WO2014073200A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2014073200A1
WO2014073200A1 PCT/JP2013/006523 JP2013006523W WO2014073200A1 WO 2014073200 A1 WO2014073200 A1 WO 2014073200A1 JP 2013006523 W JP2013006523 W JP 2013006523W WO 2014073200 A1 WO2014073200 A1 WO 2014073200A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
secondary battery
electrolyte secondary
aqueous electrolyte
positive electrode
Prior art date
Application number
PCT/JP2013/006523
Other languages
English (en)
French (fr)
Inventor
達哉 江口
剛志 牧
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2014545570A priority Critical patent/JP6011634B2/ja
Priority to US14/440,384 priority patent/US20150280242A1/en
Publication of WO2014073200A1 publication Critical patent/WO2014073200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a positive electrode current collector of a nonaqueous electrolyte secondary battery uses a metal such as Al that forms a stable passive film on the surface in order to withstand corrosion such as electrolytic salt.
  • a metal such as Al that forms a stable passive film on the surface in order to withstand corrosion such as electrolytic salt.
  • a passive film such as Al 2 O 3 or AlF 3 is formed on the surface of the Al current collector.
  • the current collector of Al is less likely to be corroded by forming the passive film on the surface, and the current collecting function can be maintained.
  • non-aqueous electrolyte secondary batteries can be used satisfactorily even in a high voltage use environment (in this specification, use at a voltage of 4.3 V or higher is defined as high voltage use).
  • high voltage use in this specification, use at a voltage of 4.3 V or higher is defined as high voltage use.
  • high voltage use in this specification, use at a voltage of 4.3 V or higher is defined as high voltage use.
  • the Al current collector is likely to be gradually corroded in a high voltage environment, and the non-aqueous electrolyte secondary battery having the Al current collector may be deteriorated in cycle characteristics.
  • LiPF 6 lithium hexafluorophosphate
  • Al an electrolytic salt of a non-aqueous electrolyte secondary battery, but Al may be eluted in a high voltage use environment.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-55247 discloses a protective film containing a compound selected from Al iodide, TiN, Ti 2 O 3 , SnO 2 , In 2 O 3 , RuO 2 and the like as a constituent component. The formed current collector is described.
  • This protective film is made of an electrochemically stable compound even under a high voltage.
  • Patent Document 1 describes only the capacity retention rate (%) and capacity recovery rate (%) of a battery after being left at 50 ° C. for 2 weeks, and the cycle characteristics (%) of the battery after a 300 cycle test at 50 ° C. The rate characteristics are not described.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-96667
  • the thickness of the passive film on the surface of the current collector made of aluminum or aluminum alloy is set to 3 nm or less, and a metal or metal carbide is formed on the passive film.
  • a positive electrode current collector in which a conductive layer is formed is described.
  • the battery capacity at each discharge rate is measured, and it is described that the battery capacity is improved by forming a conductive layer at a rate of 50 C or more.
  • the cycle characteristics of the battery are not evaluated, and compared with the battery capacity of Test Example 1 in which an untreated aluminum foil is used as a current collector, an aluminum foil in which a conductive layer is formed. It is described that the battery capacities of Test Examples 2 to 7 in which 1 is used for the current collector are all low at the 1 / 3C, 1C, and 5C rates.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having both excellent rate characteristics and cycle characteristics even under a high voltage use environment.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte having a current collector body, and a film made of SnO 2 formed on the surface of the current collector body, a conductive carbon material, and a film binder. and electrolyte secondary battery positive electrode collector, and having a non-aqueous electrolyte containing LiPF 6 a (lithium hexafluorophosphate) as an electrolyte salt.
  • LiPF 6 a lithium hexafluorophosphate
  • the mixing ratio of SnO 2 and the conductive carbon material is preferably 75:25 to 25:75 by mass ratio.
  • p, q, and r are in the ranges of 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, and 0 ⁇ r ⁇ 1, respectively.
  • the thickness of the coating is preferably 10 nm to 1 ⁇ m.
  • the non-aqueous electrolyte secondary battery of the present invention uses a non-aqueous electrolyte containing LiPF 6 (lithium hexafluorophosphate) as an electrolytic salt, and has high oxidation resistance and high corrosion resistance on the surface of the current collector body. 2.
  • LiPF 6 lithium hexafluorophosphate
  • a non-aqueous electrolyte secondary battery that is excellent in both rate characteristics and cycle characteristics even when used in a high-voltage usage environment is formed because a film is formed of a conductive carbon material and a film binder. Can do.
  • FIG. 6 is a graph showing rate characteristic measurement results of Examples 1 to 3 and Comparative Examples 1 to 3.
  • 6 is a graph showing the cycle characteristic measurement results of Examples 1 to 3 and Comparative Examples 1 to 3.
  • 1 current collector body
  • 2 coating
  • 3 positive electrode active material layer
  • 4 current collector for positive electrode of non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention includes a current collector body, and a non-aqueous electrolyte battery having a film made of SnO 2 formed on the surface of the current collector body, a conductive carbon material, and a film binder. And a non-aqueous electrolyte containing LiPF 6 (lithium hexafluorophosphate) as an electrolytic salt.
  • LiPF 6 lithium hexafluorophosphate
  • the current collector body refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharging or charging of a nonaqueous electrolyte secondary battery. Since the current collector main body has a coating film formed on the surface of the current collector main body, the current collector main body can withstand the corrosion of electrolytic salts and the like. Therefore, examples of materials that can be used for the current collector main body include metal materials such as stainless steel, titanium, nickel, aluminum, and copper, and conductive resins.
  • the current collector body can take the form of a foil, a sheet, a film and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • the current collector body preferably has a thickness of 10 ⁇ m to 100 ⁇ m.
  • Al 2 O 3 formed by a natural reaction with oxygen in the atmosphere or AlF formed by a reaction with an electrolytic salt in an electrolytic solution is usually formed on the surface of the aluminum foil.
  • a passive film such as 3 is formed. This passive film is an insulator, and the number of digits of the specific resistance ( ⁇ cm) is about 10 8 .
  • the aluminum foil is protected from the electrolytic salt by the passive film, but since the passive film is a high resistance film, the electrode using the current collector having the passive film on the surface has high resistance, and the electrode was used. Batteries are said to have reduced output characteristics.
  • the film is formed on the surface of the current collector main body, the passive film is hardly formed. Therefore, this coating can suppress the formation of the high resistance layer on the surface of the current collector body, and can protect the current collector body from corrosion such as electrolytic salt.
  • the thickness of the coating is preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 500 nm. If the thickness of the film is 10 nm or more, the surface of the current collector body can be protected by the film, and corrosion of the current collector body due to the electrolytic solution can be effectively suppressed. When the thickness of the coating is 1 ⁇ m or less, the volume occupied by the positive electrode current collector in the battery can be made appropriate. If the volume occupied by the positive electrode current collector in the battery becomes too large, the amount of the positive electrode active material and the like must be reduced, which leads to a decrease in battery capacity.
  • the coating is composed of a SnO 2 and conductive carbon material and a coating binder.
  • SnO 2 is resistant to oxygen, electrolytic solution and electrolytic salt in the atmosphere, and the resistance is exhibited even at a high voltage.
  • SnO 2 is excellent in oxidation resistance and further excellent in corrosion resistance. Therefore, SnO 2 is effective in improving cycle characteristics.
  • a powder having an average particle diameter of 10 nm to 100 nm can be used.
  • the conductive carbon material is a material that imparts conductivity to the coating.
  • As the conductive carbon material carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), etc. alone are used as the conductive carbon material. Or it can be used in combination of two or more.
  • the coating binder serves to bind SnO 2 and the conductive carbon material to the current collector body.
  • the same binder as that used to bind the positive electrode active material to the current collector body can be used.
  • coating binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins, imide resins such as polyimide and polyamideimide, alkoxy Silyl group-containing resins and rubbers such as styrene butadiene rubber (SBR) can be used.
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber
  • thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins
  • imide resins such as polyimide and polyamideimide
  • the mixing ratio of SnO 2 and the conductive carbon material is preferably 75:25 to 25:75 by mass ratio.
  • the content of the conductive carbon material is large, the rate characteristics of the nonaqueous electrolyte secondary battery are improved.
  • the cycle characteristics of the nonaqueous electrolyte secondary battery and the SnO 2 content is often improved. Therefore, an optimal mixing ratio may be used according to the conditions for which the nonaqueous electrolyte secondary battery is desired to be used.
  • the film formed on the surface of the current collector body functions as a resistance layer. For example, when a non-aqueous electrolyte secondary battery is short-circuited, current flow is limited by this coating.
  • the method for forming the film on the current collector main body is not particularly limited, but can be formed by the following method.
  • a paste-like mixture is prepared by dissolving SnO 2 powder, a conductive carbon material, and a coating binder in an organic solvent or water for viscosity adjustment, and the paste-like mixture is applied onto the current collector body and applied. Later dry.
  • a coating method a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used.
  • the organic solvent for viscosity adjustment ethanol, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK), etc. can be used.
  • the water is preferably water from which impurities have been removed, such as distilled water or ion exchange water.
  • a film can also be formed on the current collector body by the following method.
  • the binder for coating is preferably a binder that can be dissolved in an organic solvent and solidifies when the organic solvent is volatilized.
  • ethanol, NMP, methanol, MIBK or the like can be used as the organic solvent.
  • the water is preferably water from which impurities have been removed, such as distilled water or ion exchange water.
  • the nonaqueous electrolyte secondary battery of this invention has a positive electrode which has the said collector for nonaqueous electrolyte secondary battery positive electrodes.
  • FIG. 1 is a schematic diagram illustrating a positive electrode for a nonaqueous electrolyte secondary battery according to this embodiment. As shown in FIG. 1, a film 2 is formed on the surface of the current collector body 1, and a positive electrode active material layer 3 is formed on the surface of the film 2.
  • the current collector body 1 on which the coating 2 is formed is referred to as a non-aqueous electrolyte secondary battery positive electrode current collector 4.
  • the positive electrode active material layer 3 may further contain a conductive additive.
  • the positive electrode is prepared by forming a positive electrode active material layer-forming composition containing a positive electrode active material and a binder and, if necessary, a conductive additive, and further adding a suitable solvent to the composition to make a paste. It can be formed by applying to the surface of the coating film of the current collector for the positive electrode of the non-aqueous electrolyte secondary battery and drying it, and if necessary, compressing it to increase the electrode density.
  • a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used.
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • a lithium-containing compound that can be used at a high voltage is suitable.
  • lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, and lithium manganese composite oxide can be used.
  • Other metal compounds or polymer materials can also be used as the positive electrode active material.
  • the other metal compound include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, or disulfides such as titanium sulfide and molybdenum sulfide.
  • the polymer material include conductive polymers such as polyaniline and polythiophene.
  • p, q, and r are in the ranges of 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, and 0 ⁇ r ⁇ 1, respectively. Since the composite metal oxide is excellent in thermal stability and low in cost, by using the composite metal oxide as a positive electrode active material, an inexpensive non-aqueous electrolyte secondary battery having good thermal stability is obtained. Can do.
  • Examples of the composite metal oxide include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , and LiCoMnO 2 can be used. Among these, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in terms of thermal stability.
  • the binder serves to bind the positive electrode active material and the conductive additive to the positive electrode current collector.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins, imide resins such as polyimide and polyamideimide, alkoxy Silyl group-containing resins and rubbers such as styrene butadiene rubber (SBR) can be used.
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber
  • thermoplastic resins such as polypropylene, polyethylene and polyvinyl acetate resins
  • imide resins such as polyimide and polyamideimide
  • alkoxy Silyl group-containing resins and rubbers such as styrene butadiene rubber (SBR)
  • Conductive aid is added to increase the conductivity of the electrode.
  • the conductive assistant for example, carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VGCF), etc., which are carbonaceous fine particles, are used alone or in combination of two or more. They can be added in combination.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
  • Non-aqueous electrolyte secondary battery has an electrolyte that uses LiPF 6 as a negative electrode, a separator, and an electrolytic salt, in addition to the above-described positive electrode for a nonaqueous electrolyte secondary battery, as a battery component.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.
  • a negative electrode active material layer contains a negative electrode active material and a binder, and contains a conductive support agent as needed.
  • the current collector, the binder, and the conductive assistant are the same as the current collector main body, the binder, and the conductive assistant described in the positive electrode.
  • a carbon-based material that can occlude and release lithium an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
  • the carbon-based material examples include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • Elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn. , Pb, Sb, Bi.
  • silicon (Si) or tin (Sn) is preferable as an element that can be alloyed with lithium.
  • Examples of elemental compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO can be used.
  • a silicon compound or a tin compound is preferable.
  • the silicon compound SiO x (0.5 ⁇ x ⁇ 1.5) is preferable.
  • the tin compound for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be used.
  • polyacetylene polypyrrole, or the like can be used as the polymer material.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.
  • an electrolyte that can be used for a general non-aqueous electrolyte secondary battery can be used except that LiPF 6 is used as an electrolyte salt.
  • the electrolyte includes a solvent and an electrolytic salt dissolved in the solvent.
  • cyclic esters examples include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • LiPF 6 is used as the electrolytic salt. Since LiPF 6 has high electrical conductivity, a lithium ion secondary battery using LiPF 6 as an electrolytic salt can reduce internal resistance.
  • a solution in which LiPF 6 is dissolved at a concentration of about 0.5 mol / l to 1.7 mol / l in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate can be used.
  • a nonaqueous electrolyte secondary battery of the present invention Since having the above non-aqueous having a positive electrode for electrolytic secondary battery, and the electrolyte having a LiPF 6 as an electrolyte salt, a nonaqueous electrolyte secondary battery of the present invention has excellent rate characteristics and cycle characteristics.
  • the non-aqueous electrolyte secondary battery can be mounted on a vehicle.
  • the non-aqueous electrolyte secondary battery has a large charge / discharge capacity and can achieve both excellent rate characteristics and cycle characteristics. Therefore, vehicles equipped with the non-aqueous electrolyte secondary battery have high performance in terms of life and output. It becomes.
  • the vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • an electric vehicle a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist.
  • Bicycles and electric motorcycles are examples.
  • PVDF Polyvinylidene fluoride as a film binder
  • AB acetylene black
  • NMP N-methyl-2-pyrrolidone
  • a current collector B was prepared in the same manner as the current collector A, except that a second mixture in which the mass ratio of SnO 2 powder and AB was 50:50 was used instead of the first mixture.
  • a current collector C was prepared in the same manner as the current collector A, except that a third mixture in which the mass ratio of SnO 2 powder and AB was 25:75 was used instead of the first mixture.
  • a current collector D was prepared in the same manner as the current collector A except that only the SnO 2 powder was used instead of the first mixture.
  • a current collector E was prepared in the same manner as the current collector A except that only AB was used in place of the first mixture.
  • Current collector F was prepared in the same manner as current collector D, except that polytetrafluoroethylene (PTFE) was used instead of PVDF as a coating binder, and ion-exchanged water was used instead of NMP as a viscosity adjusting solvent. did.
  • PTFE polytetrafluoroethylene
  • Example 1 A laminated lithium ion secondary battery of Example 1 using the current collector A as a positive electrode current collector was produced as follows. First, LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, acetylene black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder, respectively, 88 parts by mass, 6 parts by mass, The mixture was mixed as 6 parts by mass, and this mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was placed on the current collector A and applied to the current collector A using a doctor blade so that the slurry became a film.
  • the obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector A and the coated material on the current collector A were firmly and closely joined by a roll press. At this time, the electrode density was set to 2.3 g / cm 2 .
  • the joined product was heated at 120 ° C. for 6 hours with a vacuum dryer, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and the positive electrode 1 having a thickness of about 50 ⁇ m was obtained.
  • the negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive auxiliary agent, 1 part by mass of styrene-butadiene rubber (SBR) and 1 part by mass of carboxymethyl cellulose (CMC) as a binder were mixed, and this mixture was mixed. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 ⁇ m as a negative electrode current collector so as to form a film using a doctor blade, and the current collector coated with the slurry was dried and pressed. It was heated with a vacuum dryer for a time, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and a negative electrode having a thickness of about 45 ⁇ m was obtained.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the laminated lithium ion secondary battery of Example 1 was produced through the above steps.
  • Example 2 A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the current collector B was used instead of the current collector A in Example 1.
  • Example 3 A laminated lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that the current collector C was used instead of the current collector A in Example 1.
  • Comparative Example 1 A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the current collector D was used instead of the current collector A in Example 1.
  • Comparative Example 2 A laminated lithium ion secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the current collector E was used instead of the current collector A in Example 1.
  • Comparative Example 3 A laminated lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the current collector F was used instead of the current collector A in Example 1.
  • Capacity retention rate (%) (discharge capacity at each cycle / initial discharge capacity) x 100
  • FIG. 3 shows the cycle characteristic results of the laminated lithium ion secondary batteries of Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 3.
  • LiPF 6 lithium hexafluorophosphate
  • a non-aqueous electrolyte secondary battery excellent in rate characteristics and cycle characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 高電圧使用環境下においても優れたレート特性及びサイクル特性を有する非水電解質二次電池を提供する。 集電体本体と、集電体本体の表面に形成されたSnOと導電性炭素材料と被膜用バインダーとを含む被膜と、を有する非水電解質二次電池正極用集電体と、LiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質と、を有することを特徴とする。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関するものである。
 非水電解質二次電池の正極集電体には、電解塩などの腐食に耐えるため、表面に安定な不動態膜を形成するAlなどの金属を使用するのが一般的である。例えばAlを集電体に用いた場合、Alの集電体の表面にAl、AlF等の不動態膜が形成される。Alの集電体は表面に上記不動態膜を形成することで腐食されにくくなり、集電機能を保つことができる。
 近年、非水電解質二次電池は、高電圧使用環境下(本明細書では電圧4.3V以上の電圧で使用することを高電圧使用と定義する)でも良好に使用できることが望まれている。また高電圧使用環境下においても非水電解質二次電池の高容量化要求が高まっている。上記Alの集電体は高電圧使用環境下では徐々に腐食がおこりやすく、Alの集電体を有する非水電解質二次電池はサイクル特性が低下する懸念がある。
 非水電解質二次電池の電解塩としてLiPF(六フッ化リン酸リチウム)がAlを腐食しにくいといわれているが、高電圧使用環境下ではAlが溶出するおそれがある。
 高電圧使用環境下においてサイクル特性を上げるために集電体に保護膜を形成する検討が行われている。例えば特許文献1(特開2004-55247号公報)には、ヨウ化Al、TiN、Ti、SnO、In、RuO等から選ばれる化合物を構成成分として含む保護膜が形成された集電体が記載されている。この保護膜は、高電圧下においても電気化学的に安定な化合物から構成されている。しかしながら、特許文献1には、50℃で2週間放置後の電池の容量維持率(%)と容量回復率(%)、50℃で300サイクル試験後の電池のサイクル特性(%)のみが記載されており、レート特性に関する記載はない。
 また高電圧使用環境下において出力特性を改善するために、集電体に導電層を形成する検討も行われている。
 特許文献2(特開2011-96667号公報)には、アルミニウムまたはアルミニウム合金製の集電体の表面の不動態膜の厚みを3nm以下とし、さらにその不動態膜の上に金属または金属炭化物からなる導電層を形成した正極集電体が記載されている。特許文献2の実施例において各放電レートによる電池容量が測定されており、50C以上のレートにおいて、導電層の形成により電池容量が向上することが記載されている。しかしながら、特許文献2においては、電池のサイクル特性は評価されておらず、また、集電体として未処理のアルミニウム箔を使用した試験例1の電池容量に比べて、導電層を形成したアルミニウム箔を集電体に使用した試験例2~7の電池容量は、1/3C、1C、5Cレートにおいてどれも低いことが記載されている。
特開2004-55247号公報 特開2011-96667号公報
 本発明は、このような事情に鑑みて為されたものであり、高電圧使用環境下においても、優れたレート特性とサイクル特性を両立して有する非水電解質二次電池を提供することを目的とする。
 本発明者等が鋭意検討した結果、正極用集電体本体の表面にSnOと導電性炭素材料と被膜用バインダーとからなる被膜を形成し、かつLiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質を用いることにより、非水電解質二次電池は高電圧使用環境下においても優れたレート特性及びサイクル特性を両立して有することを見いだした。
 すなわち、本発明の非水電解質二次電池は、集電体本体と、集電体本体の表面に形成されたSnOと導電性炭素材料と被膜用バインダーとからなる被膜と、を有する非水電解質二次電池正極用集電体と、LiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質と、を有することを特徴とする。
 SnOと導電性炭素材料との混合比率は質量比で75:25~25:75であることが好ましい。
 特に本発明の非水電解質二次電池は、一般式: LiCoNiMn(Dはドープ成分であり、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも1つであり、p+q+r+s=1、0≦p≦1、0≦q≦1、0≦r≦1、0≦s<1)で表される複合金属酸化物からなる正極活物質を有することが好ましい。ここで、上記p、q、rはそれぞれ0<p<1、0<q<1、0<r<1の範囲とすることが好ましい。
 被膜の厚みは、10nm~1μmであることが好ましい。
 本発明の非水電解質二次電池は、LiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質を用い、集電体本体の表面に、耐酸化性が高く耐食性の高いSnOと導電性炭素材料と被膜用バインダーとからなる被膜を形成しているので、高電圧使用環境下で用いても、レート特性とサイクル特性の両方に優れた非水電解質二次電池とすることができる。
本実施形態の非水電解質二次電池用正極を説明する模式図である。 実施例1~3及び比較例1~3のレート特性測定結果を表すグラフである。 実施例1~3及び比較例1~3のサイクル特性測定結果を表すグラフである。
 1:集電体本体、2:被膜、3:正極活物質層、4:非水電解質二次電池正極用集電体。
 <非水電解質二次電池>
 本発明の非水電解質二次電池は、集電体本体と、集電体本体の表面に形成されたSnOと導電性炭素材料と被膜用バインダーとからなる被膜と、を有する非水電解質二次電池正極用集電体と、LiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質と、を有することを特徴とする。
(非水電解質二次電池正極用集電体)
 集電体本体は、非水電解質二次電池の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。本発明の非水電解質二次電池正極用集電体は集電体本体の表面に被膜が形成されているため、集電体本体は電解塩等の腐食に耐えることができる。そのため、集電体本体に用いることのできる材料として、例えばステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。また集電体本体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体本体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。
 集電体本体は、その厚みが10μm~100μmであることが好ましい。
 アルミニウム箔を集電体本体として用いると、アルミニウム箔の表面には、通常大気中の酸素との自然反応によって形成されたAl、電解液中の電解塩との反応で形成されたAlF等の不動態膜が形成される。この不動態膜は絶縁体であり、その比抵抗(Ωcm)の桁数は10程度である。アルミニウム箔は不動態膜によって電解塩から保護されるが、不動態膜は高抵抗の膜であるため、不動態膜を表面に有する集電体を用いる電極は高抵抗となり、その電極を用いた電池は出力特性が低下するといわれている。
 本発明の非水電解質二次電池正極用集電体は集電体本体の表面に被膜が形成されているため、上記不動態膜が形成されにくい。そのため、この被膜によって、高抵抗層が集電体本体の表面に形成されることを抑制でき、かつ集電体本体を電解塩などの腐食から守ることができる。
 被膜の厚みは10nm~1μmであることが好ましく、20nm~500nmであることがより好ましい。被膜の厚みが10nm以上であれば、その被膜によって集電体本体の表面を保護することができ、電解液による集電体本体の腐食を効果的に抑制することができる。被膜の厚みが1μm以下であれば、電池内の正極用集電体の占める体積を適正にすることができる。電池内の正極用集電体の占める体積が大きくなりすぎると、正極活物質の量等を減らさなければならなくなり、電池容量の低下につながり好ましくない。
 また被膜は、SnOと導電性炭素材料と被膜用バインダーとからなる。
 SnOは、大気中の酸素、電解液及び電解塩に耐性があり、また高電圧においてもその耐性は発揮される。またSnOは耐酸化性に優れており、さらに耐食性に優れているため、SnOはサイクル特性の向上に効果がある。
 SnOとして平均粒径が10nm~100nmの粉末を用いることができる。
 導電性炭素材料は、被膜に導電性を付与する材料である。導電性炭素材料として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて使用することができる。
 被膜用バインダーは、SnOと導電性炭素材料とを集電体本体に結着させる役割を果たす。被膜用バインダーは、通常正極活物質を集電体本体に結着させるのに用いられるバインダーと同様のものが使用できる。被膜用バインダーとして、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンおよびフッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレンおよびポリ酢酸ビニル系樹脂等の熱可塑性樹脂、ポリイミドおよびポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、並びにスチレンブタジエンゴム(SBR)等のゴムを用いることができる。
 この被膜中において、SnOと導電性炭素材料との混合比率は質量比で75:25~25:75であることが好ましい。導電性炭素材料の含有量が多いと非水電解質二次電池のレート特性が向上する。またSnOの含有量が多いと非水電解質二次電池のサイクル特性が向上する。従って非水電解質二次電池の使用したい条件に応じて最適な混合比率を用いればよい。
 また集電体本体の表面に形成された被膜は、抵抗層として機能する。例えば非水電解質二次電池が短絡を起こした場合に、この被膜によって電流が流れるのが制限される。
 この集電体本体へ被膜を形成する方法は、特に限定されないが、以下の方法で形成できる。
 SnO粉末と導電性炭素材料と被膜用バインダーとを粘度調整のための有機溶媒もしくは水に溶かしてペースト状の混合物を作成し、そのペースト状の混合物を集電体本体上に塗布し、塗布後に乾燥する。塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。
 粘度調整のための有機溶媒としては、エタノール、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。水は蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。
 また以下の方法でも集電体本体へ被膜を形成できる。SnO粉末と導電性炭素材料と被膜用バインダーとを有機溶媒もしくは水に溶かして溶液を作成し、噴霧器を用いて集電体本体の塗布面に噴霧し、有機溶媒を揮発、除去することによって集電体本体に被膜を形成する。その場合の被膜用バインダーは有機溶媒に溶解でき、有機溶媒が揮発したら固化するバインダーが好ましく、例えばポリ酢酸ビニル系樹脂などの熱可塑性樹脂またはゴムが使用できる。この場合の有機溶媒はエタノール、NMP、メタノール、MIBKなどが使用できる。水は蒸留水やイオン交換水など、不純物を取り除いたものが好ましい。
(非水電解質二次電池用正極)
 本発明の非水電解質二次電池は、上記非水電解質二次電池正極用集電体を有する正極を有する。
 正極は、正極活物質が結着剤で結着されてなる正極活物質層が、上記非水電解質二次電池正極用集電体に付着してなる。図1に本実施形態の非水電解質二次電池用正極を説明する模式図を示す。図1に示すように、集電体本体1の表面に被膜2が形成され、被膜2の表面に正極活物質層3が形成される。本実施形態では被膜2が形成された集電体本体1を非水電解質二次電池正極用集電体4と称する。
 上記正極活物質層3はさらに導電助剤を含んでもよい。正極は、正極活物質および結着剤、並びに必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、非水電解質二次電池正極用集電体の被膜の表面に塗布後乾燥し、必要に応じて電極密度を高めるべく圧縮して、形成することができる。
 正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。
 粘度調整のための溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。
 正極活物質としては、高電圧で用いることができるリチウム含有化合物が適当である。例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物などのリチウム含有金属複合酸化物などを用いることができる。また正極活物質として他の金属化合物あるいは高分子材料を用いることもできる。他の金属化合物としては、例えば酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの二硫化物が挙げられる。高分子材料としては例えばポリアニリンまたはポリチオフェンなどの導電性高分子が挙げられる。
 正極活物質は、特に一般式: LiCoNiMn (Dはドープ成分であり、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも1つであり、p+q+r+s=1、0≦p≦1、0≦q≦1、0≦r≦1、0≦s<1)で表される複合金属酸化物からなることが好ましい。ここで、上記p、q、rはそれぞれ0<p<1、0<q<1、0<r<1の範囲とすることが好ましい。上記複合金属酸化物は、熱安定性に優れ、低コストであるため、上記複合金属酸化物を正極活物質に用いることによって、熱安定性のよい、安価な非水電解質二次電池とすることができる。
 上記複合金属酸化物として、例えばLiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOを用いることができる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。
 結着剤は、正極活物質及び導電助剤を正極用集電体に繋ぎ止める役割を果たすものである。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンおよびフッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレンおよびポリ酢酸ビニル系樹脂等の熱可塑性樹脂、ポリイミドおよびポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、並びにスチレンブタジエンゴム(SBR)等のゴムを用いることができる。
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、例えば、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極に含有される活物質100質量部に対して、1質量部~30質量部程度とすることができる。
(非水電解質二次電池)
 本発明の非水電解質二次電池は、電池構成要素として、上記した非水電解質二次電池用正極に加えて、負極、セパレータ、電解塩としてLiPFを用いる電解質を有する。
 負極は、集電体と、集電体の表面に結着させた負極活物質層とを有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。集電体、結着剤、導電助剤は正極で説明した集電体本体、結着剤、導電助剤と同様である。
 負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する元素化合物、あるいは高分子材料などを用いることができる。
 炭素系材料としては、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。
 リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biの少なくとも1種であるとよい。中でも、リチウムと合金化可能な元素としては、珪素(Si)または錫(Sn)が好ましい。
 リチウムと合金化可能な元素を有する元素化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOが使用できる。リチウムと合金化反応可能な元素を有する元素化合物としては珪素化合物または錫化合物が好ましい。珪素化合物としては、SiO(0.5≦x≦1.5)が好ましい。錫化合物としては、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)が使用できる。
 高分子材料としては、ポリアセチレン、ポリピロールなどが使用できる。
 セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えば、ポリテトラフルオロエチレン、ポリプロピレン、若しくはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。
 電解質は電解塩としてLiPFを用いる以外は一般の非水電解質二次電池用に用いることのできる電解質が使用できる。電解質は、溶媒とこの溶媒に溶解された電解塩とを含む。
 溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンが使用できる。
 また電解塩として、LiPFを使用する。LiPFは、導電率が高いため、電解塩としてLiPFを使用したリチウムイオン二次電池は内部抵抗を低減できる。
 電解質として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの溶媒にLiPFを0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。
 上記非水電解質二次電池用正極を有し、かつ電解塩としてLiPFを有する電解質を有するため、本発明の非水電解質二次電池は、優れたレート特性とサイクル特性を有する。
 上記非水電解質二次電池は車両に搭載することができる。上記非水電解質二次電池は大きな充放電容量を有し、かつ優れたレート特性とサイクル特性を両立できるので、その非水電解質二次電池を搭載した車両は、寿命、出力の面で高性能となる。
 車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。
 以上、本発明の非水電解質二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下、実施例を挙げて本発明を更に詳しく説明する。
<集電体への被膜形成>
 集電体として厚み20μmのアルミニウム箔を準備した。被膜用バインダーとしてポリフッ化ビニリデン(PVDF)、SnOとして平均粒径30nmのSnO粉末、導電性炭素材料としてアセチレンブラック(AB)を準備した。また粘度調整溶媒としてN-メチル-2-ピロリドン(NMP)を準備した。
(集電体A)
 SnO粉末とABとを質量比で75:25となるようにボールミル装置によって混合し、第1混合物とした。この第1混合物とPVDFとを質量比で3:1となるように混ぜて固形分率が20%となるようNMPに溶かし、第1スラリーを得た。アルミニウム箔に第1スラリーをドクターブレード法を用いて塗布し、120℃で乾燥し、厚みが100nmの被膜をアルミニウム箔上に形成した。これを集電体Aとする。
(集電体B)
 第1混合物に代えてSnO粉末とABとを質量比で50:50とした第2混合物を用いた以外は集電体Aと同様にして集電体Bを作成した。
(集電体C)
 第1混合物に代えてSnO粉末とABとを質量比で25:75とした第3混合物を用いた以外は集電体Aと同様にして集電体Cを作成した。
(集電体D)
 第1混合物に代えてSnO粉末のみを用いた以外は集電体Aと同様にして集電体Dを作成した。
(集電体E)
 第1混合物に代えてABのみを用いた以外は集電体Aと同様にして集電体Eを作成した。
(集電体F)
 被膜用バインダーとしてPVDFに代えてポリテトラフルオロエチレン(PTFE)を用い、また粘度調整用溶媒としてNMPに代えてイオン交換水を用いた以外は集電体Dと同様にして集電体Fを作成した。
 <ラミネート型リチウムイオン二次電池作製>
(実施例1)
 集電体Aを正極用集電体として用いた実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。まず正極活物質としてLiNi0.5Co0.2Mn0.3と導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(PVDF)とを、それぞれ88質量部、6質量部、6質量部として混合し、この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。
 上記集電体Aにスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように集電体Aに塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、集電体Aと集電体A上の塗布物を強固に密着接合させた。この時電極密度は2.3g/cmとなるようにした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さが50μm程度の正極1とした。
 負極は以下のように作製した。黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン-ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ45μm程度の負極とした。
 上記の正極1および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極1および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒に1モルのLiPFを溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。
 (実施例2)
 実施例1における集電体Aの代わりに集電体Bを用いた以外は実施例1と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。
 (実施例3)
 実施例1における集電体Aの代わりに集電体Cを用いた以外は実施例1と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。
 (比較例1)
 実施例1における集電体Aの代わりに集電体Dを用いた以外は実施例1と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。
 (比較例2)
 実施例1における集電体Aの代わりに集電体Eを用いた以外は実施例1と同様にして比較例2のラミネート型リチウムイオン二次電池を作製した。
 (比較例3)
実施例1における集電体Aの代わりに集電体Fを用いた以外は実施例1と同様にして比較例3のラミネート型リチウムイオン二次電池を作製した。
<レート特性評価>
 実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3のラミネート型リチウムイオン二次電池の25℃でのレート特性を測定した。電圧範囲を4.5V-3.0Vとして1時間で放電する電流レートを1Cとする。電流レートが0.33C、1C、5Cの時の放電容量を測定した。電流レートが0.33Cの時の容量を基準とし、1C容量/0.33C容量、5C容量/0.33C容量の割合を%で表示した。結果を図2に示す。
 図2で見られるように、どのラミネート型リチウムイオン二次電池においても電流レートが高くなると容量は低下するが、1Cレートで比較すると、比較例2>実施例3>実施例2>実施例1>比較例3>比較例1の順にレート特性が高いことがわかった。これはアセチレンブラック(AB)の混合割合が多いほどレート特性が高いことを示した。また比較例1及び比較例3の結果より被膜用バインダーはPVDFやPTFEなど、一般的な材料を任意に選択できることが分かった。図2より実施例1、実施例2、実施例3のラミネート型リチウムイオン二次電池は、比較例1のラミネート型リチウムイオン二次電池に比べて高レートにおいてもその容量を維持でき、容量低下が抑制されることがわかった。これは被膜に導電性炭素材料が含まれることによって、高レートにおいても集電体の表面で電子の流れが阻害されることを抑制できるという効果があることがわかった。またレートが高くなるにつれてその効果が顕著になることがわかった。
<サイクル特性評価>
 実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3のラミネート型リチウムイオン二次電池のサイクル特性を評価した。以下の条件で充放電を繰り返したサイクル試験を行い各サイクルの放電容量を測定した。充電の際は、25℃において1Cレート、電圧4.5VでCC充電(定電流充電)をした。放電の際は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、50サイクルまでサイクル試験を行った。初回サイクルの放電容量を基準とし、容量維持率を計算した。各サイクルにおける容量維持率は次に示す式にて求めた。
 容量維持率(%)=(各サイクル時の放電容量/初回放電容量)×100
 実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3のラミネート型リチウムイオン二次電池のサイクル特性結果を図3に示す。
 図3の結果から、比較例2のサイクル特性が悪いことがわかった。また実施例1、実施例2、実施例3はいずれもサイクル特性が比較例2のサイクル特性よりよく、実施例1~3ではほぼ同等の特性を得ることができた。SnOの割合の小さい実施例3に関しては実施例1及び実施例2よりも若干サイクル特性の低下が見られた。SnOは耐食性が高く、耐酸化性が高いため、被膜にSnOが含まれることによってサイクル特性が向上すると考えられる。またSnOの割合が高いほどサイクル特性が向上することがわかった。
 レート特性結果及びサイクル特性結果から、実施例1~3のラミネート型リチウムイオン二次電池は高電圧使用環境下においてもレート特性とサイクル特性の両方に優れていることがわかった。
 また集電体本体に上記被膜を形成することによって、現在市販されているリチウムイオン二次電池で電解塩として幅広く使用されているLiPF(六フッ化リン酸リチウム)を高電圧使用環境下においても使用でき、レート特性及びサイクル特性に優れた非水電解質二次電池とすることができることがわかった。

Claims (4)

  1.  集電体本体と、該集電体本体の表面に形成されたSnOと導電性炭素材料と被膜用バインダーとからなる被膜と、を有する非水電解質二次電池正極用集電体と、
     LiPF(六フッ化リン酸リチウム)を電解塩として含有する非水電解質と、
     を有する非水電解質二次電池。
  2.  前記SnOと前記導電性炭素材料との混合比率は質量比で75:25~25:75である請求項1に記載の非水電解質二次電池。
  3.  一般式: LiCoNiMn (Dはドープ成分であり、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも1つであり、p+q+r+s=1、0≦p≦1、0≦q≦1、0≦r≦1、0≦s<1)で表される複合金属酸化物からなる正極活物質を有する請求項1または2に記載の非水電解質二次電池。
  4.  前記被膜の厚みは、10nm~1μmである請求項1~3のいずれかに記載の非水電解質二次電池。
PCT/JP2013/006523 2012-11-12 2013-11-05 非水電解質二次電池 WO2014073200A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014545570A JP6011634B2 (ja) 2012-11-12 2013-11-05 非水電解質二次電池
US14/440,384 US20150280242A1 (en) 2012-11-12 2013-11-05 Nonaqueous-electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-248647 2012-11-12
JP2012248647 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073200A1 true WO2014073200A1 (ja) 2014-05-15

Family

ID=50684325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006523 WO2014073200A1 (ja) 2012-11-12 2013-11-05 非水電解質二次電池

Country Status (3)

Country Link
US (1) US20150280242A1 (ja)
JP (1) JP6011634B2 (ja)
WO (1) WO2014073200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017422A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 非水電解質二次電池
CN112510254A (zh) * 2020-11-30 2021-03-16 北京理工大学 一种新型硫化物固态电解质及其制备方法和用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600825B2 (en) * 2020-07-30 2023-03-07 GM Global Technology Operations LLC Positive electrode for secondary lithium metal battery and method of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JPH10308222A (ja) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd リチウム二次電池正極体およびこれを用いたリチウム二次電池
JP2002203562A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715817B2 (ja) * 1986-05-21 1995-02-22 三洋電機株式会社 非水電解液電池
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
US5616437A (en) * 1996-06-14 1997-04-01 Valence Technology, Inc. Conductive metal oxide coated current collector for improved adhesion to composite electrode
KR100346542B1 (ko) * 1999-01-25 2002-07-26 삼성에스디아이 주식회사 리튬 이차 전지
JP4503807B2 (ja) * 2000-10-11 2010-07-14 東洋炭素株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極の製造方法
CN102648546A (zh) * 2009-09-25 2012-08-22 大金工业株式会社 锂二次电池的正极集电层积体
WO2011083585A1 (ja) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 リチウムイオン二次電池用正極板、リチウムイオン二次電池、車両、電池搭載機器、及び、リチウムイオン二次電池用正極板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JPH10308222A (ja) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd リチウム二次電池正極体およびこれを用いたリチウム二次電池
JP2002203562A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017422A (ja) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 非水電解質二次電池
CN112510254A (zh) * 2020-11-30 2021-03-16 北京理工大学 一种新型硫化物固态电解质及其制备方法和用途

Also Published As

Publication number Publication date
JPWO2014073200A1 (ja) 2016-09-08
US20150280242A1 (en) 2015-10-01
JP6011634B2 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5664943B2 (ja) リチウムイオン二次電池用電極及びその製造方法、並びにその電極を用いたリチウムイオン二次電池
JP6044427B2 (ja) リチウムイオン二次電池正極用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6061143B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015011922A (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6252858B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6300021B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5643996B1 (ja) 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
JP2014082084A (ja) リチウムイオン二次電池
JP5656093B2 (ja) 電解液保液層を具備する電池
JP5534377B2 (ja) リチウムイオン二次電池用正極活物質およびそれを有するリチウムイオン二次電池
JP6011634B2 (ja) 非水電解質二次電池
JP2014149989A (ja) リチウムイオン二次電池用活物質、それを有するリチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5862490B2 (ja) リチウムイオン二次電池
JP5557067B1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6016029B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6048751B2 (ja) リチウムイオン二次電池用集電体、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5610031B1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6124076B2 (ja) アルミニウム箔への保護層形成方法、リチウムイオン二次電池用集電体及びリチウムイオン二次電池
JP6048312B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5857943B2 (ja) 非水電解質二次電池
JP5999430B2 (ja) リチウムイオン二次電池用正極活物質およびそれを有するリチウムイオン二次電池
JP5673751B2 (ja) リチウムイオン二次電池
WO2014021453A1 (ja) 活物質、活物質の製造方法、及び、リチウムイオン二次電池
WO2014167765A1 (ja) ポリテトラフルオロエチレン含有バインダー層を有する電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545570

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852546

Country of ref document: EP

Kind code of ref document: A1