WO2014065131A1 - 立方晶窒化ホウ素焼結体およびその製造方法 - Google Patents

立方晶窒化ホウ素焼結体およびその製造方法 Download PDF

Info

Publication number
WO2014065131A1
WO2014065131A1 PCT/JP2013/077574 JP2013077574W WO2014065131A1 WO 2014065131 A1 WO2014065131 A1 WO 2014065131A1 JP 2013077574 W JP2013077574 W JP 2013077574W WO 2014065131 A1 WO2014065131 A1 WO 2014065131A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
boron nitride
cubic boron
powder
cbn
Prior art date
Application number
PCT/JP2013/077574
Other languages
English (en)
French (fr)
Inventor
義章 徂徠
克己 岡村
朋弘 深谷
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US14/438,573 priority Critical patent/US9487449B2/en
Priority to EP13848302.9A priority patent/EP2913317B1/en
Priority to CN201380055850.5A priority patent/CN104768898B/zh
Priority to KR1020157011253A priority patent/KR101766985B1/ko
Publication of WO2014065131A1 publication Critical patent/WO2014065131A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/004Devices for shaping artificial aggregates from ceramic mixtures or from mixtures containing hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only

Definitions

  • the present invention relates to a cubic boron nitride sintered body and a method for producing the same, and more particularly to a cubic boron nitride sintered body containing a binder and a catalyst and a method for producing the same.
  • Cubic boron nitride (hereinafter referred to as “cBN”) sintered body has the characteristics that it has the hardness next to diamond and does not react with iron-based materials. Therefore, it has been conventionally used as a cutting tool for iron-based materials. Yes.
  • cBN sintered bodies generally used as cutting tools are made of cBN powder using ceramics such as TiC and TiN as a binder. Manufactured by sintering under ultra high pressure.
  • At least one selected from the group consisting of cobalt (Co), chromium (Cr), nickel (Ni) and molybdenum (Mo) is a catalyst for the purpose of improving fracture resistance. It may be included as an element.
  • the catalyst element is added for the purpose of improving the toughness of the cBN sintered body and improving the fracture resistance, but since it is a metal element, it has ductility. However, due to its ductility, it was difficult to pulverize and mix the catalyst element with the cBN powder.
  • the conventional cBN sintered body uses a catalyst element in the state of a compound such as carbide or nitride to prepare a powdery catalyst element and sinter a mixture of the catalyst element powder and the cBN powder. It is produced by.
  • the catalytic element is mixed with the cBN powder as a powder (hereinafter also referred to as “powder mixing”), so that the catalytic element is uniformly distributed in the obtained cBN sintered body. In some cases, it was not distributed. Further, it is known that the catalyst element has a lower hardness than cBN, and if used in a large amount, it causes deterioration in wear resistance. Therefore, from the viewpoint of wear resistance and the like, when it is necessary to keep the addition amount of the catalytic element low, the effect of improving the fracture resistance of the cBN sintered body by the catalytic element cannot be sufficiently obtained.
  • the present invention has been made to solve the above-described problems.
  • the main object of the present invention is to provide a cubic boron nitride sintered body capable of improving the fracture resistance while keeping the addition amount of the catalyst element low and a method for producing the same.
  • the cubic boron nitride sintered body of the present invention is a cubic boron nitride sintered body comprising cubic boron nitride, a binder, and a metal catalytic element, and the content of cubic boron nitride is 50% by volume or more. 85% by volume or less, and the catalyst element content is 0.5% by mass or more and 5% by mass or less.
  • the binder is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solid solutions of Group 4a elements, Group 5a elements, Group 6a elements of the Periodic Table And an aluminum compound.
  • the catalytic element can be dispersed in the binder in the cubic boron nitride sintered body, the fracture resistance of the cubic boron nitride sintered body can be improved.
  • the catalyst element may be composed of at least one element selected from the group consisting of cobalt (Co), chromium (Cr), nickel (Ni), and molybdenum (Mo).
  • Composition analysis on a line segment dividing an image obtained by observing an 8 ⁇ m ⁇ 8 ⁇ m region of the structure of the cubic boron nitride sintered body of the present invention with a scanning transmission electron microscope into partial regions of 4 rows and 4 columns To calculate the total value of the detection peak value of nitrogen (N) and the detection peak value of boron (B) at any measurement point on the line segment, and the total value is calculated at all measurement points of the total value.
  • the measurement point that is less than half of the maximum value is determined as the joint measurement point, and the ratio of the number of measurement points where no catalytic element is detected among the joint measurement points to the total number of joint measurement points is 30% or less. Can do.
  • the bending strength of the cubic boron nitride sintered body can exceed 125 kgf / mm 2 when the content of the cubic boron nitride is 70 volume% or more and 80 volume% or less.
  • the method for producing a cubic boron nitride sintered body according to the present invention includes a step of preparing cubic boron nitride powder, a step of attaching a catalytic element of metal to the surface of the powder, and producing a powder with catalyst, A step of mixing the powder with catalyst and the binder, and a step of sintering the mixture of the powder with catalyst and the binder.
  • a catalytic element is dispersed in the binder, and a cubic boron nitride sintered body having excellent fracture resistance can be produced.
  • the step of producing the powder with catalyst may include a step of coating the surface of the powder with a film containing a catalytic element by a physical vapor deposition method.
  • FIG. 5 is a characteristic diagram when a composition analysis is performed on a line V in FIG. 4. It is a structure
  • FIG. 7 is a characteristic diagram when a composition analysis is performed on the line VII in FIG. 6.
  • the cBN sintered body according to the present embodiment includes cBN, a binder, and a catalytic element made of Co and Cr.
  • the content of cBN in the cBN sintered body is 80% by volume.
  • the binder is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solid solutions of Group 4a elements, Group 5a elements, Group 6a elements of the Periodic Table And an aluminum compound.
  • the binder is made of Ti, N, and Al.
  • the content of the binder in the cBN sintered body according to the present embodiment is 20% by volume, and the content of the catalytic elements composed of Co and Cr is 3% by mass in total.
  • the cBN sintered body according to the present embodiment Co and Cr are dispersed in the binder.
  • the cBN crystal grains are bonded to each other through a bonding material made of Ti, N, and Al, and Co and Cr are dispersed and exist in the bonding material without being localized.
  • the region where the total value of the detection peak value of N and the detection peak value of B is more than half of the maximum value among all the measurement points is determined as the cBN measurement point where cBN exists, and all the measurements are performed.
  • a region that is less than half of the maximum value among the points is determined as a joint measurement point where a binder composed of Ti, N, and Al is disposed.
  • the ratio of the number of measurement points where neither Co nor Cr was detected to the total number of measurement points determined as the joint measurement points was 30%. It is as follows. In examples described later, cBN content obtained by mixing and sintering cBN powder coated with CoCr by RF sputtering PVD method and binder powder (powder in which TiN and Al are mixed) and 80% by volume and Co The ratio of the cBN sintered body having a total content of 3% by mass of Cr and Cr was 23.6%.
  • cBN powder, binder powder and catalyst element powder are mixed and sintered to obtain a cBN content of 80% by volume and a total content of Co and Cr of 3% by mass.
  • the ratio of the sintered body was 38.4%.
  • the catalyst element in the cBN sintered body of the example is more uniformly dispersed in the binder as compared with the comparative example.
  • the cBN in the cBN sintered body is in contact with Co and Cr in a wider area. can do.
  • a conventional cBN sintered body is produced by adding a catalytic element as powder to cBN by powder mixing, the catalytic element is unevenly distributed in the binder of the cBN sintered body. Therefore, in the conventional cBN sintered body, unless the content of the catalytic element is increased, cBN and the catalytic element cannot be sufficiently brought into contact with each other.
  • the cBN sintered body according to the present embodiment can uniformly contact cBN and the catalytic element in a wide region, the amount of addition of the catalytic element is not suppressed to 5% by mass or less. Fracture resistance can be improved as an effect of the element.
  • the content ratio of the catalytic element is 1.5 from the examples described later. It was confirmed that the bending strength was 115 kgf / mm 2 or more when the content was 5% by mass and 5% by mass.
  • the cBN sintered body having a cBN content of 70% by volume to 80% by volume has a bending strength when the catalyst element content is 0.5% by mass and 5% by mass. Was found to exceed 125 kgf / mm 2 .
  • the cBN sintered body according to the present embodiment is excellent in toughness in addition to the above bending strength.
  • the inventor of the present application uses a tool using a cBN sintered body as an evaluation of toughness, steel grade SKD11-6V specified in JIS G4404, hardness HRC64, diameter 100 mm ⁇ length 300 mm, and six V grooves in the axial direction on the surface.
  • the provided work material was intermittently cut under the conditions of a cutting speed of 100 m / min, a feed rate of 0.2 mm / rev, and a cutting depth of 0.15 mm, the time until the cBN sintered body was lost was evaluated.
  • the cBN sintered body according to the present embodiment has a time until loss of 5% or more as compared with a conventional cBN sintered body containing the same amount of catalyst element. That is, the cBN sintered body according to the present embodiment is superior in bending strength and toughness and superior in fracture resistance as compared with the conventional cBN sintered body.
  • the method for producing a cBN sintered body according to the present embodiment includes a step of preparing cBN powder (S01), a step of attaching a catalytic element to the surface of the cBN powder, and producing a powder with catalyst (S02).
  • the step of mixing the cBN powder with catalyst and the binder (S03) and the step of sintering the mixture of the cBN powder with catalyst and the binder (S04) are provided.
  • a cBN powder having an average particle size of about 0.5 ⁇ m to 5.0 ⁇ m is prepared.
  • Co and Cr which are catalytic elements, are attached to the surface of the cBN powder prepared in the previous step (S01) by the RF sputtering PVD method.
  • a cBN powder coated with CoCr (50:50) is prepared using a solid metal material (target) in which Co and Cr are alloyed at a composition ratio of 1: 1.
  • Film formation conditions by sputtering PVD may be determined based on a calibration curve between the sputtering time and the coating amount so as to be a predetermined coating amount.
  • Co and Cr are deposited on the surface of the cBN powder under the condition that the Co and Cr content in the cBN sintered body is 3 mass%.
  • the cBN powder produced in the previous step (S02) and coated with CoCr (50:50) is mixed with the binder.
  • the binder is prepared as a powder obtained by pulverizing and mixing a compound obtained by heat-treating a mixed powder of TiN and Al in a vacuum at a temperature of 1200 ° C. for 30 minutes using a planetary ball mill.
  • the blending ratio of the catalyst-attached cBN powder and the binder powder is determined so as to have a predetermined cBN content in the produced cBN sintered body, but in this embodiment, the cBN content is 80% by volume. Blend as follows.
  • the inner walls are uniformly mixed by a planetary ball mill using a pot made of Teflon (registered trademark) and balls made of Si 3 N 4 . Further, the mixed cBN powder with catalyst and the binder powder are degassed by being held at a temperature of 900 ° C. for 20 minutes in a vacuum furnace.
  • step (S04) the mixed powder of the cBN powder and the binder powder coated with CoCr (50:50) obtained in the previous step (S03) is filled into a Mo capsule, and then the ultra high pressure Using an apparatus, it is sintered at a pressure of 5.8 GPa and a temperature of 1400 ° C. for 20 minutes. Thereby, the cBN sintered compact concerning this embodiment is producible.
  • the cBN sintered body according to the present embodiment is produced by mixing and sintering a cBN powder whose surface is coated with a catalytic element and a binder. Accordingly, in the cBN sintered body, the catalyst element can be dispersed and included in the binder. As a result, the cBN sintered body according to the present embodiment has a high ratio of the catalytic element in contact with cBN among the added catalytic elements, so that the content of the catalytic element is as low as 5% by mass or less. , Can have excellent fracture resistance.
  • the cBN sintered body of the present embodiment has a cBN content of 80% by volume, but is not limited to this, and can be arbitrarily determined in the range of 50% by volume to 85% by volume. From the examples described later, the cBN sintered body having a cBN content of 60% by volume or more and 90% by volume or less was superior to the conventional cBN sintered body produced by powder mixing in both bending strength and toughness. . However, it is considered that a cBN sintered body having similar characteristics can be obtained even when the cBN content is 50% by volume or more.
  • the cBN sintered body according to the present embodiment includes Co and Cr as catalyst elements, but is not limited thereto.
  • the catalyst element may be composed of at least one element selected from the group consisting of Co, Cr, Ni, and Mo. Even in this case, the cBN sintered body to which the catalyst element is added can have excellent fracture resistance.
  • the present invention is not limited to this.
  • the catalytic element contained in the cBN sintered body may be arbitrarily added as long as it is 0.5 mass% or more and 5 mass% or less. From the examples described later, the cBN sintered body to which Co and Cr are added in a total of 1.5% by mass and the cBN sintered body to which 5% by mass are added have a toughness and a bending strength of a conventional cBN sintered body. We were able to confirm that it was superior. If the addition amount of the catalyst element is 0.5% by mass or more and 5% by mass or less, it is considered that a cubic boron nitride composite polycrystal having similar characteristics can be obtained.
  • the binder is prepared from a mixed powder of TiN and Al, but is not limited thereto.
  • the binder was selected from the group consisting of Group 4a elements, Group 5a elements, Group 6a nitrides, carbides, borides, oxides, and solid solutions thereof of the Periodic Table.
  • Any ceramic-based binder containing at least one kind and an aluminum compound can be used.
  • it may be prepared from a mixed powder of Ti (CN) and Al.
  • the method of coating the catalytic element on the surface of the cBN powder in the step (S02) uses the sputtering PVD method, but is not limited thereto. .
  • a plating method or the like may be used. Even in this case, the catalytic element can be coated on the surface of the cBN powder.
  • the sintering conditions using the ultrahigh pressure apparatus in the step (S04) are not limited to the above-described conditions. Any condition can be selected as long as cBN can be sintered.
  • the cBN content in the cBN sintered body is 60% by volume to 90% by volume, and the content of the catalytic element (CrCo) is 1.5% by mass.
  • the cBN sintered bodies of 5% by mass were prepared, and their bending strength and toughness were evaluated.
  • a cBN powder having an average particle size of about 1.2 ⁇ m is prepared in step (S01), and the surface of the cBN powder is sputtered PVD in step (S02).
  • CoCr (50:50) was coated by the method. At this time, film formation was performed under two kinds of sputtering conditions so that CoCr was 1.5% by mass and 5% by mass in total in the cBN sintered body, and two types of cBN powder with catalyst were prepared.
  • step (S03) the compound obtained by heat-treating the mixture of TiN and Al as described above is pulverized and mixed to produce a binder powder, and the binder powder and two types of catalyst-cBN powder are mixed. To prepare a mixture. At this time, it mix
  • a cBN powder having an average particle size of about 1.2 ⁇ m and a Co / Cr carbide powder having an average particle size of 0.5 ⁇ m as a catalyst element were prepared at a weight ratio of 1: 1.
  • the binder is prepared as a powder obtained by pulverizing and mixing a compound obtained by heat-treating a mixture of TiN and Al, and the mixture of cBN powder, catalytic element powder and binder powder is the same as the example sample.
  • 14 were prepared and held at a pressure of 5.8 GPa and a temperature of 1400 ° C. for 20 minutes to sinter, thereby preparing 14 cBN sintered bodies.
  • the present invention uses a coating method in which the above-described cBN powder is coated with a metal catalytic element. If the metal element can be finely pulverized, the same effect as that of the present invention can be obtained by adding and mixing the obtained fine metal to the cBN powder.
  • the content rate of the catalytic element in the cBN sintered bodies of the example samples and the comparative example samples was measured by an ICP method.
  • Example 1 With reference to FIG. 3, as experiment 1, the bending strength of the example evaluation sample and the comparative example evaluation sample was evaluated. Specifically, the cBN sintered body is formed into a square test piece 10 having a length of 6 mm, a width of 3 mm, and a thickness of 0.5 mm, and the test piece 10 is arranged on two struts 11 arranged with an interval L of 4 mm. did. A load N was applied to a central point between the columns 11, and the load N when the cBN sintered specimen 10 was broken was measured as a bending strength. In addition, the support
  • the example samples had a bending strength of 115 kgf / mm 2 or more when the cBN content was in the range of 60 volume% to 90 volume%.
  • the example sample had the same cBN content and showed a higher bending strength than the comparative example sample to which the catalyst element was added to the same degree.
  • the example sample to which 1.5% by mass of the additive element was added had the same cBN content, and the bending strength was higher than that of the comparative example sample to which 5% by mass of the catalyst element was added.
  • the bending strength exceeds 125 kgf / mm 2 , and it can be confirmed that the bending strength is particularly high compared with the comparative sample. It was.
  • Example 2 As Experiment 2, the toughness of the example evaluation sample and the comparative example evaluation sample was evaluated. Specifically, using a tool using a cBN sintered body, a work material having a steel type SKD11-6V, a hardness HRC64, a diameter of 100 mm ⁇ a length of 300 mm, and six V grooves in the axial direction on the surface is prepared. Then, intermittent cutting was performed under the conditions of a cutting speed of 100 m / min, a feed amount of 0.2 mm / rev, and a cutting depth of 0.15 mm, and the time until the cBN sintered body was lost was evaluated. The measurement results are shown in Table 2.
  • the time taken for the example samples to be lost was 1.5 minutes or longer.
  • the example sample has the same cBN content and has a toughness of 5% or more longer than that of the comparative example sample to which the catalyst element is added to the same extent, and has excellent toughness. It could be confirmed.
  • the example sample to which 1.5% by mass of the additive element was added had the same cBN content, and the time to reach a defect was longer than that of the comparative example sample to which 5% by mass of the catalyst element was added. It was confirmed that the toughness was excellent.
  • the example sample according to the present invention is excellent even when the catalyst element content is as low as 5% by mass or less compared to the comparative sample having the same cBN content. It was confirmed that they had bending strength and toughness.
  • the degree of variation of the binder and the catalytic element in the cBN sintered body according to the embodiment of the present invention was observed. Further, an image of an 8 ⁇ m ⁇ 8 ⁇ m region of the cBN sintered body is acquired, and composition analysis is performed on a line segment that divides the image into partial regions of 4 rows and 4 columns, and the degree of dispersion of the catalytic element in the binder Evaluated.
  • STEM scanning transmission electron microscope
  • Example sample a cBN sintered body having a cBN content of 80% by volume and a catalyst element (Co, Cr) of 1.5% by mass was used as an example sample of Example 2.
  • a cBN powder having an average particle size of about 1.2 ⁇ m and a Ni / Mo carbide powder having an average particle size of 0.5 ⁇ m as a catalyst element were prepared at a weight ratio of 1: 1.
  • the binder was prepared as a powder obtained by grinding and mixing a compound obtained by heat-treating a mixture of TiN and Al.
  • a mixture of cBN powder, catalyst element powder, and binder powder was prepared so that the cBN content in the cBN sintered body was 80% by volume and the Ni and Mo contents were 1.5% by mass.
  • the mixture was sintered while being held at a pressure of 5.8 GPa and a temperature of 1400 ° C. for 20 minutes to prepare a cBN sintered body.
  • the maximum value of the total value of the detection peak value of B (peak intensity) and the detection peak value of N at all measurement points is obtained, and the total value of the detection peak of B and the detection peak of N is less than half of the maximum value.
  • the total value of the detection peak of B and the detection peak of N is less than half of the maximum value.
  • the total number of measurement points at which the detection peak value of the catalyst element was 0 at the joint measurement point and no catalyst element was detected was calculated, and the ratio to the total number of joint measurement points was calculated. That is, the smaller the ratio, the more dispersed the catalytic element in the binder.
  • two types of catalyst elements, Co and Cr were added to each of the example sample and the comparative example sample, but the catalyst element was detected at the measurement point where the two catalyst elements were not detected simultaneously.
  • the total number was determined as the measurement points that did not exist. This is because Co and Cr (or Ni and Mo) have different effects on cBN, and Co and Cr (or Ni and Mo) can act at the same time to obtain excellent fracture resistance. Because. Specifically, Co acts on B in cBN, and Cr acts on N in cBN.
  • FIGS. 4 and 6 show images obtained by observing an 8 ⁇ m ⁇ 8 ⁇ m region of the example sample and the comparative example sample by the STEM high angle scattering dark field (HAADF) method, respectively.
  • HAADF STEM high angle scattering dark field
  • spectra obtained by composition analysis on one line segment shown in FIGS. 4 and 6 are shown in FIGS. 5 and 7, respectively.
  • 4 and 6 are HAADF images, B and C constituting cBN are dark, and Co, Cr, Ti and the like constituting a catalytic element and a binder are observed brightly. This was consistent with the spectra shown in FIGS. Thereby, it was confirmed that the binder and the catalytic element were more uniformly dispersed around the cBN in the example sample than in the comparative example sample.

Abstract

立方晶窒化ホウ素と結合材と金属の触媒元素とを備える立方晶窒化ホウ素焼結体であって、立方晶窒化ホウ素の含有率が50体積%以上85体積%以下であり、触媒の含有率が0.5質量%以上5質量%以下である。また、立方晶窒化ホウ素焼結体の組織の8μm×8μmの領域を走査型透過電子顕微鏡で観察して得られた画像を4行4列の部分領域に分割する線分上で組成分析を行って、線分上の任意の測定点における窒素の検出ピーク値とホウ素の検出ピーク値との合計値を算出し、該合計値が合計値の全測定点における最大値の半分以下である測定点を結合部測定点と決定し、結合部測定点の総数に対する、結合部測定点のうち触媒元素が検出されなかった測定点数の比率が30%以下である。

Description

立方晶窒化ホウ素焼結体およびその製造方法
 本発明は、立方晶窒化ホウ素焼結体およびその製造方法に関し、特に結合材および触媒を含む立方晶窒化ホウ素焼結体およびその製造方法に関する。
 立方晶窒化ホウ素(以下、「cBN」と称する)焼結体は、ダイヤモンドに次ぐ硬度を有し、鉄系材料と反応しないという特徴があるため、従来より鉄系材料の切削工具として用いられている。(たとえば、特開2011-207690号公報)
 cBN粒子(粉末)を単独で直接焼結することは非常に困難であるため、一般に切削工具として用いられているcBN焼結体は、TiCやTiNなどのセラミックスをバインダとして用いてcBNの粉末を超高圧下で焼結して製造されている。
 さらに、従来のcBN焼結体は、耐欠損性の向上を目的として、コバルト(Co)、クロム(Cr)、ニッケル(Ni)およびモリブデン(Mo)からなる群から選択される少なくとも1種が触媒元素として含まれている場合がある。このとき、触媒元素は、cBN焼結体の靭性を向上させて耐欠損性を向上させる目的で加えられるが、金属元素であるため、延性を有している。しかし、その延性によって、触媒元素をcBN粉末とともに粉砕混合するのは困難であった。
 そこで、従来のcBN焼結体は、炭化物や窒化物といった化合物の状態の触媒元素を用いることによって、粉末状の触媒元素を準備し、該触媒元素の粉末とcBN粉末との混合物を焼結することによって作製されている。
特開2011-207690号公報
 しかしながら、従来のcBN焼結体において、上述のように触媒元素は粉末としてcBN粉末と混合(以下、「粉末混合」ともいう)されるため、得られたcBN焼結体において触媒元素が均一に分散していない場合があった。また、触媒元素はcBNと比べて硬度が低く、多量に用いると耐摩耗性を悪化させる原因になることが知られている。そのため、耐摩耗性等の観点から、触媒元素の添加量を低く抑える必要がある場合において、触媒元素によるcBN焼結体の耐欠損性向上効果を十分得ることができなかった。
 本発明は上記のような課題を解決するためになされたものである。本発明の主たる目的は、触媒元素の添加量を低く抑えながら、耐欠損性を向上することができる立方晶窒化ホウ素焼結体およびその製造法を提供することにある。
 本発明の立方晶窒化ホウ素焼結体は、立方晶窒化ホウ素と結合材と金属の触媒元素とを備える立方晶窒化ホウ素焼結体であって、立方晶窒化ホウ素の含有率が50体積%以上85体積%以下であり、触媒元素の含有率が0.5質量%以上5質量%以下である。また、結合材は、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、ホウ化物、酸化物およびこれらの固溶体からなる群の中から選択された少なくとも1種と、アルミニウム化合物とを含む。
 これにより、立方晶窒化ホウ素焼結体において、結合材中に触媒元素を分散させることができるため、立方晶窒化ホウ素焼結体の耐欠損性を向上することができる。
 上記触媒元素は、コバルト(Co)、クロム(Cr)、ニッケル(Ni)、およびモリブデン(Mo)からなる群から選択される少なくとも1つの元素からなってもよい。
 本発明の上記立方晶窒化ホウ素焼結体の組織の8μm×8μmの領域を走査型透過電子顕微鏡で観察して得られた画像を4行4列の部分領域に分割する線分上で組成分析を行って、線分上の任意の測定点における窒素(N)の検出ピーク値とホウ素(B)の検出ピーク値との合計値を算出し、該合計値が、合計値の全測定点における最大値の半分以下である測定点を結合部測定点と決定し、結合部測定点の総数に対する、結合部測定点のうち触媒元素が検出されなかった測定点数の比率が30%以下とすることができる。
 上記立方晶窒化ホウ素焼結体の抗折力は、立方晶窒化ホウ素の含有率が70体積%以上80体積%以下であるとき、125kgf/mm2越えとすることができる。
 本発明に係る立方晶窒化ホウ素焼結体の製造方法は、立方晶窒化ホウ素の粉末を準備する工程と、粉末の表面に金属の触媒元素を付着させて、触媒付粉末を作製する工程と、触媒付粉末と結合材とを混合する工程と、触媒付粉末と結合材との混合物を焼結する工程とを備える。
 これにより、結合材中に触媒元素が分散し、耐欠損性の優れた立方晶窒化ホウ素焼結体を作製できる。
 上記触媒付粉末を作製する工程は、粉末の表面を物理蒸着法によって触媒元素を含む膜で被覆する工程を含んでもよい。
 本発明によれば、触媒元素の添加量を低く抑えながら、耐欠損性を向上することができる立方晶窒化ホウ素焼結体およびその製造方法を提供することができる。
本実施の形態に係るcBN焼結体において、結合材中の触媒元素の分散を評価する方法を説明するための図である。 本実施の形態に係るcBN焼結体の製造方法のフローを示す図である。 本発明の実施例1における実験1の試験方法を説明するための図である。 本発明の実施例2における実施例試料の組織像である。 図4の線V上を組成分析したときの特性図である。 本発明の実施例2における比較例試料の組織像である。 図6の線VII上を組成分析したときの特性図である。
 以下、本発明の実施の形態について説明する。
 本実施の形態に係るcBN焼結体は、cBNと、結合材と、CoおよびCrからなる触媒元素とを備える。cBN焼結体におけるcBNの含有率は、80体積%である。また、結合材は、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、ホウ化物、酸化物およびこれらの固溶体からなる群の中から選択された少なくとも1種と、アルミニウム化合物とを含む。本実施の形態に係るcBN焼結体において、結合材はTi、NおよびAlからなる。本実施の形態に係るcBN焼結体における結合材の含有率は、20体積%であり、CoおよびCrからなる触媒元素の含有率は、合計で3質量%である。
 このとき、本実施の形態に係るcBN焼結体において、CoおよびCrは、結合材中で分散している。つまり、cBN結晶粒同士はTi、NおよびAlからなる結合材を介して結合しており、CoおよびCrは該結合材中において、局在せずに分散して存在している。
 これについては、本実施の形態に係る立方晶窒化ホウ素焼結体の組織を走査型透過電子顕微鏡で観察して得られた画像において線分析を行うことにより確認することができる。図1を参照して、具体的には、立方晶窒化ホウ素焼結体の8μm×8μmの領域を走査型透過電子顕微鏡で観察して得られた画像を4行4列の部分領域に分割する(16等分割する)線分上でEDX等の組成分析を行う。得られたスペクトルにおいて、窒素(N)の検出ピーク値とホウ素(B)の検出ピーク値との合計値が、合計値の全測定点における最大値の半分以下である測定点を結合部測定点と決定する。つまり、Nの検出ピーク値とBの検出ピーク値との合計値が、その全測定点中の最大値に対して半分以上である領域をcBNが存在するcBN測定点と決定し、その全測定点中の最大値に対して半分以下である領域をTi、NおよびAlからなる結合材が配置された結合部測定点と決定する。
 このとき、本実施の形態に係る立方晶窒化ホウ素焼結体は、結合部測定点と決定された測定点の総数に対する、CoおよびCrのいずれもが検出されなかった測定点数の比率が30%以下である。後述する実施例において、CoCrをRFスパッタリングPVD法により被覆したcBN粉末と結合材粉末(TiNとAlとを混合した粉末)とを混合、焼結して得られたcBN含有率80体積%かつCoとCrの合計含有率3質量%のcBN焼結体は、上記比率が23.6%であった。一方、後述する比較例において、cBN粉末と結合材粉末と触媒元素の粉末とを混合し、焼結して得られたcBN含有率80体積%かつCoとCrの合計含有率3質量%のcBN焼結体は、上記比率が38.4%であった。このように、実施例のcBN焼結体における触媒元素は比較例と比べて、結合材中により均一に分散している。
 つまり、本実施の形態に係るcBN焼結体は触媒元素であるCoおよびCrが結合材中に分散しているため、該cBN焼結体中のcBNは、CoおよびCrとより広い領域で接触することができる。一方、従来のcBN焼結体は、粉末混合により触媒元素が粉末としてcBNに添加されて作製されるため、cBN焼結体の結合材中において触媒元素が偏在する。そのため、従来のcBN焼結体では、触媒元素の含有率を増大させなければ、cBNと触媒元素とを十分に接触させることはできなかった。
 このように、本実施の形態に係るcBN焼結体は、cBNと触媒元素とを広い領域で均一に接触させることができるので、触媒元素の添加量を5質量%以下に抑えなから、触媒元素による効果として耐欠損性を向上することができる。
 本実施の形態に係るcBN焼結体は、上述のように、触媒元素CoおよびCrが結合材中により均一に分散しているため、後述の実施例より、触媒元素の含有率が1.5質量%および5質量%のときに抗折力が115kgf/mm2以上であることが確認できた。特に、後述する実施例より、cBNの含有率が70体積%以上80体積%以下であるcBN焼結体は、触媒元素の含有率が0.5質量%および5質量%のときに抗折力が125kgf/mm2を越えることが確認できた。
 本実施の形態に係るcBN焼結体は、上記抗折力に加え、靭性も優れている。本願発明者は、靭性の評価としてcBN焼結体を用いた工具によって、JIS G4404に規定する鋼種SKD11-6V、硬度HRC64、直径100mm×長さ300mm、表面上において軸方向にV溝が6本設けられた被削材を、切削速度100m/min、送り量0.2mm/rev、切り込み0.15mmという条件で断続切削したときに、cBN焼結体が欠損するまでの時間を評価した。後述の実施例より、本実施の形態に係るcBN焼結体は、触媒元素を同程度含有した従来のcBN焼結体と比較して、欠損するまでの時間が5%以上長い。つまり、本実施の形態に係るcBN焼結体は、従来のcBN焼結体と比較して、抗折力と靭性に優れており、耐欠損性に優れている。
 次に、図2を参照して、本実施の形態に係るcBN焼結体の製造方法について説明する。本実施の形態に係るcBN焼結体の製造方法は、cBNの粉末を準備する工程(S01)と、cBN粉末の表面に触媒元素を付着させて、触媒付粉末を作製する工程(S02)と、触媒付cBN粉末と結合材とを混合する工程(S03)と、触媒付cBN粉末と結合材との混合物を焼結する工程(S04)とを備える。
 まず、工程(S01)では、平均粒径が0.5μm以上5.0μm以下程度のcBN粉末を準備する。
 次に、工程(S02)において、先の工程(S01)で準備したcBN粉末の表面に、触媒元素であるCoおよびCrをRFスパッタリングPVD法によって付着させる。具体的には、CoとCrが組成比1:1で合金化した固体金属材料(ターゲット)を用いて、CoCr(50:50)で被覆されたcBN粉末を作製する。スパッタリングPVDによる成膜条件は、スパッタリング時間と被覆量との検量線に基づき、所定の被覆量となるように決定すればよい。本実施の形態では、cBN焼結体においてCoおよびCrの含有率が3質量%となるような条件で、CoおよびCrはcBN粉末の表面に成膜される。
 次に、工程(S03)にて、先の工程(S02)にて作製した、CoCr(50:50)で被覆されたcBN粉末と結合材とを混合する。このとき、結合材は、TiNとAlの混合粉末を真空中において温度1200℃で30分間熱処理することによって得られた化合物を、遊星ボールミルを用いて粉砕、混合した粉末として準備する。触媒付cBN粉末と結合材粉末との配合率は、作製するcBN焼結体にいて所定のcBN含有率となるように決められるが、本実施の形態では、cBN含有率が80体積%となるように配合する。触媒付cBN粉末および結合材粉末を配合した後、内壁がテフロン(登録商標)製のポットとSi34製ボールとを用いた遊星ボールミルにより、これらを均一に混合する。さらに、混合された触媒付cBN粉末および結合材粉末は、真空炉において、温度900℃で20分間保持されることにより、脱ガスされる。
 次に、工程(S04)にて、先の工程(S03)にて得られたCoCr(50:50)で被覆されたcBN粉末および結合材粉末の混合粉末をMo製カプセルに充填後、超高圧装置を用いて圧力5.8GPa、温度1400℃で20分間保持して、焼結する。これにより、本実施の形態に係るcBN焼結体を作製することができる。
 以上のように、本実施の形態に係るcBN焼結体は、表面を触媒元素で被覆したcBN粉末と結合材と混合し、焼結することにより作製される。これにより、cBN焼結体において、触媒元素は結合材中に分散して含まれることができる。この結果、本実施の形態に係るcBN焼結体は、添加された触媒元素のうちcBNと接触する触媒元素の割合が高いため、触媒元素の含有率が5質量%以下と低いにも関わらず、優れた耐欠損性を有することができる。
 本実施の形態のcBN焼結体はcBNの含有率が80体積%であったが、これに限られるものではなく、50体積%以上85体積%以下の範囲で任意に決めることができる。後述する実施例より、cBNの含有率を60体積%以上90体積%以下としたcBN焼結体は、抗折力および靭性ともに従来の粉末混合により作製されたcBN焼結体よりも優れていた。しかし、cBN含有率が50体積%以上であっても、同様の特性を有するcBN焼結体を得ることができると考えられる。
 また、本実施の形態に係るcBN焼結体は、触媒元素として、CoおよびCrを含んでいるが、これに限られるものではない。触媒元素として、Co、Cr、Ni、Moからなる群から選択される少なくとも1つの元素からなってもよい。このようにしても、該触媒元素が添加されたcBN焼結体は、優れた耐欠損性を有することができる。
 さらに、本実施の形態に係るcBN焼結体において、触媒元素は3質量%添加されているが、これに限られるものではない。cBN焼結体中に含まれる触媒元素は、0.5質量%以上5質量%以下であれば任意の添加量としてもよい。後述する実施例より、CoおよびCrが合計で1.5質量%添加されたcBN焼結体、および5質量%添加されたcBN焼結体は、靭性および抗折力が従来のcBN焼結体よりも優れていることを確認できた。触媒元素の添加量が0.5質量%以上5質量%以下であれば、同様の特性を有する立方晶窒化ホウ素複合多結晶体を得ることができると考えられる。
 また、本実施の形態に係るcBN焼結体において、結合材はTiNとAlとの混合粉末から準備されたが、これに限られるものでない。上述のように、結合材は、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、ホウ化物、酸化物およびこれらの固溶体からなる群の中から選択された少なくとも1種と、アルミニウム化合物とを含むセラミックス系結合材であれば、任意の組成とすることができる。例えば、Ti(CN)とAlとの混合粉末から準備されてもよい。
 また、本実施の形態に係るcBN焼結体の製造方法において、工程(S02)で触媒元素をcBN粉末の表面に被覆する方法は、スパッタリングPVD法を用いたが、これに限られるものではない。例えば、めっき法等を用いてもよい。このようにしても、cBN粉末の表面に触媒元素を被覆することができる。
 また、本実施の形態に係るcBN焼結体の製造方法において、工程(S04)での超高圧装置を用いた焼結条件は、上述した条件に限られるものではない。cBNが焼結可能な条件であれば、任意の条件を選択することができる。
 以下、本発明の実施例を説明する。
 本発明の実施の形態に係るcBN焼結体として、cBN焼結体中のcBN含有率が60体積%~90体積%であって、触媒元素(CrCo)の含有率が1.5質量%および5質量%である14種のcBN焼結体を作製し、その抗折力および靭性を評価した。
 (実施例試料)
 まず、本実施の形態に係るcBN焼結体の製造方法に従って、工程(S01)で平均粒径が1.2μm程度のcBN粉末を準備し、工程(S02)において該cBN粉末の表面をスパッタリングPVD法によりCoCr(50:50)で被覆した。このとき、cBN焼結体においてCoCrが合計で1.5質量%および5質量%となるように2通りのスパッタリング条件で成膜を行い、2通りの触媒付cBN粉末を作製した。工程(S03)において、上述のようにTiNとAlとの混合物を熱処理して得られた化合物を粉砕混合し結合材粉末を作製し、該結合材粉末と2通りの触媒付cBN粉末とを混合し、混合物を作製した。このとき、cBN焼結体においてcBN含有率が60体積%、65体積%、70体積%、75体積%、80体積%、85体積%、90体積%となるように配合した。つまり、工程(S03)では14通りの混合物を作製した。該14通りの混合物を工程(S04)において、圧力5.8GPa、温度1400℃で20分間保持して焼結し、14通りのcBN焼結体を作製した。
 (比較例試料)
 まず、平均粒径が1.2μm程度のcBN粉末と、触媒元素として、平均粒径が0.5μmのCoとCrの炭化物粉末を1:1の重量比で準備した。結合材はTiNとAlとの混合物を熱処理して得られた化合物を粉砕混合して得られた粉末として準備し、cBN粉末と触媒元素粉末と結合材粉末との混合物を、実施例試料と同様の配合率で14通り作製し、これらを圧力5.8GPa、温度1400℃で20分間保持して焼結し、14通りのcBN焼結体を作製した。金属元素は、延性や展性を有するため、現在の技術ではナノレベルに粉砕することは非常に困難である。そのため、炭化物、窒化物、炭窒化物、酸化物などの化合物にすることで延性や展性をなくし、微粉砕することによって、結合材中に添加する方法が用いられている。しかし、化合物では触媒機能を有しない。そのため、本発明は、上述のようなcBN粉末を金属の触媒元素で被覆する被覆法を用いている。金属元素を微粉砕することができれば、得られた微粒金属をcBN粉末に添加し、混合することで本発明と同等の効果を得ることができる。
 なお、実施例試料および比較例試料のcBN焼結体における触媒元素の含有率は、ICP法により測定した。
 (実験1)
 図3を参照して、実験1として、実施例評価試料と比較例評価試料の抗折力を評価した。具体的には、cBN焼結体を長さ6mm、幅3mm、厚み0.5mmの四角形状の試験片10とし、該試験片10を、間隔Lを4mmとして配置された2支柱11上に配置した。この支柱11間の中央の一点に負荷Nを加え、cBN焼結体の試験片10が折損したときの負荷Nを抗折力として測定した。なお、支柱11は直径2mmとした。測定結果を表1に示す。
 (実験1結果)
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、実施例試料は、cBN含有率が60体積%~90体積%の範囲において、抗折力が115kgf/mm2以上であった。また、実施例試料は、cBN含有率が同程度であって、触媒元素を同程度添加した比較例試料と比べて、高い抗折力を示すことが確認できた。さらに、添加元素を1.5質量%添加した実施例試料は、cBN含有率が同程度であって触媒元素を5質量%添加した比較例試料と比べても、抗折力が高かった。また、cBN含有率が70体積%以上80体積%以下であれば、抗折力は125kgf/mm2を越えており、比較例試料と比較して、特に高い抗折力を有することが確認できた。
 (実験2)
 実験2として、実施例評価試料と比較例評価試料の靭性を評価した。具体的には、cBN焼結体を用いた工具を用いて、鋼種SKD11-6V、硬度HRC64、直径100mm×長さ300mm、表面上において軸方向にV溝が6本設けられた被削材を、切削速度100m/min、送り量0.2mm/rev、切り込み0.15mmという条件で断続切削し、cBN焼結体が欠損するまでの時間を評価した。測定結果を表2に示す。
 (実験2結果)
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、実施例試料は、欠損するまでの時間が1.5分以上であった。また、実施例試料は、cBN含有率が同程度であって、触媒元素を同程度添加した比較例試料と比べて、欠損に至るまでの時間が5%以上長く、靭性が優れていることが確認できた。さらに、添加元素を1.5質量%添加した実施例試料は、cBN含有率が同程度であって触媒元素を5質量%添加した比較例試料と比べても、欠損に至るまでの時間が長く、靭性が優れていることが確認できた。
 以上実験1および実験2の結果から、本発明に係る実施例試料は、cBN含有率が同程度である比較例試料と比べて、触媒元素の含有率が5質量%以下と低い場合でも、優れた抗折力および靭性を有することを確認できた。
 走査型透過電子顕微鏡(STEM)を用いて、本発明の実施の形態に係るcBN焼結体における結合材および触媒元素のばらつきの程度を観察した。さらに、cBN焼結体の8μm×8μmの領域の画像を取得し、当該画像を4行4列の部分領域に分割する線分上で組成分析を行い、結合材中における触媒元素の分散の程度を評価した。
 (実施例試料)
 上述した実施例1における実施例試料のうち、cBN含有率80体積%、触媒元素(Co、Cr)1.5質量%のcBN焼結体を、実施例2の実施例試料とした。
 (比較例試料)
 まず、平均粒径が1.2μm程度のcBN粉末と、触媒元素として、平均粒径が0.5μmのNiとMoの炭化物粉末を1:1の重量比で準備した。結合材はTiNとAlとの混合物を熱処理して得られた化合物を粉砕混合して得られた粉末として準備した。cBN焼結体におけるcBN含有率が80体積%、NiおよびMoの含有率が1.5質量%となるように、cBN粉末と触媒元素粉末と結合材粉末との混合物を作製した。該混合物を圧力5.8GPa、温度1400℃で20分間保持して焼結し、cBN焼結体を作製した。
 (実験3)
 まず、上述のように、STEMによりcBN焼結体中の結合材および触媒元素のばらつきの程度を観察した。さらに、STEMにより、cBN焼結体の8μm×8μmの領域の画像を取得し、当該画像を4行4列の部分領域に分割する各線分上でEDXによる組成分析を行い、結合材中における添加元素の分散の程度を評価した。なお、組成分析は、日本電子製 JEM-2100Fを用いて、ビームスポットサイズを0.4nmとして行った。組成分析の結果に基づいた結合材中における添加元素の分散評価は、以下の方法で行った。
 まず、全測定点中におけるBの検出ピーク値(ピーク強度)とNの検出ピーク値の合計値の最大値を求め、Bの検出ピークとNの検出ピークの合計値が当該最大値の半分以下である測定点を結合部測定点と決定し、その測定点の総数を求めた。
 次に、結合部測定点において、触媒元素の検出ピーク値が0であり、触媒元素が検出されなかった測定点の総数を求め、結合部測定点の総数に対する比率を算出した。つまり、当該比率が小さいほど、結合材中に触媒元素が分散している。本実施例において、実施例試料および比較例試料には、触媒元素としてCoとCrがそれぞれ2種添加されているが、触媒元素が2種同時に検出されなかった測定点を、触媒元素が検出されなかった測定点としてその総数を求めた。これは、CoとCr(またはNiとMo)はcBNに対して異なる作用効果を奏するため、CoとCr(またはNiとMo)がそれぞれ同時に作用することで優れた耐欠損性を得ることができるためである。具体的には、CoはcBNにおけるBに作用し、CrはcBNにおけるNに作用すると考えられる。
 なお、STEM観察および組成分析は日本電子製 JEM-2100Fを用いて行った。
 (実験3結果)
 図4と図6に、それぞれ実施例試料と比較例試料の8μm×8μmの領域をSTEM高角度散乱暗視野(HAADF)法で観察したときの像を示す。また、図4と図6中に示す一の線分上で組成分析して得られたスペクトルを、それぞれ図5と図7に示す。図4および図6はHAADF像のため、cBNを構成するBやCは暗く、触媒元素や結合材を構成するCo、Cr、Ti等は明るく観察されている。これは図5と図7に示すスペクトルとも一致していた。これにより、実施例試料は、比較例試料と比べて結合材および触媒元素がcBNの周囲により均一に分散していることが確認できた。
 さらに、図4と図6に示す像を4行4列の部分領域に分割する各線分上でEDXによる組成分析を行い算出した上記比率は、実施例試料が23.6%であったのに対し、比較例試料は38.4%であった。
 以上実験3の結果から、本発明に係る実施例試料は、触媒元素が同程度添加された比較例試料と比べて、触媒元素が結合材中に分散していることが確認できた。
 以上のように本発明の実施の形態および実施例について説明を行ったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲のすべての変更が含まれることが意図される。
 10 試験片、11 支柱。

Claims (6)

  1.  立方晶窒化ホウ素と結合材と金属の触媒元素とを備える立方晶窒化ホウ素焼結体であって、
     前記立方晶窒化ホウ素の含有率が50体積%以上85体積%以下であり、
     前記触媒元素の含有率が0.5質量%以上5質量%以下であり、
     前記結合材は、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、ホウ化物、酸化物およびこれらの固溶体からなる群の中から選択された少なくとも1種と、アルミニウム化合物とを含む、立方晶窒化ホウ素焼結体。
  2.  前記触媒元素は、コバルト、クロム、ニッケル、およびモリブデンからなる群から選択される少なくとも1つの元素を含む、請求項1に記載の立方晶窒化ホウ素焼結体。
  3.  前記立方晶窒化ホウ素焼結体の組織の8μm×8μmの領域を走査型透過電子顕微鏡で観察して得られた画像を4行4列の部分領域に分割する線分上で組成分析を行って、前記線分上の任意の測定点における窒素の検出ピーク値とホウ素の検出ピーク値との合計値を算出し、
     前記合計値が、前記合計値の全測定点における最大値の半分以下である測定点を結合部測定点と決定し、
     前記結合部測定点の総数に対する、前記結合部測定点のうち前記触媒元素が検出されなかった測定点数の比率が30%以下である、請求項1または請求項2に記載の立方晶窒化ホウ素焼結体。
  4.  前記立方晶窒化ホウ素の含有率が70体積%以上80体積%以下であって、抗折力が125kgf/mm2越えである、請求項1~請求項3のいずれか1項に記載の立方晶窒化ホウ素焼結体。
  5.  立方晶窒化ホウ素の粉末を準備する工程と、
     前記粉末の表面に金属の触媒元素を付着させて、触媒付粉末を作製する工程と、
     前記触媒付粉末と結合材とを混合する工程と、
     前記触媒付粉末と前記結合材との混合物を焼結する工程とを備える、立方晶窒化ホウ素焼結体の製造方法。
  6.  前記触媒付粉末を作製する工程は、前記粉末の表面を物理蒸着法によって前記触媒元素を含む膜で被覆する工程を含む、請求項5に記載の立方晶窒化ホウ素焼結体の製造方法。
PCT/JP2013/077574 2012-10-26 2013-10-10 立方晶窒化ホウ素焼結体およびその製造方法 WO2014065131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/438,573 US9487449B2 (en) 2012-10-26 2013-10-10 Cubic boron nitride sintered body and method for manufacturing the same
EP13848302.9A EP2913317B1 (en) 2012-10-26 2013-10-10 Cubic boron nitride sintered body, and method for producing same
CN201380055850.5A CN104768898B (zh) 2012-10-26 2013-10-10 立方氮化硼烧结体及其制造方法
KR1020157011253A KR101766985B1 (ko) 2012-10-26 2013-10-10 입방정 질화붕소 소결체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-237019 2012-10-26
JP2012237019A JP5988430B2 (ja) 2012-10-26 2012-10-26 立方晶窒化ホウ素焼結体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2014065131A1 true WO2014065131A1 (ja) 2014-05-01

Family

ID=50544511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077574 WO2014065131A1 (ja) 2012-10-26 2013-10-10 立方晶窒化ホウ素焼結体およびその製造方法

Country Status (6)

Country Link
US (1) US9487449B2 (ja)
EP (1) EP2913317B1 (ja)
JP (1) JP5988430B2 (ja)
KR (1) KR101766985B1 (ja)
CN (1) CN104768898B (ja)
WO (1) WO2014065131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156625A1 (ja) * 2013-03-29 2014-10-02 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204152A1 (ja) * 2016-05-23 2017-11-30 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
GB202001369D0 (en) 2020-01-31 2020-03-18 Element Six Ltd Polycrystalline cubic boron nitride material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168569A (ja) * 1985-01-17 1986-07-30 昭和電工株式会社 立方晶窒化硼素焼結体の製造方法
JPH10182242A (ja) * 1996-10-31 1998-07-07 Sumitomo Electric Ind Ltd 高硬度高靱性焼結体
WO2005066381A1 (ja) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP2010513037A (ja) * 2006-12-13 2010-04-30 ダイヤモンド イノベイションズ インコーポレーテッド 改善された機械加工性を有する研磨成形体
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2011207690A (ja) 2010-03-30 2011-10-20 Sumitomo Electric Hardmetal Corp 複合焼結体
WO2012053507A1 (ja) * 2010-10-18 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601390B2 (ja) * 1981-06-29 1985-01-14 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基超高圧焼結材料
JPS6020457B2 (ja) * 1981-10-06 1985-05-22 三菱マテリアル株式会社 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
US5697994A (en) 1995-05-15 1997-12-16 Smith International, Inc. PCD or PCBN cutting tools for woodworking applications
US5639285A (en) * 1995-05-15 1997-06-17 Smith International, Inc. Polycrystallline cubic boron nitride cutting tool
KR100263594B1 (ko) 1996-10-31 2000-08-01 오카야마 노리오 고경도 고인성 소결체
JP4160898B2 (ja) 2003-12-25 2008-10-08 住友電工ハードメタル株式会社 高強度高熱伝導性立方晶窒化硼素焼結体
JP5093160B2 (ja) * 2009-03-11 2012-12-05 富士通株式会社 通信装置
JP5045953B2 (ja) * 2009-03-31 2012-10-10 三菱マテリアル株式会社 立方晶窒化ホウ素の合成方法および立方晶窒化ホウ素焼結体の製造方法
WO2012053375A1 (ja) * 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2012056758A1 (ja) * 2010-10-28 2012-05-03 住友電工ハードメタル株式会社 表面被覆焼結体
WO2012105710A1 (ja) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN焼結体工具および被覆cBN焼結体工具
JP5613970B2 (ja) * 2011-03-30 2014-10-29 三菱マテリアル株式会社 立方晶窒化ホウ素の合成方法および立方晶窒化ホウ素焼結体の製造方法
JP2014131819A (ja) * 2011-04-18 2014-07-17 Tungaloy Corp 複合体
CN104321154B (zh) * 2012-05-31 2017-02-22 山特维克知识产权股份有限公司 制造cbn材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168569A (ja) * 1985-01-17 1986-07-30 昭和電工株式会社 立方晶窒化硼素焼結体の製造方法
JPH10182242A (ja) * 1996-10-31 1998-07-07 Sumitomo Electric Ind Ltd 高硬度高靱性焼結体
WO2005066381A1 (ja) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP2010513037A (ja) * 2006-12-13 2010-04-30 ダイヤモンド イノベイションズ インコーポレーテッド 改善された機械加工性を有する研磨成形体
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2011207690A (ja) 2010-03-30 2011-10-20 Sumitomo Electric Hardmetal Corp 複合焼結体
WO2012053507A1 (ja) * 2010-10-18 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913317A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156625A1 (ja) * 2013-03-29 2014-10-02 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体
US9522850B2 (en) 2013-03-29 2016-12-20 Sumitomo Electric Hardmetal Corp. Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
EP2980046A4 (en) * 2013-03-29 2017-02-22 Sumitomo Electric Hardmetal Corp. Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body

Also Published As

Publication number Publication date
KR101766985B1 (ko) 2017-08-09
US20150291478A1 (en) 2015-10-15
US9487449B2 (en) 2016-11-08
KR20150060970A (ko) 2015-06-03
EP2913317B1 (en) 2020-08-26
JP2014084268A (ja) 2014-05-12
JP5988430B2 (ja) 2016-09-07
CN104768898B (zh) 2017-03-15
CN104768898A (zh) 2015-07-08
EP2913317A1 (en) 2015-09-02
EP2913317A4 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6095162B2 (ja) 立方晶窒化ホウ素焼結体
US9518308B2 (en) High-density and high-strength WC-based cemented carbide
KR102437256B1 (ko) 초경 합금, 그것을 포함하는 절삭 공구 및 초경 합금의 제조 방법
JP2012503094A (ja) 硬質金属
WO2016084443A1 (ja) サーメットおよび切削工具
JP6203941B2 (ja) Pcbn材料、それを作製するための方法、それを含むツール、およびそれを使用する方法
KR20120099249A (ko) 입방정 질화붕소 소결체, 및 입방정 질화붕소 소결체 공구
JP2011116597A (ja) 焼結体および回転工具
CN109070216A (zh) 具有韧性增强结构的碳化物
JP2021110010A (ja) 超微粒超硬合金,およびこれを用いた切断用もしくは切削用工具または耐摩耗用工具
JP5988430B2 (ja) 立方晶窒化ホウ素焼結体およびその製造方法
KR20100014360A (ko) 다이아몬드 소결체
WO2018074275A1 (ja) 複合焼結体
JP2007126326A (ja) ダイヤモンド焼結体
JP2011207688A (ja) 複合焼結体
JP2011207689A (ja) 複合焼結体
JP4366803B2 (ja) 超硬合金押出し材料およびその製造方法並びに切削工具
Jie et al. Evolution of phase microstructure and properties of mulit-core cermets based on (Ti, W, Ta) CN and TiCN powders in sintering process
JP4887588B2 (ja) 分散強化cbn基焼結体およびその製造方法
RU2644718C2 (ru) Износостойкий наплавочный материал
JP2009226512A (ja) 炭化タングステン基焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013848302

Country of ref document: EP