WO2014065429A1 - 半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ - Google Patents

半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ Download PDF

Info

Publication number
WO2014065429A1
WO2014065429A1 PCT/JP2013/079149 JP2013079149W WO2014065429A1 WO 2014065429 A1 WO2014065429 A1 WO 2014065429A1 JP 2013079149 W JP2013079149 W JP 2013079149W WO 2014065429 A1 WO2014065429 A1 WO 2014065429A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
composition
electron supply
etching sacrificial
Prior art date
Application number
PCT/JP2013/079149
Other languages
English (en)
French (fr)
Inventor
和行 梅野
宏 神林
高木 啓史
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2014065429A1 publication Critical patent/WO2014065429A1/ja
Priority to US14/547,666 priority Critical patent/US20150069410A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a semiconductor device, a manufacturing method thereof, a Schottky barrier diode, and a field effect transistor.
  • Patent Document 1 a configuration using an AlN / GaN pseudo mixed crystal as a barrier layer (active layer) is known (Patent Document 1). Specifically, in Patent Document 1 and Non-Patent Document 1, a heterojunction field effect transistor using a nitride semiconductor material having an effect of increasing carrier concentration and mobility as compared with a conventional AlGaN mixed crystal barrier layer ( Heterojunction Field Effect Transistor (HFET) is described. In the pseudo mixed crystal layer described in Patent Document 1, it is considered that a two-dimensional electron gas (2 Dimensional Electron Gas: 2DEG) is generated from the relationship between the composition and the film thickness.
  • 2DEG Two Dimensional Electron Gas
  • Patent Document 2 describes a field plate structure made of gallium nitride (GaN) using an AlGaN mixed crystal layer as an electron supply layer.
  • GaN gallium nitride
  • FIG. 4A shows a Schottky barrier diode (SBD) having a field plate structure as an example of a conventional semiconductor device.
  • SBD Schottky barrier diode
  • a buffer layer 102, an electron transit layer 103 made of an undoped GaN layer, and an Al 0.25 Ga 0.75 N layer 104 as an electron supply layer are sequentially formed on a Si substrate 101.
  • a cathode electrode 106C as an ohmic electrode is selectively formed on the Al 0.25 Ga 0.75 N layer 104, and a field plate layer (GaN-FP layer) 105 made of gallium nitride (GaN) is selectively formed. Is formed.
  • GaN-FP layer field plate layer
  • the anode electrode formation region in the GaN-FP layer 105 is etched away to the Al 0.25 Ga 0.75 N layer 104, and an anode electrode 106 A as a Schottky electrode is formed on the GaN-FP layer 105.
  • An insulating film 107 is formed on the Al 0.25 Ga 0.75 N layer 104, the GaN-FP layer 105, the cathode electrode 106C, and the anode electrode 106A.
  • a contact hole 107a for making contact with a wiring is formed on each of the cathode electrode 106C and the anode electrode 106A of the insulating film 107.
  • the present inventor has proposed an AlN barrier layer / GaN quantum level layer as a barrier layer (barrier layer) in order to reduce sheet resistance and reduce ohmic contact resistance, which are problems of characteristics in conventional semiconductor devices. It was devised to adopt the pseudo mixed crystal multilayer structure.
  • 4B and 4C are cross-sectional views showing a stacked structure in a conventional semiconductor device and a stacked structure in a semiconductor device devised by the present inventors, respectively.
  • the inventor used an electron supply layer in a semiconductor device such as the SBD 100 shown in FIG. 4B instead of the Al 0.25 Ga 0.75 N layer 104 as shown in FIG.
  • a configuration has been devised in which an AlN / GaN superlattice layer 108 realizes a so-called pseudo-mixed crystal structure in which (GaN) layers 108b are alternately stacked.
  • the effect of easily increasing the carrier density of the two-dimensional electron gas can be obtained.
  • the conduction band edge of the electron supply layer is lifted by the quantum effect as compared with the AlGaN mixed crystal having the same Al composition, the scattering factor is reduced and the mobility can be increased by shifting toward the substrate.
  • a GaN field plate layer (GaN-FP layer) 105 is further provided on the Al 0.25 Ga 0.75 N layer 104 to suppress Schottky leak in the semiconductor device.
  • the carrier density of the two-dimensional electron gas was 8 ⁇ 10 12 cm ⁇ 2 .
  • the electron supply layer devised by the present inventor is an AlN / GaN superlattice layer 108 having a pseudo mixed crystal structure, and a GaN ⁇ layer for suppressing Schottky leak is formed thereon.
  • the carrier density of the two-dimensional electron gas can be 1.3 ⁇ 10 13 cm ⁇ 2, and the carrier density of the two-dimensional electron gas is increased by about 1.5 times compared to the conventional structure. It became possible.
  • the present inventor verified the manufacture of this semiconductor device, when the GaN-FP layer 105 shown in FIG. 4C was selectively removed by etching with a chlorine-based gas up to the upper surface of the electron supply layer, the AlN / GaN superlattice layer 108 was obtained. It was found that the uppermost GaN layer 108b was etched, and the AlN layer 108a was exposed on the outermost surface.
  • the etching rate of GaN is extremely higher than the etching rate of AlN. For this reason, it has been difficult to precisely control the etching of the GaN-FP layer 105 and the GaN layer 108b so as to leave the GaN layer 108b. Therefore, there are problems that the on-voltage and contact resistance increase due to surface oxidation of the AlN layer 108a, and current collapse deteriorates.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an electron supply layer having a pseudo mixed crystal structure in which at least two kinds of binary materials are sequentially laminated to form a superlattice layer.
  • An object of the present invention is to provide a semiconductor device, a manufacturing method thereof, a Schottky barrier diode, and a field effect transistor, in which etching of a layer formed above a supply layer can be controlled without deteriorating characteristics of the semiconductor device.
  • a semiconductor device includes a substrate, an electron transit layer stacked on the substrate, and an AlN layer and a GaN layer alternately on the electron transit layer.
  • an electrode connected to the etching sacrificial layer provided in the formed region is
  • the average Al composition x of the electron supply layer, the Al composition y of the etching sacrificial layer, and the Al composition z of the field plate layer satisfy a relationship of x ⁇ y> z. It is characterized by satisfying.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the etching sacrificial layer has a thickness that does not generate a two-dimensional electron gas with the electron supply layer.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the thickness of the etching sacrificial layer is not less than 1 nm and not more than 10 nm.
  • the film thickness of the AlN layer and the GaN layer in the pseudo mixed crystal constituting the electron supply layer generates a two-dimensional electron gas in the electron supply layer in any layer. It is characterized by no film thickness.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the thickness of the electron supply layer is 10 nm or more and 100 nm or less in any layer.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the average Al composition in the electron supply layer is 10% or more and 70% or less.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the average Al composition in the electron supply layer is 20% or more and 50% or less.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the average Al composition in the electron supply layer is 20% or more and 35% or less.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the thickness of the field plate layer is 10 nm or more and 200 nm or less.
  • the Schottky barrier diode according to the present invention is characterized in that, in the semiconductor device according to the present invention, the electrode is an anode electrode and further includes a cathode electrode connected to the etching sacrificial layer.
  • the Schottky barrier diode according to the present invention is characterized in that, in the above invention, the electrode is made of a Ni / Au film in which nickel and gold are laminated.
  • the heterojunction field effect transistor according to the present invention is characterized in that, in the semiconductor device according to the present invention, the electrode is a gate electrode, and further includes a source electrode and a drain electrode connected to the etching sacrificial layer.
  • the electrode is a gate electrode connected to the etching sacrificial layer through the gate insulating film, and further, the source electrode and the drain connected to the etching sacrificial layer An electrode is provided.
  • a method of manufacturing a semiconductor device includes a substrate, an electron transit layer laminated on the substrate, and an average Al composition x composed of a plurality of AlN and GaN laminated alternately on the electron transit layer.
  • An electron supply layer having a field plate layer made of Al z Ga 1-z N (0 ⁇ z ⁇ 1) and an electrode provided in a region where a part of the field plate layer has been removed to the etching sacrificial layer
  • the average Al composition x, the Al composition y of the etching sacrificial layer, and the Al composition z of the field plate layer satisfy the relationship of x ⁇ y> z
  • at least the electrode formation region in the field plate layer The salt Etching is performed by dry etching using a base gas.
  • the electron supply layer has a pseudo mixed crystal structure in which a superlattice layer is formed by sequentially laminating at least two kinds of materials.
  • the etching of the layer formed above the electron supply layer can be controlled without deteriorating the characteristics of the semiconductor device.
  • FIG. 1 is a cross-sectional view showing a stacked structure of an electron supply layer, an etching sacrificial layer, and a field plate layer in an embodiment of the present invention.
  • FIG. 2 is a graph showing the dependence of the carrier density of the two-dimensional electron gas in the etching sacrificial layer made of the Al y Ga 1-y N layer on the film thickness for each Al composition.
  • FIG. 3A is a cross-sectional view showing the structure of an SBD having a field plate structure in which an etching sacrificial layer is provided on the electron supply layer according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing a stacked structure of an electron supply layer, an etching sacrificial layer, and a field plate layer in an embodiment of the present invention.
  • FIG. 2 is a graph showing the dependence of the carrier density of the two-dimensional electron gas in the etching sacrificial layer made of the Al y Ga 1-y N layer on the film thickness for
  • FIG. 3B is a cross-sectional view showing the structure of a HEMT having a field plate structure in which an etching sacrificial layer is provided on the electron supply layer according to the second embodiment.
  • FIG. 4A is a cross-sectional view showing the basic structure of an SBD that is an example of a semiconductor device having a field plate structure according to the prior art.
  • 4B is a cross-sectional view showing a stacked structure of the semiconductor device according to the prior art shown in FIG. 4A.
  • FIG. 4C is a cross-sectional view showing details of the structure of the electron supply layer devised by the present inventors.
  • FIG. 1 is a cross-sectional view showing a stacked structure in the vicinity of an electron supply layer in a semiconductor device according to an embodiment of the present invention. That is, in the semiconductor device 10 according to this embodiment, the AlN layer 12a and the GaN layer are formed on or above the electron transit layer 11 made of, for example, an undoped GaN layer formed on a predetermined base (not shown in FIG. 1). There is provided an electron supply layer 12 having a pseudo-mixed crystal structure made of AlN / GaN layers 12-1 to 12-n (n: natural number) in which a plurality of layers 12b are alternately stacked.
  • the electron supply layer 12 has an AlGaN pseudo-mixed crystal structure composed of an AlN / GaN superlattice layer. Have.
  • each of the AlN layer 12a and the GaN layer 12b is formed to a thickness that does not generate at least two-dimensional electron gas therein.
  • the average Al composition x of the electron supply layer 12 composed of these AlN / GaN layers 12-1 to 12-n is calculated by the equation (1).
  • x is the average Al composition
  • xi is the average Al composition of the AlN / GaN layer 12-i (i: 1, 2,..., N)
  • di is the film thickness of the AlN / GaN layer 12-i.
  • the average Al composition x of the electron supply layer 12 is intermediate between the case of an AlGaN single layer and the case of AlN / GaN in consideration of lowering the sheet resistance on the premise of 0 ⁇ x ⁇ 1.
  • the composition is preferably 10% or more and 70% or less (0.1 ⁇ x ⁇ 0.7).
  • the average Al composition x of the electron supply layer 12 is estimated to be 20% or more and 50% or less (0.2%) in the case of a superlattice barrier layer. ⁇ x ⁇ 0.5) is more preferable.
  • the average Al composition x of the electron supply layer 12 is more preferably 20% or more and 35% or less (0.2 ⁇ x ⁇ 0.35) from the viewpoint of lattice relaxation that can be freely laminated against strain.
  • the thickness of the electron supply layer 12 corresponding to the denominator of the formula (1) is preferably 10 nm or more in consideration of increasing the carrier density of the two-dimensional electron gas (2DEG), and misfit dislocations It is preferable to set the thickness to 100 nm or less in consideration of the limit of ohmic contact and the critical film thickness that does not occur.
  • each AlN layer 12a and GaN layer 12b constituting the electron supply layer 12 is preferably 2 atomic layers or more, specifically 0.5 nm or more, which is the minimum film thickness. . Further, it is preferable that the film thickness of each of the AlN layer 12a and the GaN layer 12b be less than the critical film thickness in order not to cause misfit dislocations. Based on the above-described conditions, the average Al composition x and the film thickness di of each of the AlN / GaN layers 12-1 to 12-n are calculated as appropriate in accordance with the design of the semiconductor device.
  • the electron supply layer 12 is formed so that the ratio of the film thickness of the AlN layer 12a and the GaN layer 12b is equal to each other, or the film thickness of the stacked AlN layer 12a is the same and the stacked GaN layer 12b It is possible to configure by laminating so that the film thicknesses are all equal. That is, when the electron supply layer 12 is configured from a plurality of AlN / GaN layers 12-i so that the average Al composition xi does not change along the stacking direction, the average Al composition x can be calculated from the following equation (2). .
  • d1 and d2 are the thickness of the AlN layer 12a and the thickness of the GaN layer 12b in the pair of AlN / GaN layers, respectively.
  • the electron supply layer 12 having such an average Al composition x is an AlN / GaN superlattice layer, and is configured by sequentially stacking an AlN layer and a GaN layer as a pair.
  • an etching sacrificial layer made of an Al y Ga 1-y N layer (0 ⁇ y ⁇ 1) having an Al composition y equal to or less than the average Al composition x (y ⁇ x). 13 and a field plate layer (FP layer) 14 composed of Al z Ga 1-z N layers (0 ⁇ z ⁇ 1) having an Al composition z less than the Al composition y (z ⁇ y) are sequentially provided.
  • FP layer field plate layer
  • the average Al composition x of the electron supply layer 12, the Al composition y of the etching sacrificial layer 13, and the Al composition z of the FP layer 14 have a relationship of z ⁇ y ⁇ x. It is configured to meet.
  • the Al composition smaller as the upper layer becomes smaller, the carrier density of the two-dimensional electron gas generated from the electron supply layer 12 is not greatly affected, and lattice relaxation is not performed.
  • the etching rate of the FP layer 14 and the etching rate of the etching sacrificial layer 13 can be greatly different, and the etching of the FP layer 14 can be controlled efficiently. It becomes possible to do.
  • the etching of the FP layer 14 is efficiently performed, and the breakdown voltage at the end of the FP layer 14 is maintained, and the characteristics of the semiconductor device are favorably maintained without greatly reducing the carrier density of the two-dimensional electron gas.
  • the thickness of the FP layer 14 is preferably 10 nm or more and 200 nm or less (10 to 200 nm), and a suitable film thickness is selected from this film thickness range according to the design conditions of the semiconductor device.
  • the present inventor has determined that the thickness of the sacrificial layer 13 depends on the carrier density of the two-dimensional electron gas in order to suppress the two-dimensional electron gas generated at the interface between the etching sacrificial layer 13 and the electron supply layer 12 as much as possible.
  • the Al composition y of the etching sacrificial layer 13 was changed variously.
  • FIG. 2 is a graph showing the measurement results.
  • the film thickness is desirably 10 nm or less.
  • the film thickness of the layer 13 is desirably 1 nm or more. This is because the etching rate with the GaN layer is about 100 times that of the AlGaN layer when the FP layer 14 provided on the Al y Ga 1-y N layer has an Al composition z of 0 or very small, such as a GaN layer. This is because the AlGaN layer is extremely large and acts as the etching sacrificial layer 13 for the GaN layer constituting the FP layer 14 extremely effectively.
  • a two-dimensional electron gas is generated at the interface between the uppermost layer of the electron supply layer 12, that is, the uppermost GaN layer 12b and the etching sacrificial layer 13. It is possible to suppress an increase in leakage current due to the operation. This can prevent deterioration of the characteristics of the semiconductor device.
  • FIG. 3A is a cross-sectional view showing an example of a Schottky barrier diode (SBD) having an FP layer according to the first embodiment.
  • SBD Schottky barrier diode
  • an electron transit layer 22, an electron supply layer 23, and an etching sacrificial layer 24 are sequentially laminated on a base 21.
  • the base 21 is a substrate such as a silicon (Si) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphide (GaP) substrate, a GaN substrate, an AlN substrate, a silicon carbide (SiC) substrate, a carbon (C) substrate, or a sapphire substrate.
  • various layers required for the configuration of the semiconductor device such as a buffer layer made of a GaN layer, an AlN layer, or the like, are provided.
  • the electron transit layer 22, the electron supply layer 23, and the etching sacrificial layer 24 have the same configuration as the electron transit layer 11, the electron supply layer 12, and the etching sacrificial layer 13 according to the above-described embodiment, respectively.
  • a cathode electrode 25C as an ohmic electrode is selectively provided on the etching sacrificial layer 24.
  • a GaN-FP layer 26 made of a GaN layer having an Al composition z of 0 is formed by selectively etching away unnecessary portions including the anode electrode formation region.
  • the GaN-FP layer 26 has the same configuration as the FP layer 14 according to the above-described embodiment. Note that the selective etching removal of unnecessary portions of the GaN layer is performed by, for example, a dry etching method using a chlorine-based gas.
  • An insulating film 27 is provided on the etching sacrificial layer 24 so as to cover a part of the cathode electrode 25C and the GaN-FP layer 26. Furthermore, an anode electrode 25 A as a Schottky electrode having a field plate structure that rides on the GaN-FP layer 26 and the insulating film 27 and connected to the etching sacrificial layer 24 is provided.
  • the anode electrode 25A is made of, for example, a Ni / Au film in which nickel (Ni) and gold (Au) are sequentially stacked.
  • the SBD 20 according to the first embodiment is configured.
  • FIG. 3B is a cross-sectional view showing an example of a HEMT having a GaN-FP layer according to the second embodiment.
  • the electron transit layer 32, the electron supply layer 33, and the etching sacrificial layer 34 are sequentially laminated on the base 31, as in the first embodiment.
  • the base 31 has a configuration similar to that of the base 21 and is provided with a conventionally known substrate and various layers necessary for the configuration of the HEMT 30.
  • the electron transit layer 32, the electron supply layer 33, and the etching sacrificial layer 34 have the same configuration as the electron transit layer 11, the electron supply layer 12, and the etching sacrificial layer 13 according to the above-described embodiment, respectively.
  • a source electrode 35S and a drain electrode 35D are selectively provided on the etching sacrificial layer 34.
  • the source electrode 35S and the drain electrode 35D function as ohmic electrodes formed on the etching sacrificial layer 34.
  • a GaN-FP layer 36 made of a GaN layer having an Al composition z of 0, in which unnecessary portions including the formation region of the gate electrode are selectively etched away. Is provided.
  • the GaN-FP layer 36 has the same configuration as the FP layer 14 according to the above-described embodiment. Note that the selective etching removal of unnecessary portions of the GaN layer is performed by, for example, a dry etching method using a chlorine-based gas.
  • an insulating film 37 is provided on the etching sacrificial layer 34 so as to cover a part of each of the source electrode 35S, the drain electrode 35D, and the GaN-FP layer 36.
  • the source electrode 35S and the drain electrode 35D are connected to the etching sacrificial layer 34 and have a field plate structure that rides on the GaN-FP layer 36 and the insulating film 37, and is connected to the etching sacrificial layer 34.
  • a gate electrode 35G as a Schottky electrode made of a Ni / Au film is provided.
  • the HEMT 30 according to the second embodiment is configured.
  • a field effect transistor may be configured as a MIS (Metal Insulator Semiconductor) gate in which a gate insulating film and a gate electrode 35G are provided on the etching sacrificial layer 34.
  • MIS Metal Insulator Semiconductor
  • the etching sacrificial layer made of an AlGaN layer containing Al is formed thereon.
  • etching of the layer formed above the electron supply layer can be controlled without deteriorating the characteristics of the semiconductor device.
  • the electron supply layer is composed of an AlN / GaN superlattice layer, an etching sacrificial layer is provided thereon to prevent the AlN layer constituting the electron supply layer from being exposed to the outermost surface during etching. Therefore, it is possible to prevent the ON voltage and contact resistance from increasing due to surface oxidation or the like, and the current collapse from being deteriorated.
  • the present invention can be preferably used for a semiconductor device, a Schottky barrier diode, and a field effect transistor, and can be particularly preferably used for a semiconductor device having a pseudo mixed crystal electron supply layer, a Schottky barrier diode, and a field effect transistor. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 半導体装置が、基体と、基体上に積層された電子走行層と、電子走行層上にAlN層とGaN層とが交互に複数積層されて構成された平均Al組成xの電子供給層と、電子供給層上に積層されたAl組成yのAlyGa1-yN(0<y<1)からなるエッチング犠牲層と、エッチング犠牲層上に積層されたAl組成zのAlzGa1-zN(0≦z<1、z<y)からなるフィールドプレート層と、フィールドプレート層の一部がエッチング犠牲層まで除去された領域に設けられたエッチング犠牲層と接続する電極と、を有する。

Description

半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ
 本発明は、半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタに関する。
 従来、AlN/GaN擬似混晶をバリア層(活性層)に用いた構成が知られている(特許文献1)。具体的に特許文献1および非特許文献1には、従来のAlGaN混晶のバリア層に比べて、キャリア濃度と移動度を増加させる効果を有する窒化物半導体材料を用いたヘテロ接合電界効果トランジスタ(Heterojunction Field Effect Transistor:HFET)が記載されている。特許文献1に記載された擬似混晶層においては、組成および膜厚の関係から2次元電子ガス(2 Dimensional Electron Gas:2DEG)が発生していると考えられる。
 また、特許文献2には、電子供給層にAlGaN混晶層を用いて、窒化ガリウム(GaN)からなるフィールドプレート構造が記載されている。
 図4Aは、従来技術による半導体装置の一例としての、フィールドプレート構造を有するショットキーバリアダイオード(SBD)を示す。図4Aに示すように、従来技術によるSBD100は、Si基板101上に、バッファ層102、アンドープGaN層からなる電子走行層103、および電子供給層としてのAl0.25Ga0.75N層104が順次形成されている。また、Al0.25Ga0.75N層104上には、オーミック電極としてのカソード電極106Cが選択的に形成されているとともに、窒化ガリウム(GaN)からなるフィールドプレート層(GaN-FP層)105が選択的に形成されている。そしてGaN-FP層105におけるアノード電極の形成領域がAl0.25Ga0.75N層104までエッチング除去されて、GaN-FP層105上にショットキー電極としてのアノード電極106Aが形成されている。Al0.25Ga0.75N層104、GaN-FP層105、カソード電極106C、およびアノード電極106Aの上層には、絶縁膜107が形成されている。絶縁膜107のカソード電極106Cおよびアノード電極106Aのそれぞれの上部には、配線とコンタクトするためのコンタクトホール107aが形成される。
特許第3733420号公報 特許第4592938号公報
APPLIED PHYSICS LETTERS 90、242112 (2007)
 さて、本発明者は、従来の半導体装置における特性の課題である、低シート抵抗化およびオーミック電極の接触抵抗の低減のために、障壁層(バリア層)としてAlN障壁層/GaN量子準位層の擬似混晶多層構造を採用することを案出した。図4Bおよび図4Cはそれぞれ、従来の半導体装置における積層構造および本発明者が案出した半導体装置における積層構造を示す断面図である。
 すなわち、本発明者は、図4Bに示すSBD100などの半導体装置における電子供給層を、Al0.25Ga0.75N層104の代わりに、図4Cに示すように、窒化アルミニウム(AlN)層108aと窒化ガリウム(GaN)層108bとを交互に順次積層させた、いわゆる擬似混晶構造をAlN/GaN超格子層108で実現する構成を案出した。この構成によれば、格子緩和させることなく擬似混晶の平均Al組成の増加と電子供給層の膜厚増加が容易であるため、2次元電子ガスのキャリア密度を容易に増加できるという効果が得られ、さらに同一Al組成のAlGaN混晶と比較して電子供給層の伝導帯端が量子効果により持ち上がるため基体方向に片寄ることにより散乱因子が減少し移動度が高くできる効果を有する。
 具体的には、図4Aおよび図4Bに示すように、半導体装置におけるショットキーリークの抑制のために、Al0.25Ga0.75N層104上にさらにGaNフィールドプレート層(GaN-FP層)105を設けた従来構造の場合、2次元電子ガスのキャリア密度は8×1012cm-2であった。これに対し、図4Cに示すように、本発明者が案出した、電子供給層を擬似混晶構造のAlN/GaN超格子層108とし、その上層にショットキーリークの抑制のためのGaN-FP層105を設けた場合、2次元電子ガスのキャリア密度を1.3×1013cm-2にでき、従来構造に比して2次元電子ガスのキャリア密度を約1.5倍に増加させることが可能となった。
 ところが、本発明者がこの半導体装置の製造について検証したところ、図4Cに示すGaN-FP層105を電子供給層の上面まで塩素系ガスによって選択的にエッチング除去すると、AlN/GaN超格子層108の最上層のGaN層108bまでエッチングしてしまい、AlN層108aが最表面に露出することが判明した。
 本発明者の知見によれば、GaNのエッチングレートはAlNのエッチングレートに比して極めて大きい。そのため、GaN-FP層105やGaN層108bのエッチングを精密に制御してGaN層108bを残すようなエッチングストップを行うことは困難であった。そのため、AlN層108aの表面酸化などによってオン電圧やコンタクト抵抗が増加したり、電流コラプスが悪化したりするという問題があった。
 本発明は、上記に鑑みてなされたものであって、その目的は、電子供給層が少なくとも2種類の二元材料を順次積層して超格子層とした擬似混晶構造を有する場合に、電子供給層の上方に形成される層のエッチングを、半導体装置の特性を悪化させることなく制御可能な、半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタを提供することにある。
 上述した課題を解決し、上記目的を達成するために、本発明に係る半導体装置は、基体と、基体上に積層された電子走行層と、電子走行層上にAlN層とGaN層とが交互に複数積層されて構成された平均Al組成xの電子供給層と、電子供給層上に積層されたAl組成yのAlyGa1-yN(0<y<1)からなるエッチング犠牲層と、エッチング犠牲層上に積層されたAl組成zのAlzGa1-zN(0≦z<1、z<y)からなるフィールドプレート層と、フィールドプレート層の一部がエッチング犠牲層まで除去された領域に設けられたエッチング犠牲層と接続する電極と、を有することを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層の平均Al組成xと、エッチング犠牲層のAl組成yと、フィールドプレート層のAl組成zとが、x≧y>zの関係を満たすことを特徴とする。
 本発明に係る半導体装置は、上記の発明において、エッチング犠牲層の膜厚が、電子供給層との間に2次元電子ガスを生じない膜厚であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、エッチング犠牲層の膜厚が、1nm以上10nm以下であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層を構成する擬似混晶中のAlN層およびGaN層の膜厚が、いずれの層においても電子供給層中に2次元電子ガスを生じない膜厚であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層の膜厚が、いずれの層においても10nm以上100nm以下であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層における平均Al組成が、10%以上70%以下であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層における平均Al組成が、20%以上50%以下であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、電子供給層における平均Al組成が、20%以上35%以下であることを特徴とする。
 本発明に係る半導体装置は、上記の発明において、フィールドプレート層の膜厚が、10nm以上200nm以下であることを特徴とする。
 本発明に係るショットキーバリアダイオードは、上記の発明による半導体装置における、電極はアノード電極であり、さらに、エッチング犠牲層と接続するカソード電極を備えることを特徴とする。
 本発明に係るショットキーバリアダイオードは、上記の発明において、電極が、ニッケルと金とを積層させたNi/Au膜からなることを特徴とする。
 本発明に係るヘテロ接合電界効果トランジスタは、上記の発明による半導体装置における、電極はゲート電極であり、さらに、エッチング犠牲層と接続するソース電極およびドレイン電極を備えることを特徴とする。
 本発明に係るMIS型電界効果トランジスタは、上記の発明による半導体装置における、電極はゲート絶縁膜を介してエッチング犠牲層と接続するゲート電極であり、さらに、エッチング犠牲層と接続するソース電極およびドレイン電極を備えることを特徴とする。
 本発明に係る半導体装置の製造方法は、基体と、基体上に積層された電子走行層と、電子走行層上にAlNとGaNとが交互に複数積層されて構成された、平均Al組成xの電子供給層と、電子供給層上に積層されたAl組成yのAlyGa1-yN(0<y<1)からなるエッチング犠牲層と、エッチング犠牲層上に積層されたAl組成zのAlzGa1-zN(0≦z<1)からなるフィールドプレート層と、フィールドプレート層の一部がエッチング犠牲層まで除去された領域に設けられた電極と、を有し、電子供給層の平均Al組成xと、エッチング犠牲層のAl組成yと、フィールドプレート層のAl組成zが、x≧y>zの関係を満たす半導体装置の製造方法において、少なくともフィールドプレート層における電極の形成領域を、塩素系ガスを用いたドライエッチングによりエッチングすることを特徴とする。
 本発明に係る半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタによれば、電子供給層が少なくとも2種類の材料を順次積層して超格子層とした擬似混晶構造を有する場合に、電子供給層の上方に形成される層のエッチングを、半導体装置の特性を悪化させることなく制御することが可能となる。
図1は、本発明の実施形態における電子供給層、エッチング犠牲層、およびフィールドプレート層の積層構造を示す断面図である。 図2は、AlyGa1-yN層からなるエッチング犠牲層における2次元電子ガスのキャリア密度の、Al組成ごとの膜厚依存性を示すグラフである。 図3Aは、第1の実施例による電子供給層上にエッチング犠牲層を設けたフィールドプレート構造を有するSBDの構造を示す断面図である。 図3Bは、第2の実施例による電子供給層上にエッチング犠牲層を設けたフィールドプレート構造を有するHEMTの構造を示す断面図である。 図4Aは、従来技術によるフィールドプレート構造を有する半導体装置の一例であるSBDの基本構造を示す断面図である。 図4Bは、図4Aに示す従来技術による半導体装置の積層構造を示す断面図である。 図4Cは、本発明者が案出した電子供給層の構造の詳細を示す断面図である。
 以下に、図面を参照して本発明に係る半導体装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 図1は、本発明の実施形態による半導体装置における電子供給層近傍の積層構造を示す断面図である。すなわち、この実施形態による半導体装置10においては、所定の基体(図1中、図示せず)に形成された例えばアンドープGaN層からなる電子走行層11の上層または上方に、AlN層12aとGaN層12bとが交互に順次複数積層されたAlN/GaN層12-1~12-n(n:自然数)からなる擬似混晶構造の電子供給層12が設けられる。
 ここで、この実施形態による電子供給層12を構成するそれぞれのAlN/GaN層12-1~12-nにより、電子供給層12は、AlN/GaN超格子層からなるAlGaNの擬似混晶構造を有する。また、それぞれのAlN層12aおよびGaN層12bは、少なくともその内部に2次元電子ガスが生じない膜厚に形成される。
 また、これらのAlN/GaN層12-1~12-nからなる電子供給層12の平均Al組成xは、(1)式により算出される。なお、xは平均Al組成、xiはAlN/GaN層12-i(i:1,2,…,n)の平均Al組成、diはAlN/GaN層12-iの膜厚である。
Figure JPOXMLDOC01-appb-M000001
 そして、この実施形態において電子供給層12の平均Al組成xは、0<x≦1を前提として、シート抵抗を低くすることを考慮すると、AlGaN単層の場合とAlN/GaNの場合の中間程度の組成となることが好ましく、10%以上70%以下(0.1≦x≦0.7)が好ましい。また、擬似混晶バリア層を用いた場合におけるシート抵抗の観点から、電子供給層12の平均Al組成xは、超格子バリア層の場合に推定される、20%以上50%以下(0.2≦x≦0.5)がより好ましい。さらに、ひずみに対して自由に積層できる格子緩和の観点から、電子供給層12の平均Al組成xは、20%以上35%以下(0.2≦x≦0.35)がさらに好ましい。
 さらに、(1)式の分母に相当する電子供給層12の膜厚は、2次元電子ガス(2DEG)のキャリア密度を増加させることを考慮すると、10nm以上にするのが好ましく、ミスフィット転位が生じない臨界膜厚以下とし、オーミックコンタクトの限界を考慮すると、100nm以下にするのが好ましい。
 また、電子供給層12を構成するそれぞれのAlN層12aおよびGaN層12bの膜厚は、層状になる最低膜厚である2原子層以上、具体的には例えば0.5nm以上とするのが好ましい。また、それぞれのAlN層12aおよびGaN層12bの膜厚は、ミスフィット転位を生じさせないためには臨界膜厚以下にするのが好ましい。そして、上述の条件に基づいて、各AlN/GaN層12-1~12-nの平均Al組成xおよび膜厚diは、半導体装置の設計に応じて適宜最適な値に算出される。
 また、電子供給層12を、AlN層12aとGaN層12bとの膜厚の比が互いに等しいように、または、積層されるAlN層12aの膜厚がいずれも等しく且つ積層されるGaN層12bの膜厚がいずれも等しいように、積層して構成することが可能である。すなわち、平均Al組成xiが積層方向に沿って変わらないように複数層のAlN/GaN層12-iから電子供給層12を構成する場合、平均Al組成xは以下の(2)式から算出できる。なお、d1およびd2はそれぞれ、一対のAlN/GaN層におけるAlN層12aの膜厚およびGaN層12bの膜厚である。
Figure JPOXMLDOC01-appb-M000002
 このような平均Al組成xの電子供給層12は、AlN/GaN超格子層となり、AlN層とGaN層とが一対の組として順次積層されて構成される。
 以上のように構成された電子供給層12上には、Al組成yが平均Al組成x以下(y≦x)のAlyGa1-yN層(0<y<1)からなるエッチング犠牲層13、およびAl組成zがAl組成y未満(z<y)のAlzGa1-zN層(0≦z<1)からなるフィールドプレート層(FP層)14が順次設けられる。
 すなわち、この実施形態による半導体装置10は、電子供給層12の平均Al組成xと、エッチング犠牲層13のAl組成yと、FP層14のAl組成zとが、z<y≦xの関係を満たすように構成されている。このようにAl組成が上層になるほど小さくなるようにしていることにより、電子供給層12から発生する2次元電子ガスのキャリア密度に大きく影響させずさらには格子緩和させることなく、例えば、FP層14のエッチングを、塩素系ガスを用いたドライエッチング法により行う場合に、FP層14のエッチングレートとエッチング犠牲層13のエッチングレートとを大きく相違させることができ、FP層14のエッチングを効率良く制御することが可能になる。また、このようなFP層14のエッチングを効率良く行うとともに、FP層14端部での耐圧を維持し2次元電子ガスのキャリア密度を大きく低減させずに、半導体装置の特性を良好に維持することを考慮すると、FP層14の膜厚は10nm以上200nm以下(10~200nm)にするのが好ましく、半導体装置の設計条件に応じて、この膜厚範囲から好適な膜厚が選択される。
 また、本発明者は、エッチング犠牲層13と電子供給層12との界面に発生する2次元電子ガスを極力抑制するために、2次元電子ガスのキャリア密度におけるエッチング犠牲層13の膜厚依存性について測定を行った。この測定においては、エッチング犠牲層13のAl組成yを種々変化させて行った。図2は、その計測結果を示すグラフである。
 図2から、2次元電子ガスのキャリア密度を、その発生による半導体装置への影響が無視できる4×1012cm-2以下とするためには、エッチング犠牲層13のAl組成yとして考えられる25%(y=0.25)の場合でも、AlyGa1-yN層からなるエッチング犠牲層13の膜厚を10nm以下とすれば良いことが分かる。したがって、この実施形態において、エッチング犠牲層13に生じる2次元電子ガスを無視可能な程度に少なくするには、その膜厚を10nm以下にすることが望ましい。
 また、電子供給層12上にAlyGa1-yN層を積層させ、このAlyGa1-yN層を用いて、FP層14のエッチングを精密に制御することを考慮すると、エッチング犠牲層13の膜厚は、1nm以上であることが望ましい。これは、AlyGa1-yN層上に設けられたFP層14が例えばGaN層などのAl組成zが0または極めて小さい場合、GaN層とのエッチングレートがAlGaN層の約100倍程度と極めて大きく、AlGaN層がFP層14を構成するGaN層に対するエッチング犠牲層13として極めて有効に作用するためである。
 以上のように構成された実施形態による積層構造を有する半導体装置においては、電子供給層12の最上層、すなわち最上面のGaN層12bと、エッチング犠牲層13との界面に2次元電子ガスが発生することによるリーク電流の増大を抑制することができる。これによって、半導体装置の特性が悪化するのを防止することができる。
 (実施例)
 次に、以上のように構成された本発明の実施形態による電子供給層12、エッチング犠牲層13、およびFP層14を有する半導体装置の実施例について説明する。
 (第1の実施例)
 図3Aは、第1の実施例によるFP層を備えたショットキーバリアダイオード(SBD)の一例を示す断面図である。図3Aに示すように、この第1の実施例によるSBD20は、基体21上に、電子走行層22、電子供給層23、およびエッチング犠牲層24が順次積層されている。
 基体21は、例えばシリコン(Si)基板、ガリウム砒素(GaAs)基板、ガリウムリン(GaP)基板、GaN基板、AlN基板、炭化ケイ素(SiC)基板、炭素(C)基板、またはサファイア基板などの基板上に、例えばGaN層やAlN層などからなるバッファ層などの、半導体装置の構成に要する種々の層が設けられて構成されている。電子走行層22、電子供給層23、およびエッチング犠牲層24はそれぞれ、上述した実施形態による電子走行層11、電子供給層12、およびエッチング犠牲層13と同様の構成を有する。
 また、SBD20においては、エッチング犠牲層24上にはオーミック電極としてのカソード電極25Cが選択的に設けられている。また、エッチング犠牲層24上には、アノード電極の形成領域を含む不要な部分が選択的にエッチング除去された、Al組成zが0のGaN層からなるGaN-FP層26が設けられている。GaN-FP層26は上述した実施形態によるFP層14と同様の構成を有する。なお、GaN層の不要な部分の選択的なエッチング除去は、例えば塩素系ガスを用いたドライエッチング法により行われる。
 エッチング犠牲層24上には、カソード電極25CとGaN-FP層26との一部を覆うようにした絶縁膜27が設けられている。さらに、GaN-FP層26および絶縁膜27上に乗り上げたフィールドプレート構造を有し、エッチング犠牲層24に接続したショットキー電極としてのアノード電極25Aが設けられている。アノード電極25Aは、例えばニッケル(Ni)と金(Au)とを順次積層させたNi/Au膜からなる。以上により、第1の実施例によるSBD20が構成されている。
 (第2の実施例)
 図3Bは、第2の実施例によるGaN-FP層を備えたHEMTの一例を示す断面図である。図3Bに示すように、この第2の実施例によるHEMT30は、第1の実施例と同様に、基体31上に、電子走行層32、電子供給層33、およびエッチング犠牲層34が順次積層されている。基体31は、基体21と同様の構成を有するとともに、HEMT30の構成に必要な従来公知の基板および各種の層が設けられている。また、電子走行層32、電子供給層33、およびエッチング犠牲層34はそれぞれ、上述した実施形態による電子走行層11、電子供給層12、およびエッチング犠牲層13と同様の構成を有する。
 エッチング犠牲層34上には、ソース電極35Sおよびドレイン電極35Dが選択的に設けられている。ソース電極35Sおよびドレイン電極35Dは、エッチング犠牲層34の上に形成されるオーミック電極として機能する。また、ソース電極35Sとドレイン電極35Dとの間には、ゲート電極の形成領域を含む不要な部分が選択的にエッチング除去された、Al組成zが0のGaN層からなるGaN-FP層36が設けられている。GaN-FP層36は上述した実施形態によるFP層14と同様の構成を有する。なお、GaN層の不要な部分の選択的なエッチング除去は、例えば塩素系ガスを用いたドライエッチング法により行われる。
 また、エッチング犠牲層34上には、ソース電極35S、ドレイン電極35D、およびGaN-FP層36のそれぞれの一部を覆うように、絶縁膜37が設けられている。また、ソース電極35Sとドレイン電極35Dとの間には、エッチング犠牲層34に接続しつつGaN-FP層36および絶縁膜37上に乗り上げたフィールドプレート構造を有し、エッチング犠牲層34に接続した例えばNi/Au膜からなるショットキー電極としてのゲート電極35Gが設けられている。以上により、第2の実施例によるHEMT30が構成されている。なお、エッチング犠牲層34上にゲート絶縁膜、ゲート電極35Gを設けたMIS(Metal Insulator Semiconductor)ゲートとして電界効果トランジスタを構成してもよい。
 以上説明した本発明の実施形態によれば、半導体装置の電子供給層をAlN/GaN層を順次積層した擬似混晶構造とした場合に、その上層にAlを含むAlGaN層からなるエッチング犠牲層を設けることにより、電子供給層の上方に形成される層のエッチングを、半導体装置の特性を悪化させることなく制御することが可能となる。さらに、電子供給層をAlN/GaN超格子層から構成した場合に、その上層にエッチング犠牲層を設けることによって、エッチング時に電子供給層を構成するAlN層が、最表面に露出するのを防止することができるので、表面酸化などによってオン電圧やコンタクト抵抗が増加したり、電流コラプスが悪化したりするのを防止することができる。
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。また、上述の実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。
 また、上述の第1および第2の実施例において、半導体装置における所望の特性に基づいた構造設計に応じて、電子供給層として上述した以外にも種々の擬似混晶構造を採用することが可能である。
 また、上述の第1および第2の実施例において、電子走行層22,32と電子供給層23,33との間に、AlN層からなるスペーサー層を介在させる構成を採用することも可能である。
 本発明は、半導体装置、ショットキーバリアダイオード、および電界効果トランジスタに好適に利用でき、特に擬似混晶構造の電子供給層を有する半導体装置、ショットキーバリアダイオード、および電界効果トランジスタにより好適に利用できる。
 10 半導体装置
 11,22,32 電子走行層
 12,23,33 電子供給層
 12a AlN層
 12b GaN層
 12-1,…,12-i,…,12-n AlN/GaN層
 13,24,34 エッチング犠牲層
 14 フィールドプレート層(FP層)
 20 SBD
 21,31 基体
 25A アノード電極
 25C カソード電極
 26,36 GaN-FP層
 27,37 絶縁膜
 30 HEMT
 35S ソース電極
 35G ゲート電極
 35D ドレイン電極

Claims (15)

  1.  基体と、
     前記基体上に積層された電子走行層と、
     前記電子走行層上にAlN層とGaN層とが交互に複数積層されて構成された平均Al組成xの電子供給層と、
     前記電子供給層上に積層されたAl組成yのAlyGa1-yN(0<y<1)からなるエッチング犠牲層と、
     前記エッチング犠牲層上に積層されたAl組成zのAlzGa1-zN(0≦z<1、z<y)からなるフィールドプレート層と、
     前記フィールドプレート層の一部が前記エッチング犠牲層まで除去された領域に設けられた前記エッチング犠牲層と接続する電極と、
     を有することを特徴とする半導体装置。
  2.  前記電子供給層の平均Al組成xと、前記エッチング犠牲層のAl組成yと、前記フィールドプレート層のAl組成zとが、
     x≧y>z
     の関係を満たすことを特徴とする請求項1に記載の半導体装置。
  3.  前記エッチング犠牲層の膜厚が、前記電子供給層との間に2次元電子ガスを生じない膜厚であることを特徴とする請求項1または2に記載の半導体装置。
  4.  前記エッチング犠牲層の膜厚が、1nm以上10nm以下であることを特徴とする請求項3に記載の半導体装置。
  5.  前記電子供給層を構成する擬似混晶中の前記AlN層および前記GaN層の膜厚が、いずれの層においても前記電子供給層中に2次元電子ガスを生じない膜厚であることを特徴とする請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記電子供給層の膜厚が、10nm以上100nm以下であることを特徴とする請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記電子供給層における平均Al組成が、10%以上70%以下であることを特徴とする請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記電子供給層における平均Al組成が、20%以上50%以下であることを特徴とする請求項1~7のいずれか1項に記載の半導体装置。
  9.  前記電子供給層における平均Al組成が、20%以上35%以下であることを特徴とする請求項1~8のいずれか1項に記載の半導体装置。
  10.  前記フィールドプレート層の膜厚が、10nm以上200nm以下であることを特徴とする請求項1~9のいずれか1項に記載の半導体装置。
  11.  請求項1~10のいずれか1項に記載の半導体装置において、前記電極はアノード電極であり、さらに、前記エッチング犠牲層と接続するカソード電極を備えることを特徴とするショットキーバリアダイオード。
  12.  前記電極が、ニッケルと金とを積層させたNi/Au膜からなることを特徴とする請求項11に記載のショットキーバリアダイオード。
  13.  請求項1~10のいずれか1項に記載の半導体装置において、前記電極はゲート電極であり、さらに、前記エッチング犠牲層と接続するソース電極およびドレイン電極を備えることを特徴とするヘテロ接合電界効果トランジスタ。
  14.  請求項1~10のいずれか1項に記載の半導体装置において、前記電極はゲート絶縁膜を介して前記エッチング犠牲層と接続するゲート電極であり、さらに、前記エッチング犠牲層と接続するソース電極およびドレイン電極を備えることを特徴とするMIS型電界効果トランジスタ。
  15.  基体と、前記基体上に積層された電子走行層と、前記電子走行層上にAlNとGaNとが交互に複数積層されて構成された、平均Al組成xの電子供給層と、前記電子供給層上に積層されたAl組成yのAlyGa1-yN(0<y<1)からなるエッチング犠牲層と、前記エッチング犠牲層上に積層されたAl組成zのAlzGa1-zN(0≦z<1)からなるフィールドプレート層と、前記フィールドプレート層の一部が前記エッチング犠牲層まで除去された領域に設けられた電極と、を有し、前記電子供給層の平均Al組成xと、前記エッチング犠牲層のAl組成yと、前記フィールドプレート層のAl組成zが、x≧y>zの関係を満たす半導体装置の製造方法において、
     少なくとも前記フィールドプレート層における電極の形成領域を、塩素系ガスを用いたドライエッチングによりエッチングする
     ことを特徴とする半導体装置の製造方法。
PCT/JP2013/079149 2012-10-26 2013-10-28 半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ WO2014065429A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/547,666 US20150069410A1 (en) 2012-10-26 2014-11-19 Semiconductor device, method of manufacturing the same, schottky barrier diode, and field effect transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237332A JP2014086707A (ja) 2012-10-26 2012-10-26 半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ
JP2012-237332 2012-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/547,666 Continuation US20150069410A1 (en) 2012-10-26 2014-11-19 Semiconductor device, method of manufacturing the same, schottky barrier diode, and field effect transistor

Publications (1)

Publication Number Publication Date
WO2014065429A1 true WO2014065429A1 (ja) 2014-05-01

Family

ID=50544798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079149 WO2014065429A1 (ja) 2012-10-26 2013-10-28 半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ

Country Status (3)

Country Link
US (1) US20150069410A1 (ja)
JP (1) JP2014086707A (ja)
WO (1) WO2014065429A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043839B1 (fr) * 2015-11-17 2018-04-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Diode a heterojonction ayant un courant de surcharge transitoire accru

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164926A (ja) * 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
JP2008098298A (ja) * 2006-10-10 2008-04-24 Furukawa Electric Co Ltd:The 化合物半導体デバイス
JP2010087274A (ja) * 2008-09-30 2010-04-15 Sanken Electric Co Ltd 半導体装置
WO2011032949A1 (de) * 2009-09-15 2011-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterstruktur
JP2011523218A (ja) * 2008-06-13 2011-08-04 ダイナックス セミコンダクター,インコーポレイティド Hemt装置及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845638B2 (ja) * 2011-06-02 2016-01-20 住友電気工業株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164926A (ja) * 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
JP2008098298A (ja) * 2006-10-10 2008-04-24 Furukawa Electric Co Ltd:The 化合物半導体デバイス
JP2011523218A (ja) * 2008-06-13 2011-08-04 ダイナックス セミコンダクター,インコーポレイティド Hemt装置及びその製造方法
JP2010087274A (ja) * 2008-09-30 2010-04-15 Sanken Electric Co Ltd 半導体装置
WO2011032949A1 (de) * 2009-09-15 2011-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterstruktur

Also Published As

Publication number Publication date
US20150069410A1 (en) 2015-03-12
JP2014086707A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
US8907349B2 (en) Semiconductor device and method of manufacturing the same
JP6189235B2 (ja) 半導体装置
JP5388839B2 (ja) Iii族窒化物半導体電界効果トランジスタ
JP2009231508A (ja) 半導体装置
JP6258148B2 (ja) 半導体装置
WO2013073127A1 (ja) 半導体装置及びその製造方法
JP6244557B2 (ja) 窒化物半導体デバイス
JP2013115362A (ja) 窒化物半導体ダイオード
JP2015177063A (ja) 半導体装置
JP2016054215A (ja) 化合物半導体装置及びその製造方法
JP5415668B2 (ja) 半導体素子
JP5721782B2 (ja) 半導体装置
JP2008198783A (ja) 電界効果トランジスタ
JP6639260B2 (ja) 半導体装置
JP2014157993A (ja) 半導体装置
WO2014065429A1 (ja) 半導体装置およびその製造方法、並びにショットキーバリアダイオードおよび電界効果トランジスタ
JP2011108712A (ja) 窒化物半導体装置
JP2010245240A (ja) ヘテロ接合型電界効果半導体装置及びその製造方法
JP2014086706A (ja) 半導体装置、ショットキーバリアダイオード、電界効果トランジスタ、mis型電界効果トランジスタ、およびmos型電界効果トランジスタ
JP6168978B2 (ja) 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
JP2015153884A (ja) 窒化物半導体装置の製造方法および窒化物半導体装置ならびにダイオードおよび電界効果トランジスタ
JP2017050434A (ja) 半導体装置
JP2016134565A (ja) 半導体装置
JP2014241379A (ja) 半導体装置
JP2009060065A (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848570

Country of ref document: EP

Kind code of ref document: A1