPWM制御出力を行うことにより、位置制御モードにおいて位置制御データと巻取サーボモータ5の電流とによるモータ制御(図示c)を行う。
 全体制御部8は、特定編成データ14が読み込まれたとき、その編成条件のもとで、編成部2の図示しないアクチュエータ、ステッチ、タイミングおよびストライパ等並びに装置に供給される電気動力を制御する。
 以下、上記構成を有する第1実施形態の巻取制御装置の動作について説明する。図3はこの動作を示すフローチャートである。本フローチャートに入る前段階として、例えば編組織1コースごとにデータファイルDFが作成されている。前記した特定編成データ14と対応する生産量データ15のデータファイルDFが全体制御部8に予め記憶されている。
 まず、全体制御部8のデータファイルDFが読み込まれる(ステップS1)。そして稼働スタートし、読み込んだ編組織を含む編成条件による編地の編成が開始される(ステップS2)。その後、装置は現在のコースの編組織データに対応して入力されている生産量データを読み取り(ステップS3)、読み取った生産量データと位置制御データを同期させて、サーボドライバ10へ得られた位置制御データが出力されて、巻取サーボモータ5の回転角度が制御され、位置制御データの巻取量を実行させて(ステップS4)、ステップS3へ進む。生産量データは編組織1コースごとに設定されているため、生産量データは毎コース読み取って実行される。そしてステップS3とステップS4を稼働停止まで繰り返す。
 なお、全体制御部8は、編組織などの変化と同時に巻取量を増減するときの編地生産量の変化の大きさとサーボドライバ10が位置制御データを受けるタイミングによって発生し得る編地の生産量と巻取量のずれを補正するため、巻取機構部3への巻取量の増減の指令を数パルス早く又は遅くずらして出す補正プログラムを実装することができる。
 このように、第1実施形態では、位置制御モードのもとで、編成条件に関する編成データのうち、稼働中における編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、編地の巻取量に対応する位置制御データを同期させて設定する制御を行う。これにより、編地の生産量の変化が大きい場合であっても、編地品質への影響が少ない位置制御モードのもとで、特定編成データの変化から直ちに生産量データの変化を得て、これと位置制御データを同期させて、編地の生産量と巻取量を一致させることができるから、装置稼動が停止することなく、適切で安定した巻取張力で編地の巻き取りが可能となる。また、複雑な編成条件の変化にも対応することが可能となる。
 つぎに、第2実施形態の巻取制御装置について説明する。全体制御部8は、第1実施形態が生産量データ15と位置制御データ18とを直接同期させることで、実質的に編成条件設定と巻取条件設定の制御を同時に行っているのと異なり、第2実施形態では、生産量データが対応していない既存の装置をそのまま利用するものであって、編成条件設定と巻取条件設定とを別制御で行っている。
 図4は、第2実施形態の装置における巻取制御部6のブロック図を示す。全体制御部8は、丸編機全体を制御するもので、編成条件設定部11に編成条件のうち、稼働中における編地の生産量に影響する特定編成データ14と、この特定編成データ14の変化に対応して変化する、前記編成条件のうち例えば編成部2の回転速度データのような編成作動データ16が予め記憶されている。回転速度データ16は、数値からなるのでデータのやり取りが速く、データ作成も簡単である。この特定編成データ14と回転速度データ16とで、データファイルDFを構成する。
 巻取条件設定部17に、編地の巻取量に対応する位置制御データ18が設定されている。このデータファイルDFを読み込むことにより、位置制御データ照合部19によって編組織1コースごとに回転速度データ16と既定データ20を照合し、合致した既定データ20に対応する生産量データ15を取得し、これを繰り返すことで生産量データ15を変化させ、これに同期して位置制御データ18が変化する。このようにして、特定編成データ14の変化に基づいて位置制御データ18が設定される。
 既存の装置は、編成条件設定において、編成条件の編組織データ等の編成データを入力し読み込ませて編成を実行できるが、第1実施形態のように生産量データを入力し読み込ませて巻き取りを実行できる仕様となっておらず、別制御で巻取条件設定を行っており、既存の装置でこれを実行できるようにするにはデータ作成・読み込みソフト等の開発や回路の増設等の設備投資が必要となるところ、第2実施形態では、既存の装置の構成をそのまま利用している。
 また、特定編成データのうち例えば編組織データ等は、データ量が多く、データ照合が困難であり、既定データ作成に時間、労力もかかる。このため、第2実施形態では、複雑な編成条件の変化に対応することは困難であるものの、生産量データと位置制御データの対応を、編成部の回転速度データのような編成作動データと既定データとの照合に代替させて、既存の装置をそのまま簡便に使用して、編地の生産量と巻取量を一致させるようにしている。
 編成部2の回転速度は、所定の速度以下でないとき、特定編成データである編組織、ステッチ量、編成タイミング、使用糸等の編成条件によっては編欠陥なく編めなかったり、アクチュエータ、オートステッチ、オートタイミングコントロール、ストライパ等を作動させることができなかったりする。このため、既存の装置において、この回転速度データは、データファイルに入力できる仕様になっており、また、特定編成データの変化に対応して変化するから、編地生産量の変化に対応している。その他の構成は、第1実施形態と同様である。
 図5は第2実施形態の動作を示すフローチャートである。本フローチャートに入る前段階として、編組織1コースごとにデータファイルDFが作成されている。前記した特定編成データ14と、対応する回転速度データ16のデータファイルDFが全体制御部8に予め記憶されている。
 まず、全体制御部8にデータファイルDFを読み込ませる(ステップT1)。そして稼働スタートし、読み込んだ編組織を含む編成条件による編地の編成が開始される(ステップT2)。
 その後、装置は現在の編組織データ1コースに対応する回転速度データを読み取り(ステップT3)、特定編成データ15の変化に対応して1コース前の回転速度データから変化したかどうかを確認する(ステップT4)。変化していない場合は生産量データおよび位置制御データを変化させず(ステップT7-2)、ステップT3へ進む。変化していた場合は、これが「高速」として設定された既定データかどうか照合する(ステップT5-1)。「高速」である場合はこれに対応した生産量データを取得する(ステップT6-1)。同様にそれぞれ「中速」「インチング(寸動)」「低速」として設定された既定データかどうか照合し(ステップT5-2、T5-3、T5-4)、合致した場合は対応した生産量データを取得する(ステップT6-2、T6-3、T6-4)。
 その後、取得した生産量データと位置制御データを同期させて、サーボドライバ10へ得られた位置制御データが出力されて、巻取サーボモータ5の回転角度が制御され、位置制御データの巻取量を実行させて(ステップT7-1)、ステップT3へ進む。なお、どの回転速度データにも属さない場合、すなわちデータの異常があった場合は生産量データおよび位置制御データを変化させず(ステップT7-2)、ステップT3へ進む。回転速度データは毎コース読み取られてステップT3からステップT7-1又はT7-2を編機停止まで繰り返す。こうして、生産量データの変化に位置制御データが同期して変化する。
 このように、第2実施形態では、第1実施形態の生産量データと位置制御データの対応を、編成作動データ(回転速度データ)と既定データの照合に代替させることにより、簡便に既存の装置の構成をそのまま利用して、編地の生産量と巻取量を一致させることができる。
 以上のように、本発明では、稼働中に編地の生産量が大きく変化する場合であっても、編地品質への影響が少ない位置制御モードで、装置稼動が停止することなく、編地を適切で安定した巻取張力で巻き取ることができる。
 以上のとおり図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まる本発明の範囲内のものと解釈される。
1:丸編機
2:編成部
3:巻取機構部
4:巻取ローラ
5:巻取サーボモータ
6:巻取制御部
8:全体制御部
11:編成条件設定部
14:特定編成データ部
15:生産量データ部
16:編成作動データ(回転速度データ部)
17:巻取条件設定部
18:位置制御データ部
19:位置制御データ照合部
20:既定データ部
DF:データファイル

Claims (8)

  1.  巻取ローラおよびローラ駆動用の巻取サーボモータを含む巻取機構部により、編地の設定された編成条件に基づき編成部で生産された筒状の編地を巻き取り、巻取制御部により前記巻取機構部を制御する丸編機の巻取制御方法において、
     前記巻取制御部によって、位置制御データどおりの巻取量を巻き取るよう制御する位置制御モードのもとで、
     前記編成条件のうち、稼働中における前記編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、前記編地の巻取量に対応する位置制御データを同期して変化するように設定する、
     丸編機の巻取制御方法。
  2.  請求項1において、
     前記特定編成データは、少なくとも編組織データ、ステッチ量データ、編成タイミングデータ、および使用糸データの1つを含むものであり、
     この特定編成データの変化に対応する生産量データの変化を予め記憶させておき、前記特定編成データの変化に基づいて前記変化させた位置制御データが設定される、丸編機の巻取制御方法。
  3.  請求項2において、
     前記特定編成データが編組織1コースごとに設定されている、丸編機の巻取制御方法。
  4.  請求項1において、
     前記編成条件のうち前記特定編成データの変化に対応する前記編成作動データの変化を予め記憶させておき、前記編成作動データと前記生産量データに対応する既定データとを照合し、合致した既定データから生産量データを得て、これを繰り返すことで生産量データを変化させ、この生産量データの変化に同期して前記位置制御データが変化するように設定されている、丸編機の巻取制御方法。
  5.  請求項4において、
     前記編成作動データが前記編成部の回転速度データである、丸編機の巻取制御方法。
  6.  請求項5において、
     前記回転速度データと前記既定データとを編組織1コースごとに照合し、当該回転速度データが変化していなければ、合致する既定データに対応する生産量データの取得および生産量データと位置制御データの同期を行わずに、生産量データおよび位置制御データの設定をそのまま保持し、次コースの照合を行う、丸編機の巻取制御方法。
  7.  請求項5または6において、
     前記既定データが4種類設定されており、第1データがインチングスピードの既定データ、第2データが第1データよりも低速の既定データ、第3データが第1データよりも速い中速の既定データ、第4データが第3データよりも早い高速の既定データである、丸編機の巻取制御方法。
  8.  巻取ローラおよびローラ駆動用の巻取サーボモータを含む巻取機構部により、編地の設定された編成条件に基づき編成部で生産された筒状の編地を巻き取り、巻取制御部により前記巻取機構部を制御する巻取制御装置を備えた、丸編機であって、
     前記巻取制御部は、位置制御データどおりの巻取量を巻き取るよう制御する位置制御モードのもとで、
     前記編成条件のうち、稼働中における前記編地の生産量に影響する特定編成データの変化に対応して生産量データを変化させ、この生産量データの変化に対して、前記編地の巻取量に対応する位置制御データが同期して変化するように設定される、丸編機。
PCT/JP2013/078049 2012-11-07 2013-10-16 丸編機の巻取制御方法および装置 WO2014073340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380057721.XA CN104769171B (zh) 2012-11-07 2013-10-16 圆织机的卷取控制方法及装置
US14/440,231 US20150376822A1 (en) 2012-11-07 2013-10-16 Method and device for controlling winding in circular knitting machine
EP13853958.0A EP2918713A4 (en) 2012-11-07 2013-10-16 METHOD AND DEVICE FOR CONTROLLING WINDING IN A CIRCULAR KNITTING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012245768A JP2014095157A (ja) 2012-11-07 2012-11-07 丸編機の巻取制御方法および装置
JP2012-245768 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073340A1 true WO2014073340A1 (ja) 2014-05-15

Family

ID=50684452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078049 WO2014073340A1 (ja) 2012-11-07 2013-10-16 丸編機の巻取制御方法および装置

Country Status (6)

Country Link
US (1) US20150376822A1 (ja)
EP (1) EP2918713A4 (ja)
JP (1) JP2014095157A (ja)
CN (1) CN104769171B (ja)
TW (1) TW201422865A (ja)
WO (1) WO2014073340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113111A (zh) * 2015-08-19 2015-12-02 浙江理工大学 一种电脑自动调线机实时控制系统及控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483928A (zh) * 2015-12-28 2016-04-13 泉州领布机械科技有限公司 一种全电脑控制双面上下盘提花移圈调线机
CN112513859A (zh) * 2018-05-30 2021-03-16 耐克创新有限合伙公司 服装生产系统和方法
TWI701621B (zh) * 2019-10-15 2020-08-11 薩摩亞商紘織國際有限公司 結合動態生產及編織機工作管理的系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140143A (en) * 1980-04-02 1981-11-02 Shima Idea Center Adjustment of downward withdrawal tension of knitted fabric in knitting machine
JPH0571050A (ja) * 1991-09-03 1993-03-23 Fukuhara Seiki Seisakusho:Kk 丸編機の巻取部における制動装置
JP2733760B1 (ja) 1996-09-12 1998-03-30 佰龍機械廠股▲ふん▼有限公司 布巻取り機構のモータ自動制御装置
JP2010285700A (ja) 2009-06-09 2010-12-24 Precision Fukuhara Works Ltd 丸編機の巻取制御方法および巻取制御装置
JP2013019082A (ja) * 2011-07-13 2013-01-31 Precision Fukuhara Works Ltd 電子柄編機の巻取制御方法および装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842627A (en) * 1969-07-28 1974-10-22 Travis Mills Corp Means for rolling up tubular fabric produced by a circular knitting machine
US3718300A (en) * 1969-10-31 1973-02-27 E Aronoff Apparatus for rolling tubular fabrics
CH539156A (fr) * 1971-11-09 1973-07-15 Bonneterie S A Et Métier à tricoter circulaire
US3781532A (en) * 1972-05-22 1973-12-25 North American Rockwell Warp letoff control system
US3858415A (en) * 1973-12-10 1975-01-07 Liberty Fabrics Of New York Automatic yarn feed rate control system for warp beam knitting machines
IT1083113B (it) * 1977-05-18 1985-05-21 Marchisio Giovanni & C S A S Macchina circolare per maglieria con dispositivo di regolazione della velocita di alimentazione dei fili
US4236390A (en) * 1978-11-09 1980-12-02 Terrot Strickmaschinen Gmbh Knitting machine
DE3300240A1 (de) * 1983-01-05 1984-07-12 Universal Maschinenfabrik Dr. Rudolf Schieber GmbH & Co KG, 7081 Westhausen Verfahren und einrichtung zum erfassen und korrigieren der laenge eines auf einer flachstrickmaschine entstehenden strickstuecks
JPS61174456A (ja) * 1985-01-25 1986-08-06 株式会社 福原精機製作所 メリヤス丸編機の巻取部における駆動装置
DE3824034C1 (ja) * 1988-07-15 1989-09-14 Gustav 7290 Freudenstadt De Memminger
JP2892392B2 (ja) * 1989-08-31 1999-05-17 株式会社福原精機製作所 編機のステッチ自動調整装置および方法
JPH03227436A (ja) * 1990-02-01 1991-10-08 Fukuhara Seiki Seisakusho:Kk 丸編機の巻取部における駆動装置
JP3059800B2 (ja) * 1991-09-20 2000-07-04 株式会社福原精機製作所 丸編機における編地巻取・排出装置およびその制御方法
IT1252504B (it) * 1991-09-23 1995-06-19 Vignoni Srl Avvolgi-pezze per macchine circolari da maglieria
JPH06173146A (ja) * 1992-10-09 1994-06-21 Fukuhara Seiki Seisakusho:Kk 丸編機における巻取部の駆動装置
EP0622486A1 (en) * 1992-12-07 1994-11-02 Precision Fukuhara Works, Ltd Fabric take-up mechanism for circular knitting machines
JPH0742052A (ja) * 1993-07-28 1995-02-10 Tsudakoma Corp 度目制御装置
DE9319096U1 (de) * 1993-12-13 1995-04-13 Spirka Maschbau Gmbh & Co Vorrichtung zum Abzug flexiblen Langguts aus einer Herstellungsmaschine
JPH0860501A (ja) * 1994-08-08 1996-03-05 Fukuhara Seiki Seisakusho:Kk 開反巻取装置及びそれを有する丸編機
JP3085638B2 (ja) * 1995-01-23 2000-09-11 株式会社島精機製作所 横編機における糸長制御装置
US5575162A (en) * 1995-10-03 1996-11-19 Guilford Mills, Inc. Apparatus for controlling twist in a knitted fabric
US5730005A (en) * 1996-09-05 1998-03-24 Pai Lung Machinery Mill Co., Ltd. Fabric rolling-up device and control circuit assembly
CN2285306Y (zh) * 1996-12-23 1998-07-01 佰龙机械厂股份有限公司 卷布机构自动控制马达装置
IT1293791B1 (it) * 1997-07-25 1999-03-10 Santoni Srl Macchina circolare per maglieria o calzetteria con dispositivo di tiraggio del tessuto a maglia
DE19738013A1 (de) * 1997-08-30 1999-03-04 Stoll & Co H Warenabzugswalzenanordnung für Flachstrickmaschinen
US6000246A (en) * 1998-06-02 1999-12-14 Hsieh; Wen-Bin Stepless speed change type cloth take-up device for a circular knitting machine
US5996377A (en) * 1998-06-04 1999-12-07 Cavalli; Giuseppe Device for tensioning of manufactured articles in single-cylinder or two-cylinder circular stocking knitting machines
JP2001159056A (ja) * 1999-09-24 2001-06-12 Precision Fukuhara Works Ltd 丸編機の給糸自動制御及び編地密度自動調整装置
IT1310088B1 (it) * 1999-12-24 2002-02-05 Santoni & C Spa Dispositivo e procedimento di controllo del peso del tessuto prodottoda una macchina tessile, in particolare da una macchina tessile
US6381993B1 (en) * 2001-09-25 2002-05-07 Flynt Amtex, Inc. Apparatus for forming large rolls of tubular knitted fabric
GB0318271D0 (en) * 2003-08-05 2003-09-10 Univ Manchester Improved knitting machines and methods of knitting
JP2007532793A (ja) * 2004-04-14 2007-11-15 サントニ エス.ピー.エー 丸編機で製造された編地を回収する方法及び丸編機
DE102004058920B4 (de) * 2004-12-07 2007-01-11 Memminger-Iro Gmbh Rundstrickmaschine und Elektromotor
ITBS20050140A1 (it) * 2005-11-18 2007-05-19 Santoni & C Spa Dispositivo di tiraggio per macchine tessili circolari
JP2007211379A (ja) * 2006-02-10 2007-08-23 Shima Seiki Mfg Ltd 横編機の編地引き下げ装置
US7836732B1 (en) * 2009-11-06 2010-11-23 Pai Lung Machinery Mill Co., Ltd. Method and apparatus for lowering and folding fabric at amount same as fabric knitted and unloaded by a circular knitting machine
EP2415916B1 (en) * 2010-08-04 2015-03-04 L.G.L. Electronics S.p.A. Method and apparatus for detecting accidental stops of the yarn on a knitting line
CN201896230U (zh) * 2010-10-28 2011-07-13 浙江巨福科技有限公司 一种电脑横机卷布罗拉正反转控制系统
US20160040330A1 (en) * 2011-01-18 2016-02-11 James Larry Gunn Apparatus and method for reducing torque in garments
ITMI20121090A1 (it) * 2012-06-21 2013-12-22 Santoni & C Spa Dispositivo avvolgitore per l'avvolgimento di una striscia di tessuto o di maglia o simile su un rullo, particolarmente per macchine circolari per maglieria.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140143A (en) * 1980-04-02 1981-11-02 Shima Idea Center Adjustment of downward withdrawal tension of knitted fabric in knitting machine
JPH0571050A (ja) * 1991-09-03 1993-03-23 Fukuhara Seiki Seisakusho:Kk 丸編機の巻取部における制動装置
JP2733760B1 (ja) 1996-09-12 1998-03-30 佰龍機械廠股▲ふん▼有限公司 布巻取り機構のモータ自動制御装置
JP2010285700A (ja) 2009-06-09 2010-12-24 Precision Fukuhara Works Ltd 丸編機の巻取制御方法および巻取制御装置
JP2013019082A (ja) * 2011-07-13 2013-01-31 Precision Fukuhara Works Ltd 電子柄編機の巻取制御方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2918713A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113111A (zh) * 2015-08-19 2015-12-02 浙江理工大学 一种电脑自动调线机实时控制系统及控制方法

Also Published As

Publication number Publication date
EP2918713A4 (en) 2016-08-10
TW201422865A (zh) 2014-06-16
US20150376822A1 (en) 2015-12-31
JP2014095157A (ja) 2014-05-22
CN104769171B (zh) 2016-09-14
EP2918713A1 (en) 2015-09-16
CN104769171A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP6381594B2 (ja) 複数本の糸を用いて運転される繊維機械に、糸を一定の取り込み長で供給する方法及び装置
WO2014073340A1 (ja) 丸編機の巻取制御方法および装置
CN101768827B (zh) 设有张力限制装置的积极式纱线馈送器
TWI604099B (zh) 電子提花機之捲取控制方法及裝置
TWI589746B (zh) 編織物引導件之控制方法及採用此控制方法之搖落捲取裝置
EP3481981B1 (en) Zero-twist yarn feeding device
CN109518352B (zh) 用于对经编机进行准备的方法和经编机
KR101520525B1 (ko) 니트웨어 또는 양말류용 환편기에서 생산하는 편직 물품들의 크기를 조절하기 위한 공정
TWI522509B (zh) 圓編織機之捲繞控制方法和捲繞控制裝置
KR20010049370A (ko) 다른 특성을 가지는 니트웨어를 생산하기 위한 환편기 및이것을 조절하는 방법
CN108193372B (zh) 一种宽隔距双针床经编机纱线的电子张力补偿方法
CN102031613B (zh) 用于制造提花链的方法以及提花链整经机
CN109518354B (zh) 用于对经编机进行准备的方法和经编机
US6151925A (en) Methods and systems for positively feeding yarn to circular knitting machines
JP2000328408A (ja) 経編機における駆動部の制御方法
KR101879327B1 (ko) 회전자를 구비한 뜨개코 편성구 및 편물기
JP2005240199A (ja) タフテッドカーペットとその製造方法
JP2000202179A (ja) ミシン
JP2006000393A (ja) ミシンおよびその制御方法
CN105862237A (zh) 用于改良纱片和/或将纱片加工成平面构型物品的设备和方法
JP2000108011A (ja) ワイヤソーにおけるワイヤ駆動制御方法及び装置
JP2023153590A (ja) 絣糸括り機および絣糸括り装置
KR101503217B1 (ko) 자수기의 가마 교체 장치 및 그 방법
JP2020133078A (ja) 横編機を用いて厚みの異なる立体構造編物を編成する方法
JPH0742052A (ja) 度目制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14440231

Country of ref document: US